
Phased Genetic Programming for Application to the Traveling
Salesman Problem

Darren M. Chitty
Faculty of Environment, Science and Economy

University of Exeter, UK
darrenchitty@googlemail.com

Ed Keedwell
Faculty of Environment, Science and Economy

University of Exeter, UK
E.C.Keedwell@exeter.ac.uk

ABSTRACT
The Traveling Salesman Problem (TSP) is a difficult permutation-
based optimisation problem typically solved using heuristics or
meta-heuristics which search the solution problem space. An al-
ternative is to find sets of manipulations to a solution which lead
to optimality. Hyper-heuristics search this space applying heuris-
tics sequentially, similar to a program. Genetic Programming (GP)
evolves programs typically for classification or regression prob-
lems. This paper hypothesizes that GP can be used to evolve heuris-
tic programs to directly solve the TSP. However, evolving a full
program to solve the TSP is likely difficult due to required length
and complexity. Consequently, a phased GP method is proposed
whereby after a phase of generations the best program is saved
and executed. The subsequent generation phase restarts operating
on this saved program output. A full program is evolved piecemeal.
Experiments demonstrate that whilst pure GP cannot solve TSP in-
stances when using simple operators, Phased-GP can obtain solu-
tions within 4% of optimal for TSPs of several hundred cities. More-
over, Phased-GP operates up to nine times faster than pure GP.

CCS CONCEPTS
• Computing methodologies → Genetic programming.

KEYWORDS
Genetic Programming, Traveling Salesman Problem

1 INTRODUCTION
The Traveling Salesman (TSP) is a well studied optimisation prob-
lem whereby the goal is to find the order in which to visit cities
once only such that the total distance travelled is minimised. The
symmetric TSP is represented as a complete weighted graph G =
(V , E,d)whereV = {1, 2, ..,n} is a set of vertices defining cities and
E = {(i, j)|(i, j) ∈ V ×V } the edges with distance d between pairs
of cities such that di j = dji . The objective is to find a Hamiltonian
cycle in G of minimal length. The TSP is considered an NP-Hard
problem due to large feasible solution space.

Exact methods can solve small TSP instances but do not scale
to larger problems. Consequently, meta-heuristic methods which
do not guarantee an optimal result but a near optimal solution are
popular methods. Genetic Algorithms (GAs) [9] are the most well
known method used for solving TSP instances using the princi-
ples of Darwinian evolution to successively improve a population
of candidate solutions where chromosome consists of the set of
cities in the order to be visited. An alternative meta-heuristic is

ISBN 979-8-4007-0120-7/23/07
https://doi.org/10.1145/3583133.3590673

based upon the foraging behavior of ants. Ant Colony Optimisa-
tion (ACO) [7] applied to the TSP involves simulated ants travers-
ing graphG visiting each vertex depositing pheromone defined by
solution quality on edges taken. Ants probabilistically decide ver-
tices to visit next using this pheromone level upon the edges of
graphG and heuristic information of edge length. Meta-heuristics
can be improved by computationally expensive local search meth-
ods such as 3-opt [12]). Indeed, local search is key to the state of
the art heuristic Chained Lin-Kernighan for solving the TSP [2].

An alternative search is to find an optimal set of manipulations
or operations to a given solution that will derive the optimal solu-
tion. Hyper-heuristics [5] are amethod used to search this problem
space [4]. Hyper-heuristics do not use problem domain knowledge
within their operation. Instead, low level heuristics are utilised
ranging from methods that are simple such as swapping two ver-
tices in a solution to deploying a full local search methodology
such as 2-opt. Advanced hyper-heuristic methods search for se-
quences of heuristics to be applied in a single iteration such as
the Selection-Based Sequence Hyper-Heuristic (SSHH) [10].

However, a set of heuristics to be applied sequentially can also
be considered as a program whereby each program line is a heuris-
tic operation. A well known evolutionary methodology used to au-
tomatically generate programs is Genetic Programming (GP) [11].
GP uses the principles of Darwinian evolution namely natural se-
lection, crossover and mutation, to successively improve a popula-
tion of candidate programs. Typically, GP is applied to classifica-
tion or symbolic regression problem. GP is not directly applied to
optimisation problems such as the TSP. However, given the hyper-
heuristics methodology of finding heuristic operations being simi-
lar to a program, GP is likely equally applicable.

GP is not commonly used to solve combinatorial problems such
as the TSP directly. However, there are some exceptions for in-
stance Dimopoulus and Zalzaha [6] used GP to evolve dispatching
rules for the one-machine tardiness optimisation problem. Tay and
Ho [16] also use GP to evolve dispatching rules for the flexible job-
shop problem with the evolved rules representing a heuristic or
rule of thumb. Within civil engineering Soh and Yang [15] use GP
to evolve optimised structures in terms of size and geometry. How-
ever, although GP is not directly used for combinatorial optimisa-
tion it is used within a hyper-heuristic framework in a generative
form whereby the goal is to synthesize a novel heuristic method
that can be used to solve a problem such as the TSP within hyper-
heuristic framework. For instance, Ryser-Welch et al. [14] use a
cartisian form of GP to evolve TSP solvers that use advanced oper-
ators such as 3-opt local search. Duflo et al. [8] use GP to generate
heuristics to solve TSP instances with improved results over near-
est neighbour. In an alternative context, Nguyen et al. [13] use GP



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Darren M. Chitty and Ed Keedwell

to decide heuristic selection within a hyper-heuristic framework
to solve combinatorial optimisation problems.

2 APPLYING GP TO THE TSP
To directly apply GP to optimisation problems such as the TSP re-
quires evolving a set of operations to an initial solution which will
result in the optimal solution. Given a TSP instance and a random
solution to the order of the cities to be visited it can be considered
that a program exists that can reorder this to the optimal solution.
Moreover, given a simple swap operation and an n city TSP it is
conceivable there exists a program of swaps of n or less steps.

GP is commonly used in a tree-based form with lower branches
providing inputs to higher levels but for application to the TSP this
format is not applicable, a sequential sequence of operations is re-
quired. Essentially, a form of traditional program whereby each
line constitutes an operation to be performed. A variant of GP
known as Linear GP (LGP) [3] generates programs of this type.

Algorithm 1 Exemplar GP Program to Solve a TSP Instance
1: S ′ = initial global starting solution S
2: S ′ = SWAP(3,8) {swap city at position 3 with city at position 8}
3: S ′ = INSERT(7,2) {insert city at position 7 into position 2}
4: S ′ = INSERT(9,1) {insert city at position 9 into position 1}
5: S ′ = INVERT(3,6) {invert cities between positions 3 and 6}
6: S ′ = SWAP(4,5) {swap city at position 4 with city at position 5}
7: S ′ = INVERT(1,3) {invert cities between positions 1 and 3}
8: S ′ = INVERT(4,7) {invert cities between positions 4 and 7}

With LGP a program of operations is evolved whereby the first
element of each line refers to which operation to perform and the
following parts the parameters to this operation. For applying LGP
to the TSP using a simple swap operation these parameters would
be constant values referring to positions within the solution, 1 to
the number of cities. Algorithm 1 provides an example of a pro-
gram that could be evolved by LGP for application to the TSP. LGP
applied to the TSP evolves programs with the fitness measured by
applying the program operations to the starting solution and as-
sessing the result in terms of distance travelled.

2.1 Phased-GP
However, it could be considered that finding an optimal program
to solve the TSP is more difficult than using a meta-heuristic. This
is due to operations and their associated parameters needing to
be evolved. If the operations necessary is equal to the number of
cities and each has two parameters the solution space is three times
larger. Moreover, long programs will be required. Consequently,
a form of hill-climbing or phased approach is proposed for use
within the LGP evolutionary process. Instead of evolving a com-
plete large program that generates the optimal result from an ini-
tial random solution, a program can be evolved in stages or phases.
Consider that at the evolutionary early stage small programs have
evolved that improve upon the initial solution but not to optimality.
Rather than attempting to grow these small programs into larger
programs, the best improvement could be locked in. With the TSP,
this program can be applied to the current solution to improve it

and this becomes the new solution for subsequent evolved pro-
grams to be applied to. The next stage of program evolution op-
erates on the output of this saved program. This methodology re-
peats until the conclusion of the evolutionary process. This is in ef-
fect hill-climbing to consistently improved solutions. This process
can be termed as a phased approach to evolving a good program.
Repeatedly doing this allows a program to be evolved piecemeal,
each saved program can be output to provide the entire program
that can optimise the initial solution.

Consider, the exemplar program in Algorithm 1 if evolved in
phases. The code within lines 2-4 is the best program evolved in
phase 1. At this point the program is saved and all subsequent pro-
grams operate on the output of this program. This is achieved by
updating the initial solution S with current solution S ′. Program
lines 5-6 constitute the best program evolved by building upon the
output program from phase 1. This too is saved and solution S up-
dated solution S ′ and phase 3 then evolves the final 2 lines. The
best programs from each phase constitute the complete solution.

Algorithm 2 Phased-GP Applied to the TSP
1: S = current solution to TSP instance generated randomly
2: S ′ = new solution
3: Sbest = best solution
4: Pbest = best program
5: while generation less than max generations do
6: P = generate population of random programs
7: for number of phase generations do
8: increment generation
9: for each program p in P do
10: S ′ = executed program p on S
11: if S ′ better than Sbest then
12: Sbest =S ′
13: Pbest =p
14: end if
15: end for
16: P = generate new program population via selection, crossover, mutation
17: end for
18: if Sbest better than S then
19: S = Sbest
20: end if
21: reset Sbest and Pbest
22: end while

The phased variant of GP (Phased-GP) is shown in Algorithm 2
whereby phased aspect is the additional inner loop on line 7. This
loop evolves a program on the current solution and at the end of
this loop the best found program is used to update the current so-
lution essentially saving the program. Note that a new population
of random solutions is generated at the end of each phase and the
evolutionary process begins again. If no program has been evolved
in the population that improves upon the current solution then
this becomes in effect a restart. As optimality of the solution is
approached this will occur frequently.

3 EXPERIMENTAL RESULTS
To measure the effectiveness of LGP and Phased-GP applied to the
TSP they will be tested using six instances from the TSPLIB library
described in Table 1. TheGP approacheswill use the parameters de-
scribed in Table 2. A large degree of evolution is used since the ob-
jective is optimisation rather than generalisation. A high mutation
rate is used since using GP to optimise operators and parameters,
the introduction of new values into the population is necessary.



Phased Genetic Programming for Application to the Traveling Salesman Problem GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Table 1: TSP instances utilised

TSP Number of Optimal TSP Number of Optimal
Instance Cities Solution Instance Cities Solution

bier127 127 118282 ch130 130 6110
rat195 195 2323 d198 198 15780
a280 280 2579 pcb442 442 50778

Table 2: GP parameters

GP Parameters

Population Size - 512 Max. Iterations - 100k
Crossover Prob. - 90% Mutation Prob. - 33%
Tournament Size - 4 Terminal Set - No. Cities

Operators - Swap, Insert, Invert,
3-opt move

Table 3: Relative errors, runtimes and program lengths
when applying LGP to range of TSP instances.

TSP Relative Error (%) Runtime Program

Average Best Worst in seconds Length

bier127 137.18±23.98 103.91 192.43 190.62±10.19 76.99±4.83
ch130 257.90±43.13 194.16 357.60 222.07±16.19 90.16±6.94
rat195 316.10±42.45 258.05 459.63 284.13±32.39 119.41±7.75
d198 298.84±35.54 236.36 379.05 283.08±25.67 113.81±10.28
a280 488.89±51.19 402.57 629.61 435.54±35.55 170.62±9.98
pcb442 703.41±56.23 594.57 821.81 824.46±107.51 278.88±15.00

Four TSP operations are used with GP, swap, insertion, inver-
sion and a single 3-opt move. The first three require two parame-
ters, the fourth operator four. Therefore, chromosomes use an arity
of five and each operator uses only the parameters it requires. Sin-
gle point crossover is used ensuring that child chromosome arity
remains constant. Three mutation operators are utilised with uni-
form probability, crossover, addition and modification. Crossover
mutation performs 2-point crossover with a randomly generated
chromosome. Addition mutation adds up to five random operators.
Modification crossover makes up to five random changes to opera-
tors or parameters. A synchronous parallel implementation of GP
is usedwith an eight core AMDRyzen 2700 processor. Experiments
are conducted over 25 random seeded execution runs.

To begin pure Linear GP will be applied to the TSP instances
without any phases. These results shown in Table 3 are poor for
even the smallest of the TSP instances. Clearly, GP when used to
evolve a complete program of operations from a random initial so-
lution cannot find programs that get close to optimality. A key rea-
son is the size of the programs, a program of swaps or inserts less
than the number of cities will exist that results in optimality. Pro-
gram lengths are over half this length but have poor solution qual-
ity. Bloat has occurred with sequences evolving that do not impact
the fitness [1]. For solving the TSP this can be a swap operation
followed by another undoing this swap. Also, with long programs,
a high degree of correct parameters need to be established.

To test the opposite approach of evolution, a null hypothesis
will be tested whereby entirely random programs are generated
at each generation. If the best population program improves upon
the current solution then this program updates this solution as de-
scribed for Phased-GP. The next population of randomly gener-
ated programs will then modify this new best solution. Clearly, no
evolutionary process occurs, in effect simple hill-climbing. Table
4 shows the null hypothesis results whereby in complete contrast

Table 4: Relative errors, runtimes and program lengths ap-
plying null hypothesis of no evolution to range of TSPs.

TSP Relative Error (%) Runtime Program

Average Best Worst in seconds Length

bier127 3.49±1.62 0.92 7.98 74.36±0.44 5.50±0.00
ch130 4.15±1.33 1.49 6.33 76.25±1.03 5.50±0.00
rat195 7.71±1.51 4.33 10.05 78.39±0.20 5.50±0.00
d198 2.79±1.18 0.95 4.58 79.55±0.27 5.50±0.00
a280 9.98±1.74 5.40 12.41 84.13±0.33 5.50±0.00
pcb442 8.52±1.72 5.57 11.57 94.70±0.36 5.50±0.00

Table 5: Relative errors, runtimes and program lengths ap-
plying Phased-GP to TSPs for range of phase generations

TSP Phase
Gens.

Relative Error (%) Runtime Program

Average Best Worst (secs) Length

bier127

3 3.25±1.56 0.25 7.48 96.75 ±0.22 4.220±0.003
5 4.04±1.91 1.68 7.96 91.11 ±5.25 3.190±0.003
10 3.92±1.87 0.80 8.06 77.98 ±1.63 2.390±0.003
20 4.06±2.42 1.57 8.84 72.02 ±1.28 2.000±0.003
30 4.72±1.87 1.62 8.20 68.69 ±0.30 1.880±0.003
50 4.53±2.16 0.88 9.06 66.13 ±0.37 1.810±0.007
100 4.48±1.59 0.50 7.30 65.60 ±0.21 1.830±0.016
500 5.17±1.99 1.89 9.69 69.31 ±0.83 3.330±0.203

ch130

3 3.37±1.21† 0.51 5.74 97.01 ±0.21 4.190±0.002
5 3.44±1.33 1.37 6.68 86.28 ±0.26 3.160±0.001
10 3.96±1.51 1.78 7.11 87.70 ±7.52 2.380±0.001
20 3.87±1.23 1.54 6.73 72.20 ±1.33 1.990±0.002
30 4.23±1.44 1.86 7.34 68.76 ±0.18 1.880±0.003
50 4.76±1.68 1.95 8.18 68.61 ±1.54 1.800±0.007
100 4.29±1.38 2.40 7.45 65.96 ±0.18 1.840±0.018
500 5.10±1.54 2.74 8.87 68.63 ±0.79 3.450±0.262

rat195

3 6.33±1.50† 4.30 9.17 104.33 ±0.23 4.210±0.002
5 6.29±1.31† 4.18 9.39 93.88 ±1.45 3.180±0.002
10 6.20±1.06 4.42 8.93 82.53 ±0.25 2.390±0.001
20 7.35±1.13 5.57 9.62 76.77 ±0.23 2.000±0.002
30 7.44±1.38 5.18 10.64 74.01 ±0.21 1.890±0.005
50 7.63±1.49 5.17 9.95 72.88 ±0.14 1.840±0.009
100 8.06±1.50 5.31 11.54 71.63 ±0.19 1.930±0.028
500 7.86±1.59 5.23 11.37 77.76 ±0.95 4.820±0.418

d198

3 2.07±0.81† 0.74 3.91 104.42 ±0.42 4.340±0.007
5 2.20±0.76 0.95 3.67 94.30 ±0.41 3.270±0.009
10 2.22±0.92 1.04 4.39 82.96 ±0.31 2.430±0.005
20 2.54±1.02 0.87 4.66 76.61 ±0.57 2.020±0.003
30 2.78±0.96 1.15 4.53 75.15 ±0.31 1.910±0.003
50 3.16±0.82 1.56 4.64 73.55 ±0.32 1.850±0.007
100 3.02±1.25 1.72 7.32 72.57 ±0.28 1.960±0.024
500 3.34±1.17 0.87 5.23 79.08 ±0.68 5.010±0.281

a280

3 7.84±1.74† 3.96 10.96 113.36 ±0.28 4.190±0.002
5 8.14±1.95† 4.90 11.39 100.62 ±0.34 3.160±0.002
10 8.50±2.11† 4.81 13.72 90.53 ±0.31 2.380±0.001
20 8.91±2.08 5.71 14.33 84.27 ±0.27 2.000±0.003
30 9.41±2.02 6.17 13.64 81.78 ±0.29 1.900±0.006
50 9.43±1.91 5.90 12.84 79.88 ±0.42 1.880±0.012
100 10.20±2.38 4.77 14.49 80.21 ±0.26 2.060±0.032
500 9.88±1.62 6.64 13.10 90.51 ±1.29 6.900±0.504

pcb442

3 7.74±1.13† 4.91 9.36 130.77 ±0.97 4.170±0.001
5 7.81±1.00† 5.93 10.18 116.89 ±0.51 3.150±0.001
10 7.77±1.52† 3.80 10.51 104.99 ±0.52 2.370±0.001
20 8.40±1.36 5.05 10.16 98.00 ±0.63 2.010±0.002
30 8.36±1.45 5.23 11.84 96.18 ±0.33 1.930±0.007
50 8.24±1.59 5.53 12.58 94.32 ±0.59 1.960±0.014
100 8.31±1.98 5.44 11.59 94.61 ±0.51 2.340±0.041
500 9.06±1.19 6.96 12.03 120.40 ±2.56 12.510±0.719

†Statistically significant improvement of Phased-GP over null hypothesis with
a p < 0.05 t-test, two-sided significance level and 24 degrees of freedom

to using LGP, solutions are derived on average within less than
10% of optimality and the best solutions within 6%. Note the short



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Darren M. Chitty and Ed Keedwell

3

4

5

6

7

8

0 20 40 60 80 100 120

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Time (seconds)

TSP Instance bier127

0 Phase Gens.

3 Phase Gens.

5 Phase Gens.

10 Phase Gens.

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Time (seconds)

TSP Instance ch130

0 Phase Gens.

3 Phase Gens.

5 Phase Gens.

10 Phase Gens.

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Time (seconds)

TSP Instance rat195

0 Phase Gens.

3 Phase Gens.

5 Phase Gens.

10 Phase Gens.

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Time (seconds)

TSP Instance d198

0 Phase Gens.

3 Phase Gens.

5 Phase Gens.

10 Phase Gens.

7

8

9

10

11

12

13

14

15

0 20 40 60 80 100 120

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Time (seconds)

TSP Instance a280

0 Phase Gens.

3 Phase Gens.

5 Phase Gens.

10 Phase Gens.

7

8

9

10

11

12

13

14

0 20 40 60 80 100 120 140

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Time (seconds)

TSP Instance pcb442

0 Phase Gens.

3 Phase Gens.

5 Phase Gens.

10 Phase Gens.

Figure 1: Average optimisation convergence rates over time for Phased-GP vs. null hypothesis

program lengths with only programs of up to 10 instructions gen-
erated also leading to a significant speedup over LGP. This demon-
strates the advantage of hill climbing towards better solutions.

The results from Phased-GP with a range of generations be-
tween phases are shown in Table 5. Observe that in contrast to
the null hypothesis of no evolution improved results are achieved
when using a small degree of evolution within phases. Approxi-
mately 3-20 generations is most beneficial, frequent saving of small
programs that improve the current solution, hill-climbing, is nec-
essary to solve the TSP with GP. As evolution within phases in-
creases results degrade in quality. Note the average program lengths
decrease as evolution increases until a relatively high degree of sev-
eral hundred generations. Given the available operators used with
Phased-GP always modify a solution a long program will likely re-
sult in a poorer solution. Indeed, only short programs are likely to
improve upon a near optimal solution. This acts as a natural parsi-
mony pressure to reduce program length. However, this also leaves
little genetic material for GP to utilise. Figure 1 shows the conver-
gence rates of Phased-GP vs. the null hypothesis whereby a low
degree of evolution within phases has the best convergence rate.
Phased-GP is also up to 9x faster than LGP with superior results.

4 CONCLUSIONS
This paper has considered the novel use of Genetic Programming
(GP) to directly solve the Traveling Salesman Problem (TSP). It was
hypothesised that standard Linear GP would be unable to evolve
programs that could solve even small TSP instances thus a Phased-
GP approach was proposed which periodically saves the best pro-
gram and locks this in. A new program is evolved on the result-
ing solution from this program and so forth. Programs could be
evolved in piecemeal, a phased approach to GP (Phased-GP).

Experiments demonstrated Linear GP was incapable of evolv-
ing good solutions to TSP instances but Phased-GP demonstrated
significant improvements by constructing programs in parts en-
abling a form of hill-climbing. Only a minimal degree of evolution
of 3-20 generations within phases before saving best programs and
restarting is beneficial achieving solutions within 4% of optimal.
Note though that Phased-GP used simple operators and methods
such as full 3-opt would improve results. Indeed, Phased-GP shows
promise for application to combinatorial problems in general.

ACKNOWLEDGMENTS
Supported by Innovate UK [grant no. 10007532] and City Science.

REFERENCES
[1] Peter John Angeline. 1994. Genetic programming and emergent intelligence.

Advances in genetic programming 1 (1994), 75–98.
[2] David Applegate, William Cook, and André Rohe. 2003. Chained Lin-Kernighan

for large traveling salesman problems. INFORMS Journal on Computing 15, 1
(2003), 82–92.

[3] Markus Brameier and Wolfgang Banzhaf. 2001. A comparison of linear genetic
programming and neural networks in medical data mining. IEEE Transactions
on Evolutionary Computation 5, 1 (2001), 17–26.

[4] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013), 1695–1724.

[5] Peter Cowling, Graham Kendall, and Eric Soubeiga. 2000. A hyperheuristic ap-
proach to scheduling a sales summit. In International conference on the practice
and theory of automated timetabling. Springer, 176–190.

[6] Christos Dimopoulos and Ali MS Zalzala. 2001. Investigating the use of genetic
programming for a classic one-machine scheduling problem. Advances in engi-
neering software 32, 6 (2001), 489–498.

[7] Marco Dorigo and Luca Maria Gambardella. 1997. Ant colony system: a coop-
erative learning approach to the traveling salesman problem. IEEE Transactions
on evolutionary computation 1, 1 (1997), 53–66.

[8] Gabriel Duflo, Emmanuel Kieffer, Matthias R Brust, Grégoire Danoy, and Pascal
Bouvry. 2019. A GP hyper-heuristic approach for generating TSP heuristics. In
2019 IEEE International Parallel and Distributed Processing SymposiumWorkshops
(IPDPSW). IEEE, 521–529.

[9] John H Holland. 1975. Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence. U
Michigan Press.

[10] Ahmed Kheiri and Ed Keedwell. 2017. A hidden markov model approach to
the problem of heuristic selection in hyper-heuristics with a case study in high
school timetabling problems. Evolutionary computation 25, 3 (2017), 473–501.

[11] John R. Koza. 1992. Genetic Programming.
[12] Shen Lin. 1965. Computer solutions of the traveling salesman problem. Bell

System Technical Journal 44, 10 (1965), 2245–2269.
[13] Su Nguyen, Mengjie Zhang, and Mark Johnston. 2011. A genetic programming

based hyper-heuristic approach for combinatorial optimisation. In Proceedings of
the 13th annual conference on Genetic and evolutionary computation. 1299–1306.

[14] Patricia Ryser-Welch, Julian F Miller, Jerry Swan, and Martin A Trefzer. 2016.
Iterative Cartesian genetic programming: creating general algorithms for solv-
ing travelling salesman problems. In Genetic Programming: 19th European Con-
ference, EuroGP 2016, Porto, Portugal, March 30-April 1, 2016, Proceedings 19.
Springer, 294–310.

[15] Chee Kiong Soh and Yaowen Yang. 2000. Genetic programming-based approach
for structural optimization. Journal of Computing in Civil Engineering 14, 1
(2000), 31–37.

[16] Joc Cing Tay and Nhu Binh Ho. 2008. Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems. Computers
& Industrial Engineering 54, 3 (2008), 453–473.


