
1

Federated Ensemble Model-based
Reinforcement Learning in Edge Computing

Jin Wang, Jia Hu, Jed Mills, Geyong Min, Ming Xia, and Nektarios Georgalas

Abstract—Federated learning (FL) is a privacy-preserving distributed machine learning paradigm that enables collaborative training
among geographically distributed and heterogeneous devices without gathering their data. Extending FL beyond the supervised learning
models, federated reinforcement learning (FRL) was proposed to handle sequential decision-making problems in edge computing
systems. However, the existing FRL algorithms directly combine model-free RL with FL, thus often leading to high sample complexity
and lacking theoretical guarantees. To address the challenges, we propose a novel FRL algorithm that effectively incorporates model-
based RL and ensemble knowledge distillation into FL for the first time. Specifically, we utilise FL and knowledge distillation to create
an ensemble of dynamics models for clients, and then train the policy by solely using the ensemble model without interacting with
the environment. Furthermore, we theoretically prove that the monotonic improvement of the proposed algorithm is guaranteed. The
extensive experimental results demonstrate that our algorithm obtains much higher sample efficiency compared to classic model-free
FRL algorithms in the challenging continuous control benchmark environments under edge computing settings. The results also highlight
the significant impact of heterogeneous client data and local model update steps on the performance of FRL, validating the insights
obtained from our theoretical analysis.

Index Terms—Edge computing, distributed machine learning, federated learning, deep reinforcement learning

F

1 INTRODUCTION

THe advancements in deep learning (DL) [1] algorithms
and high-performance computing technologies are fun-

damental to the tremendous successes of artificial intel-
ligence (AI) in many aspects of our societies, including
transportation, healthcare, education, etc. The emerging
AI-empowered applications such as smart manufacturing,
autonomous driving, and smart healthcare generate large
volumes of data on the user side. To enable real-time data
processing for these emerging applications, edge computing
was proposed to shift computation and storage resources
from the remote Cloud to the network edge in the proximity
of end-users. Traditional centralized AI approaches need to
collect data from end-users and save it centrally at edge
servers to effectively train DL models for various appli-
cations. However, users are often unwilling to share their
sensitive data with others due to the growing concern on
data privacy, thus rendering these centralized approaches
impractical in many cases.

To address the aforementioned issue, federated learning
(FL) was proposed to collaboratively train DL models in a
distributed fashion without sensitive data leaving the user
devices. In FL, models are trained locally at clients (i.e.,
user devices) and only the model parameters are uploaded
by clients to the server. The existing FL works [2]–[6] pre-
dominantly consider training supervised learning models

• Jin Wang, Jia Hu, Jed Mills, and Geyong Min are with the Department of
Computer Science, University of Exeter, United Kingdom.
E-mail: {jw855, j.hu, jm729, g.min}@exeter.ac.uk

• Ming Xia is with Google, California, U.S.A.
E-mail: xiaming2006@gmail.com

• Nektarios Georgalas is with Applied Research Department, British Tele-
com, United Kingdom.
E-mail: nektarios.georgalas@bt.com

• Corresponding authors: Jia Hu and Geyong Min.

(e.g., Convolutional Neural Networks and Long Short-Term
Memory) for solving perception problems such as image
classification and linguistic prediction.

More recently, federated reinforcement learning (FRL)
was proposed to extend FL to train reinforcement learning
(RL) models for solving sequential decision-making prob-
lems in edge computing, such as resource allocation [7],
[8], content caching [9], and user access control [10]. Those
studies directly combine model-free RL (learning without
using a system dynamics model) with FL. Specifically, they
train policies locally for all collaborating devices, using
the model-free RL objective, and average the policy pa-
rameters on the server to generate a global policy for the
next round of local training. However, traditional model-
free RL algorithms generally have high sample complexity
whilst obtaining samples is costly in many real-world edge
computing scenarios such as smart factories and intelligent
transport. For example, when applying RL methods to solve
the task offloading problem in edge computing [8], the im-
mediate reward for an agent can only be obtained once the
offloaded task is executed. Obtaining an effective offloading
policy via model-free RL may require numerous trial-and-
error steps where the agent interacts with the targeted edge
computing system, resulting in huge costs. Besides, the
theoretical properties (such as monotonic improvement) of
these model-free FRL algorithms were not well understood.
These issues hinder the practical use of model-free FRL in
real-world edge computing scenarios.

Compared to model-free methods, model-based RL [11]–
[13] is much more sample efficient. Model-based RL learns
an estimated dynamics model and then derives an optimal
policy based on the learned model. Since the dynamics
model is trained by using supervised learning, it can be
naturally adapted to the current federated supervised learn-

2

ing setting where many state-of-the-art FL algorithms are
available. In addition, when applying model-based FRL in
edge computing, training of the RL policy can be offline
(as the training process is based on interactions with the
learned dynamics model), saving the huge costs of interact-
ing directly with the edge computing system.

Despite its promising benefits, there are several major
challenges for effectively integrating model-based RL into
FL. First, model bias (caused by overfitting in regions where
insufficient data is available to train the model) is a key
factor that affects model-based RL methods [12]. Handling
RL model bias in the federated setting is even more chal-
lenging due to the highly heterogeneous client data. Second,
a rigorous theoretical analysis of federated RL is lacking.
Especially, monotonic improvement of RL algorithms has
not been proven to hold in the federated setting. Third, it
is unclear how non-independent and identically distributed
(non-IID) client data will affect the performance of federated
model-based RL.

In this paper, we extend model-based RL to the revolu-
tionary FL paradigm, proposing a novel federated ensemble
model-based reinforcement learning (FEMRL) algorithm. In
FEMRL, the dynamics model is trained by FL, and then the
RL policy is trained by solely using the dynamics model
without interacting with the environment. To address the
problem of model bias, we create an ensemble of dynamics
models uploaded by clients. In addition, an ensemble distil-
lation method is used to enhance the performance of model
aggregation during FL. We summarise the key contributions
of our work as follows:

• To the best of our knowledge, this is the first of its
kind that effectively extends model-based RL to the
popular FL setting. In particular, we integrate FL
and knowledge distillation techniques to create an
ensemble of dynamics models for clients and then
train the policy by solely using the ensemble without
relying on the costly process of sampling data from
the environment.

• We provide a rigorous theoretical analysis to prove
that the monotonic improvement of FEMRL is guar-
anteed. The discrepancy bound of the return from
the environment and the learned dynamics identifies
and highlights the impacts of non-IID client data on
the policy improvement for federated RL.

• We perform extensive experiments using four chal-
lenging continuous control environments [14] under
edge computing settings. The results demonstrate
the superior sampling efficiency (hence lower com-
putation and communication cost) of FEMRL com-
pared to classic model-free FRL algorithms. The re-
sults also highlight the significant impacts of non-IID
client data and local model update steps on the rate
of reward improvement for federated RL, validating
the insights obtained from our theoretical analysis.

The rest of the paper is organised as follows. Section
2 introduces the related work including federated learning
in edge computing systems and model-based reinforcement
learning. We next overview some necessary background
knowledge related to FL and RL in Section 3. Section 4
presents details of the proposed FEMRL including the al-

gorithm design and theoretical analysis. We then evaluate
FEMRL with four standard RL environments and give the
discussion about the experimental results in section 5. Fi-
nally, we summarise the paper in section 6.

2 RELATED WORK

The related work focuses on extending RL algorithms to FL
settings in edge computing systems, namely federated re-
inforcement learning. However, directly combining model-
free RL with FL has low sample complexity. This work aims
to improve the sample efficiency by adapting model-based
RL to FL settings and further improve the training stability
by utilizing federated ensemble distillation. In Table 1, we
summarize the related research topics of Federated Rein-
forcement Learning, Model-based Reinforcement Learning,
and Federated Ensemble Distillation and present the de-
tailed review in the following paragraphs.

Federated Reinforcement Learning: Several previous
studies have investigated training RL policies in the FL
setting. Nadiger et al. [15] proposed a system for training
virtual Pong players (controlled via a Deep Q-network)
in the FL setting to match the skill levels of (simulated)
players. The authors in [16] designed the FedRL system
for training a policy, where individual FL clients do
not have access to the full state-space of the RL task.
Some researchers focus on domain-specific federated
reinforcement learning in edge computing system. In [7],
the authors combined federated reinforcement learning and
blockchain to solve resource allocation problem in edge
computing system, providing reliable and secure training
process. Wang et al. [9] proposed an attention-weighted
federated deep reinforcement learning model to solve
the heterogeneous collaborative edge caching problem by
jointly optimising the node selection and cache replacement
in device-to-device assisted mobile networks. In [10], the
authors proposed an intelligent user access control scheme
based on FRL in radio access networks to optimise the
overall throughput and avoid frequent handovers. Whilef
these works contribute to the development of model-free RL
in the FL setting, they suffer from high sample complexity
and lack theoretical guarantees.

Model-based Reinforcement Learning: RL algorithms
are generally built on Markov Decision Processes (MDP)
and can be divided into two categories: model-free RL
algorithms, which directly train a value function or policy
by trial-and-error in the environment; and model-based
RL algorithms that explicitly learn a dynamics model
based on the sampled data and derive a policy from the
model. Model-based RL has been demonstrated to have
significantly higher sample efficiency than model-free
RL, and has been successfully applied to robotics [18],
video games [13], etc., using a variety of dynamics models
including Gaussian processes [24], linear models [25], [26],
mixtures of Gaussians [27], and Deep Neural Networks
(DNNs) [28]–[30]. One key challenge for model-based RL
is how to handle uncertainty of the dynamics model [12],
[17]. To address this challenge, ensembles of DNNs [12],
[17], [18] have been used to handle model uncertainty
given data collected from the environment. In our FEMRL

3

TABLE 1
A summary of differences between the related work and our work.

Related research topics References Support federated training Support decision-making Sample efficiency
Federated reinforcement learning [7], [9], [10], [15], [16] X X low

Model-based reinforcement learning [11], [12], [17]–[21] × X high
Federated ensemble distillation [22], [23] X × high

Federated ensemble model-based
reinforcement learning our work X X high

algorithm, we approximate the model dynamics using
DNNs and create an ensemble using the models uploaded
by FL clients. From the theoretical perspective, previous
works [11], [19]–[21] have provided general frameworks
for analysing model-based RL, which include monotonic
improvement guarantees. We extend the analyses of these
works to our FEMRL algorithm, proving the monotonic
improvement of FEMRL, which also demonstrates the
influence of non-IID client data on the policy improvement.

Federated Ensemble Distillation: FL aims to train a global
model by sharing users’ locally-trained models, rather than
their private data. A crucial step in FL is how to aggregate
local models into a global model. The seminal FedAvg
algorithm [31] averages local models after each commu-
nication round to produce a new global model. However,
directly averaging model parameters may not be the most
effective method of creating the global model, due to non-
IID client data, which is a significant challenge in FL and
can come in many forms [32]. Some recent works focus
on using ensemble distillation techniques to create more
robust global models. [22] proposed a novel aggregation
approach using Bayesian model ensembles and knowledge
distillation. [23] proposed a similar algorithm for distillation
on the server, using the average logits of the client models
on an unlabelled dataset as the distillation target. Inspired
by the above methods, we aggregate the client models
into a single global model using knowledge distillation.
Moreover, in our method, we sample fictional experience
(as opposed to real experience) from the ensemble of models
for knowledge distillation, further helps reduce the privacy
risks of FEMRL.

3 PRELIMINARIES

In this section, we provide some necessary background
about the formulations of FL and RL problems.

3.1 Federated Learning
In FL, clients collaboratively train a model without exchang-
ing their training data in any way. The FL objective is to find
the minimiser w of the average client loss function f :

min
w∈Rd

f(w) =
1

K

K∑
k=1

pkfk(w), (1)

where K is the total number of clients, pk and fk are the
fraction of total samples (

∑
k pk = 1) and average loss

over samples on client k, respectively. Therefore, FL aims to
compute the minimiser of the average loss over all samples
on all participating clients (i.e., the same objective as would

be achieved by centralised training on pooled data). How-
ever, in real-world FL data is non-IID across clients, as the
behaviour of each client influences how its local samples are
generated. Non-IID client data has been extensively shown
to hinder the convergence of the FL model, and is one of the
key challenges to FL. In our FEMRL algorithm, we use FL
to train the dynamics model of the MDP.

3.2 Reinforcement Learning
A sequential decision-making problem solved by RL is
generally modelled as an MDP, which is given by the six-
tuple M := (S,A, T,R, ρ0, γ). Here, S and A are the state
and action spaces, respectively. T (s′|s, a) represents the dy-
namics that specifies the conditional distribution of the next
state s′ given the current state s and action a. R(s, a) is the
reward function, ρ0 represents the initial state distribution,
and γ ∈ (0, 1) denotes the discount-factor. Denote π(·|s)
as the policy that specifies the conditional distribution over
action space given a state s. The goal of RL algorithms
is to find the optimal policy that maximises the expected
discounted return defined by Eπ,T,ρ0 [

∑∞
t=0 γ

tR(St, At)].
Define the value function following policy π with MDP
M := (S,A, T,R, ρ0, γ) as:

VMπ (s) = E
St+1 ∼ T (·|St, At)

At ∼ π(·|St)

[∞∑
t=0

γtR(St, At)

∣∣∣∣S0 = s

]
. (2)

Thus VMπ := VMπ (s0) is the total return given policy π,
where s0 ∼ ρ0 is the initial state.

4 FEDERATED ENSEMBLE MODEL-BASED REIN-
FORCEMENT LEARNING (FEMRL)
In this section, we describe the proposed FEMRL algorithm
in detail, and then provide a theoretical analysis guaran-
teeing monotonic improvement of the policy produced by
FEMRL.

4.1 Algorithm Design
Our algorithm intends to train a model-based RL policy in
an edge computing environment involving multiple client
devices, and a corresponding edge server. In our setting, all
participating clients share the same environment with differ-
ent state transitions. There are many real-world applications
corresponding to this setting, including unmanned aerial
vehicles [33], edge caching [34], user access control [10], and
resource management [7], [8] in edge computing systems.
Fig. 1 illustrates the operation of FEMRL, which consists
of two major sub-components: FL loop for the training of
dynamics model, and RL loop for policy training.

4

Policy

Client

Policy

Client

Policy

Client

Ensemble model

…

Global model

Policy

FL loop

RL loop…Environment

Send trained policy to clients

1
2

3

4

5

6

7

Edge Server

Fig. 1. Overview of the FEMRL algorithm. Step 1: each client samples data from the environment based on the local sample policy and stores the
data locally. Step 2: local dynamics models are trained based on the sampled data. Step 3: the parameters of the local dynamics models are sent
to the server. Step 4: an ensemble of dynamics models are created on the server using the uploaded client models, and a single global model is
then created via knowledge distillation. Step 5: the parameters of the global model are sent to clients. Then, starting step 2 again for Tc rounds of
FL loops. Step 6: after rounds of FL training, the server then trains the policy using a policy-gradient algorithm (e.g., TRPO) and the ensemble of
dynamics models. Step 7: the parameters of the new policy are sent to clients for the next round of sampling (i.e., Step 1).

Formally, define the MDP with learned dynamics
T̂ (s′|s, a;w) as M̂ := (S,A, T̂ , R, ρ0, γ), where w are the
parameters of the learned model. Define T̂ (s, a;w) as the
function that produces the unique value of s′. The goal
of the FL loop is to learn the optimal w such that the
discrepancy between the learned dynamics and real dynam-
ics is minimal. This minimisation is a typical supervised
learning process, which can be solved through maximum
likelihood estimation or other techniques from generative
and dynamics modelling. In this paper, we apply a multi-
step prediction loss that is similar to [19] for model learning,
and use a predefined reward function, as in the works [12],
[17], [19]. Concretely,s for a state st and action sequence
at:t+h, the h-step prediction ŝt+h as ŝt = st, and for h ≥ 0,
ŝt+h+1 = T̂ (ŝt+h, at+h;w), the H-step loss is defined as:

f(w) =
1

H

H∑
i=1

‖(ŝt+i − ŝt+i−1)− (st+i − st+i−1)‖2 . (3)

The FL loop involves Tc rounds of communication be-
tween client devices and the edge server. Within each round
of federated training, each client parallelly conducts the
local update procedure as shown in Algorithm 2. The client
first samples trajectories from the environment using the
current policy πD ← πθ , where πθ is the updated policy
received from the server. The client then collects all the
sampled trajectories into the local replay buffer, Dk. Note
that the distribution of sampling trajectories is determined
by the values of the policy parameters θ and the dynamics
of the environment T (s′|s, a) as:

P (s0, a0, s1, ..., sn, an, sn+1) = ρ0

n∏
t=0

πθ(at|st)T (st+1|st, at).

(4)
Next, the client conducts E local update steps to train the
local dynamics model with mini-batch gradient descent.
The returned local dynamics model is then uploaded to the
server for further processing. All uploaded models are then

aggregated into a single global model on the server-side.
Instead of simply averaging the local models as in FedAvg
[31], we create an ensemble model {wk}mk=1 based on the
uploaded local models, where wk is the local model up-
dated by the kth client. This ensemble serves two purposes:
1) creating a single global dynamics model that benefits
from knowledge distillation; 2) generating fictitious data
for policy training. Using the model ensemble, therefore,
benefits both the FL and policy training processes by pro-
ducing a robust aggregate model and alleviating the model
bias problem in policy training. In our proposed FEMRL,
the policy is trained through interacting with the learned
dynamics model rather than the actual environment. There-
fore, the model error has a significant impact on the learned
policy. To reduce the impact of the model error, the ensemble
method provides an effective regularization for policy train-
ing: by using the ensemble dynamics model, the policy is
able to perform well over many possible alternative futures,
making the learned policy more robust.

The ensemble knowledge distillation method involves a
typical student-teacher learning scheme. Denote the sam-
pled fictitious data as D = {s0, a0,, sn, an}, s0 ∼ ρ0,
at ∼ π(at|st), st+1 = T̂ (st, at; {wk}mk=1). The student
model (i.e., the single global dynamics model) is trained
with Adam [35] following the loss function:

L(w) =

∥∥∥∥∥ 1

m

m∑
k=0

T (st, at;wk)− T (st, at;w)

∥∥∥∥∥
2

, (5)

where T (st, at;wk) is the learned local dynamics of client k
and T (st, at;w) is the global dynamics represented by the
student model.

After Tc rounds of federated training, we then use a
policy-gradient algorithm (Trust Region Policy Optimiza-
tion (TRPO) [36]) to train the policy by interacting with the
ensemble of models. Next, the parameters of the updated
policy are sent to all participating clients, which will then
start the next round of sampling procedure using the up-

5

dated policy. We adopt asynchronous model aggregation
where the server does not wait for all clients to finish
sending their updated local models. At each training round,
only a fraction, α (i.e., policy synchronisation rate), of
clients update their policy using the newest global policy.
This design is practical since clients can be unreliable edge
devices that may not always be able to reach the server
(e.g., a smartphone loses its network connection) in the FL
scenario. For α < 1, clients’ data distributions become non-
IID, as some clients will be performing local updates on the
environment model using a ‘stale’ (unsynchronised) policy.
We present the detailed server-side algorithm of FEMRL in

Algorithm 1. Specifically, we conduct training with nouter
epochs. Each epoch involves ninner rounds of inner loops.
Within each inner loop, we alternatively conduct Tc rounds
of FL loops and G rounds of RL loops.

It is noteworthy that the model-free RL methods can
also be integrated into the framework as follows. First, the
server receives locally trained policy networks from clients
and creates an ensemble of policy networks. Next, a single
global policy network is created via knowledge distillation.
Finally, the parameters of the global policy network are sent
to clients, starting next-round local training. In the following
sections, we provide a theoretical guarantee of monotonic
policy improvement for FEMRL, before performing a thor-
ough empirical evaluation of the algorithm.

4.2 Theoretical analysis

Proving monotonic improvement guarantee is an important
aspect of RL algorithms. In this section, we provide the
conditions under which FEMRL is guaranteed to provide
monotonic improvement for π. To prove monotonic im-
provement of a model-based RL algorithm, we wish to find
a lower bound of VMπ :

VMπ ≥ V M̂π −B (6)

where B is the bounded value.
Since the model is trained with supervised learning, the

distance between the true model and the learned model can
be quantified by standard Probably Approximately Correct
(PAC) generalization error [37]. PAC bounds the difference
in generalisation and empirical error by a constant with
high probability. In FEMRL, this generalisation error can be
defined as the distance between the learned dynamics and
the environment dynamics. The recent literature provides
two main ways to measure this distance, each with different
assumptions. One assumes that the dynamics model is
a complex probability distribution, and measures the
distance using Total Variation Distance (TVD) [11]. The
other assumes deterministic dynamics and directly uses
1-Wasserstein distance [19]. In addition, [38] uses a general
measurement, Integral Probability Metric, where TVD and
1-Wasserstein distance are two special cases. Since TVD
requires weaker assumptions and is typically more practical
than 1-Wasserstein distance, we use TVD in our analysis.
Overall, we make the following assumptions:

Assumption 1. The generalisation error is measured by
the TVD, defined as εm := DTV(T̂ (·|s, a)|T (·|s, a)) =

Algorithm 1 FEMRL running on K clients (indexed by k)
for E epochs, each consisting of Tc rounds of federated
communication and G steps of policy update.

Procedure FEMRL
for nouter epochs do

for ninner iterations do
{w(k)}Kk=1 ← FedEnLearning(Tc)
for G iterations do

Generate fictitious samples D ←
GenerateFictitiousData({wk}Kk=1, πθ).
Update policy πθ using TRPO and D

end
end
Send the updated policy πθ to clients with synchro-
nisation rate α.

end

Procedure FedEnLearning (Tc)
Initialise parameters of the student model w
for Tc iterations do

for each client k ∈ K in parallel do
. LocalUpdate is detailed in Algorithm 2
. At each local update round, the student model w
works as initial model of all participated clients.
wk ← LocalUpdate(k,w, E)

end
Create ensemble of models {wk}Kk=1

for N iterations do
Generate fictitious samples D ←
GenerateFictitiousData({wk}Kk=1, πθ).
. The updated student model w is then used
by LocalUpdate procedure for next-round of local
training.
Update the student model w using loss function
from Eq. (5) on D.

end
end
return {wk}Kk=1

Procedure GenerateFictitiousData ({wk}Kk=1, πθ)
Sample initial state s0 from the initial state distribution
s0 ∼ ρ0
for t← 0 to N do

Sample at ∼ πθ(at|st) from policy πθ
Randomly sample a dynmics model w(k) from the
ensemlbe of models {wk}Kk=1

Using the dynamics model wk to predict the next
state st+1 ∼ T̂ (st+1|st, at;wk)
Get reward rt by the reward function rt = R(st, at)
Add the transition to fictitious dataset
D
⋃
{st, at, rt, st+1}

end
return D

1
2

∑
s′

∣∣∣T̂ (s′|s, a)− T (s′|s, a)
∣∣∣

Assumption 2. The dependency of two policies π and πD
is measured by the TVD επ = DTV(π(a|s)|πD(a|s)), and is
bounded by a constant δπ , where DTV(π(a|s)|πD(a|s)) ≤
δπ .

Assumption 3. The reward function of the MDP is bounded:

6

Algorithm 2 Procedures of client side

Procedure LocalUpdate(k, ω0
k, E)

Sample initial state s0 from the initial state distribution
s0 ∼ ρ0.
for t← 0 to N do

Sample at ∼ πD(at|st) with current policy πD ← πθ .
Apply at to the environment and get the next state
st+1 and reward rt.
Store the transition to the local replay buffer Dk ←
Dk ∪ (st, at, rt, st+1).

end
for i← 1 to E do

Random sample a batch of training data ξi from Dk

Conduct mini-batch gradient descent: ωik ← ωi−1k −
ηi∇fk(ωi−1k ; ξi)

end
return ωEk

∀s ∈ S,∀a ∈ A, R(s, a) ≤ rmax.

Assumption 4. The loss function of the FL dynamics model
is convex and bounded by L, |f(w)| ≤ L, ∀w.

Based on previous works [11], [19], [38], we have the follow-
ing Lemma to build the lower bound of the discrepancy of
the total returns from the true model and the learned model
in conventional model-based RL:

Lemma 4.1. Denote εm as the generalization error of the dynam-
ics model and εmax

m as the maximal value of εm. Denote επ as the
discrepancy between target policy π and sample policy πD. For
any policy π, the return of the environment VMπ and the return
of the learned dynamics V M̂π are bounded as:

VMπ ≥ V M̂π −
[

2γrmax

1− γ
εm +

4γ2rmax

(1− γ)3
επε

max
m

]
︸ ︷︷ ︸

B

. (7)

Proof. See Appendix A.2.

Lemma 4.1 gives a theoretical guarantee for the monotonic
improvement of the model-based RL algorithm. As long
as we improve the returns under the learned model by
more than B, we can guarantee improvement under the
environment [11]. The bound B is proportional to the
generalization error of the dynamics model, εm, and the
discrepancy between the sample policy and target policy,
επ . However, Lemma 4.1 holds only if the generalization
error εm is bounded. Conventional model-based RL meth-
ods use normal centralised supervised learning to train the
dynamics model, however, in FEMRL we use FL to train the
dynamics model through an ensemble of models created
from the clients’ local models to approximate the learned
model, T̂ (s′|s, a; {w(k)}Kk=1). Therefore, it is necessary to
investigate if εm is bounded in the FL setting and what
factors influence εm in FEMRL.

We now derive a bound on the generalisation error of
the ensemble of client models.

Theorem 4.2. Denote the global data distribution as D. Let Dk

be the local data distribution of client k. Let πkD be the sample
policy for client k. Let πD be the virtual global sample policy.

Therefore, we have D = Ps,a,s′ =
∑
s,a T (s′|s, a)πD(a|s) and

Dk = Ps,a,s′ =
∑
s,a T (s′|s, a)πkD(a|s). Denote Sk ∼ Dm

k

as local empirical distribution for client k. Let Ŝ be the global
empirical distribution, each local empirical distribution has equal
contribution to the global distribution, thus Ŝ = 1

K

∑K
k=1 Sk.

Let H be a hypothesis class with limited Vapnik–Chervonenkis
(VC) dimension, V Cdim(H) ≤ d < ∞. The hypothesis h ∈ H
learned on Sk and Ŝk is denoted by hSk and ĥSk , respectively.
Then, the generalisation error of the ensemble model is bounded
with probability at least 1− δ:

εm := εD(
1

K

∑
k

hSk)

≤ εŜk(hŜk) + C

√
d+ log(1/δ)

m
+
L

K
Γ,

(8)

whereC and L are constants,m is the number of training samples
per local data distribution, and Γ =

∑K
k=1DTV(πD||πkD) which

is affected by the sample policies.

Proof. See Appendix B.

Theorem 4.2 shows the generalisation error is bounded, thus
the monotonic improvement (i.e., Lemma 4.1) still holds for
FEMRL. There are three key factors affecting the maximal
value of generalisation error εm: the virtual global empirical
error εŜk(hŜk), the number of training samples m, and the
sum of TVDs between the clients’ sample policies and the
virtual global sample policy, Γ.

Note that, The virtual global empirical error can in
principle be estimated and optimised approximately by the
training loss. Γ =

∑
kDTV(πD||πkD) =

∑
k ||D − Dk||1

can be a measurement of the degree of non-IID of clients’
datasets. When the data distribution is IID on all clients,
||D − Dk||1 = 0, DTV(πD||πkD) = 0, ∀k, which means all
clients share the same sample policy. When the data distri-
bution of clients becomes heterogeneous, Γ > 0. Specifically,
the higher degree of non-IID of data distribution, the higher
Γ is.

We now analyse the effect of policy synchronisation rate
α on the measure of non-IID client data distributions, Γ.
Denote the sample policy before and after the global update
as πD and π′D , respectively. After policy synchronisation
(with rate α), αK clients have the latest sample policy
π′D and (1 − α)K clients use the old sample policy πD .
Therefore, the virtual global sample policy is given as:

πD =
1

K

αK∑
k=1

π′D +

(1−α)K∑
k=1

πD

 = απ′D + (1− α)πD. (9)

Using the the definition of Γ:

Γ :=
K∑
k=1

DTV(πD||πkD)

=
αK∑
k=1

DTV(πD||π′D) +

(1−α)K∑
k=1

DTV(πD||πD).

(10)

7

Replacing π using Eq. (9), we have for the synchronised
component:

DTV(πD||π′D) =
1

2

∑
s,a

|απ′D + (1− α)πD − π′D|

=
1

2
(1− α)DTV(πD||π′D).

(11)

Similarly, for the unsynchronised component:

DTV(πD||πD) =
1

2

∑
s,a

|απ′D + (1− α)πD − πD|

=
1

2
αDTV(πD||π′D).

(12)

Combining Eqs. (10), (11), and (12), we have

Γ = α(1− α)KDTV(πD||π′D). (13)

Eq. (13), shows that Γ is influenced both by the policy
discrepancy DTV(πD||π′D) and the policy synchronous rate
α. Γ takes the maximal value with respect to α at α = 0.5.
For this value, we would expect the convergence of FEMRL
to be most hindered due to highly heterogeneous clients. In
the next section, we will show how the degree of non-IID
of clients’ data distributions affects the rate of the reward
improvement for FEMRL.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed FEMRL with
model-free FRL algorithms in standard RL environments.
We first give the implementation details about all the al-
gorithms and environments. Next, we give the comparative
assessment about FEMRL. Finally, we investigate the impact
of non-IID client data, local update steps, and ensemble
knowledge distillation.

5.1 Implementation details

We evaluate the performance of FEMRL on four realistic
continuous control tasks (i.e., HalfCheetah, Ant, Hopper,
and Swimmer) from the rllab framework [14] which are
widely used to evaluate the RL algorithms [17], [18], [39].
For all these tasks, we set the maximal episode length to
500. One important application scenario of edge computing
is in smart manufacturing where robots are widely used to
improve production automation and productivity [40]. In
the context of smart manufacturing, the proliferation of ter-
minal devices (e.g., mobile robots and mechanical arms) has
given rise to new challenges for the real-time operation and
maintenance, scalability, and reliability. Edge computing
aims to address these challenges by providing edge servers
with networking, computing, and storage capabilities close
to the manufacturing unit to meet key performance require-
ments. Therefore, in our experiments, we consider robotics
environments for the local learning clients, which together
with the simulated edge server can reflect a typical edge
computing scenario in smart manufacturing. We assume
all environments running on an edge computing platform
which includes multiple user devices and an edge server.
All user devices share the same environment dynamics as
we discussed in section 4.

We implement FEMRL and all baseline algorithms by
using Pytorch (≥1.7.0). Specially, the dyanmics of the MDP
is approximated by the feed-forward neural network with
two hidden layers and each layer includes 500 units. The
activation function at each layer is ReLU. Instead of di-
rectly predicting the next state, the network predicts the
normalised differences between the next state st+1 and st
as in previous works [12], [19]. Each client maintains its
own normalised statistics (i.e., the mean µ, and standard
deviation σ) based on the sampled local dataset. The nor-
malised difference can be calculated as ((st+1 − st)− µ)/σ.
The policy neural network is also implemented by a feed-
forward neural network with two hidden layers, each of
which has 128 hidden units. We use ReLU as the activation
function and the output of the policy neural network is
a Gaussian distribution N (µ(s), σ2) where σ is a state-
independent trainable vector.

For other default settings of FEMRL, we set the number
of inner loops as ninner = 20 at each training epoch. Each
client conducts 500 environment steps using the sample
policy and stores the sampled data locally. We set the batch
size of local updates for the dynamics model as 128 for
all clients. Each client conducts E = 80 steps of local
training with Adam (with learning rate 10−3) and then
uploads parameters of the local dynamics model to the
server. The server then aggregates the uploaded models
into a single global model through knowledge distillation.
Specifically, we use the sample policy to sample trajectories
based on the ensemble of client models and then apply the
student-teacher scheme to train a single global model on the
fictional trajectories. The learning rate and batch size of the
knowledge distillation are set as 10−3 and 128, respectively.
At each epoch, we optimise the dynamics model and policy
alternatively for ninner = 20 times. At each inner loop, we
conduct Tc = 5 communication rounds between clients and
server for training the dynamic models. After the training
for the dynamics model, we then use a policy gradient
algorithm (TRPO) to train the policy. We set the number
of iterations for policy training as G = 20.

In our framework, edge devices run two computation
tasks: sampling data from the environment and training the
local dynamic models. The sampling process is conducted
by forward propagation of the policy network with the lin-
ear time complexity O(n). Here n is the size of the sampled
data and is usually small for an edge device. In addition, the
process of training the local dynamic models is the same as
most of federated learning algorithms that have the linear
computation complexity O(m), where m is the number of
local training samples. Therefore, the computation overhead
of our method is acceptable for edge devices.

For the settings of the model-free baseline algorithms, we
use two advanced policy gradient methods: PPO and TRPO.
Both PPO and TRPO use General Advantage Estimator
(GAE) [41] to measure advantages. The policy networks of
all baseline algorithms share the same settings as FEMRL.
The hyperparameters settings for centralised TRPO and
PPO are listed in Tables 2 and 3, respectively. Fed-TRPO
and Fed-PPO share most of the hyperparameters settings as
their centralised counterparts except batch size (TRPO) and
environment steps per epoch (PPO). Since Fed-TRPO and
Fed-PPO do not collect data from clients, thus the batch

8

0 100 200 300 400 500
Total Environment Steps (103)

500

0

500

1000

1500

2000

2500

3000

3500

R
ew

ar
d

HalfCheetah

FEMBRL Fed-TRPO TRPO Fed-PPO PPO TRPO (5 million steps)

0 100 200 300 400 500
Total Environment Steps (103)

0

500

1000

1500

2000

R
ew

ar
d

Ant

0 50 100 150 200 250 300
Total Environment Steps (103)

0

250

500

750

1000

1250

1500

1750

R
ew

ar
d

Hopper

0 50 100 150 200
Total Environment Steps (103)

30

20

10

0

10

20

30

40

R
ew

ar
d

Swimmer

Fig. 2. Global total reward during training for FEMRL (blue) and the four baselines on continuous control benchmarks. Solid curves show the average
over 10 trials, and shaded regions show the standard deviation of the mean. The dotted horizontal lines give the final total reward of TRPO after 5
million environment steps.

size of Fed-TRPO on each client is set as 500 while the
environment steps per epoch of Fed-PPO on each client is
set as 500.

TABLE 2
Hyperparameters for TRPO.

Hyperparameter Value Hyperparameter Value
Batch Size 5000 Max KL Divergence 0.01
Discount γ 0.99 GAE λ 0.95

Conj. Gradient Damping 0.1 Conj. Gradient Steps 10

TABLE 3
Hyperparameters for PPO.

Hyperparameter Value Hyperparameter Value
Batch Size 100 Env. Steps per Epoch 5000

Learning Rate 0.001 Optimizer Adam
GAE λ 0.95 Discount γ 0.99

Ent. Coefficient 0.01 Clipping Value ε 0.2

5.2 Comparative assessment
We first compare the sampling efficiency of FEMRL to 4
other algorithms: 1) TRPO [36], a model-free policy-gradient
based algorithm running centrally, where all client samples
are collected on the server (thus breaking the FL assump-
tion). The policy is updated using the gathered samples.
2) Proximal Policy Optimisation (PPO) [42], a model-free
RL algorithm also running centrally. 3) Federated TRPO
(Fed-TRPO), where each client collects samples from the
environment and updates the local policy based on the
collected samples. After the local update of the policies on
the clients, the server averages all uploaded client policies,
creating a global policy for the next round of training. 4)
Federated PPO (Fed-PPO), again applying PPO to the FL
setting. Both Fed-TRPO and Fed-PPO are model-free FRL
methods. The existing federated RL methods, e.g., [9], [16],
[43], share the same FL architecture as Fed-TRPO and Fed-
PPO, but differ in the model-free RL algorithm used.

In FEMRL, after the policy update on the server, the
parameters of the policy network are sent to clients to

update their local policies. However, the update of local
policies at clients can be asynchronous: some clients receive
the updated policy, others do not receive it and thus will use
the old policy for sampling. As a consequence, clients will
have heterogeneous sampling policies. We denote the policy
synchronous rate as α, where only αK clients will receive
the updated sample policy at each training epoch. As the
default setting of FEMRL, we set α = 0.3, the number of
local update steps of FL E = 80, and the number of FL
communication rounds Tc = 5. We use K = 10 clients for
all algorithms. Each client performs 500 environment steps
at each epoch, which therefore has 5000 total environment
steps. FEMRL first trains the dynamics model based on the
sampled data, and then uses this model to generate ficti-
tious data for policy updating. In contrast, the model-free
algorithms (i.e., TRPO, PPO, Fed-TRPO, Fed-PPO) directly
use the sampled data for policy update. Due to the sparse
reward signal of RL, they generally require huge numbers
of interactions with the environment to obtain effective
policies, leading to sample inefficiency.

Fig. 2 shows the policy improvement rate of FEMRL and
the four baseline algorithms. The learning parameters of all
the algorithms in Fig. 2 use the default settings as given
in the previous paragraph and Section 5.1. The dotted
lines demonstrate the final performance of (centralised)
TRPO after 5 million environment steps. The performance
of (centralised) TRPO or PPO acts as a soft upper bound
of the federated counterpart (i.e., Fed-TRPO, or Fed-PPO).
FEMRL learns substantially faster and achieves the best per-
formance with 0.5 million or fewer environment steps. For
example, FEMRL achieves the same performance at 120k en-
vironment steps as TRPO does after 5 million environment
steps in the HalfCheetah and Ant environments. FEMRL is
an FL variant of the model-based RL [19], where we train the
environment dynamics model via FL and optimize the pol-
icy by interacting with the learned dynamics model directly.
Therefore, FEMRL can achieve better sample efficiency than
model-free RL methods and their FL variants.

5.3 The impact of non-IID client data

Clients with non-IID datasets possess unique, non-identical
minimisers to their local objectives. During the local-update

9

0 25 50 75 100 125 150
Total Environment Steps (103)

500

0

500

1000

1500

2000

2500

3000

3500

R
ew

ar
d

HalfCheetah

= 0.1
= 0.3
= 0.5
= 0.7
= 1.0

Fig. 3. Performance of FEMRL with different policy synchronous rates
(i.e., α) on HalfCheetah.

0 20 40 60 80 100 120 140
Total Environment Steps (103)

0

200

400

600

800

1000

1200

1400

1600

R
ew

ar
d

Hopper

= 0.1
= 0.3
= 0.5
= 0.7
= 1.0

Fig. 4. Performance of FEMRL with different policy synchronous rates
(i.e., α) on Hopper.

phase of FL, each participating client’s model will diverge
from the global model and move towards their local min-
imiser. This divergence is termed ‘client-drift’ [44] and has
been extensively shown to harm the performance of the
global model. The greater the degree of non-IID client data,
and the more local steps clients perform, the greater the level
of client-drift. In this section, we investigate how non-IID
client data impacts the performance of FEMRL.

Eq. (13) shows that the degree of non-IID is determined
by α for FEMRL. Therefore, we evaluate FEMRL with
varying α on HalfCheetah and Fig. 3 shows the training
curves. When α = 0.5, the rate of policy improvement
is slowest due to the highly non-IID client data: higher
model error results in a worse policy. The rate of policy
improvement naturally is the fastest when α = 1.0, as Γ
is 0 (according to Eq. (13)) that represents an IID scenario.
When α = 0.1, although Γ is small, performance is still low
because the discrepancy (i.e., επ) between the sample policy
and target policy is large. Lemma 4.1 reveals the relationship
between επ and the returns of the dynamics model and the
environment. The α ∈ {0.3, 0.7} curves show that the policy
improvement rate of FEMRL falls gracefully as α→ 0.5.

Fig. 4 shows the performance of FEMRL on Hopper with
varying policy synchronisation rates. As expected, when
α = 1.0, the client data is purely IID, therefore FEMRL can
achieve the best performance. In contrast, when α = 0.5, the
degree of non-IID is maximal, therefore, FEMRL obtains the
worst performance.

0 25 50 75 100 125 150
Total Environment Steps (103)

0

1000

2000

3000

4000

R
ew

ar
d

HalfCheetah
E=10
E=30
E=80
E=140
E=280

Fig. 5. Performance of FEMRL with different numbers of local update
steps (i.e., E) on HalfCheetah.

0 20 40 60 80 100 120 140
Total Environment Steps (103)

0

250

500

750

1000

1250

1500

1750

R
ew

ar
d

Hopper

E=10
E=30
E=80
E=140

Fig. 6. Performance of FEMRL with different numbers of local update
steps (i.e., E) on Hopper.

5.4 The impact of local update steps
Previous works have shown that the number of local steps
of SGD that clients perform, E, is a key factor affecting
the convergence of FL algorithms [31], [32], [44]. Larger
E allows clients to do more work locally and make more
progress, but the final performance of the global model is
harmed when the data on clients is non-IID.

Fig. 5 shows the convergence of FEMRL with a varying
number of local steps E, for a fixed number of communica-
tion rounds Tc = 5. As expected, as E increases, the initial
rate of policy improvement increases as clients make more
progress in training the dynamics model. However, as E
becomes very large (E = 280), the final reward plateaus at
3000, as the environment model reaches a local optimum
and the mininum error it can achieve is harmed. In this
scenario, the value of E = 140 strikes a good trade-off
between policy improvement rate and maximum reward.

Fig. 6 shows the performance of FERML on varying
numbers of local update steps, for a fixed number of
communication rounds Tc = 5. As expected, both small
(E = 10, 30) and large (E = 140) number of local update
steps can harm the convergence rate. The value of E = 80
achieves the best performance in this scenario.

5.5 The impact of ensemble knowledge distillation
We then investigate how the ensemble knowledge distilla-
tion method affects the performance. We train FEMRL on

10

0 50 100 150 200 250 300 350
Total Environment Steps (103)

0

500

1000

1500

2000

2500

3000
R

ew
ar

d

HalfCheetah

with ensemble without ensemble

Fig. 7. Performance of FEMRL with or without ensemble knowledge
distillation on HalfCheetah.

HalfCheetah without using ensemble knowledge distilla-
tion. Specifically, we directly average the uploaded param-
eters of clients’ models and create a single global dynamics
model for the FL training process. After T = 5 rounds
of FL training, we use the global dynamics model for
the policy-updating process using TRPO. The rest of the
hyperparameter settings are the same as the default settings.
Fig. 7 shows the results of FEMRL on HalfCheetah with or
without ensemble knowledge distillation. We find that the
ensemble model distillation method can significantly im-
prove the performance of FEMRL, indicating the importance
and necessity of combining ensemble knowledge distillation
into our method.

5.6 Discussion
The proposed FEMRL is a general federated RL method
that is not limited to a specific problem. We can adapt
FEMRL to other edge computing scenarios by modifying
the structure of the policy network and dynamics model to
fit the dimension of the state and action space of the specific
edge computing application. For example, task offloading
is a typical edge computing application, which enables to
offload computation-intensive tasks of mobile applications
from user devices to edge servers. However, unlike the
continual action space of robotics control tasks defined
in our experiments, the action space of the task offload-
ing problem is generally discrete [45]. To adapt FEMRL
to the task offloading problem, we need to redesign the
input/output layers of the policy network and dynamics
model to fit the discrete state and action space defined in
the task offloading problem, especially replacing the output
layer of the policy network from a Gaussian distribution
to a Categorical distribution. While the training process of
FEMRL remains the same.

Although FEMRL has many benefits to MEC applica-
tions, there are several challenges requiring further explo-
ration. In particular, the performance of the trained RL
policy might deteriorate when handling fast-changing envi-
ronments. In fact, how to enhance the generalisation ability
of DRL methods for fast-changing environments is still an
open problem in RL [46]. We feel that a useful solution
for generalisation objectives would constitute a whole new

paper, so we leave this to future work: we intend to combine
meta-learning [47], [48] into our framework to solve the
out-of-distribution problem for enhancing its generalisation
ability.

6 CONCLUSION

In this paper, we proposed a novel federated RL algorithm,
FEMRL, for edge computing systems, which incorporates
model-based RL, and ensemble distillation technologies into
FL. In FEMRL, clients train their local dynamics model
based on their locally sampled data. An ensemble of the
dynamics models is then created at the edge server based
on the updated local models. We use the ensemble model
for both policy training and FL model aggregation (by an
ensemble distillation method). The updated policy is then
sent to clients for the next-round of sampling process. We
provide a rigorous theoretical analysis to prove the mono-
tonic improvement of FEMRL in federated setting with non-
IID client data. Finally, we evaluate FEMRL based on four
challenging continuous control tasks. Experiment results
demonstrate that FEMRL can achieve much higher sample
efficiency than federated model-free counterparts.

7 ACKNOWLEDGEMENT

This work was supported in part by EU Horizon 2020
INITIATE Project under Grant 101008297, in part by
Royal Society International Exchanges Project under Grant
IEC/NSFC/ 211460, in part by EPSRC New Horizons fund
EP/X019160/1, and in part by UKRI Project EP/X038866/1.
For the purpose of open access, the author(s) has applied
a Creative Commons Attribution (CC BY) license to any
Accepted Manuscript version arising.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[2] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, “Adaptive federated optimiza-
tion,” in Proc. International Conference on Learning Representations
(ICLR), 2021.

[3] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” in Proc. International
Conference on Learning Representations (ICLR), 2020.

[4] P. Kairouz, H. B. McMahan et al., “Advances and open problems
in federated learning,” Foundations and Trends in Machine Learning,
vol. 14, no. 1-2, pp. 1–210, 2021.

[5] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated
learning via momentum gradient descent,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[6] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-
balancing federated learning with global imbalanced data in mo-
bile systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 59–71, 2020.

[7] L. Cui, Z. Chen, S. Yang, R. Chen, and Z. Ming, “A secure and
decentralized dlaas platform for edge resource scheduling against
adversarial attacks,” IEEE Transactions on Computers, 2021.

[8] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep
reinforcement learning meets federated learning: Intelligent mul-
titimescale resource management for multiaccess edge computing
in 5g ultradense network,” IEEE Internet of Things Journal, vol. 8,
no. 4, pp. 2238–2251, 2020.

[9] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Le-
ung, “Attention-weighted federated deep reinforcement learning
for device-to-device assisted heterogeneous collaborative edge
caching,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 1, pp. 154–169, Jan 2021.

11

[10] Y. Cao, S.-Y. Lien, Y.-C. Liang, K.-C. Chen, and X. Shen, “User
access control in open radio access networks: A federated deep
reinforcement learning approach,” IEEE Transactions on Wireless
Communications, 2021.

[11] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your
model: Model-based policy optimization,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), vol. 32, 2019.

[12] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-
ensemble trust-region policy optimization,” in Proc. International
Conference on Learning Representations (ICLR), 2018.

[13] L. Kaiser, M. Babaeizadeh, P. Milos et al., “Model based rein-
forcement learning for atari,” in Proc. International Conference on
Learning Representations (ICLR), 2020.

[14] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous con-
trol,” in Proc. International Conference on Machine Learning (ICML),
vol. 48, 2016, pp. 1329–1338.

[15] C. Nadiger, A. Kumar, and S. Abdelhak, “Federated reinforcement
learning for fast personalization,” in IEEE International Conference
on Artificial Intelligence and Knowledge Engineering (AIKE), 2019, pp.
123–127.

[16] H. H. Zhuo, W. Feng, Q. Xu, Q. Yang, and Y. Lin, “Federated
reinforcement learning,” arXiv preprint arXiv:1901.08277, 2019.

[17] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dy-
namics models,” in Proc. Advances in Neural Information Processing
Systems (NeurIPS), vol. 31, 2018.

[18] Y. Zhang, I. Clavera, B. Tsai, and P. Abbeel, “Asynchronous meth-
ods for model-based reinforcement learning,” in Proc. Conference
on Robot Learning (CoRL), vol. 100, 2020, pp. 1338–1347.

[19] Y. Luo, H. Xu, Y. Li, Y. Tian, T. Darrell, and T. Ma, “Algorithmic
framework for model-based deep reinforcement learning with
theoretical guarantees,” in Proc. International Conference on Learning
Representations (ICLR), 2019.

[20] W. Sun, G. J. Gordon, B. Boots, and J. A. Bagnell, “Dual policy
iteration,” in Proc. Advances in Neural Information Processing Systems
(NeurIPS), vol. 31, 2018.

[21] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel:
Model-based offline reinforcement learning,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), vol. 33, 2020.

[22] H.-Y. Chen and W.-L. Chao, “Fedbe: Making bayesian model
ensemble applicable to federated learning,” in Proc. International
Conference on Learning Representations (ICLR), 2021.

[23] T. Lin, L. Kong, S. Stich, and M. Jaggi, “Ensemble distillation for
robust model fusion in federated learning,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), vol. 33, 2020.

[24] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proc. International
Conference on Machine Learning (ICML), 2011, pp. 465–472.

[25] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics.” in Proc. Advances
in Neural Information Processing Systems (NeurIPS), vol. 27, 2014.

[26] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization
of complex behaviors through online trajectory optimization,” in
Proc. IEEE International Conference on Intelligent Robots and Systems
(IROS), 2012, pp. 4906–4913.

[27] S. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-
namical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[28] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Ud-
luft, “Learning and policy search in stochastic dynamical systems
with bayesian neural networks,” in Proc. International Conference
on Learning Representations (ICLR), 2017.

[29] A. Draeger, S. Engell, and H. Ranke, “Model predictive control
using neural networks,” IEEE Control Systems Magazine, vol. 15,
no. 5, pp. 61–66, 1995.

[30] A. Nagabandi, G. Kahn, R. Fearing, and S. Levine, “Neural net-
work dynamics for model-based deep reinforcement learning with
model-free fine-tuning,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 7559–7566.

[31] B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” Proc. International Conference on Artifical Intelligence
and Statistics (AISTATS), 2017.

[32] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-
IID data quagmire of decentralized machine learning,” in Proc.

International Conference on Machine Learning (ICML), vol. 119, Jul
2020, pp. 4387–4398.

[33] N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, “Afrl: Adaptive
federated reinforcement learning for intelligent jamming defense
in fanet,” Journal of Communications and Networks, vol. 22, no. 3, pp.
244–258, 2020.

[34] X. Wang, C. Wang, X. Li, V. Leung, and T. Taleb, “Federated deep
reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9441–9455, 2020.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. International Conference on Learning Representations
(ICLR), 2015.

[36] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. International Conference on
Machine Learning (ICML), vol. 37, 2015, pp. 1889–1897.

[37] S. Shalev-Shwartz and S. Ben-David, Understanding machine learn-
ing: From theory to algorithms. Cambridge University Press, 2014.

[38] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn,
and T. Ma, “Mopo: Model-based offline policy optimization,” in
Proc. Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, 2020.

[39] Y. Meng, S. Kuppannagari, R. Kannan, and V. Prasanna, “Ppoaccel:
A high-throughput acceleration framework for proximal policy
optimization,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 9, pp. 2066–2078, 2021.

[40] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, “Edge
computing in iot-based manufacturing,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 103–109, 2018.

[41] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage esti-
mation,” arXiv preprint arXiv:1506.02438, 2015.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[43] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement
learning: a learning architecture for navigation in cloud robotic
systems,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
4555–4562, 2019.

[44] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for
federated learning,” in Proc. International Conference on Machine
Learning (ICML), vol. 119, 2020, pp. 5132–5143.

[45] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE communications
surveys & tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[46] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru,
S. Gowal, and T. Hester, “Challenges of real-world reinforcement
learning: definitions, benchmarks and analysis,” Machine Learning,
vol. 110, no. 9, pp. 2419–2468, 2021.

[47] T. Jeong and H. Kim, “Ood-maml: Meta-learning for few-shot out-
of-distribution detection and classification,” Advances in Neural
Information Processing Systems (NIPS), vol. 33, pp. 3907–3916, 2020.

[48] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environ-
ments through meta-reinforcement learning,” in Proc. International
Conference on Learning Representations (ICLR), 2019.

[49] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of
machine learning. MIT press, 2018.

Jin Wang received the BEng and MEng de-
grees in computer science from the University
of Electronic Science and Technology of China
(UESTC), Chengdu, China, in 2014 and 2017,
respectively. He is currently working toward the
PhD degree in computer science at the Uni-
versity of Exeter. His research interests include
deep reinforcement learning, applied machine
learning, cloud and edge computing, and com-
puter system optimization.

12

Jia Hu received the BEng and MEng degrees
in electronic engineering from the Huazhong
University of Science and Technology, China,
in 2006 and 2004, respectively, and the PhD
degree in computer science from the University
of Bradford, UK, in 2010. He is a senior lecturer
of computer science at the University of Exeter.
His research interests include edge-cloud com-
puting, resource optimization, applied machine
learning, and network security.

Jed Mills is a Computer Science Ph.D. student
in the Department of Computer Science at the
University of Exeter, UK. He received a B.Sc.
in Natural Science from the University of Exeter
in 2018. His research interests include machine
learning, federated learning and mobile edge
computing.

Geyong Min received the BSc degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 1995, and
the PhD degree in computing science from the
University of Glasgow, United Kingdom, in 2003.
He is a professor of high performance computing
and networking with the Department of Com-
puter Science within the College of Engineering,
Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. His research
interests include computer networks, wireless

communications, parallel and distributed computing, ubiquitous comput-
ing, multimedia systems, modeling and performance engineering.

Ming Xia received the Ph.D. degree in computer
science from the University of California, Davis,
in 2009. He is currently a Staff Software Engi-
neer at Google, California, U.S.A. Before joining
Google, he held several positions at Alibaba, Mi-
crosoft, Ericsson Research, and the National In-
stitute of Information and Communications Tech-
nology (NICT), Tokyo, Japan. He serves as asso-
ciate editor for the Springer Journal of Telecom-
munication Systems, Photonic Network Commu-
nications, and guest editor for Journal of Com-

puters & Electrical Engineering S.I. on Ubiquitous Computing and Com-
munications. He co-organized several IEEE conferences and sympo-
siums including ANTS, Globecom workshop on SDN and optics, ICNC
optical and grid computing, etc. His research interests include cloud
infrastructure, data centers health, and networking.

Nektarios Georgalas is a Principal Researcher
in the Applied Research department of British
Telecom. In his current role, he leads two col-
laborative research programmes with key BT
partners delivering innovations in the areas of
Cloud, Data Centres, Network Virtualisation,
Smart Cities, IoT and Mobility. During his career
with BT, since 1998, he has managed numerous
collaborative and internal research projects in
areas such as network management, market-
driven data management systems, policy-based

management, distributed information systems, SOA/Web Services,
Model Driven Design and Development of telecoms OSS, Cloud and
NFV. Nektarios is inventor and co-inventor of 11 patents. He has also
authored more than 60 papers in international journals and conferences.
He has served as General Co-chair, Programme Co-Chair, Programme
Committee and Keynote Speaker or Invited Panelist in top international
IEEE academic and TMForum conferences.

13

APPENDIX A
MONOTONIC IMPROVEMENT GUARANTEE

In this section, we first provide some useful Lemmas for the
theoretical analysis of monotonic improvement guarantee
for FEMRL and then give the proof of Lemma 4.1.

A.1 Lemmas

Lemma A.1. (Importance sampling inequality) For any distribu-
tion ρ(s) and ρ′(s) and a function f(s), we have Es∼ρ(s)f(s) ≤
Es∼ρ′(s)f(s) + |ρ(s) − ρ′(s)|fmax, where fmax is the maximal
value of f(s).

Proof.

Es∼ρ(s)f(s) = Es∼ρ′(s)
ρ(s)

ρ′(s)
f(s)

= Es∼ρ′(s)
ρ(s)− ρ′(s) + ρ′(s)

ρ′(s)
f(s)

= Es∼ρ′(s)f(s) + Es∼ρ′(s)(ρ(s)− ρ′(s))f(s)

≤ Es∼ρ′(s)f(s) +
∑
s

|ρ(s)− ρ′(s)|fmax

≤ Es∼ρ′(s)f(s) + ||ρ(s)− ρ′(s)||1fmax.

Lemma A.2. (Bounded difference of discounted state distri-
butions). Let π and πD be two different policies and επ =
DTV(π||πD), we have:

‖ρMπ − ρMπD‖1 ≤
2γ

(1− γ)2
επ.

Proof. Define PMπ and PMπD as the transition kernels of the
MDPM following policies π and πD, respectively. Let G =
(I + γPMπ + (γPMπ)2 + ...) = (I− γPMπ)−1 and GD = (I +
γPMπD + (γPMπD)2 + ...) = (I− γPMπD)−1. Let ∆ = PMπD −PMπ .
We start with some algebraic manipulations as:

G−1 −GD
−1 = (I− γPMπ)− (I− γPMπD) = γ∆.

Left-multiplying by G and right-multiplying by GD, then
multiplying by ρ0:

GDρ0 −Gρ0 = γG∆GDρ0.

Note that ρMπ = Gρ0. By definition we have ‖G‖1 = (1 −
γ)−1, ‖∆‖1 = 2DTV(π||πD), and ‖ρ0‖ = 1. Hence:

‖ρMπ − ρMπD‖1 = ‖γG∆GDρ0‖1 ≤ γ‖G‖1‖∆‖1‖GD‖1‖ρ0‖1

≤ 2γ

(1− γ)2
DTV(π||πD) =

2γ

(1− γ)2
επ.

A.2 Proof of Lemma 4.1

Proof. Let ρMπ be the discounted visitation frequencies [36]
over the state space as ρMπ (s) =

∑∞
t=0 γ

tP (St = s|π,M),
where P (St = s|π,M) denotes the probability of being in

state s at time step t in the MDPM := (S,A, T,R, ρ0, γ) fol-
lowing the policy π. We can define the expected discounted
return as:

VMπ = E
St+1 ∼ T (·|St, At)

At ∼ π(·|St)

[∞∑
t=0

γtR(St, At)

∣∣∣∣S0 = s0

]
= Es∼ρMπ (s),a∼π(a|s) [R(s, a)] ,

(14)

where s0 is the initial state.

Let Wj be the discounted total reward when executing π on
the dynamics model M for the first j steps and the rest of
the steps on M̂. That is:

Wj = E
∀t ≥ 0, At ∼ π(·|St)

∀j > t ≥ 0, St+1 ∼ T (·|St, At)
∀t ≥ j, St+1 ∼ T̂ (·|St, At)

[∞∑
t=0

γtR(St, At)|S0 = s0

]
.

Note that we define VMπ = Es0∼ρ0
[
VMπ (s0)

]
. By definition

we have W∞ = VMπ and W0 = V M̂π , thus:

V M̂π − VMπ =
∞∑
j=0

(Wj+1 −Wj) .

We rewrite Wj and Wj+1 as:

Wj = Rj + E
Aj ,Sj∼π,T

[
E

Ŝj+1∼T̂ (·|Sj ,Aj)

[
γj+1V M̂π (Ŝj+1)

]]
,

Wj+1 = Rj+ E
Aj ,Sj∼π,T

[
E

Sj+1∼T (·|Sj ,Aj)

[
γj+1VMπ (Sj+1)

]]
.

we define Gπ
M̂

(S,A) = E
S′∼T (·|S,A)

[
VMπ (S′)

]
−

E
Ŝ′∼T̂ (·|S,A)

[
V M̂π (Ŝ′)

]
. Therefore:

Wj+1 −Wj = γj+1 E
Aj ,Sj∼π,T

[
GπM̂(S,A)

]
,

where Rj is the expected accumulative reward of the first j
steps, which are taken w.r.t. dynamics model M. Thus we
have:

V M̂π − VMπ =
∞∑
j=0

(Wj+1 −Wj)

=
∞∑
j=0

γj+1 E
Aj ,Sj∼π,T

[
GπM̂(S,A)

]
= γ E

S ∼ ρMπ ,
A ∼ π(·|S)

[
GπM̂(S,A)

]
,

where the last equality is from applying Eq. (14). For sim-
plicity, we define T (S,A) = T (s′|s, a) as the dynamics of
the environment and T̂ (S,A) = T̂ (s′|s, a) as the dynamics
of the learned model. The reward function is bounded by
rmax according to Assumption 3, we then have for any value
function: ||Vπ|| ≤ 1

1−γ rmax. Next, we bound Gπ
M̂

(S,A) as:

GπM̂(S,A) =
∑
S′

T (S,A)VMπ (S′)−
∑
S′

T̂ (S,A)V M̂π (S′)

≤ rmax

1− γ
∑
S′

[
T (S,A)− T̂ (S,A)

]
≤ 2rmax

1− γ
DTV(T (S,A)‖T̂ (S,A)).

14

Therefore:

V M̂π − VMπ ≤ 2γrmax

1− γ E
S ∼ ρMπ ,
A ∼ π(·|S)

[
DTV(T (S,A)‖T̂ (S,A))

]
.

(15)
We define εm = ES∼ρMπD ,A∼π(·|S)

[
DTV

(
T (S,A)‖T̂ (S,A)

)]
and εmax

m = maxS∼ρMπD

[
DTV

(
T (S,A)‖T̂ (S,A)

)]
. In our

algorithm we use the sample policy πD to sample
trajectories from the environment, so we bound the
following using Lemma A.1 and Lemma A.2 as:

E
S ∼ ρMπ ,
A ∼ π(·|S)

[
DTV

(
T (S,A)‖T̂ (S,A)

)]
≤ E

S ∼ ρMπD
,

A ∼ π(·|S)

[
DTV

(
T (S,A)‖T̂ (S,A)

)]
+
∥∥∥ρMπ − ρMπD∥∥∥1 max

S∼ρMπD

[
DTV

(
T (S,A)‖T̂ (S,A)

)]
≤ εm +

2γ

(1− γ)2
επε

max
m .

Combining the above inequality with Eq. (15), we have:

V M̂π − VMπ ≤ 2γrmax

1− γ
εm +

4γ2rmax

(1− γ)3
επε

max
m .

APPENDIX B
GENERALISATION ANALYSIS OF THE ENSEMBLE DY-
NAMICS

In this section, we derive a bound on the generalisation error
of the environment model trained during our FEMRL learn-
ing process. Since the training of the model is a supervised
learning process, we can utilise the Probably Approximately
Correct (PAC) learning framework for our analysis. First,
we give the general bounds for Vapnik–Chervonenkis (VC)-
dimension and the discrepancy of the generalisation error
between two different data domains. We then give the proof
of Theorem 4.2.

B.1 Preliminaries

Theorem B.1. (Uniform VC-dimension error bound [49]) LetH
be a hypothesis class with V Cdim(H) ≤ d < ∞. Let D be the
probability measures over the sample space. Let S be the empirical
dataset sampled from D, S ∼ Dm where m is the size of the
dataset. Then for any δ > 0, with probability at least 1 − δ, the
following holds for all h ∈ H:

|εD(h)− εS(h)| ≤ C

√
d+ log(1/δ)

m
, (16)

where C is a constant factor.

We now give a bound of learning between different do-
mains.

Lemma B.2. Let H be a hypothesis class. D and D′ denote two
probability measures over the sample space. Let εDh denote the

general error of h over D. If the loss function l(·) is bounded by
L, then for every h ∈ H we have:

εD(h) ≤ εD′(h) + L||D −D′||1. (17)

Proof.

εD(h) ≤ εD′(h) + |εD(h)− εD′(h)|

≤ εD′(h) +

∫
|l(y, h(x))| |P(x,y)∼D − P(x,y)∼D′ |

= εD′(h) + L||D −D′||1.
(18)

B.2 Proof of Theorem 4.2

Proof. According to the definition of Empirical Risk Minimi-
sation (ERM), we have εSk(hSk) ≤ εSk(hŜ), where hŜ is the
model learned based on the virtual global empirical dataset
Ŝ, where Ŝ = 1

K

∑K
k=1 Sk. Therefore, we have:

1

K

K∑
k=1

εSk(hSk) ≤ 1

K

K∑
k=1

εSk(hS) = εŜ(hŜ). (19)

Next we give the bound of the generalisation error of
the model ensemble, by considering the distance between
the generalisation error of the ensemble of client models,
εD(1

K

∑
k hSk), and the generalisation error of the model

learned from the virtual global dataset, εD(hSk). By convex-
ity of the loss function f and Jensen’s inequality, we have
the probability of at least 1− δ over {Sk ∼ Dm

k }Kk=1 that:

εD

(
1

K

∑
k

hSk

)
≤ 1

K

∑
k

εD(hSk)

≤ 1

K

∑
k

εSk(hSk) + C

√
d+ log(1/δ)

m
+ L||D −Dk||1

≤ 1

K

∑
k

εSk(hSk) + C

√
d+ log(1/δ)

m
+

1

K

∑
k

L||D −Dk||1

≤ εŜk(hŜk) + C

√
d+ log(1/δ)

m
+
L

K

∑
k

||D −Dk||1.

The distribution of the virtual global dataset can be calcu-
lated using D = Ps,a,s′ =

∑
s,a T (s′|s, a)πD(a|s):

||D −Dk||1 =
∑
s′,s,a

|Ps,a,s′∼D − Ps,a,s′∼Dk |

=
∑
s′

∑
s,a

(T (s′|s, a)πD(a|s)− T (s′|s, a)πkD(a|s))

=
∑
s′

T (s′|s, a)
∑
s,a

(πD(a|s)− πkD(a|s))

=
∑
s,a

(πD(a|s)− πkD(a|s))

= DTV(πD||πkD).
(20)

Denote the discrepancy between the sample policy of
client k, πkD , and the virtual global sample policy πD as

15

DTV(πD||πkD). Let Γ =
∑
kDTV(πD||πkD). Therefore, we

have:

εD

(
1

K

∑
k

hSk

)
≤ εŜk(hŜk) + C

√
d+ log(1/δ)

m
+
L

K
Γ,

(21)
where Γ can be used to measure the degree of the non-IID
client data.

