
Properties and Future of the Skew Kalman Filters
Lamia Alyami

Centre for Environmental Mathematics,
Faculty of Environment, Science and Economy,

University of Exeter, Penryn Campus,
Cornwall TR10 9FE, United Kingdom.

Email: la424@exeter.ac.uk, lmlasloom@nu.edu.sa

Saptarshi Das, Member, IEEE
Centre for Environmental Mathematics,

Faculty of Environment, Science and Economy,
University of Exeter, Penryn Campus,
Cornwall TR10 9FE, United Kingdom.

Email: S.Das3@exeter.ac.uk, saptarshi.das@ieee.org

Abstract—The Kalman filter (KF) and its variants are pow-
erful numerical tools for estimating the unmeasured states of
dynamical systems. However, traditional KFs assume Gaussian
noise in measurements and processes, which may not always
hold in practice. This paper reviews recent developments in
non-Gaussian Kalman filters with non-zero skewness, which
have received relatively little attention despite their potential
benefits. This paper mainly focuses on skew Kalman filters (SKF),
which replace the Gaussian assumption with the closed skew
normal (CSN) distribution. This allows SKF to capture outliers
in dynamical systems, resulting in improved performance and
flexibility. Although there is limited literature on skew Kalman
filters, this study provides an overview of their potential and
motivation for use in a wide range of scientific applications.

Index Terms—Kalman filtering, closed skew normal, outliers

I. INTRODUCTION

Kalman filter is the heart of state estimation problems
under noisy observations where the filter is named after R.E.
Kalman published his famous paper in control theory [1]. The
KF algorithm recursively estimates state variables in noisy
measurements to track the evolution of dynamical systems
over time, which is not a trivial task. This algorithm is an
optimal estimator in the case of linear-Gaussian state-space
models by minimising the mean-squared error (MMSE) of
the state estimation. The KF algorithm is mathematically
described as a predictor–corrector method since it updates
the estimates once the next sequence of measurements are
available to reduce the uncertainty in the covariance matrix
in the prediction step. The KF algorithm and its variants are
widely used in different applications due to its robustness, such
as in signal processing [2], navigation [3], robotics [4], control
systems [5] and infectious disease [6]. For more details of the
KF algorithm theory and applications, please see [7] and [8].
The assumption of linearity and Gaussianity may be invalid
where most of the phenomena in real world are nonlinear and
non-Gaussian that encouraged researchers to invent several
extensions of the KFs such as the more common variants like
extended Kalman filter (EKF) in [9], iterated extended Kalman
filter (IKF) [10] and unscented Kalman filter (UKF) [11].

Assuming the normality of the error terms in the KF, it
can perform efficiently if the posterior states have a normal-
ity trend. However, Gaussian distribution can diverge if the
state follows the non-Gaussian pattern, where the Gaussian

posterior is not tractable. There are many approaches that can
be used to approximate the KF with non-Gaussianity to im-
prove the performance. Among the variants of KFs with non-
Gaussianity we will focus on the KF with non-zero skewness
approximated by an asymmetric distribution. The skewness is
considered in the state space models assumptions to model
the outliers in the presence of very skewed observations. The
contemporary skew-normal distribution was first introduced by
Azzalini in [12] by proposing the univariate skew-normal (SN)
distribution and generalising it to the multivariate case (MSN)
in [13] and [14]. The purpose of the SN distributions is to
consider the skewness by adding a parameter for regulating
it, where most of them are generalizations to the normal
distribution. Further developments of skewness distributions
exist in the literature and they have different formulas but
equivalent parameterizations. However, we shall restrict this
paper to focus on the class of skewed distributions called the
closed skew normal (CSN) distribution, which is introduced
in [15]. The pioneering study that suggested using skewness
in the KF framework was reported in [16] and was introduced
as a skew Kalman filter (SKF) in the dynamic linear case
which is based on the CSN distribution. In [17], there is an
emphasis on the fact that the CSN has most of the interest-
ing properties of the normal distribution (e.g. closed under
conditional, marginalization and summation). These properties
allow the derivation of the recursive KF based on the CSN
distribution. Consequently, relevant studies were followed up
that implement the SKF in different approaches to derive
a family of KFs which are based on the CSN distribution.
In [18], the authors proposed the ensemble Kalman filter
(EnKF) based on the CSN for nonlinear systems and [19]
applied the skewness in the traditional UKF based on the
CSN distribution to capture the third order moments of the
state vector which achieved higher accuracy over the Gaussian
UKF. There are various other asymmetric distributions that
involve the KF for example in [20], the KF is based on scale
mixtures of CSN distribution that contain scale mixtures of
normal distributions as a special case and KF with skew-
t distribution in [21] and [22]. A question may arise as to
why we need to extend the KF with skewness distributions,
whereas the particle filters (PFs) and their variants, such as the
sequential Monte Carlo [23] family of algorithms, bootstrap
filtering [24] and Monte Carlo filtering [25], were proposed



to handle general distributions with high potential to estimate
unmeasurable states in non-Gaussian and nonlinear systems.
Although PFs offer several benefits as a generalized state
estimation technique, a significant challenge associated with
their use is the high computational cost. The performance of
PFs depends on the number of particles, which can increase the
computational costs and cause longer software running times,
particularly for high-dimensional dynamical systems [26]. Rest
of the paper is organized as follows. In section II, the CSN
distribution and its properties are discussed. In section III, the
classical KF is introduced followed by the skew KF in section
IV. The conclusion and future trends are presented in section
V.

II. THE CLOSED SKEW NORMAL DISTRIBUTION

The CSN distribution is defined in [15] based on
the conditional multivariate model that is given in
[27]. This model assumed E1 ∼ Np(0,Σ) and E2 ∼
Nq(0,∆) be independent normal random vectors given as:

W = µ+ E1,

Z = −ν +DE1 + E2.
(1)

The joint distribution of W and Z is:(
W
Z

)
∼ Nq+p

[(
µ
−ν

)
,

(
Σ ΣD′

DΣ ∆+DΣD′

)]
.

(2)
Now let us consider that we have a random vector X having
the conditional distribution as (W | Z ≥ 0) :

X = f(w | Z ≥ 0) =
fW (w)

P (Z ≥ 0)
P (Z ≥ 0 |W = w), (3)

X = f(w | Z ≥ 0) = Cϕp(w;µ,Σ)Φq[D(w− µ); ν,∆], (4)

C−1 = Φq (0; ν,∆+DΣD′) . (5)

Here, ϕp(;µ,Σ) is the probability density function (pdf) a p-
dimensional normal distribution with mean µ and covariance
matrix Σ and Φq(;µ,Σ) is the cumulative distribution function
(CDF) of the univariate standard normal distribution with q-
dimension. Then X is a CSN distribution and parametrized
as:

X ∼ CSNp,q(µ,Σ, D, ν,∆). (6)

where, µ ∈ Rp , ν ∈ Rq , covariance Σ ∈ Rp×p, ∆ is a
covariance in Rq×q and D is the shape parameter vector in
Rq×p. We should note that the parameter µ is centralisation
parameter, and Σ is a scale matrix and not have the same
interpretation of the mean vector and the covariance matrix
in the Gaussian distribution case. Amongst the other three
parameters, D is the shape parameter which regulate the
skewness of the distribution and if D = 0 the density (4)
reduces to the multivariate normal distribution. Whereas the
ν parameter secures the closure properties of the CSN under
conditioning and the parameter ∆ ensures the closure under
marginalization. In the following, we will summarize the most
important properties of the CSN distribution.

A. Properties of the CSN Distribution

Proposition 1: If X ∼ CSNp,q(µ,Σ, D, ν,∆), then the
moment generating function m.g.f of X is given by:

MX(t) =
Φq(DΣt; v,∆+DΣDT )

Φq(0; v,∆+DΣDT )
exp{tTµ+1

2
tTΣt}, t ∈ Rp.

(7)
Proposition 2: Closure under linear transformation.

Let X ∼ CSNp,q and A be a r × p matrix of rank p and
r < p then

AX ∼ CSNr,m (µA,ΣA, DA, vA,∆A) ,

where,

µA = Aµ, ΣA = AΣAT, DA = DΣATΣ−1
A , νA = ν,

and ∆A = ∆+DΣDT −DΣATΣ−1
A AΣDT.

(8)
Proposition 3: Closure under marginalization.

Let X ∼ CSNp,q(µ,Σ, D, v,∆) which is partitioned as
X =

[
xT1 x

T
2

]T
where x1 ∈ Rk and x2 ∈ Rn−k then

x1 ∼ CSNn,m (µ1,Σ11, D
∗,v,∆∗) ,

with
D∗ = D1 +D2Σ21Σ

−1
11 , and

∆∗ = ∆+D2

(
Σ22 − Σ21Σ

−1
11 Σ12

)
DT

2 ,
(9)

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, and D = (D1D2)

The conditional distribution of x2 given x1 is:

x2 | x1 ∼ CSN, as the following(
µ2 +Σ21Σ

−1
11 (x1 − µ1) ,Σ22.1, D2, v −D∗ (x1 − µ1) ,∆

)
(10)

where,
Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12.

The converse is also true.
Proposition 4: Closure under summation.

Let Xp ∼ CSNp,q (µx,Σx, D, v,∆) and Yp ∼ N (µy,Σy) ,
then the sum Zp = Xp +Yp follows the CSN distribution:

Zn ∼ CSNn,m (µz,Σz, Dz, νz,∆z) , (11)

where,

µz = µx + µy, Σz = Σx +Σy, Dz = DΣxΣ
−1
z ,

νz = ν, ∆z = ∆+ (D −Dz) ΣxD
T .

(12)

These favourable features above preserve stability and facil-
itate statistical inference problems with CSN distribution and
for more details and proof for these propositions see [28].
Fig. 1 shows the effect of the shape parameter D on the
asymmetry of the density with different values of the shape
parameter D = 10, 3, 0,−10 respectively, with keeping other
parameters fixed as µ = 0, Σ = 1.2, ν = 0, ∆ = 0.5. For
the negative values of D, the distribution would be displayed
on the opposite side of the vertical axis. Moreover, it is
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Fig. 1: PDF plot of the CSN distribution at different values of
the skewness parameter D.

notable when D = 0 the density will reduce to the Gaussian
distribution. In order to understand the the influence of the
two additional parameters ν and ∆ in the CSN distribution,
we studied with different values and fixed other parameters
as shown in Fig. 2. The shape of distribution is influenced by
these two parameters. In the Fig. 2a with parameters values
µ = 3, Σ = 9, D = 3 and ∆ = 1. The negative values of
the ν shift the curve to the negative area and tend to produce
a flat curve or called platykurtic curve with ∆ = −20. The
Fig. 2b with parameters values chosen as µ = 3, Σ = 9,
D = 3 and ν = 0. There is a qualitative changes with varying
values of ∆ where the largest value of ∆ = 20 tends to
have a bell shape with short tails in the right. These changes
in the PDF curve adds flexibility to the CSN distribution by
capturing complex noisy patterns in the observations which is
one of the important properties as mentioned in [29]. However,
technically the skewness parameter D is the only parameter
that reserves the skewed pattern as shown in Fig. 1.

III. CLASSICAL DISCRETE KALMAN FILTER REVISITED

In this section, we will introduce the standard derivation
of the KF algorithm based on Gaussian distribution which is
characterised by the first two moments without considering the
higher order moments of non-Gaussian density. Let us consider
the discrete-time dynamic system model as:

The process equation:
xt+1 = Fxt + ηt, ηt ∼ (0,Ση).

The measurement equation:
yt = Hxt + ψt, ψt ∼ (0,Σψ).

(13)
where, xt ∈ Rn is the state vector of the system at time t, yt
∈ Rm is the measurement vector, ηt and ψt are the process and
measurement noises normally distributed with zero-mean and

covariances Ση and Σψ respectively. In addition, F ∈ Rn×n is
the state transition matrix and H ∈ Rm×n is the measurement
matrix. The KF algorithm has two stages: the prediction step
and the correction or update step. The mean and covariance
of the state xt propagated with time in the KF equations as
derived in (14) as:

x̂+0 = E (x0) ,

P+
0 = E

[(
x0 − x̂+0

) (
x0 − x̂+0

)T ]
,

x̂−t = Fx̂+t−1,

P−
t = FP+

t−1F
T +Ση,

Kt = P−
t H

T
(
HP−

t H
T
t +Σψ

)−1
,

x̂+t = x̂−t +Kt

(
yt −Hx̂−t

)
,

P+
t = (I −KtH)P−

t .

(14)

where, Kt is the Kalman gain, x̂−t and P−
t are the estimate

of the state and its covariance before the measurement yt is
processed where x̂−t is called a prior estimate. While x̂+t and
P+
t are the estimate of the state and its covariance after giving

the measurements where x̂+t is called the posterior estimate.
For more details please see [30].

IV. SKEW KALMAN FILTERS AND VARIANTS

This section describes the main results of the paper re-
viewing existing works on SKFs. The previous sections were
intended to provide a foundation for this section. The KF
algorithm with skewness can be categorized based on its
assumption of the CSN distribution - whether in the initial state
vector or in the noise distribution. The SKF algorithm contains
two parts the Gaussian part which is related to the smooth
trend and depends on updating the mean µ and covariance Σ,
the second part is the skewed part to capture the asymmetric
pattern which depends on updating the skewness parameters
D, ν and ∆. For the sake of completeness, we briefly review
the differences and similarities in the prediction and update
equations in the following cases.

A. Case 1: The State Vector x Following the CSN Distribution

The first proposed algorithm of the KF with CSN was
in [16] which was for the linear state space model by as-
suming the initial state vector x0 is distributed as x0 ∼
CSNp,q

(
µ̂0, Σ̂0, D̂0, ν̂0, ∆̂0

)
whereas the process and mea-

surement noises are Gaussian distributed with mean µη and
covariance Ση , mean µψ and covariance Σψ respectively. The
goal here is to capture the skewness of the state variables. The
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Fig. 2: The CSN distribution with different values of ν and ∆.

TABLE I: The list of recent references of SKF based on CSN distribution

Type of Skew Kalman Filters Methods Applications Reference
SKF linear system experimental study [16]
SKF linear and nonlinear systems petroleum reservoir simulations [18]

Generalized of SKF linear system UK gas consumption [31]
USKF nonlinear systems tracking velocity and position of a body [19]
SKF linear system factor index of male and female anchovies [32]

SKF equations in this case are:

µ̂−
t = Ftµ̂

+
t−1 + µη,

Σ̂−
t = FtΣ̂

+
t F

T
t +Ση,

µ̂+
t = µ̂−

t +Kt

[
yt −Htµ̂

+
t

]
− µψ,

Kt = Σ−
t H

T
t

(
Σψ +HtΣ

−
t H

T
t

)−1
,

Σ̂+
t = Σ̂−

t −KtHtΣ̂
−
t ,

D̂t = D̂t−1Σ̂
+
t F

T
t Σ̂−1

t ,

ν̂t = ν̂t−1,

∆̂t = ∆̂t−1 +
(
D̂t−1 − D̂tFt

)
Σ̂+
t D̂t−1.

(15)

The equation (15) presents the general framework to in-
tegrate the skewness into the KF algorithm where the only
difference is in the update step when propagating the skewness
parameters D, ν and ∆. Despite the parameter ν is a constant
but it is necessary to secure the conditional probability which
is the fundamental situation in the KF algorithm. Furthermore,
the summation of the CSN variable with a normal distribution
variable is also the CSN distribution, for more details see
lemma 2 in [16]. The proposition (4) helps to have a closed
expression of the CSN distribution. It is noticeable that there

is no big difference between the structure of the SKF and
the Gaussian KF. The advantage of including the skewness
in the initial state vector is that there is no change in the
skewness dimension. Another study proposed in [19] shows
that the CSN distribution in the state vector modifies the
traditional unscented Kalman filter (UKF) [11] so that it can
handle nonlinear systems based on the particles called the
sigma points through unscented transformations to estimate
the mean and covariance. The unscented SKF based on CSN
distribution (CSN-UKF) is intended to capture the third-order
moment (skewness) in the state vector where the process
and measurement noise terms are assumed to be Gaussian
distributed. The CSN-UKF as compared to the UKF has
a significant performance with a lower mean squared error
(MSE). However, they showed after a while the impact of
skewness in the CSN-UKF will gradually converge to the
Gaussian KF. The extension works for these assumptions are
presented in [31] and [20] in greater detail.

B. Case 2: The Noise and State both Following the CSN
Distribution

The approach of assuming the prior state vector and the
process noise η being distributed the CSN distribution in both



linear and nonlinear cases are proposed in [18]. Consequently,
the recursive solution of the KF under these assumptions of
the CSN distribution follows the CSN where the conjugacy
is achieved under linear transformation and conditional dis-
tribution. The location µ and the scale Σ are identical to
the algorithm in (15) but there are differences in skewness
parameters within the time update step and this approach is
computationally intensive. However, there is an increase in
the skewness dimension where every time step has a different
dimension and that is infeasible for practical implementations.
To avoid exploring the skewness dimension some techniques
might be useful such as re-fit every iteration with the CSN
distribution as a prior state for the next step. This issue is
discussed in [18] and by using numerical approximations as
mentioned in [33]. This problem has been investigated earlier
also in [16] by splitting up the state equation into a linear term
and a skewed term. We are not giving the full derivation details
of this approach and the reader should refer to the [18]. Further
work addressed the skewness in the dynamic linear model
in [32] where they introduced the filtering and smoothing
scheme based on the generalized of the CSN distribution for
observation noise since deep modifications of this topic are
beyond the scope of the present paper but could be considered
as future research. Table I provides a summary of the existing
literature on SKFs related works including the difference in
the methods and application areas.

V. CONCLUSIONS AND FUTURE TRENDS

We provide a brief survey of developments of sophisticated
Kalman filtering algorithms for state estimation in the presence
of non-zero skewness. Recent studies have shown that Skew
Kalman filters offer better performance than the traditional KF.
The SKF is mainly discussed based on the CSN distribution
where the recursive filtering solution depends on the analytical
properties of the CSN distribution. Recommendations for
using different SKFs have also been discussed. Although in
recent non-Gaussian signal processing, more focus has been
given towards the particle filters since they do not impose
assumption of any particular distribution in the recursive state
estimation, rather they depend on the simulations. However,
particle filters in higher dimensional state estimation problems
are massively computationally expensive. On contrary, the
SKFs assume that the noise, initial states or the state vectors
can be parameterized as the CSN distributions which is much
computationally cheaper than approximating the unknown
posterior non-Gaussian distribution using many particles in
the particle filters. The classical Kalman filters with Gaussian
noise in all its variants still remain a powerful state estimation
algorithm and have been successfully applied in different
disciplines. However, further development of estimation and
prediction problems needs to be developed with noise having
non-zero skewness that may cover a wide range of real-
world applications. For instance, the applications of SKF are
limited and to the best of our knowledge, there is no previous
work on applying SKF to estimate the COVID-19 pandemic
states under various mechanistic epidemiological models. We

hope this will inspire future researchers to focus on this
particular filtering algorithm for state estimation of nonlinear
and non-Gaussian problems. Another area of future research
could be skew corrupted measurements along with model
uncertainty where the parametric uncertainties of the model
parameter posterior may also have a highly skewed distribution
making such uncertain skew Kalman filtering problem more
challenging.

Future methodological investigations on SKFs can be di-
rected towards many areas e.g.

A. Stability of SKFs

The stability analysis of dynamical systems is very im-
portant and in KFs, it can be determined by looking at the
eigenvalues of the Jacobian matrix of the state matrix. If we
have outliers in the state variables, the Kalman gain can be
unstable and that can not be solved by the Gaussian Kalman
filters and in the case of SKF, it can be tackled using the
stochastic stability analysis instead of the deterministic variant.

B. Scalability of SKFs

Scalability of the SKFs is the next important problem with
an increasing number of estimated states for a fixed number
of observations. As an example, the COVID-19 model that
has been introduced in [6] from two measured states we had
to estimate four hidden or unmeasurable states. By expanding
this epidemiological model to be distributed geographically
and with age-divided groups, it would need to replicate similar
compartmental models where the number of unobserved states
increases for fixed measurements (total death and infected
counts) which makes such state estimation problems a high-
dimensional one needing further investigation on scalability.

C. SKFs with Higher Order Moments

Further study can be directed towards other non-Gaussian
Kalman filters assuming the noise is characterized by other
specified higher-order moments like Kurtosis (4th central
moment), super-skewness (5th central moment), super-flatness
(6th central moment), hyper-skewness (7th central moment)
and hyper-flatness parameters (8th central moment) [34], [35].

D. Necessity and Limitations of SKFs

The Laplace approximation is a way of approximating the
shape of posterior distribution with an equivalent Gaussian
distribution and most Kalman filters make this assumption for
the noise distribution where accurately characterizing the noise
is not trivial. However, for large deviations from normality,
similar to the Laplace approximation, such filters suffer from
the same drawbacks. On contrary, for fairly multivariate Gaus-
sian noise, the Gaussian KFs will have higher efficiency over
SKFs if the noise has a small skew parameter.

E. SKFs for Nonlinear Systems

Discrete-time nonlinear chaotic systems which are charac-
terized by sensitivity to initial conditions exhibit challenges
in state estimation. Most nonlinear KFs do not yield good
results for chaotic systems and in the presence of skewed noise



or multiplicative noise, such state estimation problems with
nonlinear SKFs become even more complicated.

F. Comparison between SKFs and Particle Filters

In comparison with the non-parametric methods like particle
filters (PFs) which are computationally expensive where the
algorithm can run for a long time for high dimensional
problems making it unreliable for long-term predictions. This
is due to the fact that a small error in the initial state can be
accumulated in later stages within PFs which usually do not
happen in the standard KF as discussed in the limitations and
drawbacks of PF in [36].

G. SKFs with Uncertain State Space Models

While quantifying the probability of failure for state space
models with parametric uncertainty, the use of SKFs needs
further investigation since the uncertainty on the model pa-
rameters may not be normal or maybe correlated in different
states or even correlated with the noise within a multiplicative
or more complex noise model. The above areas of SKFs need
further theoretical and computational investigation for stability,
computational feasibility, scalability and robustness of the state
estimation algorithms using non-normal noise models.
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