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Abstract

The thesis explores complex dynamics at the interface of natural systems and control systems. It

is divided into three main parts. The first part considers adaptive stabilisation and destabilisation

for continuous-time systems. Here a Byrnes-Willems high-gain adaptive controller is revisited

for classes of positive systems that arise in a context of population dynamics. We show that

the convergent adaptive, positive high-gain, Byrnes-Willems controller results in convergence

of the gain to a stabilising gain — so that the adaptive controller learns to stabilise. We then

develop a convergent, adaptive destabilising controller for the same class of systems but with

adaptive negative high gain. In this case, the resulting convergent gain is destabilising — so

that the adaptive controller learns to destabilise. We then show that when the two adaptation

algorithms are combined, then the resulting convergent gain is the critical gain — so that a bi-

furcation between stable and unstable behaviour is learnt. In the second part, we develop similar

results for discrete-time systems that arise in a context of population protection matrix models.

We construct adaptive stabilising and destabilising controllers which converge to stabilising and

destabilising controllers, respectively. When the stabilising and destabilising adaptation algo-

rithms are combined, we find more complicated outcomes than in the continuous-time case — a

so called arms race ensues. Sometimes the arms race converges, and a concord is reached. But

other times, the arms race is divergent. These results are explored in a number of simulations

for 1, 2 and 3-dimensional systems. In the third part we consider the competitive exclusion

principle for two populations in competition. For certain ranges of the species interaction pa-

rameters and their respective carrying capacities competitive exclusion occurs — either one or

the other species persists and the other dies out. We show that if the carrying capacities are not

constant, but instead adapt to the prevailing population abundances — with relatively more of

one species causing its own carry capacity to decrease (degrade) and the others to increase (re-

i



new) — then competitive co-existence is reached. All the results are illustrated with numerous

examples throughout.
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Chapter 1

Introduction

The thesis is rooted in two parallel developments. First it builds on adaptive control theory and

its recent application in a context of pest management [1]. Second, it draws inspiration from

the natural systems that have the capacity to evolve [2]. This leads naturally on to interactions

between feedback control (cyber) and populations (natural) and an overarching aim towards de-

veloping a theory for cyber-natural systems. This cyber-natural idea is explored in two separate

studies. The first considers an arms race that emerges when an adaptive feedback control is

applied in a context of pest management wherein the pest may evolve resistance. In the second,

we consider how, in a competitive interaction, the species may degrade or enhance their habitat.

One highlight of the thesis was discovered somewhat accidentally – within this cyber-natural

systems thinking we found (or constructed) an arms-race like adaptive controller which learns a

bifurcation. This bifurcation learning controller, in turn, leads to a powerful new way of solving

the classical and well-known set-point control problem. Within this cyber-natural thinking, we

also develop a simple model of a mechanism for habitat renewal which forces a system in to

co-existence when otherwise competitive exclusion would prevail.

1



1.1 Complex dynamics – towards a framework for cyber nat-

ural systems
My PhD project is open-ended and ideas driven. It aims to explore complex dynamics at the in-

terface of natural systems and control systems. In control systems, one way to handle uncertainty

in the to-be-controlled system is to use adaptive control. Here parameters adapt continuously,

or in a switched manner, in response to how the controller is performing. The paper ’Robust

model reference adaptive control’ [3] explains some of the ideas behind adaptive control. Nat-

ural systems are inherently adaptive and evolve in response to selection pressures. The ideas

behind adaptive/evolving natural systems is explored in numerous papers and is at the heart

of evolution theory. In a specific context of predator-prey dynamics, these ideas are in [4, 5].

Comparing natural and man-made systems we can contrast two modes of adaptation: in control,

adaptation is often direct (and designed) whereas in natural systems adaptation is more implicit

and undirected. My thesis will explore the resulting complex dynamics when these two adaptive

mechanisms are combined in to what we might call “cyber-natural systems”. Such cyber-natural

systems arise, for example, in management of pesticides where amount of pesticide applied may

increase and where its efficacy may decrease because of resistance acquired by the pests. Al-

ternatively, in treating bacterial diseases, harmful bacteria may develop resistance to the applied

anti-biotics which are used in increasing amounts.

The overall cyber-natural system is a combination of designed and natural interactions in which

the system and the controller adapt in response to each other. Importantly, the mechanisms of

adaptation are different: the designed adaptations are direct, the natural adaptations are implicit.

One may seek to minimise a cost function, the other to maximise population fitness.

Some illustrative examples of cyber-natural systems:

2



The Controller May adapt The System May evolve

Control

Re-Control

Figure 1.1: A schematic idea of cyber-natural systems.

• Taxation policies and society response (cyber-social systems) [6].

• Controlling disease in a context of anti-biotic resistance [7].

• The predator prey dynamics with phenotypic and genetic variation [2, 4].

1.2 Main contributions of the thesis
The main contributions of the thesis are as follows:

Main contribution of Chapter 4 – A Bifurcation Learning Algorithm.

In this chapter we continue a line of research which, for over two decades or more, asks “Does a

stabilising adaptive feedback controller learn a stabilising gain?” We restrict attention to classes

of adaptive feedback controllers inspired by so-called Byrnes-Willems high-gain adaptive con-

trollers [8]. The main results are:

• For non-negative systems arising in population ecology we can prove that the Byrnes-

Willems adaptive high-gain stabilising controller does indeed learn a positive enough sta-
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bilising gain – Theorem 4.4. Here positive enough means greater than the critical gain;

• We also consider destabilisation, a.k.a persistency. Borrowing from the Byrnes-Willems

approach we design an adaptive destabilising controller. Again, for non-negative systems,

we can prove that the adaptive high-gain destabilising controller does indeed learn a neg-

ative enough destabilising gain – Theorem 4.8. Here negative enough means less than the

critical gain;

• The class of “population-ecology” inspired non-negative systems under consideration ad-

mits a simple transition: there is a critical saddle-node bifurcation threshold so that gains

above this critical threshold are stabilising, gains below are destabilising. Surprisingly we

find, if the positive high-gain and negative high-gain algorithms are combined, then the

saddle-node bifurcation is learnt – Theorem 4.13.

• We use the main result in Theorem 4.13 to develop a novel set-point controller. For a

target set-point r, the new adaptive controller achieves asymptotic tracking of r without

knowledge of system parameters. Because the underpinning system has a linearly stable

equilibrium there is guaranteed robustness. This contrasts with the usual sensitivity and

fragility of adaptive controllers to unmodelled disturbances.

Main contribution of Chapter 5 – Adaptive Stabilisation and Destabilisation and an Adap-

tive "Arms Race".

The main new results are:

• Theorem 5.3: This result is the discrete-time analogue of Theorem 4.4. It gives an adaptive

mechanism that drives the population to zero without knowledge of the system parameters;

• Theorem 5.6: This result is the discrete-time analogue of Theorem 4.8. It gives an adaptive
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mechanism that drives the population to exponential growth without knowledge of the

system parameters;

• A simulation study of an adaptive algorithm that combines the controllers from Theorems

5.3 and 5.6 in an adaptive arms race. This is the discrete-time analogue of Theorem 4.13.

The arms race simulations are developed in the cases of n = 1,2 and 3 state dimensions.

Since the gain adaptation adds a further dimension we refer to these as the 1+1, 2+1 and

3+1 arms races models, respectively:

– In Section 5.3 we show that the 1+1 dimensional arms race model (5.13) results in

an unstable spiral – see Proposition (5.11). This is similar to the result in Chapter 4

– see Remark (4.12).

– In Section 5.3 we show that the 2+ 1 dimensional arms race model (5.16) admits

both oscillatory behaviour – 5.11 – and divergent behaviour – 5.13. We prove that

convergent behaviour is not possible.

– In Section 5.3 we show that the 3+ 1 dimensional arms race model (5.26) admits

both convergent behaviour – 5.5 and divergent behaviour –5.7. We explore parameter

ranges which produce these two behaviour types – see Figure 5.15.

Main contribution of Chapter 6 – Adaptive Control Inspired Habitat Renewal.

Borrowing from adaptive control, we develop a simple model of mechanism for self-regulation

by habitat renewal. This self-regulation forces co-existence when otherwise competitive exclu-

sion would prevail. The main results are:

• Simulation Result 6.1: We find a simple mechanism for the renewal of otherwise de-

grading habitats that “stabilises” the interacting population to a co-existence equilibrium.
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The habitat renewal provides a stabilising mechanism in a way similar to Watt’s Flyball

Governor [9] .

• Simulation Result 6.2: If the habitat renewal dynamics are frozen or switched off, then

the system reverts back to competitive exclusion. Crucially, which species persists (or is

driven extinct) in the resulting the exclusion, is sensitive to the timing of the switching off.

Simulations are depicted in Figures 6.3, 6.4 and 6.5.

1.3 Publications
1. In preparation: a paper on “A bifurcation learning algorithm” (see Chapter 4) for Systems

& Control Letters.

2. I applied for a Poster an idea “Adaptive Arms Race in terms of switching between pos-

itive population projection models“ (see Chapter 5) for Models in Population Dynamics,

Ecology, and Evolution (MPDEE’20). – Cancelled because of the COVID.

3. I Contributed: a Poster an idea “Adaptive Arms Race in terms of switching the pest and

pesticide“ (see Chapter 5) for BMC-BAMC Glasgow 2021.

4. In preparation: a paper on “Adaptive control inspired habitat renewal“ (see Chapter 6) for

Mathematical Modelling and Numerical Simulation with Applications.
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Chapter 2

Population Dynamics

Overview. The purpose of this chapter is to introduce a number of modelling approaches to

population dynamics. The intention is one of scene-setting as a pre-cursor to what will follow

in subsequent chapters. Specifically:

• We will review continuous-time dynamics of interacting populations, focusing on predator-

prey interactions, competitive interactions and mutualism. Here, a key part of the narrative

is that natural systems interact with each other and, importantly, also their habitats – lead-

ing to some form of evolution or adaptation or to a depletion or renewal of habitats. See

Chapter 6;

• Then we will review discrete-time population dynamics, focusing on population projec-

tion matrix models. Here, a key part of the narrative is that at all times, the state of

the population projection system has strong non-negativity properties that can be used to

construct adaptive stabilization and persistence algorithms. These ideas leads to adaptive

algorithms that learn a bifurcation – Chapter 4 – and also to a so-called adaptive “Arms

Race” – see Chapter 5.
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2.1 Interacting populations – predator-prey dynamics, com-

petition and mutualism
In developing the models and theory for cyber-natural systems we will look to population inter-

actions as a source of motivation. Populations interact in various ways and provide a rich source

of potential dynamics. Even without evolution, numerous behaviours are possible. But evolu-

tion is also a key process which will inspire how we build an understanding of cyber-natural

systems. In this section we review three of the main types of interactions between two species:

• Predator-prey interactions leading to a well known cycle relationship between the species.

Here, if the growth rate is increasing in one species, the other one is decreasing;

• Competitive interactions. Here each growth rate is reduced by the presence of the other

species;

• Mutualism. Here the growth rate of each species increases from the presence of the other

species.

For a detailed treatment of this, see the book by Murray – Chapter 3 [10].

Predator-prey dynamics and Lotka-Volterra systems

Interactions amongst populations are important in modelling population dynamics. They affect

the species by changing their dynamics (behaviours) through time. The Lotka-Volterra model

is a widely-known model for predator-prey interactions and one of the oldest for a two species

predator-prey interaction. Solutions of the model are periodic, capturing a cyclical movement of

populations [11]. The Lotka-Volterra model describes the predation of one species on another

and clearly shows the oscillation levels between both populations. The traditional Lotka-Volterra
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model is given by

dX
dt

= X(a−bY ) (2.1a)

dY
dt

= Y (cX−d) . (2.1b)

In (2.1), X is the population of prey, for example rabbits, Y is the population of predator, such

as foxes. The parameters a, b, c and d are positive.

We consider the predator-prey system given by (2.1) in a few scenarios:

(a) If there is no predator, the prey increases without limit. This is through +aX in (2.1a).

(b) The growth of the prey population is reduced due to the effect of predation – this is cap-

tured by the −bXY term in (2.1a).

(c) In the absence of prey, to feed or increase the population of predators, there is an expo-

nential decay of predators – this is captured by the −dY term in (2.1b).

(d) The growth rate of predators is increase by the presence of prey – this is captured by the

+cXY in (2.1b).

In the simulation of (2.1) there are three cases: (i) when there is no prey, (ii) when there is ab-

sence of predator, and (iii) when both populations are present.
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(a) Simulation of system (2.1) in case (i). (b) Simulation of system (2.1) in case (ii).

Figure 2.1: The evolution of (2.1) on two different scenarios

In Figure 2.1a the predator is set to zero in the system (2.1). This leads the prey to having

unbounded growth as shown.

In Figure 2.1b the prey is set to zero in the system (2.1). We clearly can see that predator tends

to zero because the predator has no food source.

Figure 2.2: Simulation of system (2.1)min case (iv).
Left plot. Density of predator and prey against time; Right plot. Predator-prey cycle in phase space.

In Figure 2.2, left plot, we see that the population densities of the both systems interact with each

10



other, over a 20 year period. The parameters are fixed as a = 1, b = 0.01, c = 0.005 and d = 0.5.

Initially the prey has density 200, and the predator 80.This shows the classical predator-prey

cycle and explains Figure 2.2, right plot.–See [10], pages 79-82 for a detailed discusion of this

classical result.

Remark 2.1. In Section 2.2 we consider predator-prey interactions in combination with evolu-

tion – this is a first glance at “cyber-natural” systems.

Competitive exclusion

In the previous section we briefly reviewed the well known predator-prey interaction. In this

subsection we focus on the well know competitive interaction. In Chapter 6 we will revisit com-

petitive interaction in a context of habitat renewal. For this reason we discuss this population

interaction in more detail.The main goal of studying competitive models in mathematical bi-

ology is to explore conditions on the species under which one species out-competes the other

species which, as a result, goes extinct. The celebrated concept of competitive exclusion ar-

gues that when there is intense competition for a particular resource, all but one competitor

will eventually become extinct [12], [13]. Competitive exclusion occurs when the inter-specific

competition is greater than the intra-specific competition. Competitive exclusion can determine

organism distribution and abundance and how a community is structured – see [14]. In Chapter

6 we will consider a competitive system in feedback with its habitat whereby a species’ habitat

is depleted by an over-abundance of population.

Interspecific competition signifies competition between numbers of species living together. Two

or more species race for the same limited resource and impact on each other in terms of growth

[15]. As a result of limited resources, one of these species perhaps decreases until the extinction.

The following equation is the simple, classical competitive exclusion model (see [10] for more
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details):

dN1

dt
= r1N1

[
1− N1

K1
−b12

N2

K1

]
(2.2a)

dN2

dt
= r2N2

[
1− N2

K2
−b21

N1

K2

]
(2.2b)

In Equation (2.2), N1 and N2 are prey and predator species competing with each other depend-

ing continuously on time t. The parameters r1, K1, b12, r2, K2 and b21 > 0, which means they

are all positive constant. The interpretation of parameters are; For i = 1,2, ri represents the

growth rates, Ki are the carrying capacities, b12 and b21 are the competition coefficients. b12

expresses species N2’s inhibitory effect on the population growth of species N1 and b21 exerts

the opposite side of effect on N2. It is significant to mention that the growth of each population

has an inhibitory effect on the evolution of the population itself whether, in N1 or N2. This sta-

tus is described as intra-specific competition, which can be described as the competition among

the two types of population. However, when the competition is between the individual and the

population itself, it is called interspecific competition. [16]. Each separate member in the N1

population has a 1
K1

inhibitory influence on its evolution, whereas the other inhibition for N1

in the N2 population is shown in the equation (2.2b) by b21
K2

. In terms of the evolution of the

individuals’ population of N2, they are inhibited by b12
K1

in the N1 population and by 1
K2

in their

population. Precisely, the side effect of the absence of one of the species in the equation (2.2) ,

the system is naturally described as the well-known logistic growth. [4].-More explanation about

this is provided the Appendix.

It is essential to look at graphs that demonstrate how the size of each population grows or shrinks

when we start with various combinations of species abundances. The subsequent two Figures

2.3a&2.3b show the state-space behaviour for (2.2). The x-axis represents the abundance of N1,

and the y-axis shows the quantity of N2. In the state-space figures, each node reflects the com-
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bination of the abundances of both species. The bottom left has a low number of both species,

while the top right has a high number of both species. On the graphs, a zero isocline exists for

each species. Any point along the zero isocline of species N1 or N2 reflects a combination of

abundances of the two species where the population of species N1 or N2 neither increases nor

decreases. The zero isocline of species N1 is obtained by solving dN1
dt = 0 in (2.2a), that is with

zero growth rate. The same is done for species N2 [17]. So

Ṅ1 = 0 =⇒ N1 = 0 or K1−N1−b12N2 = 0

Ṅ2 = 0 =⇒ N2 = 0 or K2−N2−b21N1 = 0 .

The two non-trivial isoclines are depicted in Figure 2.3.

(a) Non-trivial zero isocline for N1. (b) Non-trivial zero isocline for N2.

Figure 2.3: The zero isoclines that are produced by the competitive exclusion equation (2.2). The left
diagram (2.3a) indicates the zero iscoline for N1; the right diagram (2.3b) explains the zero iscoline for
N2.

Each graph is divided into two parts by the zero isocline. The left diagram 2.3a reveals that

the size of species N1 diminishes above and right of the isocline of N1 since the sum of both

populations’ species exceeds the carrying capacity K1. In contrast, N1 rises from below to its

left since the total population of both species is less than the carrying capacity K1. In the left
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diagram 2.3a, in the absence of individuals of N2, the zero isocline reaches the intersection with

X-axis which is N1 axis in Figure 2.3a at K1. In this case 2.3a, the isocline crosses the y-axis at

the point N2 =
K1
b12

[18]. In Figure 2.3b, follow the same procedure; identical circumstances will

appear just in a reverse process.

Generating the expected behaviour for the system (2.2); utilizing the zero isoclines for N1 and

N2. Hence they are essentially depending on the values of carrying capacity Ki where i = 1,2

and the competition coefficient bi j where i = 1,2 and j = 1,2 with i 6= j by rearranging them

relative to each other. As a result, four different scenarios could emerge. In each case, the

competition’s outcome will be unique compared to the others. The interspecific competition

system in the equation (2.2) has four possible outcomes. Figure 2.4 shows the phase-plane

diagram trajectories. The outcomes can emerge from the isocline for both species included

in each figure and relative to each other. The blue line in each graph represents the isocline

of species 1, while the red line in each graph represents the isocline of species 2. Pink dots

represent the initial values as the initial location points for green trajectories, explaining the

phase-plane moving towards the equilibrium points. The black arrows indicate the change in the

population size for the species. The red dots determine a stable equilibrium point, and the grey

dot shows an unstable equilibrium point.
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(a) Constraints K1
b12

> K2 and K1 >
K2
b21

. (b) Constraints K2 >
K1
b12

and K1 <
K2
b21

.

(c) Constraints K1
b12

> K2 and K2
b21

> K1. (d) Constraints K2 >
K1
b12

and K1 >
K2
b21

.

Figure 2.4: The four potential findings of the Interspecific Competition model (2.2).

The first case in Figure 2.4a shows the inequality:

K1

b12
> K2 and K1 >

K2

b21
(2.3)

As a result, the two isoclines of N1 and N2 do not intersect and the isocline of N1 located above

and to the right of the isocline of N2, by rearranging the inequality of (2.3)

K1 > K2b12 and K1b21 > K2 (2.4)
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The term of the inequality K1 >K2b12 denotes that the intra-specific inhibitory effects population

N1 can impose on itself are more significant than the interspecific effects that population N2

could impose on population N1. The other component of the inequality, K1b21 > K2, implies

that N1 has a greater impact on the population (N2) than the population has on itself of (N2).

Consequently, the population of N1 appears as a more robust interspecific competitor than the

population of N2. Resulting in N1 forcing N2 to go extinct.

In the second scenario, the inequality of Figure 2.4b is a reverse of behaviour of the first scenario

in Figure 2.4a. So one population will always have the ability to survive over the other in both

scenarios.

Remark 2.2. The first two cases have an opposite behaviour:

• In 2.4a N1 excludes N2.

• In 2.4b N2 excludes N1.

In the third case 2.4c, the constrains of the inequality are:

K1

b12
> K2 and

K2

b21
> K1 (2.5)

As a result, the two isoclines of N1 and N2 intersect. Rearranging the inequality of (2.5) gives

K1 > K2b12 and K2 > K1b21 (2.6)

Thus the inequalities in (2.6) show interspecific competition has a weaker impact on populations,

whether on N1 or N2, than intraspecific competition. Therefore, the two isoclines to accomplish

a stable coexistence equilibrium (red circle). In the last scenario, we have the following inequal-

ities:

K2 >
K1

b12
and K1 >

K2

b21
(2.7)
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Rearranging (2.7) gives

K2b12 > K1 and K1b21 > K2 (2.8)

The two isoclines for N1 and N2 cross each other as a result of the inequalities (2.7) and (2.8).

The individuals that are emerging in both populations, N1 and N2, are contending aggressively

with the other individuals from the differentpopulation. At the same time, the level of competi-

tion between the individuals of each species amongst themselves is low. As in figure 2.4d, the

consequence is that the evolution of interaction between the individuals of both populations N1

and N2 causes an unstable co-existence equilibrium. When the population N1 reaches its carry-

ing capacity K1 leading N2 to go extinct. Also, if N2 reaches carrying capacity K2, then N1 goes

extinct.

Remark 2.3. Under the Constraints of K2 >
K1
b12

and K1 >
K2
b21

the system exhibits competitive

exclusion. In Chapter 6 we show that introducing a habitat renewal feedback forces a system that

would otherwise exhibit competitive exclusion into one that exhibits competitive coexistence.

The feedback mechanism is adaptive. If the mechanism is switched off, then the system reverts

back to competitive exclusion.

Mutualism

In contrast to competitive interaction, mutualism (or symbiosis) is where species interact to

the benefit of each other. One example is plant and seed dispersal, [10]. For two species, a

mutualistic interaction is captured by

dN1

dt
= r1N1

(
1− N1

k1
+b12

N2

k1

)
, (2.9a)

dN2

dt
= r2N2

(
1− N2

k2
+b21

N1

k2

)
, (2.9b)

see Murray [10]. In (2.9), the parameters r1,r2,b12,b21,k1 and k2 are all positive.
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System (2.9) has four equilibria: (0,0), (k1,0), (0,k2) and(
k1 +b12k2

1−b12b21
,

k2 +b21k1

1−b12b21

)
.

Using the Jacobian matrices method (A.3), we find that (0,0) is unstable, whilst (K1,0) and

(0,K2) are unstable saddles. The last point
(

k1+b12k2
1−b12b21

, k2+b21k1
1−b12b21

)
we get two different scenarios

depending on whether b12b21 > 1 or b12b21 < 1. See [10] pages The following figure shows the

phase-plane diagram trajectories for the last steady state. Pink dots represent the initial values

as the initial location points for green trajectories, explaining the phase-plane plane. The black

arrows indicate the change in the population size for the species. The grey circle depicts the

equilibrium point.

(a) Case b12b21 > 1. (b) Case b12b21 < 1.

Figure 2.5: Phase plane for the Mutual system (2.9).

In Figure 2.5a, where b12b21 > 1, we see unbounded growth with N1→∞ and N2→∞. In Figure

2.5b, where b12b21 < 1, all the trajectories are moving towards a stable coexistence point with

N1 > K1 and N2 > K2. This is because the carrying capacity for each species is more significant

when there is mutual interaction and the benefit accrues.
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2.2 Predator prey systems and evolution
Natural populations are subject to evolution. In a context of predator prey systems, predation

induces a selection pressure on either/both the prey and predator populations. This might lead

to the predator seeking alternative prey or the prey developing novel evasion strategies. Since

the pioneering work of Lotka and Volterra [4], predator-prey dynamics have been the subject

of much research. Recently, authors have considered how predation may affect phenotypic and

genetic variation and in turn the evolution/adaptation of the predator–prey system.

The idea behind this thesis finds inspiration in the paper “The community effects of phenotypic

and genetic variation within a predator population” by Schreiber et al. [2]. Here, specific param-

eters in model are not fixed but adapt through evolutionary processes. A predator-prey model is

combined with evolution of traits and described by

dNi

dt
= riNi(1−

Ni

Ki
)− paiNi

dP
dt

= PW

dx
dt

= σ
2
G

dW
dx

,

(2.10)

where

W (x,N1,N2) =
2

∑
i=1

eiai(x)Ni−d , Fitness landscape

ai(x) = αiexp[−(x−θi)
2

2(2τ2
i )

] Species fitness function ,

dW
dx

=
2

∑
i=1

eiNiτiαi

(τ2
i −σ2)1.5 exp[− (x−θi)

2

2(τ2
i +σ2)

] .

(2.11)

The parameters of the system (2.10) with (2.11) are described in Table 2.1 where i = 1,2.
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Parameter Definition Parameter Definition

Ni Prey Pi Predator

t Time x Dependence variable

d Mortality rate ei Efficiencies

W Fitness of predator ai Attack rate

αi Maximum attack rate τi Attack rate decline

θi Optimal trait σ phenotypic variance

Ki Carrying Capacity ri Growth rate

Table 2.1: Definitions of variables and parameters for the Schreiber et at. model (2.10) with
(2.11).

We are interested in these equations to study their dynamic behaviours. We have used MATLAB

and ODE45 to simulate this model. Note, we have not achieved identical results to those in the

paper because it is unclear what initial conditions they have used1. It turns out that the dynamics

are very sensitive to initial conditions. In the simulation, parameters are fixed as described in the

paper excluding the initial conditions.Where phenotypic variance σ has a genetic component σG.

Heritability is h2 =
σ2

G
σ2 and the constant variance is σ2 = 0.04 or σ2 = 0.01. Others parameters

have been fixed as r1 = 0.2 , r2 = 0.1 , K1 = K2 = 500;τ1 = τ2 = 0.1, −θ1 = θ2 = 0.2 ; e1 =

e2 = d = 0.5 and α2 = α1 = 0.02. In next Figures 2.6 , 2.8 , 2.8 and 2.9, in each plot the top

figure describes the densities over a long time, whereas the bottom figure is the mean trait. In

each simulation we I picked different inital values which informed in each caption to dublicate

the result that provides in [2].

1I contacted Sebastian Schreiber personally but the parameters he gave me still did not match up the simulation.

20



Figure 2.6: Experiment 1 : Simulating Schreiber et al’s Model (2.10); The initial conditions are N1 =
120, N2 = 80, P = 30 and X =−0.04 and the parameters are σ = 0.01 and h = 0.25.

Figure 2.7: Experiment 2 :Simulating Schreiber et al’s model (2.10) with (2.11); The initial conditions
are N1 = 120 , N2 = 80 , P = 30 and X =−0.02, and the parameters are σ = 0.01 and h = 0.25.
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Figure 2.8: Experiment 3 : Simulating Schreiber et al’s model (2.10) with (2.11); The initial conditions
are N1 = 5 , N2 = 120 , P = 20 and X = 0.2, and the parameters are σ = 0.01 and h = 0.02.

Figure 2.9: Experiment 4 : Simulating Schreiber et al’s model (2.10) with (2.11).; The initial conditions
are N1 = 0.00009 , N2 = 120.1 , P = 2.9 and X = 0.1900009, and the parameters are σ = 0.04 and
h = 0.025

As we can see from the Figures 2.6 , 2.8 , 2.8 and 2.9, the system (2.10) exhibits a range of
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dynamics – quite simple in Figures 2.8 and 2.9, quite complex in Figures 2.6 and 2.7.

Remark 2.4. In the approach of Schrieber et al., parameters adapt through evolution. In our ap-

proach, parameter adaptation is engineered. However, in both approaches, the populations them-

selves feedback on the mechanisms of interaction. It is this feedback that we explore throughout

the thesis.

2.3 Structured population models
In Chapter 5 we will explore an adaptive arms race motivated by adaptive stabilisation and

destabilisation (persistence) for classes of structured, discrete-time population models. So in

this section we review some basic properties of such models.

In general, structured population models are classified by whether they consider a population in

discrete or continuous time and whether the states of the system are discrete or continuous. The

different types are summarised in Table 2.2, see [19].

Discrete-state Continuous-states
Discrete-time Matrix population models Integrodifference equations

Continuous-time Delay-differential equations Partial differential equations

Table 2.2: Types of structured population models

1 2 3
G1 G2

F2

F3

S1 S2 S3

Figure 2.10: The cycle of life of 3 stages population.
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Population Projection model

A population projection matrix takes the form

x(t +1) = Ax(t) . (2.12)

In (2.12):

• x(t) is the stage-structured population vector at time t;

• t is time in discrete steps t = 0,1,2, . . .;

• A is the matrix population model.

To find A, we use the figure 2.10 above as shown for a three stage population (more or less stages

are handled similarly). In this 3-stage case, A is represented by

A =


S1 F2 F3

G1 S2 0

0 G2 S3

 (2.13)

The first row of A contains the fecundities or reproductive values F2 and F3,the diagonal etnetries

S1,S2 and S3 are the survival rates and the sub-diagonal entries G1 and G2 are the growth rates. A

Leslie Matrix is a special Population Projection Model (PPM) where the survival rates in (2.13)

are zero. More generally, for populations structured in n stages, A will simply be a non-negative

matrix, that is a matrix whose elements are non-negative numbers.

Matrix population models are extremely useful to ecologists, helping them to determine the

evolution of a population: Does the population grow or decline? For population projection

matrix models, this can be determined by using the celebrated Perron-Frobenius theorem in [19]

for irreducible non-negative matrices. The Perron-Frobenius theorem asserts that:
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• There is at least one real and positive eigenvalue, greater than or equal in magnitude to

any other eigenvalues. This eigenvalue is the dominant or Perron eigenvalue (λmax(A));

• λmax(A) is simple;

• The corresponding left and right Perron eigenvectors vT and w are positive.

Using the Perron eigenvalue we have:

• if λmax(A) < 1, then the total population decreases to zero;

• if λmax(A) > 1, then the population increases asymptotically;

• if λmax(A) = 1, then the population is asymptotically unchanged.

Illustrative example

Consider a population with three age classes. Suppose that at each time step, stage 2, respec-

tively stage 3, produces 9 and 12 off-spring. Assume growth rates G1 = 0.25 and G2 = 0.5 and

zero survival rates. This gives a PPM

A =


0 9 12

0.25 0 0

0 0.5 0

 (2.14)

Assume an initial population

x0 =


12

12

12

 .

Simulation of this system using (2.12) is depicted in Figure 2.11. As we can see the population

grows exponentially.
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Figure 2.11: The evolution of the population (2.14).

This exponential growth is confirmed by the Perron eigenvalue. Indeed, in this case λmax =

1.7612 > 1. So the system state increases exponentially.

Now consider a declining population with PPM

A =


0 2 3

0.25 0 0

0 0.5 0

 (2.15)

We use the same initial condition as in (2.3). Simulation of this system using (2.12) is depicted

in Figure 2.12. As we can see the population decreases exponentially.

26



Figure 2.12: The evolution of the population (2.15).

This exponential decrease is confirmed by the Perron eigenvalue. Indeed, in this case λmax =

0.9466 < 1. So the system statedecreases exponentially.

Remark 2.5. In Chapter 5, we will consider population projection matrix models and exploit

these non-negative properties, specifically making repeated use of the positive Perron eigenvec-

tors. In particular, these non-negativity properties play a pivotal role in the proof of Theorem

4.13.

2.4 Conclusion
In this chapter we have discussed a variety of population dynamic models. The purpose was

not to offer a comprehensive treatment of a vast topic. Instead, we used this chapter to high-

light some simple examples of population dynamic models that play key roles in later chapters.

Specifically we considered:

• Simple examples of predator-prey, competitive and mutualistic population interactions.

These are especially relevant to setting the context for Chapter 6.
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• Predator-prey systems with evolution. This topic offered much inspiration to the overall

development of the thesis and is a topic I would return to in the future.

• Population projection matrix models. These feature quite significantly in Chapter 5. They

are a really good model class to develop ideas with.
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Chapter 3

Adaptive Control

Overview. A key theme of the thesis is the interplay between adaptive systems – on the one hand

natural systems that adapt through evolution or acquired resistance; and technological systems

that have engineered adaptation. The purpose of this chapter is to provide some basic ideas and

tools from adaptive control theory – or the theory of engineered adaptation.

3.1 Adaptive control
In language, “adapt” means a change of the behaviour to accept new circumstances [20]. In con-

trol theory, adaptive control arises when the control action or feedback is modified in response to

observations. Adaptation of the controller tries to cope with uncertainty in the system dynamics,

see [21]. Uncertainty might arise due to unexpected changes in the dynamics or other disor-

der [22]. Broadly speaking there are two types of adaptive control: Indirect adaptive control and

direct adaptive control. In the former, the adaptive controller is based on a model, the control

is designed on the basis of this model and then adapted in real time as the model is adapted

via parameter estimation algorithms. In direct adaptive control, there is no model proposed and

no parameter estimation. Instead, the adaptive control algorithm works directly with system
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assumptions. The similarities and differences are best seen via example.

3.2 Indirect vs. Direct Adaptive Control – An example
Consider a system

ẏ(t) = ay(t)+u(t)

with scalar state y(t) and in which the scalar parameter a is unknown. If we did know a, then

u =−ay− y

would give

ẏ =−y

and so u would be a stabilizing feedback controller based on knowledge of the system. However

we do not know a. So instead we estimate a by â and use â in the controller in place of a. So

now

u =−ây− y ,

giving a closed loop system

ẏ =−y+(a− â)y .

We need to design a parameter estimate for determining â: To do this, introduce a Lyapunov-like

function

V = y2 +(â−a)2
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Then

V̇ = 2yẏ+2(â−a) ˙̂a

= 2y(−y+(a− â)y) ẏ+2(â−a) ˙̂a

=−2y2 +2(â−a)
(
−y2 + ˙̂a

)
.

It follows that if we use a parameter estimation

˙̂a = y2

then

V̇ =−2y2 ≤ 0 .

It then follows that

lim
t→∞

y(t) = 0 lim
t→∞

â(t) = â(∞) .

This procedure yields the indirect adaptive controller

u = −ây− y ,

˙̂a = y2 .
(3.1)

However, in this simple set-up we do not need to introduce the parameter estimate â. With the

same system

ẏ(t) = ay(t)+u(t)

we simply try

u =−ky
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directly, the idea being to make k large enough to “beat” a, whatever its value. We consider a

candidate Lyapunov function

V = y2 +(k−a)2 .

Then

V̇ = 2yẏ+2(k−a)k̇

= 2(a− k)y2 +2(k−a)k̇

Inspired by the indirect control design we try

k̇ = y2 .

Then

V̇ = 0 .

Integrating we have that

V +(ak−a)2 = constant.

It then follows that

lim
t→∞

y(t) = 0 lim
t→∞

k(t) = k(∞) .

This procedure yields the the direct adaptive controller

u = −ky ,

k̇ = y2 .
(3.2)

Remark 3.1. Even though the motivation for designing the controller is different, one with the

parameter estimation the other without, the underlying dynamics are essentially the same.
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Remark 3.2. For the rest of the thesis we will focus only on direct adaptive control

3.3 Byrnes-Willems direct adaptive control
Byrnes and Willems [8] developed a so-called high-gain adaptive controller

ẋ(t) = Ax(t)+bu(t), x(0) = x0, y(t) = cT x(t) (3.3)

for relative degree one, minimum-phase systems. Here x(t) ∈ Rn, u(t),y(t) ∈ R, A ∈ Rn×n,

b,c ∈ Rn. The relative degree one, minimum-phase assumption means that the system (3.3)

satisfies:

• cT b > 0 (relative degree one condition with known sign of the high frequency gain);

• the zeros of cT (sI−A)−1b have negative real parts, (minimum phase condition).

The relative degree one and minimum-phase assumptions permit the use of the coordinate trans-

formation

x = Tw, T = [
b

cT b
V ], w =

 y

z

 ,

where the columns of V ∈ Rn×(n−1) span the kernel of cT , to rewrite the dynamics (3.3) in the

form

ẏ(t) = ay(t)+αT z(t)+ cT bu(t)

ż(t) = βy(t)+A2z(t) ,
(3.4)

for some a ∈ R,α,β ∈ Rn−1 and A2 ∈ R(n−1)×(n−1). The zeros of cT (sI−A)−1b are the eigen-

values of A2. So the minimum-phase assumption means that every eigenvalue of A2 has negative

real part, i.e. A2 is Hurwitz.
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Remark 3.3. The transformed system (3.4) can be interpreted as the feedback connection be-

tween a scalar system and a stable system:

v = u+
1

cT b
w,

 ẏ(t) = ay(t)+ cT bv(t),

ż(t) = A2z(t)+βy(t), w(t) = αT z(t) .
(3.5)

Proposition 3.4. Byrnes-Willems High Gain Adaptive Controller:

Let

u(t) = −k(t)y(t).

k̇(t) = y2(t) .
(3.6)

Then for all x(0) = x0 ∈ Rn, i.e. y(0) ∈ R and z(0) ∈ Rn−1 we have that

lim
t→∞

 y(t)

z(t)

= 0 and lim
t→∞

k(t) = k∞(x0)< ∞ .

Remark 3.5. We can modify the controller of the system (3.6), without changing the outcome,

by adding a parameter ε1 > 0 to the adaptation:

k̇(t) = ε1y2(t) .

This will be useful later to speed up or slow down the adaption when are comparing different

algorithms.

Remark 3.6. Proposition 3.4 guarantees that the state x(t) converges to zero without knowledge

of the system parameters A,b and c and initial condition x(0) = x0. Moreover, the gain parameter

k(t) always converges. This begs the question: Is the limiting gain k∞(x0) itself stabilising, that

is to say is the matrix

A− k∞(x0)bcT (3.7)

stable? See Section 3.6 for a discussion of this fundamental question.
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3.4 Adaptive control and pest management
We now discuss discrete-time analogues of the results in the previous two sections. In the

21st century, the world’s population has climbed significantly, leading to high pressure on food

production and a resulting a huge competition for arable farming [23]. Food production is

at risk from pests and so pest management research continues to develop. Recently, Guiver et

al. [1], developed an approach to pest management inspired by adaptive control. Specifically, [1]

proposed the following simple adaptive stabilizing control system.

x(t +1) = (A−Bφ(u(t))F)x(t), x(0) = x0

y(t) =Cx(t),

u(t +1) = u(t)+‖y(t)‖p, u(0) = u0

 t ∈ N0 . (3.8)

In (3.8), n,m ∈ N, x(t) ∈ Rn
+ is the population structure, A ∈ Rn×n

+ is the projection matrix for

the population, (B,F) ∈ Rn×m
+ ×Rm×n

+ are control design parameters related to which states are

targeted by the pesticide. The parameter u(t) represents the volume of pesticide applied and

y =Cx with C ∈ Rp×n
+ is the measurement or information about x(t).

The initial pesticide effort in the scheme (3.8) is represented by u0.

The term ‖y(t)‖p, p > 1, is used to convert measured pest abundance ||y(t)|| into a change of

control effort at the following time step and so determines how quickly the control effort u

rises 1. The function φ is a design parameter, capturing the efficacy of the pesticide action in

response to applied pesticide u. φ :R+→Rm×m
+ with continuous, strictly increasing components

φi vanishing at zero and satisfying imageφi ⊂ [0,1]. Examples of φi functions are

φi(u) = 1− e−au, φi(u) = tanh(au) or φi(u) =
u

a+u
,

1Note, we have adopted a slightly simpler set up than [1]

35



where a > 0.

The following result is proved in [1].

Proposition 3.7. Suppose for all ω ∈ [0,∞), that the resulting matrix as A−Bφ(ω)F is non-

negative and irreducible and that λ (A−Bφ(ω)F) < 1 for some ω . Then for all x0 ∈ Rn
+ and

u0 ∈ Rm
+, the solution of the scheme (3.8) satisfies

‖x(t)‖≤Mγ
t‖x0‖, t ∈ N0 for some M > 0 and γ ∈ (0,1), (3.9)

there exists u∞ ≥ 0 so that

lim
t→∞

u(t) = u∞

and

λ (A−Bφ(u∞)F)< 1 . (3.10)

Remark 3.8.

(i) For each fixed x0, the inequality (3.9) ensures that the x(t) component of the solution (x,u)

of (3.8) converges to zero exponentially. However, the positive constants M and γ that appear in

(3.9) both depend on the initial conditions x0 and u0. Therefore, (3.9) does not yet imply that

(3.8) is globally exponentially stable.

(ii) The conclusions of Proposition 3.7 need not hold if the assumption that A− Bφ(ω)F is

irreducible for every ω ∈ [0,∞) in 3.7 is relaxed. For example, consider

A =

 f1 0

0 f2

 , B =

1

0

 , F =
[

f1 0
]
, C =

[
0 1

]
, q = 1,

where f1 > 1 and f2 ∈ (0,1). Here A− γBF is reducible for any γ ∈ [0,1). Furthermore,
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y(t) = f t
2x2(0)→ 0 exponentially as t→ ∞, and thus

u(t) = u0 +
t−1

∑
j=0
‖y(t)‖→ u0 +

x0
2

1− f2
=: u∞ < ∞ as t→ ∞.

Now

x1(t +1) = f1(1−φ(u(t)))x(t)≥ f1(1−φ(u∞))x(t) =⇒ x1(t)→ ∞ as t→ ∞,

when f1(1−φ(u∞))> 1.

(iii) If x0 = 0, then x(t) = 0 for all t ∈N+, and hence (3.9) trivially holds. In this case, u(t) = u0

for t ∈ N+ and so (0,u0) is an equilibrium of (3.8) for all u0 ∈ R+. However, one striking

property is that for all nonzero x0, and any u0 ≥ 0 the limiting control effort u∞ is stabilising.

This is analogous to Theorem 4.4 in Chapter 4. See also Section 3.6 for further context.

Remark 3.9. The relative degree one and minimum phase assumptions used in the continuous-

time set up are replaced with an assumption about the existence of a stabilising feedback F . In

fact, the continuous-time minimum phase assumption does not have a meaningful analogue for

discrete-time systems.

3.5 Adaptive destabilization and persistence
In Proposition 3.7 the emphasis is on stabilisation, that is, driving the population to zero. This is

relevant in a context of eliminating a pest. Alternatively, we might want population persistence.

This is explored in [24]. The idea used there is to switch between possible population dynamics

in search of a growing population and then find a way for the switching to converge. This is

summarised as follows in the simplified case from [24] where the dynamics are given by the

density independent population projection.
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Consider a switching system

x(t +1) = As(t)x(t),

u(t +1) = u(t)+


0, M ≤ ||u(t)|| or ‖u(t)‖= 0,
1

‖u(t)‖q , ‖u(t)‖< M.

(3.11)

Here As(t) ∈ {A1, . . . ,Al} ⊂ R+
n×n, n ∈ N, u(0) = u0, t ∈ Z+. In (3.11) M is positive and

represents a design parameter, and q > 1. The key point is that As(t) switches through a set of

possible matrices.

The procedure of picking the switching condition

(a) Let {τ( j)}∞

j=0 be a sequence of positive numbers satisfying a growth condition

τ( j+1)
τ( j)

→ ∞ as j→ ∞.

So τ grows faster than exponentially

(b) Now define a function κ : R+→{1, . . . , l} by

κ(z) =

1, z = 0,

( j mod l)+1, z ∈ (τ( j−1),τ( j)], j ∈ N and l ∈ N .

(3.12)

(c) The matrices As(t) switch between the q matrices A1, . . . ,Al according to

s(t) = κ(u(t)) . (3.13)

Proposition 3.10. Assume that

• each Ai, i = 1, . . . , l, are irreducible and

• at least one Ai satisfies λ (Ai)> 1.

Then for all initial conditions x(0) = x0 and u(0) = u0, with x0 ∈ Rn
+, u(t) and x(t) given by
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(3.11), with switching given by (3.5), (3.12) and (3.13), satisfy u(t) converges to u(∞), so that

λ
(
As(∞)

)
> 1 and x(t) diverges exponentially.

Remark 3.11. Here we see that the limiting system matrix As(∞) is unstable unless x0 = 0. See

Section 3.6 for further context.

3.6 Do adaptive controllers learn to stabilise?
The adaptive controllers considered in Sections 3.3 and 3.4 fall under a general set up of an

adaptive or nonlinear feedback

u(t) = F(x(t), p(t)) , (3.14)

where the parameter p(t) is subject to its own dynamics that are updated with information about

the state x(t). For example, in the Byrnes-Willems controller, (3.14) has p = k,

F(x, p) =−kCx, with update dynamics k̇ = ‖Cx‖2 .

In the adaptive pest control algorithm, the updates involve a switching through potential sys-

tems (in general this would be switching through potential feedbacks). These general adaptive

controllers are powerful in that they can stabilise whole families of unknown systems. They do

so, so long as the adaptation is kept active. They also guarantee convergence of the parameter

p(t) to some limiting value p(∞) which, in general, will depend on the initial conditions im-

posed and, of course, the system data. This leads to a fundamental question: Do the parameter

updates converge to stabilising values – values which would guarantee stabilisation if used in a

nonadaptive controller. That is, does the feedback

u(t) = F(x(t), p(∞)) (3.15)
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stabilise? If true, then the adaptive controller would learn a non-adaptive stabilising controller.

In an award-winning paper by Krtsic [25], it is claimed that this is indeed the case. Specifically,

Krstic showed that, except for a set of initial conditions in a “bad set” with Lebesgue measure

zero, the parameter estimates p(t) do converge to stabilising values p(∞) and a non-adaptive

feedback is learnt – at least generically. Unfortunately, the result by Krstic turned out to be

flawed. Indeed, Townley [26] gave a simple, two-dimensional example with quadratic nonlin-

earity in which the “bad set” is actually one quarter of the (x, p) state space. This is something

of a pity because it would be quite remarkable if these classes of adaptive controllers did possess

such learning properties. However, some positive statements can be made with regards to the

“bad set”:

• Lamooki et al. [27] use advanced bifurcation methods to show, in the case of the Byrnes-

Willems adaptive controlller, that the “bad set” does indeed have Lebesgue measure zero.

The key idea is to draw on the theory of normal forms for dynamical systems;

• Using a topological approach, it is shown in Townley [28], for a class of switching adaptive

systems, that again the “bad set” has measure zero – in fact in this case the “bad set” is

at most a countable union of sets with dimensional less than n, the dimension of the state

space. Here the key is to decompose the closed loop system dynamics in to a sequence of

diffeomorphisms derived from the switching structure.

In Chapter 4 we will return to the “learning” question. Specifically, we show for a subset of

systems that the Byrnes-Willems adaptive controller is guaranteed to learn a stabilising feedback

unless the initial condition is zero - that is the “bad set” is a point. We go further and develop an

algorithm that actually learns a threshold parameter.
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3.7 Conclusion
The purpose of this chapter was to review some essential elements of the vast topic of adaptive

control. We first looked briefly at the ideas of direct versus indirect adaptive control via an ex-

ample. We then focused on specific examples of direct adaptive control relevant to the remainder

of the the thesis. Specifically we considered:

• The Byrnes-Willems high-gain adaptive controller;

• Recent developments in adaptive control and pest management;

• Adaptive destabilisation or persistence through adaptive switching idea.

The final section of this chapter posed and discussed the question: “Do adaptive controllers learn

to stabilise”. This fundamental question became a central part of the thesis and is developed

substantially in Chapter 4, as well as in Chapter 5.
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Chapter 4

A Bifurcation Learning Algorithm

Overview: in this chapter we continue a line of research which, for over two decades or more,

asks: “Does a stabilising adaptive feedback controller learn a stabilising gain?” We restrict

attention to classes of adaptive feedback controllers inspired by so-called Byrnes-Willems high-

gain adaptive controllers. The main results are:

• For non-negative systems arising in population ecology, we can prove that the Byrnes-

Willems adaptive high-gain stabilising controller does indeed learn a (positive enough)

stabilising gain – Theorem 4.4;

• We also consider destabilisation, a.k.a persistency. Borrowing from the Byrnes-Willems

approach we design an adaptive destabilising controller. Again, for non-negative systems,

we can prove that the adaptive high-gain destabilising controller does indeed learn a (neg-

ative enough) destabilising gain – Theorem 4.8;

• The class of “population-ecology” inspired non-negative systems under consideration ad-

mits a simple transition: there is a critical saddle-node bifurcation threshold so that gains

above this critical threshold are stabilising, gains below are destabilising. Surprisingly we
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find that if the positive high-gain and negative high-gain algorithms are combined, then

the saddle-node bifurcation is learnt – Theorem 4.13.

• We use the main result in Theorem 4.13 to develop a novel set-point controller. For a

target set-point r, the new adaptive controller achieves asymptotic tracking of r with-

out knowledge of system parameters. Because the underpinning nonlinear system has a

locally stable equilibrium there is guaranteed robustness. This contrasts with the usual

sensitivity and fragility of adaptive controllers to unmodelled disturbances.

Simulation Result 4.1. In Subsection 4.4, Figures 4.1, 4.2, 4.4, 4.3, A.4 , A.5 and A.6 we com-

pare the results from Theorems 4.4 , 4.8 and 4.13 for various systems of dimensions 3,4,5,8,9,10

and 13. These results suggest quite strongly that the already proved local stability is in fact

global.

4.1 Byrnes-Willems adaptive control with a stabilising limit

gain
Recall from Chapter 3 the development of a Byrnes and Willems adaptive controller [8] for

relative degree one, minimum-phase systems

ẋ(t) = Ax(t)+bu(t), x(0) = x0, y(t) = cT x(t) . (4.1)

Here x(t)∈Rn, u(t),y(t)∈R, A∈Rn×n, b,c∈Rn. The relative degree one and minimum-phase

assumptions permit the use of the coordinate transformation

x = Tw, T = [
b

cT b
V ] w =

 y

z

 ,
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where the columns of V ∈ Rn×(n−1) span the kernel of cT , and so to rewrite the dynamics (3.3)

in the form

ẏ(t) = ay(t)+αT z(t)+ cT bu(t)

ż(t) = βy(t)+A2z(t) .
(4.2)

The Byrnes-Willems High Gain adaptive controller is given by

u(t) = −k(t)y(t)

k̇(t) = y2(t) .
(4.3)

Then for all x(0) = x0 ∈ Rn, i.e. y(0) ∈ R and z(0) ∈ Rn−1 we have that

lim
t→∞

 y(t)

z(t)

= 0 and lim
t→∞

k(t) = k∞(x0)< ∞ .

In Section 3.6 of Chapter 3 we introduced the question of whether adaptive controllers learn to

stabilize. In general the answer is negative as discussed in Section 3.6. However, for a subset

of relative degree one systems we can prove that the Byrnes-Willems adaptive controller does

indeed learn to stabilise. We first recall some facts about Metzler matrices.

Definition 4.2. 1. A matrix M is Metzler if (pI + M) has only positive entries for some

p ∈ R.

2. A matrix M is irreducible if, in its corresponding di-graph, every node i is connected to a

node j by a path of some length dependent on i and j.

3. A non-zero vector v is positive (non-negative) if all its entries are positive. (non-negative).

Lemma 4.3. If M is Metzler and irreducible, then the eigenvalue of M with largest real part is a

real eigenvalue of M and its corresponding left and right eigenvectors are strictly positive – we

call this real eigenvalue with largest real part the Perron eigenvalue of M.
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See Theroem 3.4 in [29].

Theorem 4.4. The limit gain is stabilising. In addition to the relative degree one and minimum-

phase assumptions, suppose also that

A2 is Metzler, and α and β are non-negative

and  a αT

β A2


is irreducible. Then for all non-negative initial y(0) and z(0), the limit gain k∞(x0) is stabilizing

in the sense that every eigenvalue of the limiting system matrix

A− k∞(x0)bcT =

 a− k∞(x(0))cT b αT

β A2

 (in transformed coordinates)

has negative real part.

Remark 4.5. This subset of minimum phase, relative degree one systems used in Theorem 4.4

can be interpreted as the feedback connection between a scalar system and a stable and monotone

Metzler system:

v = u+
1

cT b
w

 ẏ(t) = ay(t)+ cT bv(t)

ż(t) = A2z(t)+βy(t), w(t) = αT z(t) .
(4.4)

Proof of Theorem 4.4 We work in the new coordinate system so that

A− kbcT =

 a− kcT b αT

β A2


and in which A− kbcT is both Metzler and irreducible.

We already know from Proposition 3.4 that the gain k(t) converges to a limit k∞(x0).
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Suppose that k∞(x0) is not stabilizing, that is at least one eigenvalue of A− k∞(x0)bcT has non-

negative real part. It follows, from the Metzler property and irreducibility, that the Perron eigen-

value of A− k∞(x0)bcT is non-negative. Then for all t we have that

(A− k(t)bcT )≥ (A− k∞(x0)bcT ) =⇒ ẋ(t)≥ (A− k∞(x0)bcT )x(t) .

It follows that

x(t)≥ e(A−k∞bcT )tx(0)

and every component of x(t) is bounded from below by a positive number. It follows that k(t)

cannot converge. But we already know that k(t) converges. This is a contradiction. So no eigen-

value of A− k∞(x(0))bcT has non-negative real part and so all eigenvalues of A− k∞(x(0))bcT

have negative real parts. It follows that A−k(t∗)bcT has only eigenvalues with negative real part

if t∗ is large enough. But then for all t ≥ t∗,

ẋ(t) = (A− k(t)bcT )x(t)≤ (A− k(t∗)bcT )x(t)

and so

x(t)≤ e(A−k(t∗)bcT )(t−t∗)x(t∗)→ 0 exponentially.

Remark 4.6. (a) Theorem 4.4 is a continuous-time parallel of the discrete-time Proposition 5.3

in Chapter 5.

(b) In the 1990s, there was much interest in the question of whether these simple adaptive con-

trollers can “find” stabilizing gains. For general systems the best we can hope for is that the

limit system (3.7) is stable for almost all initial conditions. For Metzler systems however, the

stabilizing property does hold and the limit system (3.7) is always stable.
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(c) For the system (4.4) with A2 Metzler, we have that there exists kc so that if k > kc then

A− kbcT is stable whilst if k < kc then A− kbcT is unstable. Moreover, for k < kc but close to

kc, A−kbcT has one, and only one, and hence real, eigenvalue with positive real part. It follows,

that kc is a saddle-node bifurcation.

(d) In fact, in the set up of (3.4),

kc = a+α
T (A2)

−1
β . (4.5)

We know that

k∞(x(0))> kc ,

but this can be very conservative. Indeed, in the case of a scalar system

ẏ(t) = (a− k(t)y(t)

k̇(t) = y(t)2 ,

we have that kc = a and

y2 +(k−a)2 = y(0)2 +(k(0)−a)2 =⇒ k(∞) = a+
√

y(0)2 +(k(0)−a)2 .

so that for all k > kc, there will exist y(0) and k(0) so that k∞(x(0))> k.

4.2 Byrnes-Willems style adaptive destabilisation with a desta-

bilising limit gain
In Section 4.1, the focus is on stabilisation – the usual setting in control theory/dynamical sys-

tems contexts. In population ecology this translates to population abundance being driven to

zero – i.e. population eradication. This is relevant when the population under consideration

is an unwanted pest. But in ecology there is at least equal interest in populations that are not

eradicated, with conservation actions looking for persistent populations. With this motivation,
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here we develop adaptive destabilizing (i.e. persistency) controllers in the spirit of Byrnes and

Willems.

Lemma 4.7. As above in the transformed coordinates, let A be Metzler and b and c be non-

negative with cT b > 0. There exist positive g∗,s and p so that

cT (sI +A+g∗bcT )≥ pcT .

The following theorem is a parallel to the discrete-time Proposition 5.6 in Chapter 5..

Theorem 4.8. A Byrnes – Willems style adaptive destabilizing controller

Let x(t) and g(t) be the solution of 1

ẋ(t) = (A+g(t)bcT )x(t), x(0) = x0 ≥ 0

ġ(t) =
1

cT x(t)
, g(0) = g0 > 0 .

(4.6)

Then x(t) is non-negative, g(t) is positive for all t ≥ 0, and

lim
t→∞

g(t) = g∞(x0)< ∞ .

Moreover, the limit matrix A+g∞(x0)bcT is exponentially unstable, so that g∞(x0) > −kc, and

x(t)→ ∞ component-wise-exponentially.

Remark 4.9. We can modify the controller of the system (4.6), without changing the outcome,

by adding a parameter ε2 > 0

ġ(t) =
ε2

cT x(t)
1Here the gain is labelled g and since we expect it to be destabilising it appears as +g (so plus g), in contrast to

the gain k in Section 4.2 which is stabilising and appears as−k (so minus k). In comparing the two, it is g compared
to −k, relative to a critical −kc.
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This will be useful to speed up or slow down the adaption when are comparing different algo-

rithms.

Proof

Let

W (t) =
1

cT x(t)
+

1
2

cT b
(

g(t)− s+g∗cT b
cT b

)2

.

Set cT x = y. Then, in view of Lemma 4.7

d
dtW = − 1

y2 cT ẋ+ cT b
(

g(t)− s+g∗cT b
cT b

)
ġ

= − 1
y2 cT (sI +A+g∗bcT)x︸ ︷︷ ︸

≥pcT x

+
1
y2

(
sI +(g∗−g)cT b

)
cT x︸︷︷︸
=y

+cT b
(

g(t)− s+g∗cT b
cT b

)
1
y︸ ︷︷ ︸

=0

≤ − p
y
.

It follows that ∫ t

0

1
y(s)

ds≤ 1
p
(W (0)−W (t))≤ 1

p
W (0)< ∞ .

Now y(t) is always non-negative and so
∫ t

0
1

y(s)ds is a non-decreasing and bounded function.

Therefore

g(t) = g(0)+
∫ t

0

1
y(s)

ds converges to a limit g∞(x0) .

Suppose that A+ g∞(x0)bcT is not exponentially unstable. Then the Perron eigenvalue r of

A+g∞(x0)bcT is non-positive.

Let vT be the positive left eigenvector of the Metzler matrix A+g∞(x0)bcT corresponding to the

non-positive Perron eigenvalue r. So

vT (A+g∞bcT ) = rvT .
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Since vT is positive it follows that

cT x(t)≤ αvT x(t), for some positive α =⇒ 1
cT x(t)

≥ 1
α

1
vT x(t)

, for all t ≥ 0 .

Now

d
dt vT x(t) = vT (A+g(t)bcT )x(t)

= vT (A+g∞(x0)bcT )x(t)− (g∞(x0)−g(t))vT bcT x(t)

= rvT x(t)− (g∞(x0)−g(t))vT bcT x(t)≤ rvT x(t) =⇒ vT x(t)≤ vT x(0) .

But then

1
vT x(t)

≥ 1
vT x(0)

=⇒ 1
cT x(t)

≥ 1
α

1
vT x(0)

> 0, for all t ≥ 0 .

This contradicts that
∫

∞

0 1/y(t)dt < ∞. So A+g∞(x0)bcT has to be exponentially unstable.

Then A+g(t∗)bcT is unstable for some t∗ ≥ 0 and

ẋ(t) = (A+g(t)bcT )x(t)≥ (A+g(t∗)bcT )x(t) for all t ≥ t∗

guarantees that x(t) diverges component-wise exponentially.

Remark 4.10. We see from the Theorem above that the adaptive controller learns a destabilizing

gain g∞(x0) > −kc. However, as with Byrnes-Willems adaptive stabiliziation, for all g > −kc

there will exist initial conditions so that g∞(x0)> g.

Corollary 4.11. The following inequality holds

1
cT x(t)

+
1
2

cT b
(

g(t)− s+g∗cT b
cT b

)2

≤ 1
cT x(0)

+
1
2

cT b
(

g(0)− s+g∗cT b
cT b

)2

for all t ≥ 0 .

(4.7)

The bound (4.7) is a consequence of the Lyapunov-based proof of Theorem 4.8. It constrains
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the dynamics quite strongly. In particular we have that

1
y(t)

=
1

cT x(t)
≤ 1

cT x(0)
+

1
2

cT b
(

g(0)− s+g∗cT b
cT b

)2

for all t ≥ 0 .

4.3 Byrnes-Willems style bifurcation–learning adaptive algo-

rithm
As a starting point, consider a one-plus-one system

ẏ(t) = (g(t)− k(t))y(t)

k̇(t) = y2(t)

ġ(t) = 1
y(t)

(4.8)

which combines the adaptive stabilization and destabilization algorithms from Sections 4.1 and

4.2, respectively. Then

y(t)ẏ(t) = (g(t)− k(t))y2(t) = (g(t)− k(t))k̇(t)

− 1
y2(t) ẏ(t) = −(g(t)− k(t)) 1

y(t) =−(g(t)− k(t))ġ(t)

With

W =
1
2
(g(t)− k(t))2 +

1
2

y2(t)+
1

y(t)

we have

d
dt

W = (g− k)(ġ− k̇)+ yẏ− 1
y2 ẏ = (g− k)(ġ− k̇)+(g− k)k̇− (g− k)ġ = 0 .

Therefore

1
2
(g(t)− k(t))2 +

1
2

y2(t)+
1

y(t)
=

1
2
(g(0)− k(0))2 +

1
2

y2(0)+
1

y(0)
for all t ≥ 0 . (4.9)
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Remark 4.12. Let q = k−g. Then we can rewrite the (4.8) in the form

ẏ =−qy q̇ = y2− 1
y
. (4.10)

y = 1, q = 0 is an equilibrium with linearisation

ẇ =

 0 −1

3 0

w .

So y = 1,g = k is a centre. The inequality (4.9) constrains the difference of k and g but al-

lows the stabilizing and destabilizing gains to interweave. Such interweaving of stabilizing and

destabilizing gains is explored further in Chapter (5).

We have seen in the above that for relative degree one, minimum phase, Metzler systems,

• the adaptive stabilizing controller learns a stabilizing gain, whilst

• the adaptive destabilizing controller learns a destabilizing gain.

However, both approaches can be highly conservative with neither approach getting close to

learning the threshold gain kc. Somewhat remarkably, combining the stabilizing and destabiliz-

ing adaptation mechanisms yields a convergent adaptation with limit gain actually equal to the

threshold kc.

Theorem 4.13. Assume that

ẏ(t) = ay(t)+αT z(t)+ cT bu(t)

ż(t) = βy(t)+A2z(t)
(4.11)

where cT b > 0, α,β ∈ Rn−1
+ are positive vectors 2 and A2 is an (n−1)× (n−1) stable Metzler

2Positive vectors are non-zero vectors with non-negative entries
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matrix. In addition, as above, assume that a αT

β A2


is irreducible.

Define an adaptive “arms-race” controller by

u(t) = −q(t)y(t)

q̇(t) = y2(t)− 1
y(t)

.
(4.12)

(a) Then for all initial y(0)> 0 and z(0)≥ 0 we have that y(t)> 0 and z(t)> 0 for all t > 0;

(b) The nonlinear closed loop system (4.11) and (4.12) has a unique equilibrium

(1,−A−1
2 β ,

a−αT (A2)
−1β

cT b
) (4.13)

(c) The linearisation of (4.11) and (4.12) around the equilibrium (4.13) is exponentially sta-

ble.

(d) For all initial conditions y(0),z(0) and q(0) close enough to the equilibrium (4.13),

lim
t→∞

q(t) = q∞(x0) = kc =
a−αT (A2)

−1β

cT b
.

Remark 4.14. We refer to the adaption of q in (4.12) as an “arms race” because the term y2

drives q up especially when y is large, whilst the term −1/y drives q down, especially when y is

small. This “arms race” idea is further explored in Chapter 5.

Remark 4.15. We can modify the controller of the system (4.12), without changing the outcome,

by adding a parameter ε3 > 0:

q̇(t) = ε3

(
y2(t)− 1

y(t)

)
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This will be useful to speed up or slow down the adaption when are comparing different algo-

rithms.

Remark 4.16. (a) In all simulation (see Subsection 4.4) we have always seen that

lim
t→∞

 y(t)

z(t)

=

 1

−A−1
2 β

≥ 0;

(b) Similarly, in all simulations, we have always seen that

lim
t→∞

q(t) = kc =
a−αT (A2)

−1β

cT b
;

(c) Both (a) and (b) are true if we start close enough to the unique equilibrium (4.13);

(d) In a weird sort of relationship, the linearization of (4.11) and (4.12) around the equilibrium

(4.13) is given by

ẇ(t) =


αT (A2)

−1β αT −cT b

β A2 0

3 0 0

w(t)

which is the closed-loop matrix for the system

ẋ(t) = Ax(t)+bu(t), y(t) = cT x(t),

under integral control action

u̇(t) = 3y(t) .

Proof of Theorem 4.13. Part (a). We have that

ẏ = (a−qcT b)y+αT z

ż = βy+A2z .
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y(·) and z(·) are continuous. We have that y(0)> 0 and z(t)≥ 0 and non-zero. Suppose that the

scalar function y(·) is not always positive and let T be the first time that y(T ) = 0. From the ż

equation we have, using the Metzler and irreducibility properties of A2, that

z(t) = eA2tz(0)+
∫ t

0
eA2(t−s)

βy(s)≥ eA2tz(0)> 0 . (4.14)

But then from the ẏ equation we have that

ẏ(T ) = α
T z(T )> 0 .

But it is impossible for a non-negative function to hit zero with positive derivative. It follows

that y(·) is positive for all t ≥ 0.

Now using (4.14) and again that A2 is Metzler and irreducible we have that z(t)> 0 for all t.

Part (b). For the equilibrium we solve

(a−qcT b)y+α
T z = 0, βy+A2z = 0 and y2− 1

y
= 0 .

It follows that y = 1. Then

βy+A2z = 0 =⇒ z =−A−1
2 β .

Finally

(a−qcT b)y+α
T z = 0 =⇒ (a−qcT b)−α

T A−1
2 β = 0 .

It follows that

q =
a−αT (A2)

−1β

cT b

as required.
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Part (c). The linearisation matrix has the form

L =


m αT −cT b

β A2 0

k 0 0


where k > 0 (actually k = 3), m = αT (A2)

−1β < 0, α,β are positive (or maybe non-negative)

vectors and A2 is Metzler stable and

M =

 m αT

β A2


is Metzler and marginally stable with unique eigenvalue of maximum real part, which is zero.

We first show that all eigenvalues of L have non-positive real parts as follows. Let

Mε = M− εI

where ε > 0. Then Mε is Metzler stable. It follows that Mε is diagonally stable which means we

can find a positive definite diagonal matrix [30]

Dε = diag[dε
1 , . . . ,d

ε
n ]

so that

DεMε +MT
ε Dε =−Qε , with Qε > 0

Now set

V = xT Dεx+ γu2
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Then computing V̇ along solutions of the system

 ẋ(t)

u̇(t)

=


Mε −cT b


1

0
...

0


k[1 0 . . .0] 0


 x(t)

u(t)



gives

V̇ = xT (DεMε +Mε
T Dε

)
x−2xT DεcT b


1

0
...

0

u+2γkx1u =−xT Qεx if γ =
cT bdε

1
k

It follows from La Salle’s Invariance Principle that (x,u) converge to the largest invariant set

contained in {
(x,u) so that xT Qεx = 0

}
=⇒ x≡ 0 and ẋ≡ 0

from which it follows, from invariance, that u ≡ 0. So the matrix Lε , obtained by replacing M

with Mε , is exponentially stable — i.e. all eigenvalues have negative reals parts. From continuity

of eigenvalues with respect to the parameter ε it follows that all the eigenvalues of L have non-

positive real part.

We can show that zero is not an eigenvalue of L as follows. Suppose, to the contrary, that zero

is an eigenvalue of L with non-zero eigenvector w. We can write

w =


y

z

u

 and then


m αT −cT b

β A2 0

k 0 0




y

z

u

=


0

0

0


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Reading from the equations: ky = 0 =⇒ y = 0; Then A2z = 0 =⇒ z = 0; Finally cT bu = 0 =⇒

u = 0. But then w = 0, giving a contradiction.

Now suppose that L has an imaginary axis eigenvalue iω,ω 6= 0, with eigenvalue-eigenvector

equation 
m αT −cT b

β A2 0

k 0 0




y

z

u

= iω


y

z

u


Without loss of generality we can assume y = 1. Since otherwise, y = 0 and then trivially,

z = u = 0. So, reading off the equations:

iωu = k =⇒ u =
k

iω
;z = (iωI−A2)

−1
β

and

α
T A−1

2 β +α
T (iωI−A2)

−1
β − cT b

k
iω

= iω . (4.15)

Taking real parts in (4.15) we then have

α
T A−1

2 β + realα
T (iωI−A2)

−1
β = 0
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But when A2 is Metzler stable and α and β are positive we know that 3.

|αT (iωI−A2)
−1

β |< |αT A−1
2 β |=−α

T A−1
2 β , for all ω 6= 0 .

This gives a contradiction. So no such ω exists and therefore L is exponentially stable as

claimed.

4.4 Bifurcation learning – simulation examples
Theorem 4.13 is a local result and so we can only claim convergence of q to the bifurcation

point kc for q starting close to kc with y and z starting close to their respective equilibrium

values. However, in exhaustive simulation studies the claimed convergence is the only global

outcome. To demonstrate this we run simulations for a number of randomly generated systems

of various randomly generated dimensions. We also use the same systems to illustrate Theorems

3 Observe that αT (iωI−A2)
−1β =

∫
∞

0 e−iωtαT eA2tβdt. But A2 is Metzler, so that αT eA2tβ is positive. Then
for non-zero ω ,

realαT (iωI−A2)
−1β =

∫
∞

0 cosωtαT eA2tβdt

<
∫
{cosωt≥0} cosωt αT eA2tβdt ≤

∫
{cosωt≥0}αT eA2tβdt <

∫
∞

0 αT eA2tβdt =−αT A−1
2 β .

This can only fail if αT eA2tβ is identically zero on some non-zero interval. But this cannot be possible because of
the assumed non-negativity. Indeed, we need only assume that the di-graph of A2 + sI is irreducible for some s.
Then sI+A2 is a non-negative irreducible matrix for some s meaning (sI+A2)

l is strictly positive for some l. Now
suppose that αT eA2tβ is identically zero for t in some non-zero interval [t0− τ, t0 + τ], τ > 0.Then estαT eA2tβ is
also non-zero on that interval. It follows that

α
T e(sI+A2)t0β = 0,αT e(sI+A2)t0(sI +A2)β = 0, . . . ,αT e(sI+A2)t0︸ ︷︷ ︸

≥0

(sI +A2)
l︸ ︷︷ ︸

>0

β︸︷︷︸
≥0︸ ︷︷ ︸

∴>0

= 0

But even without irreducibility of A2, note also that for ω2 6= cT b/k, by taking magnitudes in (4.15), we have

|αT (iωI−A2)
−1

β |=

√
(αT A−1

2 β )2 +
1

ω2

(
ω2− cT b

k

)2

> |αT A−1
2 β | ,

again a contradiction.
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4.4 and 4.8, in particular comparing the limit gains k∞(x0)> kc,−g∞(x0)< kc and q∞(x0) = kc.

The system matrices for the simulations are given by

M3 =


1 4 3

3 −8 2

3 4 −6

 ; M4 =


9 3 2 4

1 −7 1 2

3 1 −6 4

3 1 4 −8

 ;

M6 =



2 1 1 3 2 1

3 −18 3 3 4 4

1 4 −18 2 4 1

4 3 3 −16 2 1

3 3 4 2 −17 4

3 2 2 4 3 −15


;

M8 =



9 1 3 2 3 4 2 4

1 −17 1 2 2 4 4 4

3 1 −16 4 4 1 4 2

3 3 2 −18 1 1 1 2

3 1 2 2 −18 1 3 3

2 4 1 1 3 −17 1 3

2 4 1 1 1 1 −17 2

4 2 3 3 3 2 4 −18


.

(4.16)
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Simulation Result 4.17. In the following simulations,4.1, 4.2, 4.3 and 4.4. The left figures show

the evolution of the population – Figure A to illustrate 4.4, Figure C to illustrate 4.8 and figure

E to illustrate 4.13. The right figures show the limit gain – Figure B to illustrate 4.4, Figure D

to illustrate 4.8 and Figure F to illustrate 4.13.

Figure 4.1: 3-dimensional simulation with A matrix given by M3 in (4.16) for the three adaptive con-
trollers: A and B for controller (4.3); C and D for controller 4.6; E and F for controller (4.12).
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Figure 4.2: 4-dimensional simulation with A matrix given by M4 in (4.16) for the three adaptive
controllers: A and B for controller (4.3); C and D for controller 4.6; E and F for controller
(4.12).
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Figure 4.3: 6-dimensional simulation with A matrix given by M6 in (4.16) for the three adaptive
controllers: A and B for controller (4.3); C and D for controller 4.6; E and F for controller
(4.12).
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Figure 4.4: 8-dimensional simulation with A matrix given by M8 in (4.16) for the three adaptive
controllers: A and B for controller (4.3); C and D for controller 4.6; E and F for controller
(4.12).

Remark 4.18. Table 4.1 shows the limit value for Theorems 4.4, 4.8 and bifurcation value in

the cases of systems with different dimensions, showing that k∞(x0) > kc,−g∞(x0) < kc and

q∞(x0) = kc.

Matrices k∞(x0) −g∞(x0) q∞(x0) kc

M3 10.9090 3.2257 6.2500 6.2500

M4 26.0913 9.8858 18.0625 18.0625

M6 16.0027 3.5982 6.5164 6.5164

M8 33.1598 9.8965 21.9101 21.9101

Table 4.1: The values of k∞(x0),−g∞(x0),q∞(x0) and kc for Simulation Result 4.17.

The simulations in Figures 4.1 , 4.2 , 4.3 and 4.4, show that the arms race controller (4.13) con-
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verges to the bifurcation value irrespective of the randomly generated initial conditions and sys-

tem/system dimension. Further higher dimensional systems are given in the Appendix, Section

A.4. These various and numerous simulations suggest that the bifurcation algorithm achieves

global stability even though the proof above is only local. In particular, q always learns kc.

Notice also the extent to which: k∞(x0) and −g∞(x0) over/underestimate kc.

Remark 4.19. Additive noise on the output measurement y(t) breaks the simple Byrnes-Willems

controller

u(t) =−k(t)y(t)

k̇(t) = y2(t) .

in that depending on the “fix”, by either saturating the measurement or the control below by

zero, causes either the system to violate the positivity of the state or else produces a divergent

gain. On the other hand, the “arms race” controller has inherent robustness to noise because of

the convergence to an underlying exponentially stable equilibrium. This is further developed in

Section 4.5.
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4.5 Set point control with a proportional controller
Set-point control or tracking is an exemplar problem in control theory/engineering. It is ubiq-

uitous in many applications from domestic central heating systems to trans-atlantic navigation

for supertankers [31]. The aim is to design a controller so that the output of a system tracks,

asymptotically, a constant set-point, r, say. The standard solution to the problem is to use integral

control

u̇(t) = k(r− y(t)), u(0) = u0. (4.17)

For a stable, linear system

ẋ(t) = Ax(t)+bu(t), y(t) = cT x(t)

with positive, steady state gain −cT A−1b, the integral controller (4.17) achieves set-point con-

trol, i.e. asymptotic tracking, if the integral gain k is small enough. In fact, set-point control

can be achieved without knowledge of the system if an adaptive integral controller is used [32].

In this case, we append (4.17) with adaptation of the integrator gain giving an adaptive integral

controller

u(t) =
1

lnk(t)
(r− y(t)), k̇(t) = (r− y(t))2 . (4.18)

We can, in fact, use the bifurcation learning controller developed above to provide an alternative

solution to this set-point control problem, applicable to Metzler systems as described earlier. We

modify the adaptation mechanism in (4.12) so that

u(t) =−q(t)y(t)

q̇(t) = γ

(
y2(t)−ρ

1
y(t)

)
,

(4.19)
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with γ and ρ positive. Then we have an equilibrium

(ρ1/3,−A−1
2 β ,

a−αT (A2)
−1β

cT b
) ,

with exponentially stable linearisation

ẇ(t) =


αT (A2)

−1β αT −cT bρ1/3

β A2 0

3γ ρ1/3 0 0

w(t) .

We can therefore use (4.19) to control the output y(t) asymptotically by choosing ρ . Indeed, we

have that

lim
t→∞

 y(t)

z(t)

= ρ
1/3

 1

−A−1
2 β

 .

By choosing ρ = r3, the proportional adaptive feedback controller achieves asymptotic tracking

of the output y(t) to a set-point r. Effectively a proportional feedback controller yielding the

performance of an integral control action.

Remark 4.20. 1. The parameter γ in (4.19) can be used to control the rate of decay.

Choosing γρ1/3 = 1 will standardise the performance for varying set-point r = ρ1/3.

2. In comparing the adaptive integral controller (4.18) with the modified “arms race” con-

troller (4.19), in a context of set-point control, the former requires the system to be stable

whereas the latter does not.

3. We note also that the integral controller (4.17) makes use of the “internal model principle”

which says that if a controller can achieve asymptotic tracking of a reference signal, then

the controller must contain dynamics that generate the reference signal [33]. In set-point

control, the reference is a constant. Such constants are the dynamical consequences of
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integrators and so, as expected, the integral controller contains an integrator. In the “arms

race” controller, the control is not explicitly an integrated variable - although

u =−qy, q̇ = y2− 1
y

does contain integration to produce the gain.

4. The adaptive integral controller (4.18) suffers when the output is corrupted by noise so

that instead of driving the integrator gain adaptation with an error r− y(t) we are forced

to use r− y(t)− d(t) for some noise signal d(t). Without further modification of the

controller, this will cause k(t) to increase without bound and therefore the integrator gain

1/lnk(t) to decrease to zero – leading to slower and slower system response. The “arms

race” controller (4.19) does not suffer these problems because the set-point corresponds

to a locally stable equilibrium.

Example

Consider the system

A =


−7 2 1 1

2 −5 3 1

2 1 −5 1

3 2 2 −6

 b =


1

0

0

0

 cT = [1 0 0 0] .

The matrix A is Metzler stable because A has only positive entries except on the diagonal. The

eigenvalue with largest real part is λ =−0.6704. So the assumptions for Theorem 4.13 hold and

the “arms race” set-point (4.19)can be used. For the adaptive integral controller (4.18) to work,

we additionally need that the steady stage gain −cT A−1b > 0. Now

−cT A−1b =
∫

∞

0
cT eAtbdt > 0
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because the exponential of a Metzler matrix is positive. So (4.18) can be used.

We suppose a target set-point r = 2 and compare the set-point control version of our bifurcation

learning or “arms race” algorithm (4.19), with γ = 2, to the adaptive integral control algorithm

(4.18). We assume that the output y(t) is corrupted by noise. Specifically, every 5 time unit, the

output is disrupted by adding a random number between 0 and 0.2. In this case, the adaptation in

the low-gain controller is constantly agitated and so the gain does not converge and performance

diminishes as the integral gain 1/ln(k) is driven towards zero. In contrast, even with noise the

adaptive bifurcation algorithm (4.19) will operate close to the exponentially stable equilibrium.
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Figure 4.5: Top left and right: Simulations of output and gain for the bifurcation learning al-
gorithm (4.19); Bottom left and right: Simulations for the adaptive integral control algorithm
(4.18).
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4.6 Conclusion
The conclusion of this chapter is:

• We proved, for a class of non-negative Metzler systems, that the Byrnes-Willems adaptive

high-gain stabilising controller does indeed learn a (positive enough) stabilising gain –

Theorem 4.4.

• We designed an adaptive destabilising controller. Again, for non-negative systems, we

proved that the adaptive high-gain destabilising controller did learn a (negative enough)

destabilising gain – Theorem 4.8.

• The class of “population-ecology” inspired non-negative systems under consideration ad-

mits a simple transition. There is a critical saddle-node bifurcation threshold, so gains

above this critical threshold stabilise and gains below destabilise. We found that if the

positive high-gain and negative high-gain algorithms are combined, then the saddle-node

bifurcation is learnt – Theorem 4.13.

• We used the main result in Theorem 4.13 in terms of developing a novel set-point con-

troller. For a target set-point r, the new adaptive controller achieves asymptotic tracking

of r without knowledge of system parameters. Because the underpinning nonlinear sys-

tem has a linearly stable equilibrium, there is guaranteed robustness. This contrasts with

adaptive controllers’ that suffer sensitivity and fragility to unmodelled disturbances.
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Chapter 5

Adaptive Stabilisation and Destabilisation

and an Adaptive "Arms Race"

Overview, in the previous chapter, Chapter 4, we revisited the well known Byrnes-Willems

adaptive controller. There we combined a high-gain stabilising and a high-gain destabilising

adaptive control approach. For classes of relative degree one, minimum phase and Metzler

systems, we showed that this combined adaptive controller learns the critical gain - a saddle-

node bifurcation. We continue the stabilising-destabilising theme in this chapter, but in a context

of discrete-time population projection models. The work is inspired by recent developments of

adaptive control in a context of pest management (stabilisation) [1] and population persistence

(destabilisation) [24]. As before, there are two competing elements - in essence an arms race

- whereby an increasing control parameter (v say) leads to stabilisation but, perhaps due to

acquired resistance, there is an antagonistic destabilising effect with a decreasing parameter (r

say). In contrast to the continuous-time case, where there is a guaranteed convergence to a

bifurcation point, in this discrete time case a trio of outcomes is possible which, in a context of

72



pest management, can be described as: eradication of the pest; uncontrolled outbreak and also

possible convergence to a persistent steady state.

The main new results are:

• Adaptive stabilisation for discrete-time populations – Theorem 5.3.

• Adaptive destabilisation for discrete-time populations – Theorem 5.6.

• A simulation study of an adaptive arms race that combines Theorems 5.3 and 5.6.

– We show that the 1+ 1 dimensional arms race model (5.13) results in an unstable

spiral – see Proposition 5.11. This is similar to the result in Chapter 4 – see Remark

4.12.

– We show that the 2+1 dimensional arms race model (5.16) admits both oscillatory

behaviour – see Figure 5.11 – and divergent behaviour –see Figure 5.13. We prove

that convergent behaviour is not possible.

– We show that the 3+1 dimensional arms race model (5.26) admits both convergent

behaviour – see Figure 5.5 and divergent behaviour – see Figure 5.7. We explore

parameter ranges which produce these two behaviour types – see Figure 5.15.

Remark 5.1. In the bullets points 5, we mentioned 1+1 , 2+1 and 3+1 to index the dimensions

of the matrix A in (5.10).

This chapter is organised as follows. Section 5.1 considers adaptive stabilisation of discrete-time

populations. We modify system (3.8) from [1] to assume that the control acts multiplicatively

as opposed to additively. We construct an adaptive algorithm which achieves stabilisation. This

leads to the system (5.2) and the result in Theorem 5.3 and simulations in Figure 5.1. Section

5.2 considers adaptive destabilisation. We modify the approach used by [24], see system (3.11)
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with switching, to the system (5.6) with multiplicative action. We construct an adaptive algo-

rithm which achieves destabilisation. This is shown in Theorem 5.6 and simulations Figure 5.1.

Section 5.3 explores the interplay between adaptive stabilisation and adaptive destabilisation for

n-dimensional systems. In Section 5.3, we consider the case of n = 1 (5.12). Here the system

admits a stable spiral Figure 5.10. In the same Section 5.3 we consider the case of n = 2 see text-

colorredthe system equation (5.16). Here, depending on the system matrix A, we may see both

oscillatory and divergent behaviour. In the same Section 5.3 – we consider the n = 3 case see

the system equation (5.26). Again we see both convergent and divergent behaviour see Figure

5.15.

5.1 Adaptive stabilisation of discrete-time populations
Recall from Chapter 3, the simple adaptive stabilising control system.

x(t +1) = (A−Bφ(u(t))F)x(t), x(0) = x0

y(t) =Cx(t),

u(t +1) = u(t)+‖y(t)‖p, u(0) = u0

 t ∈ N0 . (5.1)

In (5.1), n,m ∈ N, x(t) ∈ Rn
+ is the population structure, A ∈ Rn×n

+ is the projection matrix for

the population, (B,F) ∈ Rn×m
+ ×Rm×n

+ are control design parameters related to which states are

targeted by the pesticide. The parameter u(t) represents the volume of pesticide applied and y =

Cx with C ∈ Rp×n
+ is the measurement or information about x(t). The initial pesticide effort in

the scheme (5.1) is represented by u0. The term ‖y(t)‖p, p > 1, is used to convert measured pest

abundance ||y(t)|| into a change of control effort at the following time step and so determines

how quickly the control effort u rises [1]. The function φ is a design parameter, capturing

the efficacy of the pesticide action in response to applied pesticide u. φ : R+ → Rm×m
+ with

continuous, strictly increasing components φi vanishing at zero and satisfying imageφi ⊂ [0,1].
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Here we consider a modified version of (5.1) given by the adaptive system:

x(t +1) = Φ(v(t))Ax(t) , x(0) = x0 ,

v(t +1) = v(t)+ ‖Cx(t) ‖2, e(0) = e0 ,
(5.2)

where the control parameter is denoted by v. This is to suggest, in a context of pesticide appli-

cations, that v is more a “volume” (of pesticide) than a control. In comparing (5.2) with (5.1),

the effect of v, through Φ(v), in (5.2) is multiplicative where as u, through Φ(u), in (5.1) acts

additively, with p = 2. The idea for this control action is that an applied pesticide would act

multiplicatively to reduce population in one or more stages by a proportion determined by the

amount or efficacy of the pesticide captured in e – effectively impacting on population transition

rates. The function Φ(v) is an n× n diagonal matrix with diagonal components φi that satisfy

φi is continuous and non-increasing with φ(v) > 0 for all v. Typically one, or more, of these

components will satisfy

φi(v)→ 0 as v→ ∞ .

Remark 5.2. In applications, if the underlying matrix A in (5.2) does indeed arise from applica-

tions to pest management, then we must also be mindful that the matrix Φ(v)A does not violate

biological constraints, for example with regards to the resulting survival and growth rates. How-

ever, it is still of interest to consider the system (5.2) without these biological considerations.

Theorem 5.3. Assume that A is irreducible and suppose there exists v∗ > 0 so that growth rate

λ (Φ(v∗)A)< 1 ,

that is large enough (but unknown) volume v stabilises (that is spraying enough pesticide works).

Then for all x(0) = x0 and v(0) = v0, there exists v∞ so that

lim
t→∞

v(t) = v∞
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with growth rate

λ (Φ(v∞)A)< 1 ,

and consequently

x(t)→ 0 exponentially for (5.2) .

Proof of Theorem (5.3).

We follow a contradiction style argument common in adaptive results like this one. Suppose

there exists t∗ so that

λ (Φ(v(t∗))A) = γ < 1 .

Now, componentwise, Φ(v(t)) is non-increasing and so for all t ≥ t∗,

x(t +1) = Φ(v(t))Ax(t)≤ Φ(v(t∗))A︸ ︷︷ ︸
λ (Φ(v(t∗))A)=γ<1

x(t) .

Then

x(k+ t∗)≤Mkx(t∗), M = Φ(v(t∗))A, λ (M) = γ < 1 .

It follows that

x(t)→ 0 exponentially ,

and that the non-decreasing sequence {v(t)}∞

0 satisfies

v(∞) = v(t∗)+
∞

∑
t=t∗

(Cx(t))2 < ∞ .

So {v(t)}∞

0 converges, completing the proof.
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If there does not exist t∗ so that

λ (Φ(v(t∗))A) = γ < 1 ,

then {v(t)}∞

0 is bounded and so {v(t)}∞

0 converges, that is

lim
t→∞

v(t) = v∞

for some v∞. But then

λ (Φ(v∞)A)< 1

since if not, then

x(t +1) = Φ(v(t))Ax(t)≥ Φ(v∞)A︸ ︷︷ ︸
λ (Φ(v∞)A)≥1

x(t) = Mx(t), λ (M)≥ 1 .

Moreover, M inherits irreducible from A. This irreducibility and r(M)≥ 1 implies that x(t)≥ w

for some positive vector w, meaning that v(t), given by (5.2) must diverge, so contradicting the

already established convergence of v(t).

Illustrative examples

(a) In the following we simulate the system (5.2) with:

φ1(v) = 0.5(1− 2
π

tan−1(v)), φi = 1, i = 2,3,

A =


2 4 3

0.5 0 0

0 0.4 0

 , C = [1 0 0] , with random initial values.


(5.3)
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Figure 5.1: Adaptive Stabilisation (5.2) for system (5.3). Left plot: Convergent gain v(t). Right plot:
Stage structures x(t) converging to zero.

Figure 5.1 is a simulation of system (5.2) for the example (5.3).

(b) In the following we simulate the system (5.2) with:

φ1(v) = 1− tanh(v), φi = 1, i = 2,3,

A =


2 8 3

0.5 0 0

0 0.4 0

 , C = [1 0 0] , with random initial values.


(5.4)
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Figure 5.2: Adaptive Stabilisation (5.2) for system (5.4). Left plot: Convergent gain v(t). Right plot:
Stage structures x(t) converging to zero.

Figure 5.2 is a simulation of system (5.2) for the example (5.4). In Figure 5.2 the system exhibits

faster convergence compared to Figure 5.1 where we used the different function φ(v).

Remark 5.4. In the simulations for Figures 5.1 and 5.2, we used different function of φ . Our

goal is targeting the first stage x1 of the population projection. The simulations show that both

are able to drive the pest to zero. In the first example, see Figure 5.1, the volume converges to

almost 4.4. However, in the second example, see Figure 5.2, the volume converges to 2.5.
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5.2 Adaptive Destabilisation of Discrete-time Populations
Recall from Chapter 3, the system of switching difference equations

x(t +1) = As(t)x(t),

u(t +1) = u(t)+


0, M ≤ ||u(t)|| or ‖u(t)‖= 0

1
‖u(t)‖q , ‖u(t)‖< M .

(5.5)

Here As(t) ∈ {A1, . . . ,Al} ⊂ R+
n×n, n ∈ N, u(0) = u0, t ∈ Z+. In (5.5) M is positive and repre-

sents a design parameter, q > 1. The key point is that As(t) switches through a set of possible

matrices. The procedure of picking the switching condition is explained in Chapter 3 more

precisely in (3.5) and (3.12).

In the destabilising result, Proposition 3.10, the population projection matrix A switches through

a set of possible population projection matrices, where at least one matrix is unstable1. An

alternative, and much in the spirit of (5.2), is to assume that the population projecting matrix is

determined by some multiplicative scaling factor Φ(−r). This is captured in the following:

x(t +1) = Φ(−r (t))Ax(t)

r (t +1) = r (t)+
1

‖Cx(t)‖q .
(5.6)

In (5.6), r(t) is capturing an acquired resistance so that increasing r(t) causes population growth

rate to increase. Φ(r) is an n× n diagonal matrix with diagonal components φi(r) that are

continuous, positive and non-increasing. Typically one, or more than one, φi will be strictly

decreasing so that Φ(−r)A increases with time as r, given by (5.6), increases.

Remark 5.5. In applications, as with stabilisation above, if the underlying matrix A in (5.2)

1Note Proposition 3.10, from [24], was developed concurrently with Theorem 5.6 – developing the same ideas
but in a slightly different direction. Our focus was ultimately on the interplay between stabilisation and destabili-
sation as in Chapter 4.
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does indeed arise from population projection applications, then we must also be mindful that the

matrix Φ(v)A does not violate biological constraints. However, it is still of interest to consider

the system (5.2) without these biological considerations.

Later we will introduce an adaptive efficacy e(t) which combines increasing and decreasing

elements, as we did in Chapter 4.

Theorem 5.6. Assume that A is irreducible and C 6= 0 and suppose there exists r∗ < ∞ so that

λ (Φ(−r∗)A)> 1 ,

so that negative enough (but unknown) −r destabilises. Then there exists r∞ < ∞ so that

(i) lim
t−→∞

r (t)−→ r∞ < ∞

with

λ (Φ(−r∞)A)> 1 ,

and consequently

x(t)→ ∞ exponentially for (5.5) .

Proof of Theorem 5.6

We argue by contradiction using a similar approach as in the proof of Theorem 5.3. Suppose

there exists t∗ so that

λ (Φ(−g(t∗))A) = γ > 1 .

Now, componentwise, Φ(−r(t)) is non-increasing and r(t) is non-decreasing, so for all t ≥ t∗,

x(t +1) = Φ(−r (t))Ax(t)≥ Φ(−r (t∗))A︸ ︷︷ ︸
λ (Φ(−r(t∗))A)=γ

x(t) .
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Then

x(k+ t∗)≥Mkx(t∗), M = Φ(−r (t∗))A, λ (M) = γ > 1 .

It follows that

x(t)→ ∞ exponentially ,

and that the non-decreasing sequence {r(t)}∞

0 satisfies

r(∞) = r(t∗)+
∞

∑
t=t∗

1
‖Cx(t)‖

< ∞ .

So {r(t)}∞

0 converges, completing the proof.

If there does not exist t∗ so that the growth rate

λ (Φ(−r(t∗))A) = γ > 1 ,

then {r(t)}∞

0 is bounded and so {r(t)}∞

0 converges, that is

lim
t→∞

r(t) = r∞

for some r∞. But then

λ (Φ(−r∞)A)> 1

since if not, then

x(t +1) = Φ(−r (t))Ax(t)≤ Φ(−r∞)A︸ ︷︷ ︸
λ (Φ(−r∞)A)≤1

x(t) = Mx(t), λ (M)≤ 1 .

Moreover, M inherits irreducibility from A. This irreducibility and λ (M)≤ 1 implies that x(t)≤

w for some positive vector w. But then 1/(Cx(t)) ≥ ε , some ε > 0, meaning that r(t) must

diverge, so contradicting the already established convergence of r(t).

Illustrative examples
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(a) In the following we simulate the system (5.6) with:

φ1(r) = 0.5(1− 2
π

tan−1(r)), φi = 1, i = 2,3,

A =


0.7013 0.3397 0.6485

0.4110 0 0

0 0.4787 0

 , C = [1 0 0] , with random initial values.


(5.7)

If g0 < 0, then φ(−r0)< 1/2 and λ (Φ(−r0A)< 1. So initially, the population is in decline.

Figure 5.3: Adaptive Destabilisation (population persistence) (5.16). Left plot. Convergent gain r(t).
Right plot. Divergent (persistent) stage structures x(t).

Figure 5.3 is a simulation of system (5.6) for example (5.7).
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(b) In the following we simulate the system (5.6) with:

φ1(r) = 1− tanh(r), , φi = 1, i = 2,3,

A =


0.7013 0.3397 0.6485

0.4110 0 0

0 0.4787 0

 , C = [1 0 0] , with random initial values.


(5.8)

The outcomes of the simulation, in this case, are depicted in Figure 5.4.

Figure 5.4: Adaptive Destabilisation (population persistence) (5.16). Left plot. Convergent gain r(t).
Right plot. Divergent (persistent) stage structures x(t).

Remark 5.7. In the simulations depicted in Figures 5.3 and 5.4, we used different φ functions

– resulting in different levels of r and so differnet values of states. Our goal is targeting the

first stage x1 of the population projection. The simulations show that both choices of φ1 result
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in a destabilised or persistent population. In the first example Figure 5.3, the “resistance” r(t)

converges to almost 6× 105 . However, in the second example Figure 5.2, “resistance” r(t)

converges to 5.5 , which is smaller than the first example.

Remark 5.8. Theorems 5.3 and 5.6, respectively Propositions 3.7 and 3.10, are the discrete-

time versions of Theorems (4.4) and 4.8, respectively Propositions 3.4 and 4.8, from Chapter 4.

In the next section, we look to explore the discrete-time analogue of Theorem 4.13.

5.3 An adaptive arms race
In Chapter 4, we developed an algorithm that could learn a saddle-node bifurcation, in some

sense a threshold between population decline and population growth. In this case we find, by

adaptation a persistent population. The results depended quite strongly on the underlying system

assumptions – especially the minimum phase property which gives strong control of the closed

loop eigenvalues with positive or negative high gain. The Metzler assumption also played a role

in ensuring a saddle-node transition. We now consider the discrete-time analogue. One motiva-

tion is in a context of pest control. Here increasing the amount of pesticide will decrease pest

population abundance, but over time, pesticide efficacy may reduce as pests develop resistance.

This leads to an “arms race”, similar to that discussed in Chapter 4. The discrete-time analogue

of the continuous time “arms race” controller is an adaptive feedback system of the form

x(t +1) = Φ(v(t)− r(t))Ax(t))

v(t +1) = v(t)+‖C1x(t)‖p

r(t +1) = r(t)+
1

‖C2x(t)‖q .

(5.9)

Here there are two antagonistic, competing terms: v(t) is increasing, therefore causing v(t)−r(t)

to increase and so Φ(v(t)− r(t)) to decrease; r(t) is increasing, therefore causing v(t)− r(t)
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to decrease and so Φ(v(t)− r(t)) to increase. This combination of adaptive stabilisation and

destabilisation is looking to capture that spraying more pesticide will reduce the growth rate of

the pest, but an over-spraying may cause the emergence of pesticide resistance and resulting

increase in growth rate.

Let e = v− r. Then

x(t +1) = Φ(e(t))Ax(t))

e(t +1) = e(t)+ ‖C1x(t) ‖p − 1
‖C2x(t) ‖q

(5.10)

In (5.10), A is an irreducible n× n matrix and Φ(e) is an n× n diagonal matrix with diagonal

components φi : R 7→ R+ that are continuous, positive and non-increasing. Typically one, or

more than one φi will be strictly decreasing so that Φ(e)A increases (decreases). In order to

improves (worsens), with time as e, given by (5.6), decreases (increases). The parameter adap-

tation in (5.10), driven by observations or measurements C1x(t) and C2x(t), allows e to increase

or decrease: as population abundance rises, so e increases; as population abundance decreases,

so e decreases – so capturing an arms race like behaviour.

Remark 5.9. In applications, as with stabilisation and destabilisation above, if the underlying

matrix A in (5.2) does indeed arise from population projection applications, then we must also

be mindful that the matrix Φ(v)A does not violate biological constraints. However, it is still of

interest to consider the system (5.2) without these biological considerations.

Note also, that since Φ is a diagonal matrix with entries less than or equal to one, we necessarily

need λ (A)> 1, since otherwise x(t) given by (5.10) will converge to zero and e(t) will diverge

to −∞ and there is no “arms race”.

Illustrative examples: (a) In the first simulation of the system (5.10) we choose the following

parameters given in Table 5.1 to populate the PPM (2.13).

86



S1 S2 S3 F2 F3 G1 G2

0.8013 0 0 0.3397 0.6485 0.4110 0.4787

Table 5.1: The Parameter values for Example (a).

This gives

A=


0.8013 0.3397 0.6485

0.4110 0 0

0 0.4787 0

with the function of φ(e) as: φ(e)=


1 0 0

0 0.5(1− 2
π

tan−1(e)) 0

0 0 1

 .

(5.11)

The observations are C1 = [0 0 1] and C2 = [1 0 0], with random initial values.

The outcomes of the simulation in this case are depicted in Figure 5.5.

Figure 5.5: Arms race simulation: Left plot – population abundance; Right plot - volume v(t) and
resistance r(t).
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Figure 5.6: Arms race simulation: e(t) = v(t)− r(t).

Thus in this simulation with the matrix (5.11) we get e∞ = 0.7436 and Φ(e∞)A = 1.0391. In

this simulation, we see convergent (or symbiotic) adaptation. In particular e(t) = v(t)− g(t)

converges to e∞ < ∞, and the state reaches a positive steady state.

(b) In the second simulation of the system (5.10) we choose the following parameters given in

Table 5.2 to populate the PPM (2.13).

S1 S2 S3 F2 F3 G1 G2

0.1373 0 0 0.7003 1.1082 0.5843 0.8905

Table 5.2: The Parameter values for Example (b).
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This gives

A =


0.1373 0.7003 1.1082

0.5843 0 0

0 0.8905 0


We use the same Φ(e) in (5.11), with random initial values. The outcomes of the simulation in

this case are depicted in Figure 5.7.

Figure 5.7: Arms race simulation: Left plot – population abundance; Right plot - volume v(t) and
resistance r(t).
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Figure 5.8: Arms race simulation (5.10): e(t) = v(t)− r(t).

In this simulation, we see divergent behaviour with v(t) and r(t) interweaving and out-doing

each other, switching uncontrollably back and forth between increasingly larger positive values.

As a result, the population goes through phases of boom and bust.

Remark 5.10. The simulations above and Figures 5.5 and 5.7 motivated us to move more deeply

in to this system by exploring the dynamics through eigenvalues of linearisations so as to deter-

mine when this scheme is convergent versus divergent.

Adaptive arms race: 1+1 Case

In Chapter 4, (4.10), we have a closed loop system

ẏ(t) = (a−q(t))y

q̇(t) = y(t)2− 1
y(t)

(5.12)
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and

1
2
(a−q(t))2 +

1
2

y2(t)+
1

y(t)
=

1
2
(a−q(0))2 +

1
2

y2(0)+
1

y(0)
for all t ≥ 0 .

So, in the continuous time, n = 1 case, y = 0 and q = a is an unstable equilibrium of the 1+ 1

arms race. However, as we have seen in Theorem 4.13, for n≥ 2, and under certain assumptions,

there is an adaptive concord, and a learning of a saddle-node bifurcation.

The discrete-time analogue of this 1+1 case is the system

x(t +1) = Φ(e(t))ax(t)

e(t +1) = e(t)+ |C1x|p−| 1
C2x(t)

|q .
(5.13)

We seek the equilibria of this system. Let the equilibrium be (x∗,e∗). Then

x∗ = φ (e∗)ax∗

e∗ = e∗+ |C1x∗|p− 1
|C2x∗|q

.
(5.14)

Solving (5.14) gives

φ (e∗)a = 1 and |C1x∗|p|C2x∗|q= 1 .

So

x∗ =
1

Cp
1Cq

2
.

Linearising the system around (x∗,e∗) yields a linearisation matrix (or Jacobian)

J =

 φ (e∗)a φ ′(e∗)ax∗

p(C1x∗)p−1C1 +
qC2

(C2x∗)q+1 1

=

1 b

c 1

 . (5.15)

Proposition 5.11. The equilibrium (x∗,e∗) of (5.13), satisfies

x∗ = φ (e∗)ax∗, e∗ = e∗+ |C1x∗|p− 1
|C2x∗|q
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and an unstable spiral.

Proof This follows because

φ
′(e)< 0 so that b = φ

′(e∗)ax∗ < 0 and c = p(C1x∗)p−1C1 +
qC2

(C2x∗)q+1 > 0.

So the linearisation has eigenvalues λ± = 1± i
√
|cb|, confirming an unstable spiral.

Remark 5.12. We see that the continuous-time and discrete-time results are matched in the 1+1

case. In both cases, the “arms races” is divergent. This similarity is somewhat expected. The

key quantities are:

r = ea−q(t) continuous-time case and ρ = Φ(e(t))a discrete-time case .

In both cases, r and ρ tend to zero or infinity according to whether q or e tend to−∞ or +∞. For

higher dimensions the parallel is less transparent.

In Figure 5.9 we simulate the system of (5.13) with

a = 2, C1 = 1, C2 = 1, and φ(e) = 0.5(1− 2
π

tan−1(e)).

92



Figure 5.9: Arms race simulation, case 1+ 1 : Left plot – population abundance; Right plot - volume
v(t) and resistance r(t).

The Figure 5.10 shows the phase plane to the system (5.13) with spiralling behaviour matching

the eigenvalue analysis above.
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Figure 5.10: Phase plane of (5.14). The black arrows indicate the trajectories direction.

In Figure (5.10), the phase plane has been identified three times to duplicate the behaviours,

whereas the dots (red - pink- yellow) are the initial values of the system (5.13).

Adaptive arms race: 2+1 Case

In this subsection we explore the dynamics of the adaptive arms race on the case n = 2. This

gives a model of the form

x(t +1) = φ(e(t))Ax(t)

e(t +1) = e(t)+ |C1x(t)|2− 1
|C2x(t)|2

.
(5.16)

Where A in (5.16) is a 2 by 2 matrix.

Illustrative examples

(a) In the first simulation of the system (5.16) we choose the following parameters given in Table
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5.3 to populate the 2×2 PPM.

S1 S2 F2 G1

0.8530 0 0.2703 0.8739

Table 5.3: The Parameter values for Example (a).

This gives

A =

 0.8530 0.2703

0.8739 0

with the function of φ(e) as:φ(e) =

 1 0

0 0.5(1− 2
π

tan−1(e))

 (5.17)

The observations are C1 = [1 0] and C2 = [0 1], with random initial values. The outcomes of the

simulation in this case are depicted in Figure 5.11.

Figure 5.11: Arms race simulation for system (5.16) in 2 dimensions .
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Figure 5.12: Arms race simulation (5.16): e(t) = v(t)− r(t) .

(b) In the second simulation of the system (5.16) we choose the following parameters given in

Table 5.4 the 2×2 PPM.

S1 S2 F2 G1

0.5 0 3 0.4

Table 5.4: The Parameter values for Example (a).

A =

 0.5 3

0.4 0

 (5.18)
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We use the same Φ(e) in (5.17). The observations are C1 = [1 0] and C2 = [0 1], with random

initial values.

The outcomes of the simulation in this case are depicted in Figure 5.13.

Figure 5.13: Arms race simulation for system (5.16) in 2 dimensions.
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Figure 5.14: Arms race simulation (5.16): e(t) = v(t)− r(t) .

In these two examples of a 2+1 arms race we see contrasting behaviour. In one simulation there

is an oscillation, in the other a divergence. We will use an equilibrium/linearisation approach to

try and understand the cause of these different behaviours. We start by finding the equilibria of

the system.

Let x(t) = x∗, e(t) = e∗ , =⇒ x∗ = φ(e∗)Ax∗.

Assuming:

φ(e) =

φ11(e) 0

0 φ22(e)

 . (5.19)
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Here

A =

a b

c 0

 .
that is a PPM with fecundity and growth but no survival.

Since, we are targeting the second stage φ11(e) = 1 and φ22(e) = φ in (5.19). Let A1 = Φ(e)A.

Then

A1 =

 a b

φc 0

 .
We find φ∗ by using the characteristic equation for A1, which has a form of Det(A1− sI) = 0

and requiring 1 to be a zero. Then

s2−as−bcφ = 0 and s = 1. (5.20)

gives

1−a−bcφ = 0.

Which gives the algebraic expression of φ∗, as : φ∗ =
1−a

bc
. Substituting φ∗ in A1 gives:

=⇒ A1 =

 a b
1−a

b
0

 . (5.21)

The eigenvector equation for A1 and eigenvalue λ = 1 has the form

A1

1

u

=

1

u

 .

99



for some u. Solving to find u gives

=⇒
a+bu = 1.
1−a

b
= u.

(5.22)

Then x∗ is given by

x∗ = α

1

u

 , for some α. (5.23)

Then, to find α , subsetuite x∗ into the system (5.16). Then

(C1x∗)2 =
1

C2x∗
=⇒ α

2

C1

1

u

2

=
1

αC2

1

u

 =⇒ α =


C1

1

u

2C2

1

u



−1
3

.

This leads to α =
1(

−a−1
b

)1/3 . By substitution α in (5.23) This gives

x∗ =

 1

(− a−1
b )

1/3(
−a−1

b

)2/3

 .

We obtain the linearisation for the system (5.16) by using the Jacobian matrix:

J =

 φ(e∗)A φ ′(e∗)Ax∗

2C1x∗C1 +
1

(C2x∗)2C2 1

 . (5.24)
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But C1 = [1 0] and C2 = [0 1]. Inserting the above calculations in (5.24) we get:

J =


a b gα

1−a
b 0 g/α2

2α α4 1

 . (5.25)

where

g = φ
′(e∗), u =

1−a
b

, α =

(
b

1−a

)1/3

.

Using diagonal similarity transformations, the eigenvalues of the linearisation are equal to those

of

M =


a 1−a g

1 0 g

2α2 α2 1

 .

One can show that the matrix M has a complex conjugate pair of eigenvalues λ = 1±
√

3|g|αi,

using g = φ ′(e∗)< 0. Therefore, the equilibrium x∗ cannot be linearly stable. This is consistent

with the simulation above where we observed either divergent – see Figure 5.13 or oscillatory

behaviour – see Figure 5.11.
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Adaptive arms race: 3+1 Case

We are analysing the equilibria of the system:

x(t +1) =


1 0 0

0 φ(e(t)) 0

0 0 1

Ax(t).

e(t +1) = e(t)+ |C1x(t)|2− 1
|C2x(t)|

.

(5.26)

Let the equilibrium be (x∗,e∗) :

x∗ =


1 0 0

0 φ∗ 0

0 0 1

Ax∗

e∗ = e∗+ |C1x∗|2− 1
C2x∗

In (5.26). Hence φ∗ = φ(e∗). Then since we are targeting the second stage of population, we

choose φ22 = φ(e) φ11 = 1 and φ33 = 1. Where

A =


a b c

d 0 0

0 e 0

 .

We first note that:


1 0 0

0 φ∗ 0

0 0 1

A = A0 +


0

1

0

φ
∗aT

2 . where aT
2 =

(
d 0 0

)
(5.27)
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A0 is given by:

A0 =


aT

1

0 0 0

aT
3

 ,where aT
i is the ith row of A.

Then,

x∗ =

(
A0 +φ

∗


0

1

0

aT
2

)
x∗

Solving this equation we get:

(I−A0)x∗ = φ
∗


0

1

0

aT
2 x∗

Multiplying both sides by (I−A0)
−1 leads to:

x∗ = φ
∗(I−A0)

−1


0

1

0

aT
2 x∗︸︷︷︸
∈R

(5.28)

By multiplying aT
2 and then dividing both sides by aT

2 x∗ gives:

1 = φ
∗aT

2 (I−A0)
−1


0

1

0

 (5.29)
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To solve (5.29) we first solve
1−a −b −c

0 1 0

0 −e 1


−1

0

1

0

=


x

y

z

 . =⇒ y = 1,z = e and x =
b+ ec
1−a

.

Thus,

(I−A0)
−1


0

1

0

=


b+ ce
1−a

1

e

 (5.30)

Multipling the previous by aT
2 from the left and taking the inverse gives φ∗.

=⇒ φ
∗ =

1−a
bd +dec

From (5.28), we have

x∗ = m


b+ ce
1−a

1

e


Now, |C1x∗|2= 1

C2x∗
. ButC1 = [0 0 1] and C2 = [1 0 0].Thus m is given by:

m =

(
1−a

e2(b+ ce)

) 1
3

.

Finally,

φ
∗ = φ(e∗) =⇒ e∗ =

(
1−a

bd +dec

)−1
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The linearisation of

x(t +1) =


1 0 0

0 φ(e(t)) 0

0 0 1

Ax(t)

e(t +1) = e(t)+ |C1x(t)|2− 1
|C2x(t)|

.

Around (x∗,e∗) the linearisation matrix is

J =


A0 +φ∗


0

1

0

aT
2 φ ′(e∗)


0

1

0

aT
2 x∗

2C1x∗C1 +
C2

(C2x∗)2 1


.

Using the above formulas for x∗,e∗,m and φ∗, can be written as:

=⇒ J =



a b c 0
1−a
dbce

0 0
−(dg(b−a+ ce))
(e2(a2−1)(b+ ce)

0 e 0 0(
e4 (a2−1

)2
(b+ ce)2

)
(b−a+ ce)2 0

−2
(e(a2−1)(b+ ce))

1


(5.31)

In the 3+ 1 case, the linearisation matrix is more complicated than in the 2+ 1 case. So we

cannot make such a definitive statement as we did in the 2+ 1 case. Instead we resort to some

numerical exploration. In the above simulations 5.15, we consider a variety of possibilities:

• Solving a and equating it with the other parameters.

• Varying two parameters d and e.
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(a) Stability analysis, with b = 1.2 and c = 2. (b) Stability analysis, with b = 0.8 and c = 6.

(c) Stability analysis, with b = 1.3 and c = 0.6. (d) Stability analysis, with b = 0.3 and c = 10.

Figure 5.15: Some Simulations for the above calculation while Convergence "green" as well when is
Divergence "blue" with a size step =0.001.
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• Fixing the other parameters b and c.

The system (5.26) has been adapted by a value to control the matrix A. The dominate eigenvalue

has condition which if the absolute value of the dominate eigenvalue is less than 1 then the

system is convergence and if it is greater than 1 it leads to diverge the system.

Remark 5.13. In the 2+ 1 and 3+ 1 simulation studies, we targeted stage 2. We could also

consider targeting other stages, or even multiple stages. However, without a clear pattern this

would just be yet more speculative simulation without shedding light on what is going on. So

this is omitted for brevity.

Remark 5.14. As we can see from the simulations in the 2+1 and 3+1 cases, we have not found

a parallel discrete-time result that mirrors the bifurcation learning algorithm of Chapter 4, except

in the 1+ 1 case. Theorem 4.13 drew significantly on the relative degree one, minimum phase

structure which does not really exist for discrete-time systems. This might explain why we do

not find a similar pattern. We did try to match the set-ups – so additive feedback in continuous-

time and multiplicative feedbacks in discrete-time. But there are many other subtleties at play.

Unravelling the situation is the topic of future work.

5.4 Conclusion
This chapter attempts to complement the developments of Chapter 4 in continuous-time with

discrete-time counterparts. In Theorems 5.3 (adaptive stabilisation) and 5.6 (adaptive destabil-

isation or persistence) we prove discrete-time analogues of Theorems 4.4 and 4.8, respectively.

As in those continuous-time results, the underlying non-negativity of the system plays a signif-

icant role. So far we have not been able to find the discrete-time analogue of the bifurcation

learning algorithm described in Theorem 4.13. We find that the 1+1 system oscillates, agreeing

with the continuous-time analogue. The 2+1 systems oscillates or diverges. The 3+1 systems
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may converge, oscillate or diverge. But in general there is no obvious systematic pattern. This

is the subject of future work.
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Chapter 6

Adaptive Control Inspired Habitat

Renewal

Overview, in the final theme we revisit one of the classical paradigms of population ecology - the

so called “Principle of Competitive Exclusion”. This principle asserts that “two species which

compete for the same limited resource cannot coexist at constant population values. When

one species has even the slightest advantage over another, the one with the advantage will

dominate in the long term. This leads either to the extinction of the weaker competitor or to

an evolutionary or behavioural shift toward a different ecological niche.” The principle has

been paraphrased in the maxim "complete competitors can not coexist", see [34]. It is often

referred to as the Gause principle. The first mathematical treatment of this principle is due to

Volterra [35]. Alongside competition exclusion, using a bounded resource causes the depletion

of resource [34].

Whilst competitive exclusion may lead to a shift in population behaviour (and therefore also a

change in intra-specific parameters) over evolutionary time scales, the principle is based on an
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assumption that parameters do not change on ecological time scales. However, in contrast to

mechanical and electrical systems - the mainstay of control theory - natural systems will be sub-

ject to degradation over short, ecological time scales. To clarify this point, in an electrical circuit

under some feedback control, we can assume that the electrical components, and the correspond-

ing resistance, inductance and capacitance parameters, are not changed by the control action -

at least not on reasonable time scales. However, in natural systems, for example in a model

of competitive interaction, over (under) abundance of one species may undermine (improve)

that species own habitat, manifested as a reduction (increase) in carrying capacity parameters -

suggesting the possibility for self-regulation by habitat renewal. By habitat renewal, we mean

some mechanism, natural or man-made, which will increase the carrying capacity of a species,

so “renewing its habitat”. Borrowing from adaptive control, we propose a simple mechanism

for precisely such self-regulation by habitat renewal. The main results are:

• Simulation Result 6.1: We find a simple mechanism for the renewal of otherwise de-

grading habitats that “stabilises” the interacting population to a co-existence equilibrium.

The habitat renewal provides a stabilising mechanism in a way similar to Watt’s Flyball

Governor [9] .

• Simulation Result 6.2: If the habitat renewal dynamics are frozen or switched off, then

the system reverts back to competitive exclusion. Crucially, which species persists (or is

driven to extinction) in resulting the exclusion, is sensitive to the timing of the switching

off. Simulations are depicted in Figures 6.3, 6.4 and 6.5.

This chapter is organised as follows: In Section 6.1 we recall the basic modelling framework

for two competing species. In Section 6.2 we develop a model which captures the idea of an

adaptive habitat that changes (renews or depletes) as a response to decreasing or increasing
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population densities. In Section 6.3 we describe the main finding – that this simple adaptive

habitat renewal mechanism regulates a system to competitive co-existence that would otherwise

exhibit competitive exclusion in the absence of this regulation. The idea is illustrated in a number

of examples in Section 6.4. Here we also show the sensitivity of the dynamics to the timing of

the termination or freezing of the habitat renewal mechanism.

6.1 Habitat renewal and interspecific competition model
Recall from Chapter 2, the competitive interaction of two populations described by the coupled

system

dN1

dt
= r1N1

[
1− N1

K1
−b12

N2

K1

]
(6.1a)

dN2

dt
= r2N2

[
1− N2

K2
−b21

N1

K2

]
(6.1b)

In equation (6.1) , N1 and N2 are the abundances of species in competition. The parameters1 r1,

K1, b12, r2, K2 and b21 > 0. The presence of each population inhibits the growth of the other.

The parameters K1 and K2 capture the intrinsic carrying capacity of each population.

As discussed in Chapter 2, the system 6.1 exhibits competitive exclusion when the parameters

satisfy:

K2b12 > K1 and K1b21 > K2 . (6.2)

See Figure 6.1

1We do not apply the standard scaling or non-dimensionalisation (see e.g. [10]) because later we will vary or
adapt K1 and K2. Scaling would confuse the situation.
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Figure 6.1: Competitive exclusion when K2 >
K1
b12

and K1 >
K2
b21

in (6.1).

Within this parameter regime, there is a separatrix made up from the stable manifold of the co-

existent hyperbolic equilibrium – for initial conditions on the lower right side of the separatrix,

the population N1 tends to carrying capacity and N2 tends to zero; for initial conditions on the

upper left side, the population N2 tends to carrying capacity and N1 tends to zero. This is the

so-called “Principle of Competitive Exclusion" [10].

Note that in this simple framework, the carrying capacities are assumed to be fixed, i.e. constant

in time. Such an assumption of fixed parameters is a reasonable assumption, especially in a

context of mechanical or electrical systems whereby, over reasonable time scales, the stiffness

of a spring or the resistance of a resistor would not change significantly over timescales of the

velocities or currents. But for natural ecological systems, this assumption can be challenged.
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Indeed, it is reasonable to suppose that the parameters, for example the carrying capacities,

do change with time – perhaps degraded by anthropogenic factors such as land-use change.

Moreover, in a context of management or control, the parameters may be forced to change – for

example by some conservation action. Of course this second way in which parameters change

will also apply in mechanical and electrical systems where a variable resistance or moment of

inertia may play an important role (e.g. Watt’s flyball governor [9]).

6.2 A habitat-population feedback mechanism for habitat re-

newal
Here we investigate the dynamical consequences of carrying capacities that change with time.

We are motivated by habitat degradation/renewal which here we take to mean a decrease/in-

crease in the respective carrying capacities. These increases/decreases are tied to the population

abundances as follows:

1. if N1 > N2, so that population 1 is relatively over abundant compared to population 2, then

carrying capacity K2 increases;

2. if N2 > N1, so that population 2 is relatively over abundant compared to population 1, then

carrying capacity K1 increases;

3. in the absence of recovery driven by these relative abundances, both habitats degrade over

time, that is both K1 and K2 would decrease.

These properties can be captured in various ways by making the carrying capacities “dynam-

ical”. One approach is to append to the competitive interaction described by (6.1)the “habitat

renewal” dynamics

dK1

dt
=−K1 + ε

(
N2

N1

)2

,
dK2

dt
=−K2 + ε

(
N1

N2

)2

. (6.3)
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These rates of change of K1 and K2 contain two parts: the −Ki term in each equation forces Ki

to decrease (degrade) exponentially over time; the terms (N2/N1)
2, respectively (N1/N2)

2 are

non-negative “relative abundance” terms. If population 1 is more abundant than population 2,

then N1 > N2. In this case, the N2 dynamics are driven by a positive term, greater than 1 in

magnitude and habitat 2 recovers, i.e. “renews”. If, vice-versa, population 2 is more abundant

that population 1, then N2 > N1. In this case, the N1 dynamics are driven by a positive term,

greater than 1 in magnitude and habitat 1 recovers, i.e. “renews”. The parameter ε > 0 in (6.3)

is used to control the strength of the habitat renewal process.

The addition of dynamical carrying capacities driven by relative over/under abundances of re-

spective populations leads to a four-dimensional system:

dN1

dt
= r1N1

[
1− N1

K1
−b12

N2

K1

]
dN2

dt
= r2N2

[
1− N2

K2
−b21

N1

K2

]
dK1

dt
=−K1 + ε

(
N2

N1

)2

dK2

dt
=−K2 + ε

(
N1

N2

)2

.

(6.4)

6.3 Habitat-population feedback and competitive co-existence
System (6.4) includes the new simple feedback whereby K̇1 and K̇2 depend on population den-

sity. These are the mechanisms for habitat renewal that we use to force a coexistence stable

point in the competitive-exclusion system. Otherwise, the parameters in (6.4) have a similar ex-

planation as with the parameters in system (6.1), with the addition of the extra parameter ε > 0

that controls the strength of habitat renewal.

Our findings are summarised as follows:
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Simulation Result 6.1. Remarkably we find that the simple mechanism (6.3) for the renewal

of otherwise degrading habitats “stabilises” the interacting population to a co-existence equilib-

rium. This stabilising mechanism acts like Watt’s Flyball Governor [9].

Simulation Result 6.2. If the habitat renewal dynamics (6.3) are frozen, (i.e. K1(t) and K2(t)

are constant for t ≥ ts, some ts) then the system reverts back to competitive exclusion.

So how does this stabilising mechanism work. Suppose that the system dynamics are tending

towards excluding population 1, so that N1 is relatively much smaller than N2. In this case,

(N2/N1)
2 is very large and K1 will increase meaning that N1 can now recover. If instead, the

system dynamics are tending towards excluding population 2, so that N2 is relatively much

smaller than N1. In this case, (N1/N2)
2 is very large and K2 will increase meaning that N2 can

now recover. This counter-balancing process leads to the 4-dimensional system (6.4) admitting

an equilibrium

Ecoexist = (N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 )

with N∗1 > 0 and N∗2 > 0. In our simulations we also find that:

• the equilibrium values K∗1 and K∗2 are such that

K∗2 b12 > K∗1 and K∗1 b21 > K∗2 ,

meaning that the equilibrium values of the adaptive carrying capacities would support

competitive exclusion;

• the linearisation of (6.4) at equilibrium Ecoexist has only eigenvalues with negative real

part, ensuring local stability of the equilibrium. In addition, two eigenvalues are non real

which produces a spiralling behaviour of N1 and N2.
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• in the simulation, Ecoexist appears to a be a globally asymptotically stable for all positive

initial conditions N1(0) and N2(0);

• if we switch off, i.e. freeze, the habitat renewal mechanism at time t = tS, with tS >> 1,

large enough so that K1(tS) and K2(tS) will be close enough to K∗1 and K∗2 to make

K2(tS)b12 > K1(tS) and K1(tS)b21 > K2(tS) .

Then the frozen system reverts back to competitive exclusion. In particular, to a competi-

tive exclusion system with its own separatrix;

• Because the nonlinear system (6.4) has a spiralling behaviour for N1 and N2 around

(N∗1 ,N
∗
2 ), which sits very close to the separatrix of a competitive system, then the tim-

ing of t = tS at which the habitat renewal is frozen will determine on which side of the

separatrix (N1(tS),N2(tS)) sits. This leads to a sensitivity, with respect to the timing tS, of

which population is excluded.

Figure 6.2: A cartoon explaining the sensitivity process; with respect to the timing tS, of which
population is excluded.
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The sensitivity process, with respect to the timing tS, of which population is excluded is il-

lustrated in Figure 6.2. In Figure 6.2 the green trajectory represents the phase diagram of N1

and N2 for (6.4). The black square shows a new co-existence stable point. The black line is

the separatrix for the frozen system, effectively passing through the co-existence equilibrium

when tS >> 1. The blue and red lines are trajectories heading towards respective exclusions

N1 = K1(tS) and N2 = K2(tS), indicated by pink diamonds. Because of the spiralling dynamics,

which side of the separatrix (N1(tS),N2(tS)) sits depends sensitively on the timing tS.

6.4 Examples
In this section we illustrate the co-existence by habitat renewal for a number of examples with

different parameters.

Remark 6.3. In each example, we will use two pairs of initial values K1(0) and K2(0) that

without habitat renewal would produce competitive exclusion.

Example 1

The table (6.1) shows the parameter values used in the first example.

r1 r2 b12 b21 ε

5 4 1.5 1.15 3

Table 6.1: The Parameter values for Example 1.

In this case, system (6.4) admits a coexistence equilibrium point at:

(N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) = (1.2636,1.3203,3.2607,2.7578) .

In the first simulation, the initial values are K1(0) = 9 and K2(0) = 7. These initial values of
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K1(0) and K2(0) satisfy

K2(0)b12 = 10.5 > K1(0) = 9 and K1(0)b21 = 10.35 > K2(0) = 7 .

In the second simulation, the initial values are K1(0) = 10 and K2(0) = 10. These initial values

of K1(0) and K2(0) satisfy

K2(0)b12 = 15 > K1(0) = 10 and K1(0)b21 = 11.5 > K2(0) = 10 .

So both pairs of initial conditions for K1 and K2 would lead to competitive exclusion.

We also check competitive exclusion for the equilibrium values K∗1 = 3.2607 and K∗2 = 2.7578.

In this case

K∗2 b12 = 4.1367 > K∗1 = 3.2607 and K∗1 b21 = 3.7498 > K∗2 = 2.7578 .

These inequalities hold for K1(t) and K2(t) when t = tS and tS is large enough, leading to com-

petitive exclusion in the frozen system .

The Jacobian matrix of the system (6.4) is expressed as:

− r1

k1
−b12 r1

k1

r1 (N1 +N2 b12)

k1
2 0

−b21 r2

k2
− r2

k2
0

r2 (N2 +N1 b21)

k2
2

−2N2
2 ε

N1
3

2N2 ε

N1
2 −1 0

2N1 ε

N2
2 −2N1

2 ε

N2
3 0 −1


. (6.5)

Substituting the parameters of 6.1 in the Jacobian matrix (6.5) at the equilibrium (N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 )=
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(1.2636,1.3203,3.2607,2.7578) . Leads to a linearisation:

J|
(N∗1 ,N

∗
2 ,K

∗
1 ,K

∗
2 )

=


−1.5334 −2.3001 1.5256 0

−1.6680 −1.4504 0 1.4587

−5.1840 4.9614 −1 0

4.3493 −4.1625 0 −1

 (6.6)

The linearisation has eigenvalues

λ1 =−0.2717+3.6618i , λ2 =−0.2717−3.6618i , λ3 =−3.4405 , λ4 =−1. (6.7)

All the eigenvalues in (6.7) have a negative real part. So

(N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) = (1.2636,1.3203,3.2607,2.7578) .

is a stable coexistence equilibrium of the nonlinear system with habitat renewal. Note also, that

there is a pair of non-real eigenvalues in (6.7) which produce a spiralling behaviour and resulting

sensitivity with respect to the “switching off” time t = tS.
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Figure 6.3: Simulation results for habitat renewal (6.4) using the parameters 6.1.

In the simulation presented in Figure 6.3, the left figure indicates the population evolution over

time for the system with Habitat renewal feedback (6.4) the red colour for species N1 and the

blue one for N2. The cyan dots represent N1, and the magenta dots show N2 in the system of

competitive exclusion (6.1). The trajectories of the evolution of the population densities N1 and

N2 depend on when the habitat renewal switch off. So this is a sensitivity concerning switching

off; we switch off slightly later, and the trajectory, we get cyan dots exclusion in one case and

pink exclusion in the other. In the middle Figure of (6.3), the trajectory is tending the stable

spiral point (N∗1 ,N
∗
2 ) and then the feedback switches off near the stable spiral point. Thus it

has switched off twice on the left of the spiral point, which leads to excluding N1 ’Yellow

trajectory’ and then switched off again on the right of the spiral point with the ’green trajectory

to exclude N2. The right figure shows K1 and K2 space. The initial values of K1 and K2 are in
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the wedge between the blue and green lines, with a green circle for the initial values. Each time,

we simulate K1 and K2, tending the trajectories to the red circle in the wedge, as shown in the

figure. Thus the two spaces within the wedge lead to competitive exclusion, hence our initial

conditions in both spaces.

Example 2

Table 6.2 shows the parameter values used in this example.

r1 r2 b12 b21 ε

8 7 1.3571 1.125 19

Table 6.2: The Parameter values for Example 2.

In this case, system (6.4) admits a coexistence equilibrium point at:

(N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) = (8.4465,8.5336,19.8808,18.1730) .

In the first simulation, the initial values are K1(0) = 10 and K2(0) = 10. These initial values of

K1(0) and K2(0) satisfy

K2(0)b12 = 13.5714 > K1(0) = 10 and K1(0)b21 = 11.25 > K2(0) = 10 .

In the second simulation, the initial values are K1(0) = 25 and K2(0) = 20. These initial values

of K1(0) and K2(0) satisfy

K2(0)b12 = 27.1429 > K1(0) = 25 and K1(0)b21 = 28.125 > K2(0) = 20 .

So both pairs of initial conditions for K1 and K2 would lead to competitive exclusion.

We also check competitive exclusion for the equilibrium values K∗1 = 19.8808 and K∗2 = 18.1730.

In this case

K∗2 b12 = 24.6634 > K∗1 = 19.8808 and K∗1 b21 = 22.3659 > K∗2 = 18.1730 .
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These inequalities hold for K1(t) and K2(t) when t = tS and tS is large enough, leading to compet-

itive exclusion in the frozen system . Using (6.5) we obtain the eigenvalues of the linearisation

λ1 =−0.4537+1.7974i , −0.4537−1.7974i , λ3 =−0.8803 , λ4 =−1 . (6.8)

All the eigenvalues in (6.8) have a negative real part. So

(N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) = (8.4465,8.5336,19.8808,18.1730) .

Is a stable coexistence equilibrium of the nonlinear system with habitat renewal. Note also, that

there is a pair of non-real egenvalues in (6.8) which produce a spiralling behaviour and resulting

sensitivity with respect to the “switching off” time t = tS.

Figure 6.4: Simulation results for habitat renewal (6.4) using the parameters 6.2.

In the simulation presented in Figure 6.4, the left figure indicates the population evolution over
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time for the system with Habitat renewal feedback (6.4) the red colour for species N1 and the

blue one for N2. The cyan dots represent N1, and the magenta dots show N2 in the system of

competitive exclusion (6.1). The trajectories of the evolution of the population densities N1

and N2 depend on when the habitat renewal switch off. We switch off slightly later, and the

trajectory, we get cyan dots exclusion in one case and pink exclusion in the other. In the middle

Figures of 6.4, the trajectory is tending the stable spiral point (N∗1 ,N
∗
2 ) and then the feedback

switches off near the stable spiral point. Thus it has switched off twice on the left of the spiral

point, which leads to excluding N1 ’Yellow trajectory’ and then switched off again on the right

of the spiral point with the ’green trajectory to exclude N2. The right figure shows K1 and K2

space. The initial values of K1 and K2 are in the wedge between the blue and green lines, with a

green circle for the initial values. Each time, we simulate K1 and K2, tending the trajectories to

the red circle in the wedge, as shown in the figure. Thus the two spaces within the wedge lead

to competitive exclusion, hence our initial conditions in both spaces.

Example 3

Table 6.3 shows the parameter values used in this example.

r1 r2 b12 b21 ε

3 2 1.125 1.0882 12

Table 6.3: The Parameter values for Example 3.

In this case, system (6.4) admits a coexistence equilibrium point at:

(N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) = (5.6848,5.7067,12.0881,11.91140) .

In the first simulation, the initial values are K1(0) = 20 and K2(0) = 20. These initial values of
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K1(0) and K2(0) satisfy

K2(0)b12 = 22.5 > K1(0) = 20 and K1(0)b21 = 21.7647 > K2(0) = 20 .

In the second simulation, the initial values are K1(0) = 5 and K2(0) = 5. These initial values of

K1(0) and K2(0) satisfy

K2(0)b12 = 5.625 > K1(0) = 5 and K1(0)b21 = 5.4412 > K2(0) = 5 .

So both pairs of initial conditions for K1 and K2 would lead to competitive exclusion.

We also check competitive exclusion for the equilibrium values K∗1 = 12.0881 and K∗2 = 11.91140.

In this case

K∗2 b12 = 13.4003 > K∗1 = 12.0881 and K∗1 b21 = 13.1547 > K∗2 = 11.91140 .

These inequalities hold for K1(t) and K2(t) when t = tS and tS is large enough, leading to compet-

itive exclusion in the frozen system . Using (6.5) we obtain the eigenvalues of the linearisation

λ1 =−0.4989+1.2237i , −0.4989−1.2237i , λ3 =−0.4182 , λ4 =−1 . (6.9)

All the eigenvalues in (6.9) have a negative real part. So

(N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) = (5.6848,5.7067,12.0881,11.91140) .

is a stable coexistence equilibrium of the nonlinear system with habitat renewal. Note also, that

there is a pair of non-real egenvalues in (6.9) which produce a spiralling behaviour and resulting

sensitivity with respect to the “switching off” time t = tS.
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Figure 6.5: Simulation results for habitat renewal (6.4) using the parameters 6.3.

In the simulation presented in Figure 6.5, the left figure indicates the population evolution over

time for the system with habitat renewal feedback (6.4) the red colour for species N1 and the

blue one for N2. The cyan dots represent N1, and the magenta dots show N2 in the system of

competitive exclusion (6.1). The trajectories of the evolution of the population densities N1 and

N2 depend on when the habitat renewal switch off. So this is a sensitivity concerning switching

off; we switch off slightly later, and the trajectory, we get cyan dots exclusion in one case and

pink exclusion in the other. In the middle Figures of 6.5, the trajectory is tending the stable

spiral point (N∗1 ,N
∗
2 ) and then the feedback switches off near the stable spiral point. Thus it has

switched off twice on the left of the spiral point, which leads to excluding N1 ’Yellow trajectory’

and then switched off again on the right of the spiral point with the ’green trajectory to exclude

N2. The right figure shows K1 and K2 space. The initial values of K1 and K2 are in the wedge
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between the mauve and green lines, with a green circle for the initial values. Each time, we

simulate K1 and K2, tending the trajectories to the red circle in the wedge, as shown in the

figure. Thus the two spaces within the wedge lead to competitive exclusion, hence our initial

conditions in both spaces.

Simulation Result 6.4. In simulations 6.3, 6.4 and 6.5- we have this system (6.1), and we deploy

the habitat renewal feedback. But while running the system (6.4), the habitat renewal feedback

switches off, and then the system reverts to competitive exclusion (6.1). The timing depends on

the timing of the switch off, and since the trajectory of the phase plane tends to a stable spiral

point. When we switch off the habitat renewal feedback, it depends on which side it is switched

off on since the system without the habitat renewal has an existing separatrix line. Thus, if it is

stopped at the right of the spiral point, the system will exclude N2 species, and if it switches off

at the left of the point, the phase plane provides an exclusion for N1 species. In the third picture,

We run the simulations from those two initial conditions. And we arrive at the red circle still in

the wedge. The initial conditions and the final conditions all satisfy how competitive exclusion.

But the adaptive system is got competitive coexistence.

Simulation Result 6.5.

• Adaptation (6.3) active produces a stable equilibrium (N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) of the 4D system;

• So without an active adaptive habitat renewal in play, we will revert to competitive exclu-

sion;

• So freezing K1 = K1(t f ) and K2 = K2(t f ) with t f large enough will freeze K1 and K2 at

carrying capacity values that lead to competitive exclusion;

• Because (N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) is a stable spiral of the 4D system, the frozen N1(t f ) and N(t f )
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will be on one side or the other side of the separatrix of the frozen system depending on

the feezing time t f – freezing later will swap the side of the separatrix;

• This means that the freezing time will determine which population goes extinct.

These simulations 6.3, 6.4 and 6.5 lead to a conjecture, summarised in the following theorem.

Conjecture 6.1. The system (6.4) admits a stable equilibrium (N∗1 ,N
∗
2 ,K

∗
1 ,K

∗
2 ) in which

• N∗1 ,N
∗
2 > 0 , that means we have co-existence.

• K∗2 b12 > K∗1 and K∗1 b21 > K∗2 , that means we have competitive exclusion in the absence

of habital renewal.

• In the N1,N2 plane, the dynamics around (N∗1 ,N
∗
2 ) are a stable spiral.

6.5 Conclusion
In this chapter we revisited the classical paradigm of population ecology, the so called “Principle

of Competitive Exclusion”. We adopted the simplest model of two species in a competitive inter-

action and exhibiting competitive exclusion. We then combined these population dynamics with

a simple mechanism for habitat depletion/renewal. Here, habitats deplete over time, so that the

corresponding carrying capacities reduce, but the habitat of the relatively least abundant species

is renewed (its corresponding carrying capacity increases). With a parsimonious mechanism to

capture this depletion/renewal, we find that the system is stabilised to co-existence. When the

depletion/renewal mechanism is switched off, the system reverts back to competitive exclusion

but with high sensitivity to the timing of the switch. This simple study scratches the surface of

a much deeper study in to how adaptation - both natural or man-made - made significantly alter

the prevailing population dynamics.
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Chapter 7

Conclusion

The thesis is rooted in ideas from adaptive control but looks to take these ideas in novel direc-

tions. Our starting point are simple direct adaptive control schemes exemplified by the Byrnes-

Willems adaptive controller (3.6) of Chapter 3. These are significantly developed in a context

of non-negative Metzler systems in Theorem 4.4 and Theorem 4.8 from Chapter 4. The highly

novel development is in Theorem 4.13 where direct adaptive stabilising and destabilising effects

are combined. This leads to a brand new bifurcation learning algorithm. As a by-product of

this learning algorithm we find a new solution to the classical set-point control problem, see

Chapter 4, Section 4.5. Our new solution significantly out-performs existing approaches, such

as adaptive integral controllers, in terms of robustness to un-modelled output disturbances. The

adaptive stabilising and destabilising controllers are further explored in Chapter 5 as an adaptive

“arms race” in a context of discrete-time systems. Here we find both convergent and divergent

(escalating) behaviours. Finally, in Chapter 6 we use adaptive control-like mechanisms for habi-

tat renewal. These habitat renewal mechanisms force competitive coexistence on a competitive

exclusion system.
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Appendix A

Preliminaries

In the following appendices I collect together various pieces of background theory and informa-

tion.

A.1 Continuous vs. discrete time systems
In my research, I will be switching between continuous and discrete-time models, depending on

context and which might be easiest to control.

• 1- Continuous-time

Here the state of the system moves continuously (or in infinitesimal jumps) [36]

• 2- Discrete

Here the state of the system moves between points by jumping, [36]. In other words, to

move from time tn to tn+1

Here is an example showing the difference between continuous vs discrete dynamics, or in other

words between a flow and a map systems. I use the logistic growth equation introduced by
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Verhulst 1845 [37]

dX
dt

= rX(1− X
K
) (A.1)

In (A.1), X represents the size of the species, r is the reproduction rate and K carrying capacity.

In computing the dynamics of this system, one would use an ODE solver such as ODE45 due to

the accuracy. In discrete time the same system (A.1) is modelled as

Xt+1 = rXt(1−
Xt

K
) (A.2)

Figure A.1: The difference among the ODE of the logistic growth model.

The dynamical behaviours of the ecological systems, build from the flow and map time models.

In discrete-time systems within a one-dimensional model there is a rich dynamic behaviour. On

the other hand, where the time is continuous the execution of the dynamics are specified and

unsurprising when the system is lower than three dimensions [38]. Here both of the systems are

logistic growth the only difference being one of them is continuous in the left of figure A.1 the

other discrete in A.1 . Hence both models are run where the parameters are fixed r = 3,K = 1 and
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the start point X = 0.5. The left figure of A.1 explains the dynamics meanwhile using equation

A.1. Here the population density of X grows smoothly and continuously until being stabilising

in value 1. The right figure in A.1. provides more dynamics that are complicated in discrete

time. There is no growth among the time steps of the model, and the population density changes

with the time by a jump between steps.

A.2 Pest Management

A.2.1 What is a pest?
A Pest is any damaging or troublesome being like as insect,an animal,a weed otherwise might

be a disease etc [39].

A.2.2 What is a pesticide?
A pesticide describes the treatment that is used for controlling the pest and/or exterminating the

population of the pest [40].

Goals of pest Management

• Preventing: Keep pest societies bugs hidden [41] .

• Suppression: Minimising the pest population to reasonable amount [42].

• Eradication: Exterminating the pest completely [43].

• Avoidance: Trying to make the environmental atmosphere not favourable for the pest

[44].

What is Integrated Pest Management

The idea of integrated pest management,an ’IPM’ is facilitated use of features to minimise dam-

age to a reasonable level that is justified with the control tactics. [42]
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pesticide Resistance

Figure A.2: individuals resistance Pesticide Credit https://upload.wikimedia.org/wikipedia/
commons/8/85/Pesticide_resistance.svg.

An example of pesticide when applying a chemical one, there are some individuals have a ge-

netic trait which gives them the allowance to avoid the pesticide for survival. The problem is

shown when the reproduction’ new generation’ happens. The individual will inherit their abil-

ity to resist the pesticide.As long as the pesticide is kept applied frequently that leads to pest

population sooner will be mostly is pesticide-resistant.

A.3 Linearisation
In this part, consider linearisation of the system (A.3) around the equilibrium point to study the

stability and check the topological of the neighbourhood behaviour around the steady states to
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classify this fixed points with phase plane, a saddle, a node or a spiral.Consider the system:

du
dt

= f (u,v) and
dv
dt

= g(u,v) (A.3)

Since already shown above the steady state at (us,vs) can be founded by solving f (u,v) =

g(u,v) = 0. Setting ũ = u−us and ṽ = v−vs then, we can re arrange the system of two equations

above and extending the right hand said terms as Taylor series.

dũ
dt

= fuũ+ fvṽ

dṽ
dt

= guũ+gvṽ

where, fu described the partial derivative of u at (us,vs).In addition fv , gu and gv are the same

of fu. [45]

Expressing that in terms of matrices can be done as,

d
dt

ũ

ṽ

=

 fu fv

gu gv

ũ

ṽ

= A

ũ

ṽ


The stability matrix represented by A, which is called the Jacobian matrix. Sorting out the

general solution for the linearised system above can be dealt with it by the next formula:

(ũ, ṽ)∼ αw1eλ1t +βw2eλ2t

Where α and β are constants, λ1 and λ2 are the eigenvalues, w1 and w2 are the eigenvectors

for A.The Steady state can be classified under conditions to be weather stable or unstable. if

the system at the steady state is stable that means the solution decrease in time that happens at

Reλ1 < 0 AND Reλ2 < 0.In the other hand if the system is unstable at the steady state that means

the solution increase under these two conditions: Reλ1 > 0 AND/OR Reλ2 > 0. For instant and
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more simplicity assume

A =

a b

c d

 then, Tr(A) = a+d and Det(A)=ad−bc

Eigenvalues for A, can be founded by the characteristic polynomial of A, which as follow:

λ
2− (a+d)λ +ad− cb = 0

Hence we have Tr(A) = a+d and Det(A) = ad− cb that leads to,

λ1,2 =
1
2

(
Tr(A)±

√
(Tr(A))2−4Det(A)

)
To finalise that and summarise it in three points and to show the all the situations and meaning

of classification of the points. [10]

• Stable (node of focus)⇔ Det(A)> 0 and Tr(A)< 0.

• Unstable (Node of focus)⇔ Det(A)> 0 and Tr(A)> 0 .

• Unstable (Saddle)⇔ Det(A)< 0.

Here is a picture of the classifications by Murray in appendix A.
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Figure A.3: An explanation about the phase plane analysis within the linearisation shows above.
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A.4 High dimensional simulation For Bifurcation algorithems
In this section we used high dimensional simulation for the adaptive controllers 4.4, 4.8 and

4.13.

M9 =



9 1 4 4 2 3 3 2 2

4 −24 4 4 2 4 2 4 2

4 3 −27 2 2 2 3 1 2

3 3 1 −26 3 3 3 4 3

2 2 3 1 −27 3 1 2 3

1 1 3 2 1 −27 3 2 4

3 2 1 2 3 1 −27 2 4

3 1 3 2 3 2 3 −25 2

2 2 4 4 1 1 3 2 −27



;

M13 =



1 4 1 3 2 3 1 1 4 1 2 3 1

3 −34 1 3 2 3 4 1 1 3 4 4 2

4 2 −31 2 4 2 2 2 4 4 1 2 3

3 1 2 −33 3 3 2 3 3 2 4 1 1

4 3 1 3 −34 4 3 1 3 3 3 4 3

1 3 1 1 4 −33 1 4 4 1 3 2 1

2 1 4 1 2 1 −34 3 4 2 4 2 4

2 1 4 2 1 2 1 −33 2 1 3 2 3

3 2 3 3 4 2 1 4 −34 1 1 2 2

1 2 1 3 1 2 4 2 1 −33 4 4 1

1 1 2 1 3 3 1 4 4 2 −31 1 4

2 4 2 4 4 3 4 2 2 1 2 −32 3

1 3 1 4 3 2 3 4 2 3 2 4 −31



.

(A.4)
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M15 =



9 3 2 1 1 3 3 2 2 2 1 1 1 3 1

1 −39 4 1 2 4 2 1 2 2 4 1 4 1 1

1 4 −39 3 4 3 4 4 3 2 1 3 4 4 1

3 1 1 −40 1 2 4 2 2 2 1 1 1 3 2

3 2 3 4 −38 3 1 1 1 3 2 2 4 4 4

3 1 3 4 4 −40 2 1 4 2 3 4 4 1 2

3 4 4 2 3 1 −37 1 3 1 2 1 2 4 3

4 2 1 2 4 1 1 −40 3 3 4 4 1 2 2

2 1 4 1 2 4 4 4 −39 2 1 1 1 1 4

1 1 2 2 3 1 1 2 1 −37 4 2 1 4 4

1 1 4 2 4 3 4 3 4 2 −38 4 4 3 1

3 4 4 2 1 1 3 4 2 2 3 −39 2 2 1

3 1 3 3 4 3 4 1 3 3 1 1 −37 3 3

1 4 1 4 1 3 4 3 3 3 1 3 1 −39 2

2 2 1 3 2 3 1 2 4 4 3 3 3 1 −40



.

(A.5)
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Figure A.4: 9 -dimensional simulation for the adaptive controllers 4.4, A and B, 4.8, C and D,4.13, E
and F. A matrix given by M9 in (4.16).

Figure A.5: 13 -dimensional simulation for the adaptive controllers 4.4, A and B, 4.8, C and D,4.13, E
and F. A matrix given by M13 in (4.16).
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Figure A.6: 15 -dimensional simulation for the adaptive controllers 4.4, A and B, 4.8, C and D,4.13, E
and F. A matrix given by M15 in (A.5).

Matrices k∞(x0) −g∞(x0) q∞(x0) kc

M9 24.3194 9.9246 15.3973 15.3973

M13 21.8127 9.6609 11.5156 11.5156

M15 33.1664 9.9663 17.5015 17.5015

Table A.1: The values of k∞(x0),−g∞(x0),q∞(x0) and kc. Resulting of 4.17.
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