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ABSTRACT
End-of-life product recycling is crucial for achieving

sustainability in circular supply chains and improving resource
utilization. Forecasting the quantity of recycled end-of-life
products is essential for planning and managing reverse supply
chain operations. Decision-makers and practitioners can
benefit from this information when designing reverse logistics
networks, managing tactical disposal, planning capacity, and
operational production. To address the challenge of small
sample data with multiple factors influencing the recycling
number, and to deal with the randomness and nonlinearity of
the recycling quantity, a hybrid predictive model has been
developed in this research. The model is based on k-nearest
neighbor mega-trend diffusion (KNNMTD), particle swarm
optimization (PSO), and support vector regression (SVR) using
the data from the field of end-of-life vehicles as a case study.
Unlike existing literature, this research incorporates the data
augmentation method to build an SVR-based model for end-of-
life product recycling. The study shows that developing the
predictive model using artificial virtual samples supported by
the KNNMTD method is feasible, the PSO algorithm effectively
brings strong approximation ability to the SVR-based model,
and the KNNMTD-PSO-SVR model perform well in predicting
the recycled end-of-life products quantity. These research
findings could be considered a fundamental component of the
smart system for circular supply chains, which will enable the
smart platform to achieve supply chain sustainability through
resource allocation and regional industry deployment.
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1. INTRODUCTION
The circular economy (CE) has brought about a shift

towards circular supply chains (CSCs), which enable original
equipment manufacturers (OEMs) to recover materials and end-
of-life (EOL) products and remarket them, replacing
conventional supply chains [1]. With the increasing population,
global manufacturing competition, accelerated price
development of scarce resources, growing levels of waste and
pollution, and stringent regulations on EOL product recycling,
reverse supply chain (RSC) management has become crucial
[2]. RSC involves recovering parts and used products from
customers or any other stage of the supply chain with the
purpose of recycling, reusing, remanufacturing, or proper
disposal. Many industries practice RSC, such as medical items,
paper, automobiles, steel production, and electrical and
electronic equipment (EEE) [3]. However, return uncertainty in
quantity, quality, and timing poses a significant challenge on
the supply side of RSC [4]. Return quantity is the most
significant uncertainty in RSC, making quantity prediction
crucial when designing RSC. This information helps industrial
engineers make decisions on designing reverse logistics
networks, managing tactical disposal, planning capacity, and
operational production [5].

In recent years, the automotive industry has experienced
remarkable expansion and has become one of the largest
industries in most countries. According to the European
Automobile Manufacturers Association, worldwide production
of commercial vehicles reached 16.6 million in 2020, a 23.9%
increase compared to 2009, resulting in an increase in the
number of scrapped automobiles [6]. Accurately evaluating the
quantity of end-of-life vehicles (ELVs) is crucial for
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minimizing environmental pollution and supporting effective
management of the automotive remanufacturing industry while
conducting automotive RSC management research [7].

Current approaches [8] for predicting the quantity of
recycled EOL products are ineffective in dealing with the
nonlinear sequences in the recovery quantity of EOL products,
leading to unstable prediction accuracy. Machine learning (ML)
technology, as an Artificial Intelligence (AI) technology for
analyzing large amounts of complicated data, can generate
models and predict future data. However, due to the immaturity
of the reverse recovery industry and the absence of standard
regulations in some countries and areas, there is a difficulty in
accumulating a large amount of data and effective empirical
knowledge in EOL product recycling [9]. Therefore, the
performance of ML models is generally unsatisfactory without
a large amount of training data. Thus, it is necessary to improve
the predictability of ML models using limited historical data
and to evaluate the feasibility of ML predictive models in
precisely predicting the quantity of recycled EOL products.

The proposed hybrid prediction model is aimed at
addressing the gaps mentioned earlier, and the purpose of this
research is to assess its feasibility in predicting recycling
quantity using small samples of numerical data. To validate the
effectiveness of the model, data from the field of ELVs will be
used in the research. The model combines k-nearest neighbor
mega-trend diffusion (KNNMTD), particle swarm optimization
(PSO), and support vector regression (SVR), and is designed to
improve the predictability of ML models using limited
historical data. By evaluating the proposed model, this research
will contribute to improving the accuracy and reliability of
predicting the quantity of recycled EOL products, which is
essential for effective management of RSC and circular supply
chains.

The research is organized as follows: The research
background is introduced in Section 1. A brief literature review
related to the data augmentation methods for small sample
numerical data and the ML-based models applied to predict the
quantity of EOL products is shown in Section 2. The research
methodology is introduced in Section 3, explaining the steps
from feature selection, data augmentation, to data training and
validation. The analysis of experimental results is shown in
Section 4. Further discussion of the research results is analyzed
in Section 5. Conclusions are provided in Section 6.

2. LITERATURE REVIEW
In this section, we will review data augmentation methods

that can be used for small sample datasets, as well as predictive
methods for accurately estimating the quantity of EOL
products.

2.1 Data Augmentation Methods
In order to enhance the generalization capability of a ML-

based prediction model, data augmentation techniques are
employed on small datasets to increase the number of effective
samples and reduce the distribution gap between the training
samples and the actual samples. There are primarily four

methods for augmenting small numerical datasets: data
interpolation, noise injection, and virtual sample generation.

Data interpolation methods are commonly used to achieve
sample expansion for small datasets. These methods include
inverse distance weighted [10], kriging [11], natural neighbor
[12], spline [13], synthetic minority oversampling technique
(SMOTE) [14], Borderline-SMOTE [15] and adaptive synthetic
(ADASYN) [16]. They construct an approximation function to
solve for the function of unknown points by constructing
approximation functions at several known discrete points in a
certain interval. However, the interpolation method based on
label space is limited by its inability to explore an unknown
range of data and to consider the distributions of the entire
minority samples.

Noise injection methods are effective for sample
expansion, generating new samples by adding Gaussian noise
with zero mean and fixed variance to the original training data
set [17, 18].

Virtual sample generation (VSG) methods can be used to
fill the information gap between real and hypothetical samples
in the sample space due to insufficient data, improve the
prediction ability of the model, and suppress model overfitting.
Two main data augmentation methods based on feature space
are kernel density estimation and domain extension. Kernel
probability estimation, a typical method of probability density
estimation, estimates the probability distribution of data and
achieves the relative balance of data distribution. The domain
extension method generates virtual samples in the whole value
space by estimating the value range of data in the feature space.
Mega trend diffusion (MTD), based on uniform distribution
theory, is a representative domain extension method that
generates virtual samples using a membership function from
fuzzy theory while considering each of the attributes rather than
the probability values [19]. A modified MTD approach,
generalized time diffusion (GTD), has been proposed to capture
the time dependency of sequential data by integrating
successive time steps with small datasets [20].

In comparison to other data augmentation methods,
KNNMTD has shown better performance. KNNMTD is a
hybrid method that combines the k-nearest neighbors algorithm
with MTD to identify the closest subsamples and estimate the
domain ranges. [21]. Thus, this research applies the KNNMTD
method to conduct data augmentation for building SVR-based
models.

2.2 Predictive Methods for EOL Products Quantity
The ML methods applied to predict EOL product

recycling include neural network (NN) [22], SVR [23], k-
nearest neighbor (KNN) [24], decision tree (DT) [25], gradient
boosting regression tree (GBRT) [26], extreme gradient
boosting (XGBoost) [27], and random forest (RF) [28]. Among
these ML models, the SVR algorithm has been shown to be
superior in dealing with small sample datasets and can be used
to predict the quantity of EOL products [29]. Additionally, this
algorithm is well-suited to learn nonlinear behavior and to work
with high-dimensional datasets.
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SVR-based models are widely employed in RSC
management [30], with emphasis on the automobile and EEE
industries. Besides, the SVR algorithm has been utilized in
conjunction with other ML algorithms to predict the recycled
quantity of EOL products, partically municipal solid waste
(MSW). For instance, an SVR model optimized by radical basis
function (RBF) was proposed to predict annual MSW
generation rates, showing an R2 value of 0.97% [31]. Similarly,
the integration of SVR and the autoregressive integrated
moving average (ARIMA) approach were applied to develop
the MSW generation prediction system [32]. Dai et al. (2020)
used fuzzy information granulation (FIG) to predict the
variables and then applied an SVR model optimized by a
genetic algorithm (GA) to predict the MSW generation [23].
Moreover, a novel method was put forward that combined
support vector machine (SVM) with wavelet transform (VT)
for weekly prediction of MSW generation [33]. An SVM model
integrated with principal component analysis (PCA) was also
employed to forest weekly generated waste [34].

In conclusion, the above literature about SVR-based
applications for predicting MSW generation indicates that they
are a well-established tool for recycled quantity prediction.
Thus, this research proposes an optimized SVR-based model to
accurately predict the quantity of recycled EOL products.

3. METHODS
The methodology of this research is illustrated below.

Initially, Pearson's correlation analysis is performed to select
appropriate features for building the predictive model (Section
3.1). Subsequently, the original small sample dataset is split
into a training set and a testing set, which are then processed
using z-score standardization. The standardized training set is
trained by the proposed hybrid predictive model (Sections 3.2-
3.5). Finally, the original testing set is utilized to evaluate the
prediction performance using four evaluation metrics, including
R-squared (R2), mean absolute error (MAE), mean squared
error (MSE), and mean absolute percentage error (MAPE)
(Section 3.6). All the processing steps and tested regressors
were implemented using Anaconda-based Python programming
(Version 3.8).

3.1 Feature Selection
Pearson’s correlation analysis is used to select appropriate

features for building the predictive model. As a preliminary
screening of features for ML modeling, linear correlation
coefficients between the quantity of EOL products and their
socio-economic variables can be computed using Pearson’s
correlation analysis, as shown in Eq. (1) [35].

ρX,Y = cov X,Y
σXσY

= E XY −E X E Y

E X2 −E2 X E Y2 −E2 Y
(1)

ρX,Y is the correlation coefficient between variables X and Y. μX
and σX are the mean and standard deviation of variable X,
respectively, and μY and σY are the mean and standard deviation
of variable Y. To avoid multi-collinearity problems, features
that are significantly correlated with each other are removed.

3.2 Support Vector Regression (SVR)
The SVR algorithm is a modified version of the support

vector machine (SVM) that can obtain the global optimal
solution by solving a convex quadratic optimization problem.
The algorithm works by finding a regression plane using a
kernel function to map input data D={(x1,y1), (x2,y2),…, (xh,yh)
to a higher-order vector space and learns a linear model to
predict y, as shown in Eq. (2).

f x = �Tx + b (2)
�� is the weight vector, and b is the offset.

The insensitive loss coefficient � is a crucial parameter in
the SVR algorithm, which creates a gap of width 2� around the
linear function to make the model less sensitive to outliers.
SVR calculates the distance between all sample points and f(x),
and the optimal solution can be obtained with the shortest
distance, as shown in Eqs. (3) and (4).

min 1
2

� 2 + C d=1
h δd, δ�d� (3)

s. t.
f xd − yd ≤ ε + δd

yd − f xd ≤ ε + δ�d

δd ≥ 0, δ�d ≥ 0 d = 1,2, …, h
(4)

� is the penalty factor. �� and ��� are relaxation factors at
upper and lower boundaries.

To deal with nonlinearly separable data, a kernel function
is used to map the features to a higher dimensional space. By
solving the optimization problem with the kernel function, the
optimal decision function can be obtained, as shown in Eqs. (5)
and (6).

f x = d=1
h a�d − ad k x, xd + b� (5)

k x, xd = exp − xd−x 2

2g2 (6)
� �, �� is the kernel function. �� and ��� are Lagrangian
function. g is the kernel parameter.

However, practical application of the SVR model is
challenging due to the difficulty in selection of penalty factor C
and kernel parameter g. A higher value of C can lead to
overfitting, while the value of g affects the distribution of
mapped data samples in the high-dimensional feature space and
the number of support vectors.

3.3 K-nearest Neighbor Mega-trend Diffusion
(KNNMTD) Method

In this research, we conducted data augmentation to
generate data for predicting the quantity of EOL products based
on small samples of numerical data. To achieve this, the
artificial virtual samples are generated using the KNNMTD
method based on the original training set.

Given a small dataset {Xi,j | i = 1, 2,…, m; j = 1, 2,…, n }.
Consider an instance i with j attributes [21]. For each of the ith
instance's j attributes, the nearest neighbors are discovered
iteratively using the KNN method, until all attributes have been
exhausted. Then, to obtain the subsample domain ranges, the
diffusion coefficient is calculated as Eq. (7), of which k is the
sample size.
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hset
i,j = s�x

2

k
= i=1

k xi−x�k
2� k−1

k
(7)

The estimated range of the diffused sample set is shown as
Eqs. (8), (9), (10), (11), and (12).

a i,j = uset
i,j − SkewL

i,j

× −2 × s�x
2 NL

i,j ×ln 10−20 (8)

b i,j = uset
i,j + SkewU

i,j

× −2 × s�x
2 NU

i,j ×ln 10−20 (9)

uset
i,j = min i,j +max i,j 2 (10)

SkewL
i,j = NL

i,j NL
i,j +NU

i,j (11)

SkewU
i,j = NU

i,j NL
i,j +NU

i,j (12)
��

�,� is the number of data points that are smaller than ����
�,� ,

and ��
�,� is the number of data points that are larger than

����
�,� .

When ���
2 = 0 , the range are estimated as Eqs. (13) and

(14).
a i,j = min(i,j) 5 (13)
b i,j = max(i,j) × 5 (14)
When a and b exclude the minimum and maximum values,

the lower bound (LB) and upper bound (UB) are calculated as
Eqs. (15) and (16).

LB i,j =
a i,j if a i,j ≤ min(i,j)

min(i,j) if a i,j > min(i,j)
(15)

UB i,j =
b i,j if b i,j ≥ max(i,j)

max(i,j) if b i,j < max(i,j)
(16)

The membership function (MF) is calculated as Eq. (17).

MF x(i,j)
' =

x(i,j)
' −LB i,j

uset
i,j −LB i,j

if x(i,j)
' ≤ uset

i,j

UB i,j −x(i,j)
'

UB i,j −uset
i,j if x(i,j)

' > uset
i,j

(17)

The generated data were evaluated using the pairwise
correlation difference (PCD) [36]. PCD measures the difference
between Pearson correlation matrices (corr) of real data (Xr)
and synthetic data (Xs) using the Frobenius norm, as shown in
Eq. (18). A PCD value closer to 0 indicates that the artificial
virtual data is more comparable to the original dataset.

PCD = corr Xr − corr Xs F (18)

3.4 Particle Swarm Optimization (PSO) Algorithm
PSO is a powerful global optimization algorithm that

utilizes swarm intelligence. Each particle in the algorithm
possesses two critical properties: velocity, which determines the
speed of the particle, and position, which denotes a solution to

the optimization problem. Additionally, each particle has an
adaptation value, which is determined by the objective
function. The flight of a particle is the process by which it
searches for the optimal solution. The optimal solution searched
by each particle individually is called the individual extreme
value, while the optimal individual extreme value in the particle
population is referred to as the current global optimal solution.
The flight speed of a particle can be dynamically adjusted
based on its historical optimal position and the optimal position
of the population. This process continues iteratively until the
algorithm obtains an optimal solution that satisfies the
termination condition.

Suppose there is a cluster of N particles in a D-
dimensional target search space where the position of the ith
particle is denoted as Xi = (xi1, xi2,…,xiD), the search speed of
the ith particle is denoted as Vi = (vi1, vi2,…, viD), the optimal
position experienced by the ith particle is called the individual
pole and is denoted as Pg = (Pg1, Pg2,…, PgD ), and the optimal
position over which the entire particle population economy
passes is called the global extremum, denoted as gbest = (g1,
g2,…,gD). When finding these two optimal values, each particle
updates its velocity and position according to the Eqs. (19) and
(20).

viD k + 1 = w ∙ viD k
+ c1 ∙ r1 ∙ (piD k − xiD k

+ c2 ∙ r2 ∙ (pgD k − xiD k ) (19)
xiD k + 1 = xiD k + viD k + 1 (20)

where w is the inertia weight, and its value affects the global
search ability and local search ability of the PSO algorithm; the
larger w is the stronger global search ability, and the smaller w
is the stronger local search ability. c1 and c2 are called
acceleration constants. c1 is the individual learning factor of
each particle, and c2 is the global learning factor of each
particle. r1 and r2 are random numbers between 0 and 1.

The PSO optimization algorithm is highly advantageous
due to its remarkable search efficiency and outstanding
convergence performance. As a result, this research employs
the PSO optimization algorithm to optimize the parameters of
the SVR model.

3.5 KNNMTD-PSO-SVR Model
In this section, a novel hybrid model is proposed to predict

the recycled quantity of EOL products. This model combines
the SVR model and PSO algorithm with artificial virtual
samples.

Firstly, the KNNMTD method is utilized to generate an
artificial virtual sample with varying k values based on
different partition ratios. The PCD value is calculated between
the generated artificial virtual samples and the original dataset,
and an appropriate ratio and k value are selected to generate an
artificial virtual sample. Subsequently, a new training set is
formed by merging the original training set with the artificial
virtual sample. Next, the PSO-based SVR model is trained
using the new training set. The PSO algorithm is employed to
determine the optimal values of the parameters C and g. Finally,
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the trained SVR model with optimal parameters C and g is
utilized to predict the recycled quantity of EOL products. The
hybrid KNNMTD-PSO-SVR model flowchart is depicted in
Figure 1.

FIGURE 1: THE HYBRID KNNMTD-PSO-SVR MODEL
FLOWCHART

3.6 Model Evaluation
The dataset is split into a training set and a testing set. The

proposed model trains a new training set that combines the
original training set with artificial virtual samples. The
performance of the prediction is evaluated using four metrics,
namely R2, MAE, MSE, and MAPE, as shown in Eqs. (21),
(22), (23), and (24).

These metrics are employed to analyze the prediction error
and evaluate the effectiveness of the regression model. After the
selection of an appropriate data processing method, the four
performance evaluation metrics are chosen to assess the
accuracy of the proposed model's predictions.

R2 yi, yi� = 1 − i=1
n yi−yi� 2�

i=1
n yi−yi� 2�

(21)

MAE = 1
n i=1

n yi� − yi� (22)

MSE = 1
n i=1

n yi� − yi
2� (23)

MAPE = 1
n i=1

n yi�−yi
yi

� (24)
�� and ��� are the original value and average value of variable
Y, respectively, and ��� represents the predicted value of
variable Y.

4. EMPRICAL STUDY
4.1 Data Description

Several researchers have investigated the socioeconomic
factors that influence the quantity of recycled ELVs [5, 37-41].
15 socioeconomic factors were selected that affect the quantity
of recycled ELVs [37-41]. These factors include auto
production (AP), volume of auto sales (AS), vehicle ownership
(VO), number of discarded vehicles (DV), recycled material
price (RMP), passenger turnover (PT), number of ELVs
industrial employees (IE), number of ELVs collection nodes
(CN), number of ELVs enterprises (EP), highway freight
turnover (HFT), gross domestic product (GDP), population
(POP), number of vehicle drivers (VD), highway mileage

(HM), and income per urban resident (IPUR). While most of
these variables are sourced from available literature, the
number of vehicle drivers is identified as an influential factor
for the first time in this research. The necessary historical data
for the study has been obtained from various agencies in China
(see Table 1). This data is based on monthly observations from
China’s ELVs industry for the period between 2006 and 2020,
with a total of 180 data points after data conditioning and
integration.

TABLE 1: DATA SOURCES DURING THE 2006-2020 PERIOD
Data Sources Historical Data

China Association
of Automobile
Manufacturers

China’s automobile production number
Volume of automobile sales in China
ELVs industry employees in China
China’s ELVs industry collection node
China’s ELVs enterprises

China National
Resources
Recycling
Association

ELVs recycled material price in China

China National
Bureau of
Statistics

Number of discarded vehicle in China
China’s vehicle ownership
China’s highway freight turnover
China’s passenger turnover
China’s GDP
China’s population (15-64 years old)
Number of vehicle drivers in China
China’s highway mileage
Income per urban resident in China

4.2 Feature Selection
While a variety of factors can influence the quantity of

recycled ELVs, incorporating too many features in the data set
can result in over-fitting. To build a prediction model, suitable
features are selected using Pearson's correlation analysis.
Figure 2 presents the results of the correlation analysis, which
ranked the correlation between recycled ELVs quantities and its
socio-economic variables. The p-value for a correlation
coefficient of 0.8 or greater is smaller than 0.05. To avoid
issues with multi-collinearity, highly correlated features
(correlation coefficient > 0.8) are removed. More specifically,
when two features have a correlation coefficient of 0.8 or
greater, the feature with a lower correlation coefficient with the
target variable is discarded. As a result, eight features are
selected, including AP, PT, POP, VD, HM, IPUR, RMP, and EP.
Further, Figure 2's ELVs column displays how recycled ELVs
generation is associated with each feature.
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FIGURE 2: PAIRWISE PEARSON CORRELATION OF THE
FEATURES TO RECYCLED ELVs

4.3 Analysis of Data Generated by KNNMTD-PSO-SVR
To prevent over-fitting ML-based algorithms due to poor

performance with unknown data samples, it is essential to split
the dataset into a training set and a testing set. This research
evaluated four partition ratios, namely 90:10, 80:20, 70:30, and
60:40. The training set is used to develop the ML-based model,
while the testing set is used to check for over-fitting. Artificial
virtual samples are created using the KNNMTD approach, with
k values varying from 3 to 10 based on the training set. In
addition, the virtual sample size is set to 100 [42]. Increasing
the virtual sample size improves the model's prediction
performance; however, an unreasonable increase may result in
many irrational virtual samples, reducing the prediction model's
performance.

Table 2 shows the ratio that produces the minimum
average PCD value. Figure 3 illustrates the PCD calculated
between the generated artificial virtual samples and the original
dataset of each partition ratio. It is evident that the appropriate
ratio and k value selected for generating an artificial virtual
sample are 70:30 and 4, respectively.

TABLE 2: MEAN PCD FOR EACH PARTITION RETIO
Partition ratio 90:10 80:20 70:30 60:40
Mean PCD 0.629 0.672 0.505 0.617

FIGURE 3: PCD WITH DIFFERENT K VALUES FOR EACH
PARTITION RATIO

To enhance the prediction performance and reduce the
impact of different data measurement units on the models, the
z-score standardization method was employed to process the
data in this research. During the modeling phase, the
standardized original training set is first trained by the SVR
model based on the selected ratio (see Figure 4).

FIGURE 4: THE PREDICTED VALUES OF KNNMTD-PSO-SVR

To boost the performance of prediction results and
augment small sample datasets, an artificial virtual sample is
generated using the KNNMTD method. The original training
set mixed with the artificial virtual sample forms a new training
set. The new training set is then trained using the SVR model,
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referred to as KNNMTD-SVR (see Figure 4). The original
testing set is reserved for evaluating the prediction accuracy of
the proposed model trained on this new training set.

TABLE 3: PSO OPTIMIZATION ALGORITHM PARAMETER
SETTINGS
Parameter Parameter

setting
Parameter description

c1 1.5 Local search capability
c2 1.5 Global searching ability

maxgen 200 Maximum iteration steps
sizepop 20 Population size
Popcmin-
popcmax

[0.1, 100] Value range of parameter C

Popgmin-
popgmax

[0.1, 1000] Value range of parameter g

wmin-wmax [0.4, 0.9] Value range of inertia weight

To further improve the prediction accuracy of the SVR
model, the PSO algorithm is employed as it offers significant
advantages in terms of convergence speed and ability. In this
research, the PSO algorithm is used to select the optimal kernel
function parameters g and penalty factors C for the KNNMTD-
SVR model. The parameter settings of the KNNMTD-PSO-
SVR are provided in Table 3. The hybrid model is trained with
the new training set before being tested with the original testing
set. The prediction results of KNNMTD-PSO-SVR for the
recycled quantity of ELVs in China during the 2006-2020
period (see Figure 4). Table 4 presents the evaluation results of
R2, MAE, MSE, and MAPE predicted by the SVR, KNNMTD-
SVR, and KNNMTD-PSO-SVR models.

TABLE 4: THE PREDICTION PERFORMANCE OF KNNMTD-
PSO-SVR

Index SVR KNNMTD-
SVR

KNNMTD-
PSO-SVR

R2 0.8138 0.9357 0.9869
MAE 0.3726 0.2128 0.1136
MSE 0.1890 0.6420 0.2070
MAPE 0.6034 0.4679 0.3925

5. DISCUSSION
Forecasting the quantity of recycled EOL products is

crucial for effective planning and operation of reverse supply
chain management. The aim of this research is to develop a
hybrid KNNMTD-PSO-SVR model (see Figure 1) for
predicting the quantity of recycled EOL products using s small
numerical data samples from the field of ELVs as a case study.
The analysis of the results yielded the following key findings.

The first key finding of the study pertains to the selection
of eight socioeconomic features related to ELVs using Pearson's
correlation analysis, as shown in Figure 2. This method was
used to avoid any problems with multi-collinearity. The
selected features include auto production, passenger turnover,
population, number of vehicle drivers, highway mileage,

income per urban resident, and number of ELVs enterprises.
Notably, the number of vehicle drivers, which was proposed as
an influence factor in this study, has a positive relationship with
ELV generation, thus confirming the assumption that the
number of vehicle drivers can impact the quantity of recycled
ELVs. The variables income per urban resident and auto
production have the highest correlation coefficients of 0.839
and 0.815, respectively, indicating that an increase in residents'
income and auto production could lead to higher quantities of
recycled ELVs. Previous studies have also demonstrated that
income per urban resident and auto production can affect ELV
recycling [40, 43].

The second key finding of this research is that the SVR
model developed for predicting the quantity of recycled ELVs
performs well, with an R-squared value exceeding 0.8, as
shown in Figure 4. This result is consistent with previous
studies that have demonstrated the effectiveness of SVR for
forecasting the generation of municipal solid waste, indicating
that it is a reliable method for predicting the quantity of
recycled EOL products [24, 33, 44].

Thirdly, the feasibility of predicting the quantity of
recycled ELVs using artificial virtual samples supported by the
KNNMTD method is demonstrated in this research (see Figure
4). Unlike previous studies on EOL products recycling [45, 46],
this research proposes a KNNMTD-SVR model to improve the
prediction performance for small sample datasets. Comparison
between the KNNMTD-SVR model and the benchmark
prediction model over the same period shows that the proposed
KNNMTD-SVR model offers better performance (see Table 4).
The model's prediction error rate decreases significantly after
the addition of 100 virtual samples. Specifically, the average
MAE, MSE, and MAPE values decreased by 0.16, 0.12, and
0.14, respectively. Moreover, the KNNMTD-SVR model is
better at explaining variation, as indicated by R2 values, while
the SVR model performs poorly. Consequently, after applying
artificial virtual samples, the model shows a significant
improvement in learning accuracy, meaning that the prediction
results of KNNMTD-SVR for recycled ELVs quantity during
the 2006-2020 period are much closer to the actual values.

Fourth, the PSO algorithm effectively improves the
approximation ability of the KNNMTD-SVR model (see Figure
4 and Table 4). Previous studies have proposed optimized SVR-
based models for predicting solid waste generation, such as an
SVR model combined with the principal component analysis
(PCA) method [34], an SVR model optimized by genetic
algorithm (GA) [23], and a hybrid model of wavelet transform
(WT) and support vector machine (SVM)[33]. In this research,
the PSO algorithm is utilized for the first time in combination
with an SVR model to develop prediction models for estimating
the quantity of EOL products. The PSO algorithm is applied to
select the optimal kernel function parameters g and penalty
factors C, thereby improving the prediction accuracy of the
KNNMTD-SVR model. A comparison among the SVR,
KNNMED-SVR, and KNNMTD-PSO-SVR models reveals
that PSO enhances the prediction accuracy during the 2006-
2020 period, making the predicted value of each period closer
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to the actual value and contributing to the predicted value of
each period in the SVR model.

Finally, the KNNMTD-PSO-SVR model outperforms the
SVR and KNNMTD-SVR models in terms of reducing errors in
MAE, MSE, and MAPE, indicating that it can effectively
improve the prediction accuracy of recycled ELVs quantity. As
the number of combined models increases, the prediction error
continues to decrease. Notably, the KNNMTD-PSO-SVR
model shows almost identical predicted values to the actual
values over the analyzed period, which demonstrates the
model's suitability for predicting the recycled quantity of not
only ELVs but also other EOL products.

In conclusion, several conclusions can be drawn: (i) this
research is the first to utilize SVR modelling to forecast the
quantity of recycled ELVs, with a selection of appropriate
explanatory variables; (ii) the KNNMTD method has been
applied for the first time in forecasting the quantity of EOL
products, by expanding the original sample set with artificial
virtual samples; (iii) this research marks the first instance of
combining the PSO algorithm with an SVR model to predict
the quantity of EOL products; (iv) the PSO algorithm has been
shown to have a positive impact on the predictive model,
making it feasible to optimize the KNNMTD-SVR model for
recycled EOL product quantity prediction; and (v) the hybrid
KNNMTD-PSO-SVR model outperforms the KNNMTD-SVR
and SVR models, demonstrating its potential for accurate and
reliable forecasting of recycled EOL product quantities.
Overall, these findings provide valuable insights for researchers
and practitioners working in the field of EOL product recycling
and sustainability.

This research makes significant theoretical contributions
to prediction techniques and applications. The findings confirm
the feasibility of developing the predictive model by applying
artificial virtual samples, which provides an effective technique
for predicting small sample data. Through numerical case
studies and comparative analysis, the study validates the
efficacy of the proposed model in predicting recycling quantity
based on limited numerical data. The results indicate that the
novel KNNMTD-PSO-SVR prediction model is suitable for
EOL product recycling. Theoretical forecasting of EOL product
recycling quantity, from the perspective of RSC management,
not only provides valuable theoretical and practical assistance
but also offers recommendations for industrial deployment and
improving recycling utilization.

Furthermore, this research has significant implications for
decision-makers and practitioners responsible for managing
EOL products, a critical component of RSC management. The
study assists manufacturers in fulfilling their extended producer
responsibility (EPR) and aids industrial engineers in making
informed decisions regarding reverse logistics network design,
tactical disposal management, capacity planning, and
operational production. Moreover, this research supports third-
party remanufacturers in developing strategies, projecting
profits, and assessing market opportunities. Additionally, the
scientific prediction of recycled EOL product quantities can be
viewed as a fundamental aspect of a smart RSC system,

enabling the smart platform to promote supply chain
sustainability through effective resource allocation and regional
industry deployment.

However, this research has some limitations: (i) the data
used in this research about the ELVs industry may be limited.
To enhance the accuracy of the proposed predictive model,
future research should incorporate more comprehensive and
precise data on other EOL products; and (ii) this study only
considered some socioeconomic factors and did not take into
account relevant policy factors or customer willingness to
return EOL products. To address these limitations, the authors
recommend the following suggestions for future research: (i)
exploring additional independent variables such as recycling
laws and regulations, economic subsidies, and preferential
policies for EOL product recycling, as well as individual factors
such as recycling awareness, customer willingness, and
educational level; and (ii) further investigating hybrid and
ensemble ML-based models to enhance the prediction accuracy
of EOL product quantity.

6. CONCLUSION
This research proposed a KNNMTD-PSO-SVR model to

forecast EOL product recycling. The model exhibited fast
training times of a few seconds and improved prediction
accuracy compared to the SVR and KNNMTD-SVR models.
The proposed hybrid model may be used to plan, design, and
implement future integrated RSC management action strategies.
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