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Abstract: We construct a New Keynesian (NK) behavioural macroeconomic model with bounded-
rationality (BR) and heterogeneous agents. We solve and simulate the model using a third-order
approximation for a given policy and evaluate its properties using this solution. The model is
inhabited by fully rational (RE) and BR agents. The latter are anticipated utility learners, given
their beliefs of aggregate states, and they use simple heuristic rules to forecast aggregate variables
exogenous to their micro-environment. In the most general form of the model, RE and BR agents
learn from their forecasting errors by observing and comparing them with each other, making the
composition of the two types endogenous. This reinforcement learning is then at the core of the
heterogeneous expectations model and leads to the striking result that increasing the volatility of
exogenous shocks, by assisting the learning process, increases the proportion of RE agents and is
welfare-increasing.

Keywords: new Keynesian behavioural model; heterogeneous expectations; bounded rationality;
reinforcement learning

1. Introduction

Since the burst of the United States housing bubble in 2008, a large amount of recent
behavioural macroeconomics literature has emerged in response to what many regard as
the extreme modelling assumption of rational (model-consistent) expectations—henceforth
RE. Its defining characteristic is to limit the cognitive skills of at least a group of agents
in the model. One strand of this literature achieves this by introducing simple ‘heuris-
tic’ learning rules which can be thought of as parsimonious forms of forecasting rules
(as in References [1–4]). This, we argue, fits well the behavioural approach of assum-
ing agents in the model with limited cognitive skills who behave according to bounded
rationality—henceforth BR.

However, this raises the opposite concern regarding the bounds on BR: with heuristic
rule-of-thumb behaviour, agents may fall considerably short of building RE, and such
models are particularly vulnerable to the Lucas critique when policy scenarios are studied.
The problem is that agents can depart from rationality in an infinite number of ways,
leading into the “the wilderness of bounded rationality problem” of Reference [5]. The
challenge posed by the wilderness is clearly demonstrated by the sheer size of literature
on behavioural macroeconomics and the huge number of equilibria proposed. Surveys
include References [6–9].

The concern of behavioural models regarding RE are shared by the recent Agent-
Based(AB) alternatives. This approach represents economic agents as well as various social
and environmental phenomena as autonomous virtual entities that interact during simula-
tion experiments following pre-defined rules. In standard macroeconomic models, agents’
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decisions consist of behavioural equations or, in the case of dynamic stochastic general
equilibrium (DSGE) models, micro-founded first-order conditions satisfying a dynamic
optimisation problem, that are continuous functions of the current and past state of the
economy. The AB approach provides a potentially more flexible way of modelling the cog-
nitive capabilities of decision makers and their responses to both the macro- and individual
micro-environment (for example, the authors of Reference [10] studied the inter-linkages
between the real and financial sides of the economy using an AB framework in which
different types of agents interact on different markets following simple heuristic rules).

When emotional states, cognitive limitations and past information play a key role in
economic behaviour, the AB decision process serves as a promising approach for accounting
for the behaviour of heterogeneous rule-possessing agents. In AB models, economies can
represent out-of-equilibrium behaviour and non-market clearing and can be regarded as
“evolving systems of autonomous interacting agents” Reference [11]. Hence, while DSGE
assumes that agents have very sophisticated computational capabilities and live in very
simple environments, AB models assume that people use simple behavioural rules to cope
with complex and dynamic environments. Many of the features of AB models in addition
to non-RE, such as heterogeneous agents and unemployment, are now being incorporated
into DSGE models. The bounded-rational behavioural models with learning can be then
seen as a genre with both classical DSGE and AB modelling features (see Reference [12] for
further discussions).

In response to the wilderness concern, the literature on BR models adopts a basic
general heterogeneous expectations framework pioneered by Reference [13]. To limit the
departure from rationality, the approach of reinforcement learning proposes that, although
adaptation can be slow and there can be a random component of choice, the higher the
“payoff” (defined appropriately) from taking an action in the past, the more likely it will be
taken in the future. We adopt a heterogeneous RE-BR model of this type. The idea behind
this correction mechanism in which agents evaluate the payoff function is rooted in discrete
choice theory, which is extensively studied in the fields of experimental economics and
cognitive psychology. Recent studies have shown that, when managing their incentive
structures, agents with market-consistent information may not follow rational choice theory
and do not always correct irrational behaviour even if they have sufficient knowledge
available to correct it Reference [14]. Instead, a recent study by Reference [15] conducted
several experiments to analyse how agents decide between different alternatives. The
results showed that people tend to evaluate their perceived efficacy to correct the error by
following rational principles based on cognitively assessing the costs and benefits (payoff)
associated with the correction.

In addition to the selection mechanism, for given proportions of RE and BR agents,
there then exists a choice of learning model: Euler versus the anticipated utility approach
(following Reference [16])—henceforth EL and AU. In both approaches, agents cannot
form model-consistent expectations. Under EL, agents forecast their own one-period-ahead
decisions, whereas under AU, agents form beliefs over the future infinite time horizon
of aggregate states and prices which are exogenous to their decisions (AU, also known
the “infinite time-horizon” framework, is closely related to the “internal rationality” (IR)
approach of Reference [17]). Under both IR and AU, agents maximise utility, given their
constraints and a consistent set of probability beliefs about payoff-relevant variables that
are external. Then with IR, beliefs take the form of a well-defined probability measure over
a stochastic process (the “fully Bayesian” plan). The authors of Reference [18] compared
the IR vs. AU and found that AU can closely approximate the fully Bayesian optimisation.
The two approaches then differ with respect to what agents learn about—their own future
one-period ahead decision for EL and variables exogenous to the agents for AU.

In this paper, we introduce heterogeneity in a full Brock–Hommes new Keynesian (NK)
model with a composite specification of BR and RE agents allowing for a wealth distribution
between the two groups. A third-order perturbation solution leads to a demonstration of
the effects of reinforcement learning in our NK boundedly rational model environment.
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The primary interest of this paper is to study the effect of learning on the business cycle and
its implications for the design of optimal policy strategies within the BR environment. To
this end, the discussions are organised around a number of issues that we aim to address.
Can our model with an endogenous selection mechanism generate endogenous persistence
and non-normality in the frequency distribution of macroeconomic aggregates? Does the
composition of the types of agents change with reinforcement learning and the nature of
the shocks hitting the economy? What are the welfare implications based on a behavioural
macroeconomic model of this type?

In particular, the main contributions of this paper are as follows: (1) we develop
a micro-founded framework that models the endogenous composition of RE and non-
RE agents with reinforcement learning along the lines of Reference [19]; (2) we carry
out our simulations based on different parameterisations of the model and focus on an
assessment of the model-implied moments, including the simulated impulse response
functions. Furthermore, in Appendices A–G we discuss the sources of instability and
indeterminacy in our setup featuring the BR agents who solve their decision problems
using the EL and AU expectation formation schemes. The highly non-linear structure of
the BR specification in which agents endogenously select the heuristic rules is crucial for
conducting optimal policy in macroeconomic models.

Our paper aims to contribute to both the learning and macroeconomic literature. The
investigation on the role of BR behaviour in understanding the dynamics in economic ac-
tivity observed empirically and guiding policy choices is not a trivial one. Various attempts
modify the baseline NK model to account for hybrid heterogeneous expectations and BR.
An approach that is closely related to ours in this regard is from the earlier contributions
of References [3,19,20], in which they studied calibrated composite heterogeneous expec-
tations models of RE and BR agents and discuss implications for the business cycle and
designing stabilisation policies. In our setting, we focus on the major BR approaches with
reinforcement learning—a highly non-linear structure within BR which is methodologically
relevant for capturing movements that are non-normally distributed in empirical data. We
also investigate the effect on rationality when we subject our model to the occurrence of
more volatile exogenous shocks.

The rest of the paper is structured as follows. Section 2 sets out the standard linear
RE NK model used in the literature and then proceeds to the Brock–Hommes composite
model of rational and boundedly rational agents. Section 3 goes back to the non-linear
foundations of the model. Section 4 describes the specific market-consistent environment
in which households and firms form their expectations. Then, Section 5 presents our main
results. Section 5.3 discusses how we choose the set of parameter values that avoids chaotic
dynamics. Finally, Section 6 concludes the paper. Appendices A–G contain further details
and results on the model’s stability and the construction of the model.

2. The Standard Behavioural NK Model

This section discusses the standard behavioural NK model framework used by
References [3,4,19–22] and others.

2.1. The Workhorse NK Model

We first set out the most basic three-equation linearised workhorse NK model with RE

yt = Etyt+1 − (rn,t −Etπt+1) + u1,t (1)

πt = βEtπt+1 + κyt + u2,t (2)

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt) + u3,t (3)

where yt, πt and rn,t are the output gap, the inflation rate and the nominal interest rate,
respectively. All variables are expressed in log-deviation form about a zero net-inflation
steady state. The shock processes ui,t , i = 1, 2, 3 should be interpreted as exogenous shocks
to demand (or preferences), the supply side, and monetary policy, respectively, and they
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are usually AR(1) processes. Expectations (Et) up to now are formed, assuming RE and
perfect information of the state vector (which includes the shock processes). Equation (1) is
the linearised Euler equation for consumption which is equated with output in equilibrium
(there is no government expenditure). The value (2) is the NK Phillips curve, and (3) is the
nominal interest rate rule in “implementable form” in that it responds to output relative to
the steady state rather than the output gap (note that (1) assumes logarithmic utility and
that the supply side shock is a composite of technology and marginal cost processes in
the model developed in this paper. The AR(1) feature of shock processes is criticised by
Reference [4], as it implies that persistence is exogenously generated. This paper addresses
this critique in developing strong endogenous persistence mechanisms through learning).

Before relaxing the RE assumption, two points about this formulation need to be
made. First, there are not a lagged term in yt in the demand curve (1) nor a lagged term
in πt in the Phillips curve (2) (as, for example, in Reference [23]). These can enter through
the introduction of external habits in the consumers’ utility function and price indexing,
respectively, but we choose to focus on learning as a persistence mechanism; thus, both
these features are omitted. Second, the linearisation even without these persistence terms
is only correct for a zero-inflation steady state.

2.2. The Brock–Hommes Behavioural NK Model

In the Brock–Hommes framework, which we later follow, the model becomes be-
havioural by a departure from the RE assumption and the introduction of two groups
of agents. One group is rational, and the other forms EL expectations through simple
“heuristic” learning rules. RE agents form model-consistent expectations fully aware of
the existence of BR agents in the composite model. A version of general adaptive learning
rules (the authors of Reference [24] provided lab-based support for such rules, and the gen-
eralised heuristic rule we later adopt in Section 4 includes a t− 2 period and encompasses
all the different behavioural group forecast heuristics) that encompasses those adopted by
References [3,4,13,19,25] is

E∗t yt+1 = E∗t−1yt + λy(yt−j −E∗t−1yt) ; λy ∈ [0, 1], j = 0, 1 (4)

E∗t πt+1 = E∗t−1πt + λπ(πt−j −E∗t−1πt) ; λπ ∈ [0, 1], j = 0, 1 (5)

where we can in principle allow for both current and lagged observations of output and
inflation, j = 0, 1, respectively. Throughout the rest of the paper, we make the following
information assumptions: for observations of aggregateoutput and inflation, similar to the
EL approach, we assume j = 1. Later in the AU approach, we need to model observations
of market-specificvariables consisting of factor prices, profits and marginal costs. These we
assume can be observed without a lag, and therefore, j = 0.

Let ny,t, nπ,t be the proportions of rational agents forecasting output and inflation,
respectively. The IS and NK Phillips curve equations then become

yt = ny,tEtyt+1 + (1− ny,t)E∗t yt+1 − [rn,t − (nπ,tEtπt+1 + (1− nπ,t)E∗t πt+1)] + u1,t (6)

πt = β[nπ,tEtπt+1 + (1− nπ,t)E∗t πt+1] + λyt + u2,t (7)

To complete the model, we need expressions for the weights ny,t and nπ,t. These follow
the reinforcement learning literature by choosing probabilities

nx,t =
exp(−γΦRE

x,t ({xt}))
exp(−γΦRE

x,t ({xt})) + exp(−γΦAE
x,t ({xt}))

(8)
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where −ΦRE
x,t ({xt)}) and −ΦAE

x,t ({xt)}) are “fitness” measures, respectively, of the forecast
performance of the rational and non-rational predictor of outcome {xt} = {yt}, {πt} given
by a discounted least-squares error predictor

ΦRE
x,t ({xt}) = µREΦRE

x,t−1({xt}) + (1− µRE)([xt −Et−1 xt]
2 + Cx) (9)

ΦAE
x,t ({xt}) = µAEΦAE

x,t−1({xt}) + (1− µAE)[xt−j −E∗t−1−j xt−1]
2 ; j = 0, 1 (10)

where µRE and µAE capture the memory of the agents forming RE and adaptive expectations
(a measure of forgetfulness of past observations). Cx represents the relative costs of being
rational in learning about variable xt. Thus, the proportion of rational agents in the steady
state is given by

nx =
exp(−γCx)

exp(−γCx) + 1

which is pinned down by the γCx. Equations (3)–(10) constitute the linearised NK be-
havioural model (the authors of References [3,4] constructed a rather different composite
EL-type model consisting of “fundamentalist” rather than rational agents alongside adap-
tive learners. For the former RE, E(·) are replaced with E f yt+1 = yF

t and E f πt+1 = 0. Thus,
fundamentalists always believe that the next period’s output gap is zero and that the net
inflation rate will return to its steady-state value of zero. The same authors also assume
Cx = 0 in (9)).

3. The Non-Linear NK Model

Thus far in the linearised model, the justification for the form of adaptive forecasts
needs to be established. In order to address this, we step back to the underlying non-linear
model and introduce the distinction between internal decisions and aggregate macro-
variables. We start with the non-linear RE model and proceed from full to bounded
rationality in stages. The complete model setup and its balanced growth steady state are
summarised in Appendices A–G.

3.1. Households

Household j chooses savings between work and labour supply. Let Ct(j) be consump-
tion and Ht(j) be the proportion of available work or leisure spent at the former. The
single-period utility we choose, compatible with a balanced growth steady state, is

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j))− Ht(j)1+φ

1 + φ

and the value function of the representative household at time t dependent on its assets
B is

Vt(j) = Vt(Bt−1(j)) = Et

[
∞

∑
s=0

βsU(Ct+s(j), Ht+s(j))

]
(11)

The household’s problem at time t is to choose paths for consumption {Ct(j)}, labour
supply {Ht(j)} and holdings of financial savings to maximise Vt(j), given by (11), given its
budget constraint in period t

Bt(j) = RtBt−1(j) + WtHt(j) + Γt − Ct(j)− Tt −
v

2
(Bt−1(j)− B)2 (12)

where Bt(j) is the given net stock of real financial assets at the end of period t, Wt is the wage
rate, Tt are lump-sum taxes, and Γt are profits from wholesale and retail firms owned by
households. In order to allow for a wealth distribution by heterogenous agents introduced
later and to achieve a stationary path for bond holdings, we introduce a portfolio adjustment
cost (this as a modelling device similar to that used in open economies with home and
foreign household is pioneered by Reference [26]. We examine the limit as v becomes
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very small so that our choice of real rather than nominal bond holding costs is immaterial.
The wealth distribution effect does not significantly change the equilibrium). Rt is the
real interest rate paid on assets held at the beginning of period t given by Rt =

Rn,t−1
Πt

RSt,
where Rn,t and Πt are the nominal interest and inflation rates, respectively, and RSt is a
risk premium shock. Wt, Rn,t, Πt and Γt are all exogenous to household j. As usual, all real
variables are expressed relative to the price of the final output. The standard first-order
conditions are

Et[Λt,t+1(j)Rt+1] = 1 + v(Bt(j)− B)
UH,t(j)
UC,t(j)

= −Wt

where Λt,t+1(j) ≡ β
UC,t+1(j)

UC,t(j) is the stochastic discount factor for household j, over the

interval [t, t + 1]. For our choice of utility function UC,t = 1
Ct

and UH,t = −Hφ
t , and

these become

βEt

[
Ct(j)Rt+1

Ct+1(j)

]
= 1 + v(Bt(j)− B) (13)

Ct(j)Ht(j)φ = Wt ⇒ Ht(j) =
(

Wt

Ct(j)

) 1
φ

(14)

The first-order conditions up to now are suitable for the RE solution. We now express
the solution in a form suitable for moving from an RE to a learning equilibrium. We
consider the limit as v → 0. Solving (12) forward in time and imposing the transversality
condition on debt, we can write

Bt−1(j) = PVt(Ct(j))− PVt(WtHt(j))− PVt(Γt) + PVt(Tt) (15)

where the present (expected) value of a series X ≡ {Xt+i}∞
i=0 at time t is defined by

PVt(Xt) ≡ Et

∞

∑
i=0

Xt+i
Rt,t+i

=
Xt

Rt
+

1
Rt

PVt(Xt+1) (16)

writing Rt,t+i ≡ RtRt+1Rt+2 · · · Rt+i as the real interest rate over the interval [t− 1, t + i].
The forward-looking budget constraint (15) holds for the representative household.

If we allow RE and BR agents to borrow from or lend to one another, we must allow
for Bt−1 6= 0. Then, in a symmetric equilibrium with Ct(j) = Ct and Ht(j) = Ht, (15)
and (14) become

Bt−1 = PVt(Ct)− PVt

W
1+ 1

φ

t

C
1
φ

t

− PVt(Γt) + PVt(Tt)

Ht =

(
Wt

Ct

) 1
φ

Solving (13) forward in time and using the law of iterated expectation, we have for
i ≥ 1

1
Ct

= βiEt

[
Rt+1,t+i

Ct+i

]
; i ≥ 1 (17)

We now express the solution to the household optimisation problem for Ct and Ht that
are functions of point expectations {EtWt+i}∞

i=1, {EtRt+1,t+i}∞
i=1 and {EtΓt+i}∞

i=0, treated as
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exogenous processes given at time t. With point expectations, we use (17) to obtain the
following optimal decision for Ct+i, given the point expectations EtRt+1,t+i

Ct+i = Ctβ
iEtRt+1,t+i ; i ≥ 1 (18)

Et(Wt+i Ht+i) =
(EtWt+i)

1+ 1
φ

C
1
φ

t+i

(19)

Substituting (18) and (19) into the forward-looking household budget constraint, using
∑∞

i=0 βi = 1
1−β and EtRt,t+i = RtEtRt+1,t+i for i ≥ 1, we arrive at

Ct − RtBt−1
(1− β)

=
1

C
1
φ

t

(
W

1+ 1
φ

t +
∞

∑
i=1

(β
1
φ )−i

(
EtWt+i

EtRt+1,t+i

)1+ 1
φ

)
+ Γt − Tt +

∞

∑
i=1

Et(Γt+i − Tt+i))

EtRt+1,t+i

which can be written in recursive form as

Ct − RtBt−1
(1− β)

=
1

C
1
φ

t

(
W

1+ 1
φ

t + Ω1,t

)
+ Γt − Tt + Ω2,t (20)

Ω1,t ≡
∞

∑
i=1

(β
1
φ )−i

(
EtWt+i

EtRt+1,t+i

)1+ 1
φ

= (β
1
φ )−1

(
EtWt+1

EtRt+1,t+1

)1+ 1
φ

+
Ω1,t+1

β
1
φ EtRt+1

Ω2,t ≡
∞

∑
i=1

Et(Γt+i − Tt+i)

EtRt+1,t+i
=

Et(Γt+1 − Tt+1)

EtRt+1,t+1
+

Ω2,t+1

EtRt+1

Consumption is then given by (20), assuming point expectations or by the symmetric
form of the Euler equation (13) under full rationality (i.e., households know the symmetric
nature of equilibrium with Ct(j) = Ct). Ct is a function of rational point expectations
{EtWt+i}∞

i=1, {EtRt,t+i}∞
i=i and {EtΓt+i}∞

i=1 which can be treated as exogenous processes
given at time t or as rational model-consistent expectations. Since Et f (Xt) ≈ f (Et(Xt));
Et f (XtYt)) ≈ f (Et(Xt)Et(Yt)) up to a first-order Taylor-series expansion, assuming that
point expectations are equivalent to using a linear approximation (given below), as is
usually performed in the literature.

3.2. Firms, Government Expenditures and Monetary Policy

This section sets out the wholesalers and the retail sector which is optimised using
Calvo-pricing contracts. We close the non-linear setup with resource and balanced govern-
ment budget constraints, a monetary policy rule and by specifying the structural shocks in
the economy. Wholesale firms employ a Cobb–Douglas production function to produce a
homogeneous output

YW
t = F(At, Ht) = At Hα

t

where At is total factor productivity. Profit-maximising demand for labour results in the
first-order condition

Wt =
PW

t
Pt

FH,t = α
PW

t
Pt

YW
t

Ht
(21)

The retail sector costlessly converts a homogeneous wholesale good into a basket of
differentiated goods for aggregate consumption

Ct =

(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(22)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a
price Pt(m) to maximise (22) given total expenditure

∫ 1
0 Pt(m)Ct(m)dm. Assuming that
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government services are similarly differentiated, this results in a set of demand equations
for each differentiated good m with price Pt(m) of the form

Yt(m) =

(
Pt(m)

Pt

)−ζ

Yt (23)

where Pt =
[∫ 1

0 Pt(m)1−ζ dm
] 1

1−ζ , Pt is the aggregate price index, and Ct and Pt are Dixit–
Stigliz aggregates; see Reference [27].

Following Reference [28], we assume that there is a probability of 1− ξ at each period
that the price of each retail good m is set optimally to PO

t (m). If the price is not re-optimised,

then it is held fixed. For each retail producer m, given its real marginal cost MCt =
PW

t
Pt

, the
objective is at time t to choose {PO

t (m)} to maximise discounted real profits

Et

∞

∑
k=0

ξk Λt,t+k

Pt+k
Yt+k(m)

[
PO

t (m)− Pt+k MCt+k

]
subject to (23), where Λt,t+k ≡ βk UC,t+k

UC,t
is the stochastic discount factor over the interval

[t, t + k]. The solution to this is standard and is given by

PO
t (m)

Pt
=

ζ

ζ − 1
Et ∑∞

k=0 ξkΛt,t+k(Πt,t+k)
ζYt+k MCt+k

Et ∑∞
k=0 ξkΛt,t+k(Πt,t+k)

ζ(Πt,t+k)
−1Yt+k

Denoting the numerator and denominator by Jt and J Jt, respectively, and introducing
a mark-up shock MSt to MCt, from Appendix D, we write in recursive form

PO
t (m)

Pt
=

Jt

J Jt
(24)

Jt − ξEt[Λt,t+1Πζ
t+1 Jt+1] =

1
1− 1

ζ

Yt MCt MSt (25)

J Jt − ξEt[Λt,t+1Πζ−1
t+1 J Jt+1] = Yt (26)

Using the fact that all resetting firms will choose the same price, by the law of large
numbers, we can find the evolution of inflation given by

1 = ξ(Πt−1,t)
ζ−1 + (1− ξ)

(
PO

t
Pt

)1−ζ

(27)

Price dispersion lowers aggregate output as follows. Market clearing in the labour
market gives

Ht =
n

∑
m=1

Ht(m) =
n

∑
m=1

(
Yt(m)

At

) 1
α

=

(
Yt

At

) 1
α n

∑
m=1

(
Pt(m)

Pt

)− ζ
α

using (23). Hence, equilibrium for good m gives Yt =
YW

t
∆α

t
, where price dispersion is

defined by

∆t ≡

 n

∑
m=1

(
Pt(m)

Pt

)− ζ
α


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Assuming that the number of firms is large from Appendix E, we obtain the following
dynamic relationship

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

(
Jt

J Jt

)− ζ
α

(28)

To close the model, we first require total profits from retail, and wholesale firms, Γt, is
remitted to households. This is given in real terms by

Γt = Yt −
PW

t
Pt

YW
t︸ ︷︷ ︸

retail

+
PW

t
Pt

YW
t −WtHt︸ ︷︷ ︸

Wholesale

= Yt − α
PW

t
Pt

YW
t

using the first-order condition (21). Then, to complete closure, we have resource and
balanced government budget constraints

Yt = Ct + Gt = Ct + Tt

where Gt is an exogenous demand process, and a monetary policy rule for the nominal
interest rate given by the following implementable Taylor-type rule

log
(

Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Πtarg,t

)
+ θy log

(
Yt

Y

)
+ θdy log

(
Yt

Yt−1

))
+ εMP,t

and εMP,t is an i.i.d. shock to monetary policy. Πtarg,t is a time-varying inflation target and
together with At, Gt, RSt and MSt follows an AR(1) process. This completes the model.

3.3. Recovering the NK Workhorse Model

We now show that the linearised form of the non-linear model about the steady state
reduces to the standard workhorse model in Section 2.1 where rational expectations Etyt+1
and Etπt+1 or non-RE E∗t yt+1 and E∗t πt+1 can be treated as expectations by individual
households and firms, respectively, of aggregate future output and inflation. We consider
the linearised form of the above set-up about a zero inflation and growth deterministic
steady state. We also ignore lending or borrowing between RE and BR agents. With RE, the
household j’s first-order conditions take one of two forms. First, linearising (20), we have

α1ct(j) = α2wt + α3(ω2,t + rt) + α4ω1,t (29)

ω1,t = α5Etwt+1 − α6Etrt+1 + βEtω1,t+1

ω2,t = (1− β)(γt − gt)− rt + βEtω2,t+1

γt =
1

γy
yt −

α

γy
(wt + ht)

where lower case variables xt ≡ log(Xt/X), X is the steady state of Xt; cy ≡ C
Y , γy ≡ Γ

Y ,
gy ≡ G

Y and γt is exogenous profit per household (a function of aggregate consumption
and hours). Positive coefficients are given by α1 ≡ 1 + α

φcy
, α2 ≡ (1− β)(1 + 1

φ )
α
cy

, α3 ≡
γy
cy

,

α4 ≡ βα
cy

, α5 ≡ (1− β)(1 + 1
φ ) and α6 ≡ (1 + 1

φ ). Alternatively, from Euler Equation (13),

ct = Etct+1 −Etrt+1 (30)

in a symmetric equilibrium. Under RE, (29) or (30) lead to the same equilibrium, but under
BR, this is no longer the case.
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Linearising the household supply of hours decision, the resource constraint and the
Fisher equation, we have

yt = (1− gy)ct + gygt (31)

rt = rn,t−1 − πt + rst−1 (32)

ht =
1
φ
(wt − ct)

Then, in a special case where Gt = 0 and there is no distinction between public and
private consumption, gy = 0 and yt = ct. Equations (30)–(32) with rst = u1,t reduce to (1)
where Etyt+1 is the forecast of aggregate output.

Turning to the supply side, for the wholesale sector

yt = at + αht

mct = wt − yt + ht

For retail firm m, linearising the pricing dynamics (24)–(26) about a zero net equation
steady state and solving forward, we have

po
t (m)− pt = βξEt[πt+1 + po

t+1(m)− pt+1] + (1− βξ)(mct + mst)

= Et

∞

∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i + mst+i)] (33)

Then, in a symmetric equilibrium, we have

πt =
(1− ξ)

ξ

(
Et

∞

∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i + mst+i)]

)
(34)

where Et[πt+i+1] and Et[mct+i + mst+i] are expectations of aggregate inflation and real
marginal costs, both variables exogenous to individual price setters. However, if price
setters know they are identical, they know the aggregate price level over non-optimising
and optimising firms

pt(m) = ξ pt−1 + (1− ξ)po
t (m) (35)

to obtain in a symmetric equilibrium

po
t (m)− pt = po

t − pt =
ξ

(1− ξ)
(pt − pt−1) =

ξ

(1− ξ)
πt

Then, substituting back into (33), we arrive at

πt =
(1− ξ)(1− βξ)

ξ
E∗t

∞

∑
i=0

βi(mct+i + mst+i) (36)

which omits learning about aggregate inflation. Equation (36) is the familiar linearised
Phillips curve. Under RE, (34) and (36) are equivalent. (Putting mct = wt − at + ht =

(1 + φ)ht = (1+φ)(yt−at)
α , (36) in recursive form gives (2) with λ = (1−ξ)(1−βξ)(1+φ)

αξ and
u2,t = λmst). The form of the Phillips curve (36), which is equivalent to (2), is often used in
the behavioural NK literature (see, for example, Reference [4]), but as we have shown, this
assumes that firms know they are identical. In our BR model, we use (29) and (34), which
do not make this assumption.
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4. AU Learning and Market-Consistent Information

With anticipated utility (AU) learning, our learning model is one where agents make
fully optimal decisions, given their individual specification of beliefs, but have no macroe-
conomic model to form expectations of aggregate variables. We draw a clear distinction
between aggregate and internal quantities so that identical agents in our model are not
aware of this equilibrium property (nor any others).

To close the model, we need to specify the manner in which households and firms
form their expectations. To do so, we assume that variables which are local to the agents, in
a geographical sense, are observable within the period, whereas variables that are strictly
macroeconomic are only observable with a lag. This categorisation regarding information
about the current state of the economy follows Reference [29], which distinguishes between
the local information that agents acquire directly through their interactions in markets
and statistics that are collected and summarised, usually by governments, and are made
available to the wider public. (This paper actually focuses on a third category, information
provided by the news media, and allows for imperfect information in the form of noisy
signals, issues which go beyond the scope of our paper.) The policy rate is announced by
the central bank; thus, it is observed without a lag, and it is common knowledge. Given
this, we assume an adaptive expectations forecasting rule given below by (38) and (39)
about variables external to agents’ decisions. Let xt = rt, rn,t, πt, wt, γt, then household
expectations are given by

E∗t xt+i = E∗t xt+1 ; i ≥ 1 (37)

ExpressingEtω1,t+1 andEtω2,t+1 in (29) as forward-looking summations and using (37),
we arrive at the individual learning consumption equation

α1ct = α2wt + α3(ω2,t + rt) + α4ω1,t

ω1,t =
1

1− β

[
α5E∗t wt+1 − α6(βE∗t rn,t+1 −E∗h,tπt+1)

]
− α6rn,t

ω2,t = (1− β)(γt − gt)− rt +
β

1− β
((1− β)(E∗t γt+1 −E∗t gt+1)−E∗t rt+1)

which is now expressed in terms of one-step ahead forecasts by

E∗t xt+1 = E∗t xt + λx(xt−j −E∗t xt) ; x = w, rn, π, γ ; j = 0, 1 (38)

Households make inter-temporal decisions for their consumption and hours supplied
given adaptive expectations of the wage rate, the nominal interest rate, inflation and profits.
These macro-variables may in principle be observed with or without a one-period lag
(j = 1, 0), but as stated earlier, we assume j = 0 for market-specific variables wt, γt, and
j = 1 for aggregate inflation πt. However, we assume that the current nominal interest rate,
rn,t, is announced and therefore is observed without a lag.

We distinguish household and firm expectations E∗h,tπt+1, E∗f ,tπt+1. Then, for retail
firm m

E∗t πt+i+1 = E∗t πt+1 ; i ≥ 0

E∗t (mct+i + mst+i) = E∗t (mct+1 + mst+1) ; i ≥ 1

po
t (m)− pt =

βξ

1− β
E∗f ,tπt+1 + (1− βξ)(mct + mst) +

β

1− β
E∗t (mct+1 + mst+1)

where one-step ahead forecasts are given by the adaptive expectations rule

E∗t xt+1 = E∗t xt + λx(xt−j −E∗t xt) ; x = π, (mc + ms); j = 0, 1 (39)

Retail firms make inter-temporal decisions for their price and output given adaptive
expectations of the aggregate inflation rate and their post-shock real marginal shock wage
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rate. As before, these variables may be observed with or without a one-period lag (j = 1, 0),
but for aggregate inflation, we assume j = 1 as for households, but j = 0 for the market-
specific variable mct. Note that we can in principle distinguish between households’ and
firms’ expectations of inflation.

5. Heterogeneous Expectations across Agents

Now we come to the full Brock–Hommes NK model but with BR-AU rather than EL
boundedly rational agents. We argue that our benchmark models, namely, an agent-level
learning behavioural NK model with infinite horizon learners (AU) who use the standard
Brock–Hommes forecast heuristics to form expectations, and a composite version with fixed
proportions of agents forming both RE and AU in a NK setting, are selected because we
want to compare the equilibrium features and empirical performance of these assumptions
in an informational, consistent environment. We assume that all RE agents know the
composite model, and moreover, we impose informational inconsistency by assuming that
they have the same imperfect information set as the BR-AU agents. The latter do not know
the model, but they make individually optimal decisions given individual observations of
the states and belief formations. The composite RE-BR model then has an equilibrium (in
non-linear form)

Hd
t = nh,t(Hs

t )
RE + (1− nh,t)(Hs

t )
BR

Ct = nh,t(Ct)
RE + (1− nh,t)(Ct)

BR = Yt − Gt

Po
t

Pt
= n f ,t

(
Po

t
Pt

)RE
+ (1− n f ,t)

(
Po

t
Pt

)BR

Zero net wealth in aggregateimplies that nh,tBRE
t = −(1− nh,t)BBR

t .
We first consider the properties of the model with fixed exogenous proportions of

RE and BR agents. Then, in Section 5.2, we allow these proportions to be determined
endogenously.

5.1. Exogenous Proportions of RE and BR Agents

For our model of BR with AU, Figure 1 plots the impulse response functions (IRFs)
with standard parameters for the rule for a shock to monetary policy under fast and slow
learning. Figures A3 and A4 in Appendix F show IRFs for the technology and mark-up
shocks. Not surprisingly, fast learning sees an IRF converge faster to the RE case, but in
either case, BR introduces more persistence compared with RE. This suggests that this feature
should lead to a better fit of the data without relying on other persistence mechanisms
(shocks, habit or price indexing). The stability properties of the model are examined in the
WP version of the paper and Appendix A.

5.2. Endogenous Proportions of RE and BR Agents with Reinforcement Learning

Proportions of rational households (nh,t) and firms (n f ,t) are given by (8)

nj,t =
exp(−γΦRE

j,t )

exp(−γΦj,t)RE + exp(−γΦBR
j,t )

; j = h, f

where fitness for households and firms j = h, f is given by

ΦRE
j,t = µRE

j ΦRE
j,t−1 + (1− µRE

j )
(

weighted sum of forecast errors + Cj

)
ΦBR

j,t = µBR
j ΦBR

j,t−1 + (1− µBR
j )
(

weighted sum of forecast errors
)

Table 1 provides a third-order perturbation solution of the non-linear NK RE-BR
model. We use the Bayesian estimation of the model in Reference [30] where the model
is linearised and the proportions nh,t and n f ,t are fixed. Non-linear estimation would be
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required to pin down the parameters nh, n f in the steady state in the BR scenarios and
µRE,BR

h , µRE,BR
f and γ in the reinforcement learning process, which goes beyond the scope

of this paper. Thus, here we impose them as reported in the table (nh,t = n f ,t = 0.1). We
also scale the estimated standard deviations of the shocks using a parameter σ = 1, 2. For
the robustness of our results, we perform additional simulations, for different choice of
the memory parameters, and present the results with µRE

h = µBR
h = µRE

f = µBR
f = 0.5 and

= 0.75 in Appendix G. The robustness exercise assumes instead that agents have some
memory of past observations.
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Figure 1. RE versus RE-BR composite expectations with nh = n f = 0.5, λx = 0.25, 1.0; Taylor rule
with ρr = 0.7, θπ = 1.5 and θy = 0.3, θdy = 0; monetary policy shock.

The main results from these simulations are as follows. First, reinforcement learning
introduces high kurtosis and skewness in macroeconomic variables, the absence of kurtosis in
the standard NK model, often highlighted in the literature (see, for example, Reference [3]),
is in part simply the consequence of linearisation, and non-normality is a feature of higher
order approximations. Second, reinforcement learning with stronger switching processes
(i.e., γ = 100, 1000) coupled with higher volatility of exogenous shocks results in the
numbers of rational agents increasing from the estimated deterministic steady state value
of 0.1 to 0.13 and 0.15 for households and firms, respectively, in the stochastic steady state.
Third, given that BR is a welfare-reducing friction in these models, it follows that volatility
can actually be welfare-increasing in our heterogeneous expectations setting. Furthermore,
when we assume that agents have some memory of past observations when revising their
expectations given their forecast performances, the simulated skewness and kurtosis are
lower compared to the case when no memory is assumed in the learning process.
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Our main results clearly suggest that, when the switching process between groups
of heterogeneous agents becomes more deterministic depending on agents’ willingness to
learn from the past performance when predicting future outcomes, this leads to an increase
in the level of rationality in the BR macroeconomy. This result is in line with the finding
in Reference [3]. The cognitive effect of this selection mechanism is much stronger with the
occurrence of large exogenous shocks. This group behaviour not only plays a key role in
explaining the dynamic properties of the data, revaluating the importance of expectations
in driving economic fluctuations in the spirit of Keynes’ concept of animal spirits, but has
important implications for the optimal control of policy in the spirit of the Lucas critique.
Depending on intentions on the part of policymakers, the model suggests that different
versions of policy can be designed and devised in a game between policymakers and the
economy, with uncertainty as to which expectation formation is selected.

Table 1. Third-order solution of the estimated NK RE-BR model; µRE
h = µBR

h = µRE
f = µBR

f = 0;
γ = 1, 100, 1000.

Variable Stochastic Mean Standard Deviation (%) Skewness Kurtosis
Ct
C 0.999544 0.042057 0.323304 0.093034
Ht
H 1.000273 0.005111 0.038002 −0.020743
Wt
W 0.999810 0.038145 0.318586 0.073488
Πt
Π 0.999898 0.004235 −0.045800 0.030136

Rn,t
Rn

0.999887 0.004440 −0.046254 0.044145

ΦRE
h,t − Ch −0.000443 0.000446 −2.078809 6.635580

ΦAE
h,t −0.000526 0.000516 −2.168947 8.000489

ΦRE
f ,t − C f −0.000199 0.000203 −2.279557 9.082031

ΦAE
f ,t −0.000349 0.000342 −2.269953 9.937975

nh,t (γ = 1; σ = 1) 0.100008 0.000023 0.857638 4.454288

n f ,t (γ = 1; σ = 1) 0.100014 0.000025 1.586194 6.015115

nh,t (γ = 100; σ = 1) 0.100750 0.002297 0.857638 4.454288

n f ,t (γ = 100; σ = 1) 0.101352 0.002479 1.586194 6.015115

nh,t (γ = 1000; σ = 1) 0.107501 0.022973 0.857638 4.454288

n f ,t (γ = 1000; σ = 1) 0.113518 0.024787 1.586194 6.015115

nh,t (γ = 1000; σ = 2) 0.130007 0.093482 0.888592 4.857691

n f ,t (γ = 1000; σ = 2) 0.154182 0.100265 1.683430 6.867599

5.3. The Possibility of Bifurcation and Chaotic Dynamics

Non-linear models in general open up the possibility that, for certain parameter values
or initial conditions, they may exhibit chaotic dynamics. How are the obtained results
related to such dynamics? This possibility is examined using the model of this paper in
Reference [22].

The conclusions are: first, the RE determinancy condition for the linearised model in
the vicinity of the deterministic steady state ensures local determinancy and stability in
the model with a fixed proportion n of fully rational agents. Second, if the linear form of
the model starts from a position of indeterminacy, an increase in the fixed cost of being
fully rational can lead to the loss of local stability via a Hopf bifurcation. This Hopf
bifurcation appears to be super-critical, giving rise to stable limit cycles. As the speed
at which agents learn increases, a rational route to randomness appears to follow, which
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we explore with numerical methods. From a policy point of view, the main conclusion
is that local indeterminacy about the steady state can be avoided by a careful choice of
interest-rate rule that obeys a “Taylor condition” modified to allow for persistence. This is
the case for our simulations which avoid chaotic dynamics.

6. Conclusions

This paper studies an NK behavioural model for which boundedly rational beliefs of
economic agents are about payoff-relevant macroeconomic variables that are exogenous to
their decision rules. Reinforcement learning is at the core of the heterogeneous expectations
model and leads to the striking result that a high volatility of exogenous shocks, by assisting
the learning process, can be welfare-increasing.

The results from our simulations have a range of practical and theoretical implications.
From a practical point of view, our model provides a behavioural explanation for the impor-
tant properties of the business cycle dynamics and (ir)rationality under market economy.
Our findings shed more light on the underlying mechanism that guides policy choices
in a society comprising policymakers and agents who form heterogeneous expectations.
Regarding the theoretical implications, our results for a simple NK model suggest a new
agenda for constructing empirical medium-sized NK models for agents’ behaviours under
imperfect information. Future work will embed the RE-BR composite model into a richer
NK macroeconomic model along the lines of Reference [31], use non-linear estimation
methods to identify a number of parameters involving reinforcement learning that are not
identified using linear Bayesian estimation, and examine optimal monetary policy.

Another potential direction for future research is to investigate how reinforcement
learning affects the possible chaotic dynamics of the model. We know that an increase in the
fixed cost of being fully rational can lead to the loss of local stability. If we enter a region of
local instability, but global boundedness, we see chaotic dynamics as highlighted generally
in Reference [25]. In addition, from Reference [22], who plotted the simulated trajectories
for various parameter values with an almost purely stochastic switching process (γ = 0.1),
it is evident that, when the level of rationality varies according to reinforcement learning, it
is likely that we see very different stability/determinancy properties of the model, which
imply that uncertainty as to how expectations and learning are processed can lead to a
policy rule that is unstable or has infinite multiple equilibria (i.e., is indeterminate).

As with any research, there are limitations in our study that should be addressed in
future work. We have alluded to the wilderness of non-rational expectations posed by
the sheer size of the literature on behavioural macroeconomics and the huge number of
equilibria proposed. Any analysis based on only one choice of model clearly has limitations
when turning to policy implications. A policy that works well for one particular choice
may perform badly using a different model. One solution to this problem proposed
by References [32,33] is to choose a policy to maximise weighted average inter-temporal
welfare across a set of competing models and to weigh models based on relative forecasting
performance. In other studies, the proportions of rational and non-rational agents are
fixed; a possible avenue for future research would be to extend the analysis to time-varying
endogenous proportions as in this paper.

Finally, there remains a wide range of views over the asymmetric macroeconomic
effects of economic shocks (e.g., news, energy and monetary policy) as well as over the
variations in these effects with respect to economic conditions and states. Different strands
of literature offer different explanations on the existence of non-linearities, focusing on the
sources of the shocks, econometric specifications and time-variation in impact and policy
responses (see Reference [34] for a recent study that addresses the latter two aspects). We
argue that the modelling approach and non-linear techniques used in our paper add an
important dimension to this strand of literature by providing a variety of starting points
for future work that investigates the non-linear effects of shocks that may originate from
the time-varying nature of expectation formations and complex adaptive systems.
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Appendix A. Stability Analysis

We have three possible models of expectations: rational (i.e., model consistent), bound-
edly rational with Euler learning and boundedly but with infinite-horizon learning. We
denote these three cases by RE, EL and AU, respectively. In this section, we consider homo-
geneous expectations for which all agents (households and firms) form either RE or AU or EL
expectations. In Section 5 of the main paper, we then allow for the possibility that households
and firms are heterogenous across these groups (but retain intra-group homogeneity).

In the numerical results below, we fix parameters at their priors used in the Bayesian
estimation apart from the adaptive learning parameter λx which we set at unity. We make
the following information assumptions: for observations of aggregate output and inflation,
j = 1, which is assumed in the EL approach. In the AU approach, we need to model
observations of market-specific variables consisting of factor prices, profits and marginal
costs. These we assume can be observed without a lag, and therefore, j = 0. Note this
only applies to the EL and AU agents, but the RE equilibrium assumes perfect information
where agents observe all current values of state variables. However, for rational agents, the
stability conditions considered now can be derived from a perfect foresight equilibrium
and are independent of the information assumption.

Figure A1 compares the models in the (ρr, θπ) space with θy = 0.3 and θdy = 0.
Figure A2 sets ρr = 1 and compares the EL and AU models in (θy, θπ) space having re-
parameterised the rule as rn,t = ρrrn,t−1 + θππt + θyyt. Note that this rule reduces to a
price-level rule when θy = 0. The differences in the sizes of the policy spaces that result in
a saddle-path stable equilibrium are significant. Furthermore, a clear ranking of the sizes
of these spaces emerges with RE ⊃ EL ⊃ AU. This means that, unless the policy rule is
designed for the AU model, uncertainty as to which model of expectations is correct can
lead to a rule that is unstable or has infinite multiple equilibria (i.e., is indeterminate).
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Figure A1. Comparison of stability properties of RE, EL and AU models in (ρr, θπ) space; ρr > 0,
λx = 1; red: determinancy; black: indeterminacy; green: instability. (a) RE: θy = 0.3; (b) EL: θy = 0.3;
(c) AU: θy = 0.3.
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Figure A2. Comparisonof stability properties of EL and AU models in (θy, θπ) space; ρr = 1, λx = 1;
red: determinancy; black: indeterminacy; green: instability. (a) EL: ρr = 1; (b) AU: ρr = 1.

Appendix B. Summary of Composite RE-BR Model

In stationarised form of the model for exogenous proportions nh,t and n f ,t, we have

RE Households:

URE
t = U(CRE

t , HRE
t ) = log CRE

t −
(HRE

t )1+φ

1 + φ

URE
C,t = Et[βg,t+1URE

C,t+1Rt+1]

βg,t = β/(1 + gt)

gt = (1 + g) exp(εAtrend)− 1

Rt =
Rn,t−1

Πt

URE
C,t =

1
CRE

t

URE
H,t = −(HRE

t )φ

−
URE

H,t

URE
C,t

= Wt
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BR Households:

UBR
t = U(CBR

t , HBR
t ) = log CBR

t −
(HBR

t )1+φ

1 + φ

CBR
t

(1−Etβg,t+1)
=

1

(CBR
t )

1
φ

W
1+ 1

φ

t +

((
E∗t Rn,t+1

Rn,t

)
E∗t Wt+1

)1+ 1
φ

(Etβg,t+1)
1
φ (E∗t Rex

t+1)
1+ 1

φ − 1


+ Γt − Gt +

(
E∗t Rn,t+1

Rn,t

)
E∗t (Γt+1 − Gt+1)

E∗t Rex
t+1 − 1

≡ 1

(CBR
t )

1
φ

(
W

1+ 1
φ

t +

(
E∗t Rn,t+1

Rn,t

)1+ 1
φ

Ω1,t

)

+ Γt − Gt +

(
E∗t Rn,t+1

Rn,t

)
Ω2,t

UBR
C,t =

1
CBR

t

UBR
H,t = −(HBR

t )φ

−
UBR

H,t

UBR
C,t

= Wt

where

Ω1,t =
(E∗t Wt+1)

1+ 1
φ

(Etβg,t+1)
1
φ (E∗t Rex

t+1)
1+ 1

φ − 1

Ω2,t =
E∗t (Γt+1 − Gt+1)

E∗t Rex
t+1 − 1

E∗t Rex
t+1 =

E∗t Rn,t+1

E∗h,tΠt+1

Wholesale Firms:

YW
t = F(At, Ht) = AtHα

t = At(nh,tHRE
t + (1− nh,t)HBR

t )α

Yt =
YW

t
∆α

t

PW
t
Pt

FH,t =
PW

t
Pt

αYW
t

Ht
= Wt

1 = ξΠζ−1
t + (1− ξ)

(
n f ,t

(
JRE
t

J JRE
t

)1−ζ

+ (1− n f ,t)

(
JBR
t

J JBR
t

)1−ζ
)

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

n f ,t

(
JRE
t

J JRE
t

)− ζ
α

+ (1− n f ,t)

(
JBR
t

J JBR
t

)− ζ
α


MCt =

PW
t
Pt

=
Wt

FH,t

Γt = Yt − αMCtYW
t
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RE Retail Firms:

J JRE
t − ξEt[Π

ζ−1
t+1 J JRE

t+1βg,t+1] = Yt

(
nh,tURE

C,t + (1− nh,t)UBR
C,t

)
JRE
t − ξEt[Π

ζ
t+1 JRE

t+1βg,t+1] =

(
1

1− 1
ζ

)
Yt MCt MSt

(
nh,tURE

C,t + (1− nh,t)UBR
C,t

)
(

P0
t

Pt

)RE

=
JRE
t

J JRE
t

BR Retail Firms:

JBR
t =

(
1

1− 1
ζ

)
(Yt MCt MSt + Ω3,t)

J JBR
t = Yt + Ω4,t(

P0
t

Pt

)BR

=
JBR
t

J JBR
t

where

Ω3,t =
ξ(E∗f ,tΠt+1)

ζE∗t Yt+1E∗t MCt+1E∗t MSt+1

E∗f ,tRt+1 − ξ(Πt+1)ζ

Ω4,t =
ξ(E∗f ,tΠt+1)

ζ−1E∗t Yt+1

E∗f ,tRt+1 − ξ(E∗f ,tΠt+1)ζ−1

E∗f ,tRt+1 = E∗f ,t

[
Rn,t

Πt+1

]
=

Rn,t

E∗f ,tΠt+1

One-Period Ahead Adaptive Expectations:

E∗t [βg,t+1] = E∗t−1[βg, t] + λ1,βg

(
βg,t−1 −E∗t−1[βg,t]

)
+ λ2,βg

(
βg,t−1 − βg,t−2

)
; λi,βg ∈ [0, 1]

E∗t [Gt+1] = E∗t−1[Gt] + λ1,G
(
Gt −E∗t−1[Gt]

)
+ λ2,G(Gt − Gt−1) ; λi,G ∈ [0, 1]

E∗t [Wt+1] = E∗t−1[Wt] + λW
(
Wt −E∗t−1[Wt]

)
+ λ2,W(Wt −Wt−1) ; λi,W ∈ [0, 1]

E∗t [Γt+1] = E∗t−1[Γt] + λ1,Γ
(
Γt −E∗t−1[Γt]

)
+ λ2,Γ(Γt − Γt−1) ; λi,Γ ∈ [0, 1]

E∗t [Rn,t+1] = E∗t−1[Rn,t] + λ1,Rn

(
Rn,t −E∗t−1[Rn,t]

)
+ λ2,Rn(Rn,t − Rn,t−1) ; λi,Rn ∈ [0, 1] (households)

E∗h,t[Πt+1] = E∗t−1[Πt] + λ1h,Π
(
Πt−1 −E∗t−1[Πt]

)
+ λ2h,Π(Πt−1 −Πt−2) ; λih,Π ∈ [0, 1] (households)

E∗f ,t[Πt+1] = E∗t−1[Πt] + λ1 f ,Π
(
Πt−1 −E∗t−1[Πt]

)
+ λ2h,Π(Πt−1 −Πt−2) ; λi f ,Π ∈ [0, 1] (firms)

E∗t [Yt+1] = E∗t−1[Yt] + λ1,Y
(
Yt−1 −E∗t−1[Yt]

)
+ λ2,Y(Yt−1 −Yt−2) ; λi,Y ∈ [0, 1]

E∗t [M̃Ct+1] = E∗t−1[M̃Ct] + λ1,MC
(

M̃Ct −E∗t−1[M̃Ct]
)
+ λ2,MC

(
M̃Ct − M̃Ct−1

)
; λi,MC ∈ [0, 1]

where M̃Ct ≡ MCt MSt. Note that we have used the first-order approximation
log Xt

X ≈
Xt−X

X .
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Wealth Distribution:
First, define bond holdings of BR households by

BBR
t = RtBBR

t−1 + WtHBR
t + Γt − CBR

t − Tt −
v

2
(BBR

t−1 − B)2

having introduced a portfolio cost adjustment with a small v. Then, replace CBR
t and the

Euler equation above with

CBR
t − BBR

t
(1−E∗t βg,t+1)

=
1

(CBR
t )

1
φ

W
1+ 1

φ

t +

((
E∗t Rn,t+1

Rn,t

)
E∗t Wt+1

)1+ 1
φ

(E∗t βg,t+1)
1
φ (E∗t Rex

t+1)
1+ 1

φ − 1

+ Γt − Gt

+

(
E∗t Rn,t+1

Rn,t

)
E∗t (Γt+1 − Gt+1)

E∗t Rex
t+1 − 1

≡ 1

(CBR
t )

1
φ

(
W

1+ 1
φ

t +

(
E∗t Rn,t+1

Rn,t

)1+ 1
φ

Ω1,t

)

+ Γt − Gt +

(
E∗t Rn,t+1

Rn,t

)
Ω2,t

URE
C,t = Et

[
βg,t+1URE

C,t+1(Rt+1 −v(BRE
t − B))

]
where zero net wealth implies nh,tBRE

t = −(1− nh,t)BBR
t .

Closure of Model:

Yt = nh,tCRE
t + (1− nh,t)CBR

t + Gt

Gt = Tt

log
(

Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Πtarg,t

)
+ θy log

(
Yt

Y

)
+ θdy log

(
Yt

Yt−1

))
+ εMP,t

log At − log A = ρA(log At−1 − log A) + εA,t

log Gt − log G = ρG(log Gt−1 − log G) + εG,t

log MSt − log MS = ρMS(log MSt−1 − log MS) + εMS,t

log Πtarg,t − log Π = ρπ(log Πtarg,t−1 − log Π) + επ,t

Endogenous Proportions of RE and BR Agents:
The payoff for households and firms is expressed in terms of a discounted sum of past

weighted forecast errors, Φh,t say, starting at t = 0 for rational and non-rational households,
respectively,

ΦRE
h,t = µRE

h ΦRE
h,t−1 − (1− µRE

h )
(

wβg (βg,t − Eh,t−1βg,t)/βg)
2 + wG((Gt − Eh,t−1Gt)/G)2

+ wW((Wt − Eh,t−1Wt)/W)2 + wh,Π((Πt − Eh,t−1Π)/Π)2

+ wΓ((Γt − Eh,t−1Γt)/Γ)2 + wR((Rn,t − Et−1Rn,t)/Rn)
2 + Ch

)
ΦBR

h,t = µBR
h ΦBR

h,t−1 − (1− µBR
h )
(

wβg (βg,t − E∗h,t−1βg,t)/βg)
2 + wG((Gt − E∗h,t−1Gt)/G)2

+ wW((Wt − E∗h,t−1Wt)/W)2 + wh,Π((Πt − E∗h,t−1Π)/Π)2 + wΓ((Γt − E∗h,t−1Γt)/Γ)2

+ wR((Rn,t − Et−1Rn,t)/Rn)
2)
)
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The parameter Ch is a fixed cost of being rational for households. For firms, this
becomes

ΦRE
f ,t = µRE

f ΦRE
f ,t−1 − (1− µRE

f )
(

wY((Yt − E f ,t−1Yt)/Y)2 + w f ,Π((Πt − E f ,t−1Π)/Π)2

+ wMC((M̃Ct − E f ,t−1M̃Ct)/MC)2 + C f

)
ΦBR

f ,t = µBR
f ΦBR

f ,t−1 − (1− µBR
f )
(

wY((Yt − E∗f ,t−1Yt)/Y)2 + w f ,Π((Πt − E∗f ,t−1Π)/Π)2

+ wMC((M̃Ct − E∗f ,t−1M̃Ct)/MC)2
)

where parameter C f is a fixed cost of being rational for firms, and we allow for the possibility
that Ch 6= C f . Then, the proportions of rational households and firms is given by

nh,t =
exp(γΦRE

h,t )

exp(γΦh,t)RE + exp(γΦBR
h,t )

=
exp(γ(ΦRE

h,t −ΦBR
h,t ))

exp(γ(ΦRE
h,t −ΦBR

h,t )) + 1

n f ,t =
exp(γΦRE

f ,t )

exp(γΦ f ,t)RE + exp(γΦBR
f ,t )

=
exp(γ(ΦRE

f ,t −ΦBR
f ,t ))

exp(γ(ΦRE
f ,t −ΦBR

f ,t )) + 1

Thus, the proportion of rational agents in the steady state is given by

nh =
exp(−γCh)

exp(−γCh) + 1

n f =
exp(−γC f )

exp(−γC f ) + 1

which is pinned down by the cost parameters (Ch, C f ) (which can be positive or negative).

Welfare and Consumption Equivalence:

Ut = log((nh,tCRE
t + (1− nh,t)CBR

t )−
(nh,tHRE

t + (1− nh,tHt)BR)1+φ

1 + φ

welt = (1− βg,t)Ut +Et[βg,t+1welt+1]

welRE
t = (1− βg,t)URE

t +Et[βg,t+1welRE
t+1]

welBR
t = (1− βg,t)UBR

t +Et[βg,t+1welBR
t+1]

CEt = log(1.01Ct)− log(Ct)
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Appendix C. Balanced Growth Steady State

In recursive form, the zero-growth zero-inflation (Π = 1) steady state can be written
as

R =
1
β

Λ = β

MC =
PW

P
= 1− 1

ζ

C
Y

= 1− gy

H =
α∆α MC

κ(1− gy)

YW = (AH)α

Y =
YW

∆α

W = α
PW

P
YW

H

J =
YMCUC

(1− 1
ζ )(1− ξβΠζ)

J J =
YUC

(1− ξβΠζ−1)

Hence, with Π = 1, J = J J

∆ = 1

Γ = Y− αMCYW

For a particular steady state, the inflation rate Π > 1, and the NK features of the steady
state become

J
J J

=

(
1− ξΠζ−1

1− ξ

) 1
1−ζ

MC =
PW

P
=

(
1− 1

ζ

)
J(1− βξΠζ)

J J(1− βξΠζ−1)

∆ =
(1− ξ)α

(
J
J J

)−ζ

1− ξΠζ

then, PWYW/PY = MC∆.
We can now easily set up the model with a balanced exogenous-growth steady state.

Now the process for At is replaced with

At = Āt Ac
t

Āt = (1 + g)Āt−1 exp(εA,t)

log Ac
t − log Ac = ρA(log Ac

t−1 − log Ac) + εA,t

where At is a labour-augmenting technical progress parameter which we decompose into
a cyclical component, Ac

t , modelled as a temporary AR(1) process and a stochastic trend,
whose log is a random walk with drift, Āt. Thus, the balanced growth deterministic steady
state path is driven by labour-augmenting technical change growing at a net rate g. If we
put g = εtrend,t = 0 and Āt = 1, we arrive at our previous formulation with Ac

t = At.
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Now stationarise the variables by defining cyclical and stationary components

(YW
t )c ≡ YW

t
Āt

= Ac
t Hα

t

Cc
t ≡ Ct

Āt

Wc
t ≡ Wt

Āt

Uc
t ≡ log Cc

t − κ
H1+φ

t
1 + φ

Uc
C,t ≡

1
Cc

t

Λt,t+1 = β
UC,t+1

UC,t
= βg,t+1

Uc
C,t+1

Uc
C,t

for all non-stationary variables where

gt ≡
(Āt − Āt−1)

Āt
= (1 + g) exp(εA,t)− 1

βg,t ≡ β(1 + gt)

is the stochastic steady state growth rate; then, the stationarised Euler equation and the
Calvo pricing become

Et[Λt,t+1Rt+1] = Et

[
βg,t+1

Uc
C,t+1

Uc
C,t

Rt+1

]
= 1

and

Ĵ J
c
t − ξEt[Π

ζ−1
t+1 Ĵ J

c
t+1Λt,t+1] = Yc

t

Ĵc
t − ξEt[Π

ζ
t+1 Ĵc

t+1Λt,t+1] = Yc
t MCt MSt

or equivalently

Ĵ J
c
t − ξEt[Π

ζ−1
t+1 Ĵ J

c
t+1βg,t+1] = Yc

t Uc
t

Ĵc
t − ξEt[Π

ζ
t+1 Ĵc

t+1βg,t+1] = Yc
t Uc

t MCt MSt

The steady state for the rest of the system is the same as the zero-growth one except
for the following relationships:

R =
1

βg
=

Rn

Π

where R and Rn are the real and nominal steady state interest rates, and Π is inflation.

Appendix D. Lemma

In the first-order conditions for Calvo contracts and expressions for value functions,
we are confronted with expected discounted sums of the general form

Ωt = Et

[
∞

∑
k=0

βkXt,t+kYt+k

]
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where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k and Xt,t = 1 (for example an inflation,
interest or discount rate over the interval [t, t + k]).

Lemma A1. Ωt can be expressed as

Ωt = Yt + βEt[Xt,t+1Ωt+1]

Proof.

Ωt = Xt,tYt +Et

[
∞

∑
k=1

βkXt,t+kYt+k

]

= Yt +Et

[
∞

∑
k′=0

βk′+1Xt,t+k′+1Yt+k′+1

]

= Yt + βEt

[
∞

∑
k′=0

βk′Xt,t+1Xt+1,t+k′+1Yt+k′+1

]
= Yt + βEt[Xt,t+1Ωt+1]

Appendix E

Proof of Equation (28). In the next period, ξ of these firms will keep their old prices, and
(1− ξ) will change their prices to PO

t+1. By the law of large numbers, we assume that the
distribution of prices among those firms that do not change their prices is the same as the
overall distribution in period t. It follows that we may write

∆t+1 = ξ ∑
jno change

(
Pt(j)
Pt+1

)−ζ

+ (1− ξ)

(
Jt+1

J Jt+1

)−ζ

= ξ

(
Pt

Pt+1

)−ζ

∑
jno change

(
Pt(j)

Pt

)−ζ

+ (1− ξ)

(
Jt+1

J Jt+1

)−ζ

= ξ

(
Pt

Pt+1

)−ζ

∑
j

(
Pt(j)

Pt

)−ζ

+ (1− ξ)

(
Jt+1

J Jt+1

)−ζ

= ξΠζ
t+1∆t + (1− ξ)

(
Jt+1

J Jt+1

)−ζ
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Appendix F. Additional Simulated IRFs for RE-BR Composite Models
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Figure A3. RE versus RE-BR composite expectations with nh = n f = 0.5; λx = 0.25, 1.0; Taylor rule
with ρr = 0.7, θπ = 1.5 and θy = 0.3; technology shock.
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Figure A4. RE versus RE-BR composite expectations with nh = n f = 0.5; λx = 0.25, 1.0; Taylor rule
with ρr = 0.7, θπ = 1.5 and θy = 0.3; mark-up shock.
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Appendix G. Robustness

Table A1. Third-order solution of the estimated NK RE-BR model; µRE
h = µBR

h = µRE
f = µBR

f = 0.5;
γ = 1, 100, 1000.

Variable Stochastic Mean Standard Deviation (%) Skewness Kurtosis
Ct
C 0.999544 0.042057 0.323304 0.093034

Ht
H 1.000273 0.005111 0.038002 −0.020743

Wt
W 0.999810 0.038145 0.318586 0.073488

Πt
Π 0.999898 0.004235 −0.045800 0.030136

Rn,t
Rn

0.999887 0.004440 −0.046254 0.044145

ΦRE
h,t − Ch −0.000443 0.000257 −1.504159 3.793195

ΦAE
h,t −0.000526 0.000303 −1.592581 4.581412

ΦRE
f ,t − C f −0.000199 0.000116 −1.672777 5.558457

ΦAE
f ,t −0.000349 0.000226 −1.897335 7.457836

nh,t (γ = 1; σ = 1) 0.100008 0.000013 0.488774 3.275592

n f ,t (γ = 1; σ = 1) 0.100014 0.000016 1.680492 6.480563

nh,t (γ = 100; σ = 1) 0.100750 0.001295 0.488774 3.275592

n f ,t (γ = 100; σ = 1) 0.101352 0.001568 1.680492 6.480563

nh,t (γ = 1000; σ = 1) 0.107502 0.012952 0.488774 3.275592

n f ,t (γ = 1000; σ = 1) 0.113519 0.015679 1.680492 6.480563

nh,t (γ = 1000; σ = 2) 0.130010 0.052873 0.535046 3.638229

n f ,t (γ = 1000; σ = 2) 0.154185 0.063624 1.779321 7.399916

Table A2. Third-order solution of the estimated NK RE-BR model; µRE
h = µBR

h = µRE
f = µBR

f = 0.75;
γ = 1, 100, 1000.

Variable Stochastic Mean Standard Deviation (%) Skewness Kurtosis
Ct
C 0.999544 0.042057 0.323304 0.093034

Ht
H 1.000273 0.005111 0.038002 −0.020743

Wt
W 0.999810 0.038145 0.318586 0.073488

Πt
Π 0.999898 0.004235 −0.045797 0.030137

Rn,t
Rn

0.999887 0.004440 −0.046251 0.044145

ΦRE
h,t − Ch −0.000443 0.000170 −0.978598 1.538134

ΦAE
h,t −0.000526 0.000204 −1.088202 2.164231

ΦRE
f ,t − C f −0.000199 0.000077 −1.063312 2.243911

ΦAE
f ,t −0.000349 0.000159 −1.414287 4.290569

nh,t (γ = 1; σ = 1) 0.100008 0.000008 0.350716 2.281134

n f ,t (γ = 1; σ = 1) 0.100014 0.000011 1.385635 4.243151

nh,t (γ = 100; σ = 1) 0.100750 0.000821 0.350716 2.281134

n f ,t (γ = 100; σ = 1) 0.101352 0.001081 1.385635 4.243151

nh,t (γ = 1000; σ = 1) 0.107503 0.008211 0.350716 2.281134

n f ,t (γ = 1000; σ = 1) 0.113521 0.010812 1.385635 4.243151

nh,t (γ = 1000; σ = 2) 0.130012 0.033699 0.406619 2.557592

n f ,t (γ = 1000; σ = 2) 0.154191 0.044060 1.491071 4.993491
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