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1. Introduction

Let d ≥ 2 be an integer, G := SL(d, R), Γ := SL(d, Z), and μ be the Haar measure on G
normalized so that the measure of a fundamental domain of the lattice Γ is equal to one. 
In this paper, we introduce a generalization of the Farey sequence from number theory 
(2.1) which we call a translated Farey sequence (8.1), prove geometric and dynamical 
properties of translated Farey sequences (Section 8.1 and Theorem 1.7), and use these 
properties to prove shrinking target horospherical equidistribution for a certain diagonal 
flow (1.1) on the space of unimodular lattices Γ\G, extending the result for d = 2, 
namely [22, Theorem 1.1]. Like the Farey sequence, a translated Farey sequence has 
useful geometric and dynamical properties, namely that it is discrete and equidistributes 
on a distinguished section (1.2) of Γ\G, and these properties allow us to rescale in space 
and time, providing a renormalization, which, as we shall see, is a powerful tool in 
studying geometric and dynamical questions such as the type of equidistribution results 
considered in this paper and may have further applicability. Even for d = 2, the technique 
in this paper allows us to consider any horocycle, instead of just the periodic horocycles 
considered in [22]. The technique from [22], the double coset decomposition and the 
method of stationary phase, seems to only be useful for periodic horocycles.
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1.1. Shrinking target equidistribution and preliminary notation

On a finite-volume space with cusps and with a geometric object that, under a flow, 
equidistributes on that space, a natural question to consider is what happens to the 
equidistribution restricted to a target set shrinking into the cusps. This question is thus 
about the relationship between two dynamics, the rate of the equidistribution of the 
object and the rate of the shrinking of the target set. If the target shrinks too quickly 
relative to the equidistribution of the object on the whole space, then we expect that 
no equidistribution occurs on the shrinking set. If the target shrinks slowly enough 
with respect to the equidistribution of the object on the whole space, then it may be 
possible to obtain equidistribution on the shrinking target, suitably normalized for the 
shrinking of the target. For d = 2 and the equidistribution of periodic horocycles, such 
shrinking target equidistribution is possible for not just the modular group but also any 
cofinite Fuchsian group with at least one cusp [22, Theorems 1.1 and 1.2]. Moreover, this 
dichotomy is sharp, namely there is a critical exponent of relative rate cr, under which 
the target shrinks slowly enough relative to the equidistribution so that, normalized by 
the rate of the shrinking of the target into a cusp raised to the normalizing exponent ce, 
one obtains (a slower) equidistribution on a related fixed target, called the renormalized 
target. In the notation (1.1), (1.3) of this paper, the results [22, Theorems 1.1 and 1.2]
show that the pair (cr, ce) is (2, 1) and invariant over the aforementioned Fuchsian groups. 
We note that our results, Theorems 1.1, 1.3, 1.5, 7.2, 7.19, and 7.23, in this paper are in 
agreement and give this pair as (d, d − 1) for Γ.

The notion of shrinking target equidistribution for horocycles has been precisely for-
mulated for d = 2 and the aforementioned Fuchsian groups at [22, (1.2)]. We now extend 
this definition to d ≥ 2 and Γ, noting that for d = 2 and Γ the definition in [22] and 
in this paper are essentially the same, with each being more general than the other in 
different aspects. Let I� be the � × � identity matrix. Define the diagonal flow

Φt :=
(
e−tId−1

t0
0 e(d−1)t

)
(1.1)

and the unipotent elements

n+(x̃) :=
(
Id−1

t0
x̃ 1

)
and n−(x) :=

(
Id−1

tx
0 1

)
,

where the abelian subgroups

N+ := {n+(x̃) : x̃ ∈ Rd−1} and N− := {n−(x) : x ∈ Rd−1}

are the stable and unstable horospherical subgroups, respectively, for Φt. Let dx (and 
dx̃) be the Lebesgue measure on Rd−1, normalized so that it is a probability measure 
on Td−1. For a set B ⊂ Rd−1, let
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N+(B) := {n+(x̃) : x̃ ∈ B} and N−(B) := {n−(x) : x ∈ B}.

Fix L ∈ G and let AL be defined as in Section 8.2. Given a bounded subset 
A ⊂ AL with measure zero boundary with respect to dx, we refer to ΓLN−(A) as 
a (left-)translated horosphere and say it equidistributes on a μ-measurable subset U of 
Γ\G if

ˆ

A

1U
(
Ln−(x)Φt

)
dx t→∞−−−→ μ(U)

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ .

Here 1S is the indicator function for a set S, and the argument of 1U is considered as an 
element of Γ\G. When L = Id, we also say the horosphere and the horosphere equidis-
tributes.2 Translated horosphere equidistribution has been studied in various setups in 
a number of papers such as, for example, [6, Theorem 1.2], [11, Proposition 2.4.8], [14, 
Theorem 5.2], and [5, Theorem 1.1]. Note that the horosphere and translated horospheres 
are all regarded as objects in the space Γ\G, and their equidistribution is with respect 
to the right-action of Φt.

For shrinking target equidistribution, we replace the fixed target U with a shrinking 
target. Let

H :=
{(

A tb
0 1

)
: A ∈ SL(d− 1,R), b ∈ Rd−1

}
and ΓH := Γ ∩H.

Let μ0 be the Haar measure on SL(d − 1, R) normalized so that the measure of a funda-
mental domain of the lattice SL(d − 1, Z) is equal to one, and μH be the left-invariant 
Haar measure on H normalized in the same way with respect to the lattice ΓH . Ex-
plicitly, we have that dμH = dμ0db (c.f. [13, (3.4)]). We begin defining shrinking target 
equidistribution by considering a section

S1 := Γ\ΓH{Φ−s : s ∈ R≥0}, (1.2)

which is a closed embedded submanifold of Γ\G [13, Lemma 2], and we are, in particular, 
interested in the subset

ST := Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT } (1.3)

for T ≥ 1. By thickening ST or one of its subsets, we obtain a shrinking target UT to be 
defined precisely below. Note that ST and, thus, UT shrink into the cusp as T → ∞. For 
such a target UT shrinking into the cusp slowly enough with respect to the rate of the 

2 There are some extra complications in the proofs for generic L versus L = Id for which having termi-
nology distinguishing these cases is convenient.
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equidistribution of a translated horosphere, we expect, provided we normalize to account 
for the shrinking target, that the translated horosphere equidistributes as follows:

T d−1
ˆ

A

1UT
(Ln−(x)Φt) dx −→ T d−1

0 μ(UT0)

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ (1.4)

as T → ∞ and t → ∞. We refer to (1.4) as shrinking target horospherical equidistribution 
(STHE). Here T0 ≥ 1 is a fixed constant and UT0 is a fixed target, which we refer to 
as the renormalized target. The normalization to account for the shrinking target is to 
divide by 

(
T0
T

)d−1, and, since it is the same for all of our results in this paper, we 
refer to its exponent as the normalizing exponent.3 Note that STHE is closely related to 
Diophantine approximation in that Diophantine approximation can be regarded as the 
critical limit of STHE in a suitable sense, and this relationship and its implications for 
number theory will be elaborated upon in [23].

1.2. Construction of shrinking targets

We construct the shrinking targets UT by thickening. Fix a subset B ⊂ Td−1. Since 
we are considering the equidistribution of a translated horosphere, it is natural to con-
sider the thickening in the stable horospherical directions, namely the set STN

+(B). 
(See Corollary 5.11 for μ (STN

+(B)).) More generally, we will consider the analogous 
thickenings of subsets of ST , and these subsets are given in terms of (5.6), the Grenier 
coordinates. These are the most convenient coordinates for our technique in this paper 
as the fundamental domain ϕ(F ′

d), defined in Section 5, associated to these coordinates 
has a “box shape” in the cusp (see Section 5 for details).

Let us define a useful subgroup of

K := SO(d,R),

namely

K ′ :=
{(

k t0
0 1

)
: k ∈ SO(d− 1,R)

}
.

Let dk denote the probability Haar measure on K and dk̃ denote the induced Haar 
measure on K ′. By (5.4) and Remarks 5.3 and 5.4, we can form a subset on S1, which 
we refer to as a Grenier box, by choosing a measurable subset

K̃ ⊂ K ′, (1.5)

3 This normalizing exponent is the same as that in [22] even though the notation in that paper is slightly 
different.
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and constants α�, γ�, β−
ij , β

+
ij as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ β−

1j ≤ x1j ≤ β+
1j ≤ 1/2 for j = 2, · · · , d− 1

−1/2 ≤ β−
1j ≤ x1j ≤ β+

1j ≤ 1/2 for j = d

−1/2 ≤ β−
ij ≤ xij ≤ β+

ij ≤ 1/2 for 2 ≤ i < j ≤ d

1 ≤ α� ≤ y� ≤ γ� ≤ ∞ for � = 1, · · · , d− 1

if d is even,

⎧⎪⎪⎨⎪⎪⎩
0 ≤ β−

1j ≤ x1j ≤ β+
1j ≤ 1/2 for j = 2, · · · , d

−1/2 ≤ β−
ij ≤ xij ≤ β+

ij ≤ 1/2 for 2 ≤ i < j ≤ d

1 ≤ α� ≤ y� ≤ γ� ≤ ∞ for � = 1, · · · , d− 1
if d is odd.

(1.6)

We will denote a Grenier box by C := CT−,T+ := C(α, γ, K̃, β−
ij , β

+
ij) where α :=

(α1, · · · , αd−1), γ := (γ1, · · · , γd−1), and

T d
− :=

d−1∏
k=1

α
2(d−k)
d−k , T d

+ :=
d−1∏
k=1

γ
2(d−k)
d−k .

The constants T− and T+ are the lower height and upper height, respectively, of the 
Grenier box. Our shrinking targets UT thickened in the stable horospherical directions 
from subsets of ST are then given by

C̃TN+(B) := CΦ− 1
d log(T/T

d/2(d−1)
− )N+(B).

Alternatively, in view of the Iwasawa decomposition of G, which gives a natural coor-
dinate system for G, thickening in spherical directions is also natural and, perhaps, more 
useful than in stable directions. Let e1, · · · , e� be the standard basis vectors of R� and 
S�−1 be the sphere in R� of radius one centered at the origin. If we thicken by a subset 
of K, we, in fact, only thicken in the directions given by the unit sphere Sd−1 because 
the directions corresponding to the subgroup K ′ (whose elements fix, from the right, the 
vector ed) are contained in the section S1. Moreover, we have the identification

Sd−1 = K ′\K (1.7)

as the d-th row of any element of an equivalence class is invariant under the class. We 
will use similar notation to that in [14, Section 5.2]. Let D ⊂ Rd−1 be an open bounded 
set. Define a smooth mapping

E : D → K (1.8)

such that 0 	→ Id and the induced mapping

D 
 z 	→ edE(z)−1 ∈ Sd−1 (1.9)



J. Tseng / Advances in Mathematics 432 (2023) 109255 7
is injective and has nonsingular differential at every point of D (c.f. the mapping into 
the d − 1-dimensional unit sphere in [14, Corollary 5.4]). Define

E := E(D) :=
{
E(z)−1 : z ∈ D

}
. (1.10)

Let us now write

E(z)−1 =
(
A tw
v c

)
:=
(
A(z) tw(z)
v(z) c(z)

)
∈ SO(d,R). (1.11)

Elementary properties of K imply that

vtv + c2 =1 (1.12)

vA + cw =0.

We choose D so that

c(D) > 0. (1.13)

A simple example of our shrinking targets UT thickened in spherical directions is STE
under the restriction (1.13), and this is the target considered in Theorem 1.5. More 
general spherical thickenings are considered in Section 7, and these are obtained by 
removing the restriction (1.13) and by using certain Grenier boxes in their construction. 
We will consider all of these thickenings in this paper. Note that, in this paper, the 
renormalized target UT0 is constructed via the same method of thickening as the shrinking 
target UT .

1.3. Statement of main results

Our first result, Theorem 1.1, is for shrinking targets constructed from Grenier boxes 
thickened in the stable horospherical directions. These are the most general shrinking 
targets thickened in the stable directions that we consider.

Theorem 1.1. Let 0 < η < 1 be a fixed constant, L ∈ G, A ⊂ AL be a bounded subset 
with measure zero boundary with respect to dx and

K̃ ⊂ K ′

be a measurable set with respect to dk̃. Let α, γ, β−
ij , β

+
ij be constants defining a neigh-

borhood in S1 with lower height ≥ 1 and define the following neighborhood of S1

C := CT−,T+ := C(α,γ, K̃, β−
ij , β

+
ij)

for constants ∞ ≥ T+ > T− ≥ 1. Let
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B ⊂

⎧⎪⎨⎪⎩
(T−)Z\R if d = 2(

1√
d

( 3
4
)(d−1)/2

T
d/2(d−1)
−

)
Zd−1

∖
Rd−1 if d ≥ 3

be a measurable set with respect to dx̃. For the family of neighborhoods of Γ\G

C̃TN+(B) := CΦ− 1
d log(T/T

d/2(d−1)
− )N+(B),

then we have that

T d−1
ˆ

A

1C̃TN+(B)(Ln−(x)Φt) dx t→∞−−−→ T
d/2
− μ

(
CN+(B)

) ˆ

Rd−1

1A(x) dx

uniformly for all T ∈ [T d/2(d−1)
− , edtη].

Remark 1.2. Since our result is for t → ∞, we may assume, without loss of generality, 
that edtη ≥ T

d/2(d−1)
− . By Corollary 5.10, the right-hand side is also equal to

lim
t→∞

T d−1μ(C̃TN+(B))

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ .

Finally, note that one could obtain an explicit (and complicated) formula for μ (CN+(B))
in terms of the variables xij , y� (recall that K̃ is fixed) from (5.6) using Grenier coordi-
nates.

A special but useful case of Theorem 1.1, which does not involve Grenier boxes, is 
Theorem 1.3 in which the shrinking target is a small thickening of the section ST . Let 
ε > 0 be small, ỹ ∈ Rd−1,

N+
ε (ỹ) :=

{
n+(x̃) ∈ N+ : ‖x̃− ỹ‖∞ <

ε

2

}
and N+

ε := N+
ε (0).

Translating ST along the stable direction by n+(ỹ) and slightly thickening, we obtain 
our shrinking target STN

+
ε (ỹ). Note that STN

+
ε (ỹ) has positive μ-measure.

Theorem 1.3. Let 0 < η < 1 and T0 ≥ 1 be fixed constants. Let L ∈ G, ỹ ∈ Rd−1, ε > 0
be small, and A ⊂ AL be a bounded subset with measure zero boundary with respect to 
dx. Then

T d−1
ˆ

A

1STN+
ε (ỹ)(Ln−(x)Φt) dx t→∞−−−→ 1

dζ(d)ε
d−1

ˆ

Rd−1

1A dx

uniformly for all T ∈ [T0, edtη].
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Remark 1.4. We may assume, without loss of generality, that edtη ≥ T0. By Corol-
lary 5.11, the right-hand side is also equal to

lim
t→∞

T d−1μ
(
STN

+
ε (ỹ)

)⎛⎝ ˆ

Rd−1

1A dx

⎞⎠ .

We also note that ε does not have to be very small. By Theorem 1.1, we can choose it 
to be any positive value strictly less than⎧⎨⎩

1
2T0 if d = 2
1
2

(
1√
d

( 3
4
)(d−1)/2

T0

)
if d ≥ 3

.

Our second result is for thickenings of ST in spherical directions and is a special case of 
the generalizations for certain more general Grenier boxes, Theorems 7.2, 7.19 and 7.23, 
that we give in Section 7. We can even remove the restriction (1.13). Let

h0 :=

⎧⎨⎩1 if d = 2
√
d
( 4

3
) d−1

2 if d ≥ 3
.

Theorem 1.5. Let 0 < η < 1 and T0 > h0 be fixed constants. Let L ∈ G and A ⊂ AL be a 
bounded subset with measure zero boundary with respect to dx and let (1.13) hold. Then

T d−1
ˆ

Rd−1

1A×ST E(x, Ln−(x)Φt) dx t→∞−−−→ T d−1
0 μ(ST0E)

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠(1.14)

uniformly for all T ∈ [T0, edtη].

Remark 1.6. We may assume, without loss of generality, that edtη ≥ T0. By Theorem 5.13, 
the right-hand side of (1.14) is also equal to

lim
t→∞

T d−1μ (STE)

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ .

Our final result is the equidistribution of translated Farey sequences (defined in 
Section 8.1) and a generalization of Marklof’s equidistribution result for the Farey se-
quence [13, Theorem 6], which we quote as Theorem 2.1.4 We use our final result as a 

4 Even when L = Id, the subsets of the translated Farey sequence in our result and the subsets of the 
Farey sequence in Theorem 2.1 are slightly different. As Marklof’s result and our result are key to the proofs 
of STHE for horospheres and translated horospheres, respectively, both results are stated for clarity.
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geometrical and dynamical tool to prove STHE in our other results. The subsets ÎQ of 
the translated Farey sequence corresponding to ΓLN− are defined in (8.6).

Theorem 1.7. Fix σ ∈ R. Let L ∈ G, A be an open ball in Rd−1 of radius r0 > 0, and

f : A× Γ\G → R

be the product of a bounded continuous function with an indicator function of a subset 
T ⊂ A × Γ\G such that the set{

(x,M) : (x, tM−1) ∈ T
}

(1.15)

has measure zero boundary with respect to dx dμH ds. Then, for Q = e(d−1)(t−σ), we 
have

lim
t→∞

e−d(d−1)σ

#(ÎQ)

∑
α′
αd

∈ÎQ

f

(
α′

αd
, Ln−

(
α′

αd

)
Φt

)

= (d− 1)
∞̂

σ

ˆ

A×ΓH\H

f̃(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

with f̃(x, M) := f(x, tM−1).

1.4. Outline of paper

We prove all of our STHE results for the case L = Id first, deferring the case of 
generic L ∈ G to after the definition and development of translated Farey sequences 
in Section 8.1. Our renormalization technique and Marklof’s result on the equidistribu-
tion of the Farey sequence (Theorem 2.1) are the two key ingredients in the proof of 
Theorem 1.3 given in Section 3. Theorem 1.5, the first case of spherical thickenings, is 
proved in Section 4. Cuspidal neighborhoods and Grenier coordinates (used to define 
Grenier boxes) are introduced and developed for our setting in Section 5, allowing for a 
proof of Theorem 1.1 in Section 5.3 under the assumption of disjointness (Lemma 6.1). 
Disjointness is shown for all of our setups for both stable horospherical and spherical 
thickenings in Section 6. Three generalizations of our spherical thickening result are 
stated and proved in Section 7, and the key ingredient in these proofs is a reverse outer 
product Cholesky factorization. Theorem 1.7, the equidistribution of translated Farey 
sequences, is proved in Section 8.4, and it is the key tool for proving our STHE results 
for generic L ∈ G in Section 8.5. Finally, we note that a key ingredient in the proof of 
Theorem 1.7 (and also Theorem 2.1) is a version of Shah’s theorem (Theorem 8.14 for 
the case of translated Farey sequences). This version of Shah’s theorem is a consequence 
of mixing and does not require Ratner’s theorems. We do, however, directly compute, in 
a simple way, orbit closures in Section 8.2 for our (limited) setting.
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2. The geometry and equidistribution of the Farey sequence

A key ingredient in our proofs of STHE for the case L = Id is Marklof’s result for 
the equidistribution of the Farey sequence. In this section, we state Marklof’s result and 
give a heuristic overview of the geometry of the Farey sequence, especially in relation to 
the horosphere. We give a precise description of this geometry in Section 8.

The key geometrical observation concerning the elements of the Farey sequence is 
that they, roughly speaking, anchor the horosphere to the section S1. In particular, the 
local intersection of the horosphere with S1 is exactly one point (Theorem 8.3), and 
these intersection points correspond to, as shown in [13], the elements of the Farey se-
quence (see Theorem 8.10 for a precise statement). For conciseness, we identify these 
intersection points with their corresponding elements of the Farey sequence. Under our 
flow Φt (for t ≥ 0), these elements of the Farey sequence (i.e. these intersection points) 
remain in the section S1 and, moreover, move higher into the cusp within S1 (see Sec-
tion 3). Consequently, the dynamics of the horosphere under the flow is determined by 
the dynamics of the Farey sequence under the flow, the latter of which is governed by 
the powerful equidistribution result of Marklof. This allows us to analyze the dynamics 
of the horosphere under the flow in a flexible way. Note that, in the case L = Id, we have 
that AL = Td−1 (Theorem 8.12).

To state Marklof’s result, let us introduce some notation. Let ds be the Lebesgue 
measure on R. Let Ẑd := {a = (a1, · · · , ad) ∈ Zd : gcd(a1, · · · , ad) = 1}. The elements 
of the Farey sequence

FQ :=
{
p

q
∈ [0, 1)d−1 : (p, q) ∈ Ẑd, 0 < q ≤ Q

}
(2.1)

become equidistributed on ST as Q → ∞. Precisely,

Theorem 2.1 ([13, Theorem 6]). Fix σ ∈ R. Let f : Td−1 × Γ\G → R be the product of 
a continuous bounded function with an indicator function of a subset T ⊂ Td−1 × Γ\G
such that the set

{
(x,M) : (x, tM−1) ∈ T

}
(2.2)
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has measure zero boundary with respect to dx dμH ds. Then, for Q = e(d−1)(t−σ), we 
have

lim
t→∞

e−d(d−1)σ

|FQ|
∑

r∈FQ

f(r, n−(r)Φt)

=d(d− 1)
∞̂

σ

ˆ

Td−1×ΓH\H

f̃(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

with f̃(x, M) := f(x, tM−1).

Note that

|FQ| ∼
Qd

dζ(d) as Q → ∞. (2.3)

We will always set σ = 0 when using this theorem as this corresponds to our section S1.

Remark 2.2. The generalization of Theorem 2.1 to any translated Farey sequence is given 
in Theorem 1.7.

3. Renormalization: proof of Theorem 1.3 for L = Id

In this section, we prove Theorem 1.3 for the case L = Id. Let dx̃ be the Haar measure 
on Rd−1, induced by the Haar measure dñ on N+, normalized so that the induced mea-
sure on Td−1 is a probability measure. Let Q := e(d−1)t. Recall the definition of N+

ε (ỹ)
from Section 1.3 and A from Section 1.1. Let us translate and thicken ST in the stable 
directions with N+

ε (ỹ). The notions of stable directions and of translating and thickening 
in these directions are well-defined in G because we can take the coordinates given in 
(5.11) in Section 5.2. In particular, there is a unique point of intersection of a (piece of 
a) horosphere with the section S1. We will estimate the volume of the intersection of a 
translate of A with the (translated and) thickened section STN

+
ε (ỹ).

Note first that, for x̃ ∈ Rd−1, conjugation gives us:

n+(x̃) = Φ 1
d log(T/T0)n+

(
T0

T
x̃

)
Φ− 1

d log(T/T0). (3.1)

Also recall that, for B ⊂ Γ\G, g, h ∈ G, we have that

1Bh(g) = 1B(gh−1). (3.2)

(Note that we use the convention that the argument of the indicator function is consid-
ered as an element in the homogeneous space Γ\G.)
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Recall that taking the transpose together with the inverse is an isometry and that 
(see [13, Equation(3.54)]) the point

Γt
(
n−(r)Φt

)−1 ∈ S1.

If the point Γt(n−(r)Φt)−1 intersects the section ST ⊂ S1, then the N+-volume of the 
horosphere through this unique intersection point and meeting the thickening is given 
by

fT,ε(r, n−(r)Φt) :=
ˆ

N+

1A×STN+
ε (ỹ)

(
r, t
(
n−(r)Φt

)−1
n+(x̃)

)
dñ(x̃).

Recall that we are given T ∈ [T0, edtη] and hence, in particular, we have that

lim
t→∞

(
t− 1

d
log(T/T0)

)
= ∞, (3.3)

which also allows for equidistribution when the Farey points are pushed with this slower 
time.

Lemma 3.1. Let

Q̃ = e(d−1)
(
t− 1

d log(T/T0)
)
.

We have that

T d−1

Qd

∑
r∈FQ

fT,ε(r, n−(r)Φt) = T d−1
0

Q̃d

∑
r∈F

Q̃

fT0,ε

(
r, n−(r)Φt− 1

d log(T/T0)
)
.

Proof. Since

1STn+(ỹ)

(
t
(
n−(r)Φt

)−1
n+(ỹ)

)
= 1ST

(
t
(
n−(r)Φt

)−1
)

holds by (3.2), we have that multiplying on the right by n+(ỹ) and using the right 
invariance of the measure dñ gives

fT,ε(r,n−(r)Φt) =
ˆ

N+

1A×STN+
ε (0)

(
r, t
(
n−(r)Φt

)−1
n+(x̃)

)
dñ(x̃).

We note that, using (3.2), the multiplication right-translates the center of the thickening 
to the point Γt(n−(r)Φt)−1.

Now consider slowing the speed of the flow pushing the Farey points from t to t −
1 log(T/T0). Using the observation that
d
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ST = ST0Φ− 1
d log(T/T0) (3.4)

holds, we see that Γt(n−(r)Φt)−1 meets ST if and only if Γt
(
n−(r)Φt− 1

d log(T/T0)
)−1

meets ST0 . Let us denote these intersections as follows:

I(r, t, T ) := Γt
(
n−(r)Φt

)−1 ∩ ST

J (r, t, T ) := Γt
(
n−(r)Φt− 1

d log(T/T0)
)−1

∩ ST0 .

Thus, in particular, we have that the mapping

z 	→ zΦ− 1
d log(T/T0)

is a bijection

ϕ : J (r, t, T ) −→ I(r, t, T )

whenever either set is nonempty. Since Γt(n−(r)Φt)−1 ∈ S1 for t large enough, applying 
the flow Φt̃ to n−(r) (i.e. considering n−(r)Φt+t̃) for t̃ ≥ 0 keeps it in S1, and, when 
t̃ is large enough, it will be (and stay) in ST0 . Hence these sets will be nonempty and 
continue to be nonempty for increasing t̃, which is guaranteed by (3.3).

Recalling that ST ⊂ ST0 , we have that the (piece of the) horosphere zN+
δ (0) for z ∈

J (r, t, T ) (whenever the set is nonempty) corresponds to the (piece of the) horosphere 
through ϕ(z), which is namely the set

zN+
δ (0)Φ− 1

d log(T/T0) = ϕ(z)N+
δT/T0

(0),

where the equality follows by an application of (3.1). We want the pieces to exactly 
match (i.e. ϕ(z)N+

ε (0) = ϕ(z)N+
δT/T0

(0)), and, hence, we have that

ε = δ
T

T0
.

Thus we have

fT0,δ(r, n−(r)Φt− 1
d log(T/T0)) (3.5)

=
ˆ

N+

1A×ST0N
+
εT0/T (0)

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1

n+(x̃)
)

dñ(x̃)

= 1A×ST0

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1
) ˆ

N+

1N+
εT0/T (0) (n+(x̃)) dñ(x̃)

= 1A×ST0

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1
) ˆ

1[
− εT0

2T ,
εT0
2T

]d−1 (x̃) dx̃

Rd−1
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= εd−1T
d−1
0

T d−11A×ST0

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1
)

= T d−1
0

T d−1 fT0,ε

(
r, n−(r)Φt− 1

d log(T/T0)
)
.

Here we have used the fact that
ˆ

N+

1N+
ε̃ (0) (n+(x̃)) dñ(x̃) =

ˆ

Rd−1

1[− ε̃
2 ,

ε̃
2
]d−1(x̃) dx̃.

Let Q̂ := QT− d−1
d . Now, at time t, we have that r ∈ FQ, but, in particular, if it 

determines a z ∈ I(r, t, T ), then r ∈ FQ̂ because all r ∈ FQ\FQ̂ will correspond to 
points on the horosphere that lie in S1\ST , and hence the following three sums, which 
gives the sum of the Haar measures of the intersections, are equal:∑

r∈FQ

fT,ε(r, n−(r)Φt) =
∑

r∈F
Q̃

fT,ε(r, n−(r)Φt) =
∑

r∈F
Q̂

fT,ε(r, n−(r)Φt).

We note that horospheres through different right-translated Farey points Γt(n−(r)Φt)−1

are disjoint, and thus the sum is over disjoint pieces, giving the total measure of the 
pieces with respect to the Haar measure dñ.

Note that Qd is, by direct computation, the Haar measure of Φ−tN−(Td−1)Φt on N−

(this is the Haar measure normalized so to induce the probability Haar measure dx), 
and, likewise, Q̃d is the Haar measure of Φ−t+ 1

d log(T/T0)N−(Td−1)Φt− 1
d log(T/T0) on N−. 

Applying ϕ to the horosphere on N+ changes the Haar measure by the factor T
d−1

Td−1
0

and 

hence preserves the ratio of Haar measures:

1
Qd

∑
r∈FQ

fT,ε(r, n−(r)Φt) = 1
Q̃d

∑
r∈F

Q̃

fT0,δ

(
r, n−(r)Φt− 1

d log(T/T0)
)
. (3.6)

Using (3.5), we obtain the following:

T d−1

Qd

∑
r∈FQ

fT,ε(r, n−(r)Φt) = T d−1
0

Q̃d

∑
r∈F

Q̃

fT0,ε

(
r, n−(r)Φt− 1

d log(T/T0)
)
.

This gives the desired result. �
Remark 3.2. Note that, in the lemma, when we apply ϕ, we also pull down ST to ST0 , 
and, thus, the number of intersection points of the expanding horosphere with ST is the 
same as with ST0 .

Lemma 3.1 allows us to apply Theorem 2.1 to T d−1fT,ε(r, n−(r)Φt) as follows. Recall 
that |FQ| ∼ Qd

as Q → ∞.
dζ(d)
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We have that

lim
t→∞

T d−1

|FQ|
∑

r∈FQ

fT,ε(r, n−(r)Φt) (3.7)

= lim
t→∞

T d−1
0
|FQ̃|

∑
r∈F

Q̃

fT0,ε(r, n−(r)Φt− 1
d log(T/T0))

= lim
t→∞

T d−1
0
|FQ̃|

∑
r∈F

Q̃

εd−11A×ST0

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1
)

= lim
t→∞

T d−1
0
|FQ̃|

∑
r∈F

Q̃

εd−11̃A×ST0

(
r, n−(r)Φt− 1

d log(T/T0)
)

= d(d− 1)T d−1
0 εd−1

∞̂

0

ˆ

Td−1×ΓH\H

1A×ST0
(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

= d(d− 1)T d−1
0 εd−1

∞̂

1
d log(T0)

ˆ

Td−1

1A(x) dx e−d(d−1)s ds

= εd−1
ˆ

Td−1

1A(x) dx.

Note, in particular, that, using the isometry given by taking transpose and inverse, we 
have applied Theorem 2.1 in the third equality to a product of a continuous bounded 
function with an indicator function, as required.

Since Qd = ed(d−1)t is the Haar measure of Φ−tN−(Td−1)Φt on N− and we have that

Γt
(
n−(r)Φt

)−1 ∈ S1,

the proportion of the translates of A meeting STN
+
ε (ỹ) for all T ≥ T0 is uniformly (as 

long as limt→∞
log(T 1/d)

t < 1) the following:

T d−1
ˆ

Td−1

1A×STN+
ε (ỹ)(x, n−(x)Φt) dx t→∞−−−→ 1

dζ(d)ε
d−1

ˆ

Td−1

1A(x) dx.

Here the indicator function is preserved under the isometry given by taking transpose 
and inverse. This proves Theorem 1.3.

4. Spherical directions: proof of Theorem 1.5 for L = Id

We now consider, in a simplified setting, thickenings in spherical directions or, equiv-
alently (see (1.7)), by subsets of SO(d, R). The simplified setting is as follows. First, we 
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require that thickenings be given by a chart contained in an open hemisphere because, 
as we will prove in Section 6.2, such thickenings do not self-intersect. Second, we restrict 
the set we thicken to all of ST . In particular, in this section, we will prove Theorem 1.5 in 
the case L = Id. We defer thickenings by more general sets, including the whole sphere, 
and thickenings of more general Grenier boxes in ST to Section 7.

We adapt the proof of Theorem 1.3 to give a proof of Theorem 1.5. Recall the defini-
tions of D, E , v, and c from Section 1.2. Let

z′ := c(z)−1v(z), (4.1)

cmin := min(
{
c(z) : z ∈ D

}
).

When (1.13) holds, we can change coordinates from coordinates involving the sphere 
(via (1.7)) to coordinates involving the expanding horospherical subgroup N+ (for the 
precise definition of the latter coordinates, see (5.11) and the beginning of Section 5.2):

Φ−sE(z)−1n+(−z′) (4.2)

=
(
es(A− twz′) es(tw)

0 e−(d−1)sc

)
=
(
c1/(d−1)(A− twz′) c−1eds(tw)

0 1

)(
esc−1/(d−1)Id−1

t0
0 e−(d−1)sc

)
=
(
c1/(d−1)(A− twz′) c−1eds(tw)

0 1

)
Φ−s+log c/(d−1).

Here the first equality follows by (4.1). It is immediate that

det(A− twz′) = c−1. (4.3)

Also, setting s = 0 in (4.2), taking the inverse, and rewriting gives the following:

Φ−sn+(z′)E(z) (4.4)

= Φ−s−log c/(d−1)
(
c1/(d−1)(A− twz′) c−1(tw)

0 1

)−1

= Φ−s−log c/(d−1)
(
c−1/(d−1)(A− twz′)−1 −c−d/(d−1)(A− twz′)−1(tw)

0 1

)
=
(
c−1/(d−1)(A− twz′)−1 −eds(A− twz′)−1(tw)

0 1

)
Φ−s−log c/(d−1).

Consider the family of thickenings in spherical directions:

{STE : T ≥ T0}. (4.5)
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Observe that, unlike for N+, the action of the flow Φ− 1
d log(T/T0) is not uniform on E , 

and, thus, the “shape” of these neighborhoods will change under different T .
Using (4.2), let us express STE in terms of the coordinates involving N+:

Lemma 4.1. We have that

STE = {STc−d/(d−1)n+(z′) : z ∈ D} .

Proof. Applying (4.2), we have that

ST E

= Γ\ΓH
{(

c1/(d−1)(A− twz′) c−1eds(tw)
0 1

)
Φ−s+log c/(d−1)n+(z′) : z ∈ D and s ≥ 1

d
log T

}
.

Fix z and s temporarily. By (4.3), have that

H

(
c1/(d−1)(A− twz′) c−1eds(tw)

0 1

)
= H

and, consequently,

Γ\ΓH
(
c1/(d−1)(A− twz′) c−1eds(tw)

0 1

)
Φ−s+log c/(d−1)n+(z′)

= Γ\ΓHΦ−s+log c/(d−1)n+(z′).

Taking the union over all z ∈ D and s ≥ 1
d log T yields the desired result. �

As in the proof of Theorem 1.3, we have that, if the point Γt(n−(r)Φt)−1 intersects 
the section S1, then, using Lemma 4.1, the N+-volume of the horosphere through this 
unique intersection point and meeting the neighborhood STE is given by

f̂T,D(r, n−(r)Φt) :=
ˆ

N+

1A×
{
S
Tc−d/(d−1)n+(z′):z∈D

} (r, t(n−(r)Φt
)−1

n+(x̃)
)

dñ(x̃).

More generally, for any α > 0, we have that the N+-volume of the horosphere through 
the unique intersection point and meeting the neighborhood

{STc−d/(d−1)n+(αz′) : z ∈ D}

is given by

f̂T,D,α(r, n−(r)Φt) =
ˆ

N+

1A×
{
S
Tc−d/(d−1)n+(αz′):z∈D

} (r, t(n−(r)Φt
)−1

n+(x̃)
)

dñ(x̃).
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Now note that STc−d/(d−1) ⊂ ST and ST0c−d/(d−1) ⊂ ST0 because c ≤ 1. Moreover, c
can be 1 because 0 ∈ D. Thus, we have that⋃

z∈D
STc−d/(d−1) = ST and

⋃
z∈D

ST0c−d/(d−1) = ST0 .

Let ũ ∈ ST . Then the intersection of the horosphere through ũ with the neighborhood

{STc−d/(d−1)n+ (αz′) : z ∈ D}

is the set

ũNT,α,D := ũNũ,T,α,D := ũN+ ∩ {STc−d/(d−1)n+ (αz′) : z ∈ D} .

Let u ∈ ST0 . By (3.1), we have that

uNT0,α,DΦ− 1
d log(T/T0) = uΦ− 1

d log(T/T0)
{
n+

(
T

T0
v

)
: n+(v) ∈ NT0,α,D

}
.

Recalling that the intersection of any expanding horosphere with the section S1 is a 
unique point, we have that

uΦ− 1
d log(T/T0)NT,αT/T0,D = uΦ− 1

d log(T/T0)
{
n+

(
T

T0
v

)
: n+(v) ∈ NT0,α,D

}
. (4.6)

Consequently, we have shown that

uΦ− 1
d log(T/T0)NT,αT/T0,D = uNT0,α,DΦ− 1

d log(T/T0). (4.7)

We now show the analog of Lemma 3.1.

Lemma 4.2. Let

Q̃ = e(d−1)
(
t− 1

d log(T/T0)
)
.

We have that

T d−1

Qd

∑
r∈FQ

f̂T,D(r, n−(r)Φt) = T d−1
0

Q̃d

∑
r∈F

Q̃

f̂T0,D(r, n−(r)Φt− 1
d log(T/T0)).

Proof. Recall the definitions of

I(r, t, T ), J (r, t, T ), ϕ



20 J. Tseng / Advances in Mathematics 432 (2023) 109255
from the proof of Lemma 3.1. Let w ∈ J (r, t, T ). We have that the intersection of the 
horosphere through w with 

{
ST0c−d/(d−1)n+(βz′) : z ∈ D

}
, namely the set wNT0,β,D, 

corresponds to the (piece of the) horosphere through ϕ(w), namely the set

wNT0,β,DΦ− 1
d log(T/T0) = ϕ(w)NT,βT/T0,D (4.8)

where the equality follows from (4.7). We want these pieces to exactly match, and, hence 
we must have that

β = T0

T
.

Consider

f̂T0,D,β(r, n−(r)Φt− 1
d log(T/T0))

=
ˆ

N+

1A×
{
S
T0c−d/(d−1)n+(βz′):z∈D

} (r, t(n−(r)Φt− 1
d log(T/T0)

)−1
n+(x̃)

)
dñ(x̃)

= 1A×S
T0c−d/(d−1)

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1
) ˆ

N+

1NT0,β,D (n+(x̃)) dñ(x̃).

Note that, we have
ˆ

N+

1NT0,β,D (n+(x̃)) dñ(x̃) =
ˆ

N+

1NT0,βT/T0,D

(
n+

(
T

T0
x̃

))
dñ(x̃)

=T d−1
0

T d−1

ˆ

N+

1NT0,1,D (n+ (ỹ)) dñ(ỹ)

by changing variables ỹ = T
T0
x̃, which implies that dỹ = Td−1

Td−1
0

dx̃ and, thus, dñ(ỹ) =
Td−1

Td−1
0

dñ(x̃).
Consequently, we have

f̂T0,D,β(r, n−(r)Φt− 1
d log(T/T0)) = T d−1

0
T d−1 f̂T0,D(r, n−(r)Φt− 1

d log(T/T0)). (4.9)

Using the same proof as in Lemma 3.1 to obtain (3.6), we obtain

1
Qd

∑
r∈FQ

f̂T,D(r, n−(r)Φt) = 1
Q̃d

∑
r∈F

Q̃

f̂T0,D,β

(
r, n−(r)Φt− 1

d log(T/T0)
)
. (4.10)

Using (4.9), we obtain the following:

T d−1

Qd

∑
r∈F

f̂T,D(r, n−(r)Φt) = T d−1
0

Q̃d

∑
r∈F

f̂T0,D(r, n−(r)Φt− 1
d log(T/T0)).
Q Q̃
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This gives the desired result. �
As in the proof of Theorem 1.3, we use Lemma 4.2 to apply Theorem 2.1:

lim
t→∞

T d−1

|FQ|
∑

r∈FQ

f̂T,D(r, n−(r)Φt) (4.11)

= lim
t→∞

T d−1
0
|FQ̃|

∑
r∈F

Q̃

f̂T0,D(r, n−(r)Φt− 1
d log(T/T0))

= lim
t→∞

T d−1
0
|FQ̃|

∑
r∈F

Q̃

1A×S
T0c−d/(d−1)

(
r, t
(
n−(r)Φt− 1

d log(T/T0)
)−1
)

ˆ

N+

1NT0,1,D (n+ (x̃)) dñ(x̃)

= lim
t→∞

T d−1
0
|FQ̃|

∑
r∈F

Q̃

1̃A×S
T0c−d/(d−1)

(
r,
(
n−(r)Φt− 1

d log(T/T0)
))

ˆ

N+

1NT0,1,D (n+ (x̃)) dñ(x̃)

=d(d− 1)T d−1
0

∞̂

0

ˆ

Td−1×ΓH\H

ˆ

N+

1A×S
T0c−d/(d−1) (x,MΦ−s)

1NT0,1,D (n+ (x̃)) dñ(x̃) dx dμH(M)e−d(d−1)s ds

=d(d− 1)T d−1
0

∞̂

0

ˆ

Td−1×ΓH\H

ˆ

N+

1A×
{
S
T0c−d/(d−1)n+(z′):z∈D

}(x,MΦ−sn+ (x̃))

dñ(x̃) dx dμH(M)e−d(d−1)s ds

=d(d− 1)T d−1
0

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠
⎛⎜⎝ ∞̂

0

ˆ

ΓH\H

ˆ

N+

1{S
T0c−d/(d−1)n+(z′):z∈D

}(MΦ−sn+ (x̃)) dñ(x̃) dμH(M)e−d(d−1)s ds

⎞⎟⎠
=dζ(d)T d−1

0 μ(ST0E)

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠ .
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The last equality follows by Theorem 5.12. Now, as in the proof of Theorem 1.3, we 
have that the proportion of the translates of A meeting STE for all T ≥ T0 is uniformly 

(as long as limt→∞
log(T 1/d)

t < 1) the following:

T d−1
ˆ

Td−1

1A×ST E(x, n−(x)Φt) dx t→∞−−−→ T d−1
0 μ(ST0E)

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠ . (4.12)

This proves Theorem 1.5.

5. Cuspidal neighborhoods

In this section, we define the family of cuspidal neighborhoods that we consider in 
Theorem 1.1. We use the Grenier fundamental domain [9,8] (first considered by Hermite 
and also by Korkine-Zolotareff [12]) because this domain is well-suited for the geometric 
constructions that we need to make as it has a “box shape” in the cusp (see exact box 
shape in [21, Section 1.4.3]). For similar reasons, the Grenier fundamental domain is 
also used in other settings such as in the construction of an Eisenstein series in harmonic 
analysis (see, for example, [10, Chapter 6] or [21, Section 1.5]) or working with the Epstein 
Zeta function [17]. For an introduction to this domain, a discussion of its history, and 
a comparison with the best known fundamental domain, the Minkowski fundamental 
domain, see [21, Section 1.4]. The facts about the Grenier fundamental domain that we 
use have been conveniently collated in [10, Chapter 1].

Let G̃ := G̃d := GL(d, R) and Γ̃ := Γ̃d := GL(d, Z). Here, Γ̃ is a discrete subgroup 
of G̃. Let G and Γ be as before. Let us denote the determinant one hypersurface of the 
space of positive symmetric matrices by

S P := S Pd := {gtg : g ∈ GL(d,R), |det(g)| = 1}.

The actions of G and Γ̃ on S P are by

[g]Z̃ := gZ̃tg (5.1)

for Z̃ ∈ S P and g ∈ G or g ∈ Γ̃.5 Let us consider a recursively-defined family of 
coordinates, called partial Iwasawa coordinates (see [21, Page 14] or [10, Pages 14-16]
where “coordinates” are replaced by “decomposition”). The first member of this family 
is the first-order Iwasawa coordinates

Z̃ =
[
Id−1

tx(d−1)

0 1

](
a
1/(d−1)
d Z̃(d−1) t0

0 a−1
d

)
(5.2)

5 This gives us a left action as in [10, Chapter 1], not the right action of Grenier.
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where Z̃(d−1) ∈ S Pd−1 and tx(d−1) is a column vector with d − 1 entries. The element 
Z̃(d−1) can also be expressed in first-order Iwasawa coordinates

Z̃(d−1) =
[
Id−2

tx(d−2)

0 1

](
a
1/(d−2)
d−1 Z̃(d−2) t0

0 a−1
d−1

)

where Z̃(d−2) ∈ S Pd−2 and tx(d−2) is a column vector with d − 2 entries. Directly 
computing, we obtain the second-order Iwasawa coordinates

Z̃ =

⎡⎣Id−2
tx(d−2) tx(d−1)

0 1
0 0 1

⎤⎦
⎛⎜⎝a

1/(d−1)
d a

1/(d−2)
d−1 Z̃(d−2)

a
1/(d−1)
d a−1

d−1
a−1
d

⎞⎟⎠ .

Recursively repeating this decomposition into higher order Iwasawa coordinates, we ob-
tain, at the final step, the full Iwasawa coordinates for Z̃ [10, Page 16, Equation (5)]:

⎡⎣1 xij

. . .
1

⎤⎦ y−1

⎛⎜⎜⎜⎜⎝
(yd−1yd−2 · · · y1)2

. . .
(yd−1yd−2)2

y2
d−1

1

⎞⎟⎟⎟⎟⎠ (5.3)

where y := ad, y2
� := a

(�+1)/�
�+1 a−1

� for an integer 1 ≤ � ≤ d − 1, and xij is the entry in the 
i-th row and j-th column of

⎡⎣1 xij

. . .
1

⎤⎦ :=

⎡⎢⎢⎢⎢⎢⎣
1 tx(1) · · · tx(d−2) tx(d−1)

0 1

0 0
. . .

...
... 1

0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Note that the partial Iwasawa coordinates allow us to embed lower rank spaces S Pm

into S Pd, which we regard as an identification [9].
The subgroup Γ̃ acts properly continuously on S P and a fundamental domain Fd

(the Grenier fundamental domain) is recursively defined as the set of all Z̃ ∈ S P

satisfying for all primitive vectors (p, q) ∈ Zd the following three properties [10, Page 17-
18]:

Gren 1 ad(p, q)Z̃
(

tp
q

)
≥ 1.

Gren 2 Z̃(d−1) ∈ Fd−1.

Gren 3
{

0 ≤ x
(d−1)
j ≤ 1/2 if j = 1

|x(d−1)| ≤ 1/2 if j = 2, · · · , d− 1.
j
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Note that the notation xj denotes the j-th entry of a vector x. The fundamental domain 
Fd can be identified with the space Γ̃\S P. For d odd, we note that Γ̃\S P = Γ\S P

and thus note that F ′
d := Fd is a fundamental domain for Γ\S P. For d even, 

the domain of Γ̃\S P is strictly smaller. Since we have that Γ̃ = {Γ, Γγ} where 
γ := diag(1, · · · , 1, −1), it follows that F ′

d := Fd ∪ [γ]Fd is a fundamental domain 
for Γ\S P.6

Because our targets are shrinking into the cusp, we do not need to work with the fun-
damental domain F ′

d but may instead work with geometrically simpler sets (Lemma 5.1). 
These geometrically simpler sets are the Siegel sets for F ′

d, denoted by S̃ie
(d)
T for a real 

number T > 0 and defined as follows (notation as in (5.3)):

S̃ie
(d)
T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Z̃ ∈ S P :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ x1j ≤ 1/2 for j = 2, · · · , d− 1
|x1j | ≤ 1/2 for j = d

|xij | ≤ 1/2 for 2 ≤ i < j ≤ d

y2
� ≥ T for � = 1, · · · , d− 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ if d is even,

⎧⎪⎪⎨⎪⎪⎩Z̃ ∈ S P :

⎧⎪⎪⎨⎪⎪⎩
0 ≤ x1j ≤ 1/2 for j = 2, · · · , d
|xij | ≤ 1/2 for 2 ≤ i < j ≤ d

y2
� ≥ T for � = 1, · · · , d− 1

⎫⎪⎪⎬⎪⎪⎭ if d is odd.

(5.4)

The importance of Siegel sets is that they bound the Grenier fundamental domain:

Lemma 5.1. S̃ie
(d)
1 ⊂ F ′

d ⊂ S̃ie
(d)
3/4.

Proof. The proof is analogous to the proof of [10, Chapter 1, Theorem 5.1] with our 
Siegel set S̃ie

(d)
T and domain F ′

d replacing, respectively, the Siegel set Sie(d)
T and domain 

F±
d defined in [10, Page 20-21]. �
To identify S P with the group NA where A ⊂ G is the subgroup of diagonal matrices 

with all positive entries and N ⊂ G is the unipotent upper triangular subgroup, we apply 
the diffeomorphism ϕ : S P → NA in which [n]a2 	→ na. (Our diffeomorphism ϕ is the 
inverse of the diffeomorphism ϕ+ from [10, Chapter 2, Proposition 2.2].) This is well-
defined because our Lie groups are defined over the real numbers.

Now recall the definitions of K and K ′ in Section 1.2. Consider the following(
B tb
0 1

)
=
(
Id−1

tb
0 1

)(
Z t0
0 1

)(
k t0
0 1

)
(5.5)

6 Our choice of γ is for convenience. Let Δd ⊂ Γ̃ be the subgroup of diagonal matrices with ±1 as 
diagonal elements. Then replacing γ with another element of determinant −1 in {±Id}\Δd will yield 
another fundamental domain for Γ\S P when d is even. Our results are not affected by this choice except 
for the explicit construction of Siegel sets in (5.4) and of Grenier boxes (defined in Section 1.2). The explicit 
constructions for any of these choices can be easily derived if desired.
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where B ∈ SL(d − 1, R) and can be uniquely written in Iwasawa coordinates as B = Zk

where k ∈ K ′ and ϕ−1(Z) ∈ S Pd−1. (Here we are using the identification of S Pd−1

with the subspace of S P given by the partial Iwasawa coordinates.) Let us apply the 

diagonal flow Φ− log y
2(d−1) to (5.5) on the right:

Lemma 5.2. We have that

(
B tb
0 1

)(
y1/2(d−1)Id−1

t0
0 y−1/2

)

=

⎛⎝1 xij

. . .
1

⎞⎠ y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
k t0
0 1

)
.

(5.6)

Proof. We will use the diffeomorphism

(ϕ, id) : S P ×K → G ([na], k) 	→ nak.

Equation (5.5) yields

(
B tb
0 1

)(
y1/2(d−1)Id−1

t0
0 y−1/2

)
=
(
Id−1

tb
0 1

)(
Z t0
0 1

)(
y1/2(d−1)Id−1

t0
0 y−1/2

)(
k t0
0 1

)
,

to the right-hand side of which we apply the diffeomorphism (ϕ, id)−1 to obtain

([
Id−1

tb
0 1

] [
Z t0
0 1

] [
y1/2(d−1)Id−1

t0
0 y−1/2

]
,

(
k t0
0 1

))
=
([

Id−1
tb

0 1

](
y1/(d−1)ϕ−1(Z) t0

0 y−1

)
,

(
k t0
0 1

))
.

Applying first (5.3) and then the diffeomorphism (ϕ, id) to the right-hand side of this 
equation yields the desired result. �

Note that any point z in H{Φ−s : s ∈ R} can be uniquely expressed in the form 
(5.6), which we refer to as the Grenier coordinates, and the value of y in this expression 
is called the height of this point, a well-defined notion because of the uniqueness of the 
expression. Moreover, in Grenier coordinates, the height can be expressed as
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yd =
d−1∏
k=1

y
2(d−k)
d−k . (5.7)

Let us denote the height of z by h(z).

Remark 5.3. The Grenier coordinates yield a fundamental domain ϕ(F ′
d)K ′ for the left-

action of Γ on ΓH{Φ−s : s ∈ R}, and, therefore, allows us to identify ϕ(F ′
d)K ′ with S0

and ϕ(S̃ie
(d)
1 )K ′ with S1.7

Remark 5.4. For conciseness, let us identify ϕ(F ′
d) with F ′

d, ϕ(S̃ie
(d)
T ) with S̃ie

(d)
T , and, 

henceforth, omit ϕ from the notation.

Recall from Section 1.2 the definition of a Grenier box C := CT−,T+ := C(α, γ, K̃, β−
ij ,

β+
ij) and its lower height T− and upper height T+. Since (5.7) holds, we note that the 

height of any point in C lies between T− and T+. Note that C ⊂ S1.8 Also note that (5.6)
relates two sets of coordinates for the points of S1, namely the left-hand side, which we 
refer to as first-order section coordinates and the right-hand side, which we refer to as 
full section coordinates.

By considering full section coordinates, we see that the only way to approach the cusp 
is to let at least one of the yk → ∞; consequently, should at least one of the components 
of γ be ∞, then our neighborhood meets the cusp and conversely. This equivalence can 
be reformulated in terms of the upper height:

Lemma 5.5. The set CT−,T+ is relatively compact if and only if T+ < ∞.

Proof. We first prove the direct implication. Every point in the set CT−,T+ can be written 
in coordinates given by (5.6). Using the definition of the Grenier domain and the fact that 
K̃ is relatively compact implies that each yk coordinate must be bounded. Consequently, 
T+ < ∞.

We now prove the inverse implication. Since the height of any point in the neighbor-
hood is less than or equal to T+ and since all of the yk’s are bounded from below for 
any point in the Grenier domain, the condition (5.7) implies that all of the yk’s for this 
neighborhood are bounded from above, which gives the desired result. �
7 One can also give a fundamental domain for the left-action of Γ on G using the Grenier coordinates. 

As the kernel of the representation γ 	→ [γ] of Γ̃ in Aut(S P) is ±Id [10, Page 6] and under ϕ the action 
given by [·] is mapped to the left-action on G, we have a fundamental domain for the left-action by Γ on 
G to be ϕ(F ′

d)K when d is odd. On the other hand, we have −Id ∈ Γ for d even and thus ϕ(F ′
d)K+ is 

a fundamental domain where K+ is a set of coset representatives of K\±Id. While many choices of K+
exist, we require that every element of K+ has nonnegative (d, d)-th entry. Note that, as the condition that 
the (d, d)-th entry is equal to zero yields a measure zero set, we have that ϕ(F ′

d)K+ is a Borel set. Also 
note that, in particular, K′ ⊂ K+, and, thus, our Grenier boxes (defined in Section 1.2) lie within this 
fundamental domain for the left Γ-action on G.
8 Here and below, we identify C with Γ\ΓC using context to distinguish between them if needed. This 

allows us to more quickly develop our main results. Since the lower heights of interest to us will always be 
large enough so that C lies in a fundamental domain for the left Γ-action, this identification is justified.
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5.1. Applying the flow to C

Let T ≥ 0. Using (5.6) (or, equivalently, the standard coordinates [10, Page 15] under 
ϕ) and that (

T 1/(d−1)Id−1
t0

0 T−1

)
(5.8)

commutes with K ′, we have the following relationship:

CT := C
(
(α1, · · · , αd−2, T

d/(d−1)αd−1), (γ1, · · · , γd−2, T
d/(d−1)γd−1), K̃, β−

ij , β
+
ij

)
= C
(
(α1, · · · , αd−1), (γ1, · · · , γd−1), K̃, β−

ij , β
+
ij

)(
T 1/(d−1)Id−1

t0
0 T−1

)
. (5.9)

In particular, note that applying (on the right) the flow given by (5.8) to C changes only 
the yd−1-coordinate and that letting T → ∞ flows the neighborhood C towards the cusp 
along only the yd−1-coordinate, while leaving invariant all other coordinates.

5.2. Volumes

We must compute the volumes of the thickenings of C, CT . To do this, we parametrize 
G following [13] to obtain a convenient normalization for the Haar measure on Γ\G.

For d ≥ 3 and odd, let

Ĩd−1 :=
(
Id−2

t0
0 −1

)
. (5.10)

Now given y := (y1, · · · , yd) ∈ Rd where yd �= 0, set y′ := (y1, · · · , yd−1) and form the 
matrix

My :=

⎧⎪⎪⎨⎪⎪⎩
(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
if yd > 0(

(−yd)−1/(d−1)Id−1
t0

−y′ −yd

)
if yd < 0

and note that the mapping

H ×Rd\(Rd−1 × {0}) → G

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(M,y) 	→ MMy if yd > 0
(M,y) 	→ −IdMMy if yd < 0 and d is even

(M,y) 	→
(
Ĩd−1

t0
0 −1

)
MMy if yd < 0 and d is odd

(5.11)
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provides a parametrization of G (except for the null set {A ∈ G : (0, 1) A t(0, 1) = 0}). 
Also note that the use of (

Ĩd−1
t0

0 −1

)
is a natural choice, but not the only one. Other choices would lead to different parame-
terizations, but would not change the results in this paper.

Using Iwasawa coordinates, we have that

My =

⎧⎪⎪⎨⎪⎪⎩
(
y
−1/(d−1)
d Id−1

t0
0 yd

)(
Id−1

t0
y−1
d y′ 1

)
for yd > 0(

(−yd)−1/(d−1)Id−1
t0

0 −yd

)(
Id−1

t0
y−1
d y′ 1

)
for yd < 0

,

which allows us to derive the following explicit formula for the right Haar measure on{
My ∈ G : y ∈ Rd\(Rd−1 × {0})

}
,

namely

dy = |yd|d
dyd
|yd|

dy1 · · · dyd−1

|yd|d−1 = dy1 · · · dyd. (5.12)

Note that the leading factor of |yd|d is the modular function. Recall that dμH = dμ0 db
is the left Haar measure on H, normalized so that μH (ΓH\H) = 1, which, in turn, 
implies that the Haar measure on G in this parametrization is

dμH dy. (5.13)

It, thus, must be a constant multiple of the Haar measure μ on G, normalized so 
that μ(Γ\G) = 1. Now, a well-known result of Siegel shows that the volume of Γ\G
is ζ(d) · · · ζ(2), which implies that

dμdt
t

= (ζ(d) · · · ζ(2))−1 det(X)−d
d∏

i,j=1
dXij , (5.14)

where X = (Xij) = t1/dA ∈ GL+(d, R) and A ∈ G. Thus, in view of our parametrization, 
we have that (c.f. [13, Equation (3.39)])

dμ = ζ(d)−1 dμH dy. (5.15)

See [1, Section 4.1] for a similar construction.
Finally, we have
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Lemma 5.6. We have

dμtH−1 = dμH .

Proof. Note first that the measure dμ0 on SL(d − 1, R) is invariant under taking the 
inverse, which is an involutive anti-automorphism, because SL(d − 1, R) is unimodular 
([4, Proposition 1.3]).

As (
A tb
0 1

)−1

=
(
A−1 −A−1tb
0 1

)
and det(A−1) = 1, we have the right-invariant Haar measure dμH−1 = dμ0db. As taking 
the transpose is another involutive anti-automorphism on SL(d − 1, R), we have the 
left-invariant Haar measure dμtH−1 = dμ0db = dμH . �
5.2.1. Volume ratios of C and CT and section coordinates

Let

Φ̃ :=
{(

y1/(d−1)Id−1
t0

0 y−1

)
: y > 0

}
.

In this section, we express the left Haar measure of the group HΦ̃ in terms of first-order 
and full section coordinates and use the latter to compute the ratio of the volumes of C
and CT . First note that H is normal in HΦ̃, which leads to the modular function y−d

and thus a left Haar measure

y−ddμH
dy
y

(5.16)

for HΦ̃ in first-order section coordinates.
We now give a left Haar measure in full section coordinates. Let dn be the Haar 

measure on the subgroup N of upper unipotent matrices in G (under the usual identi-
fication [3, Chapter V, Lemma 2.2]) and da denote the Haar measure on the subgroup 
A of diagonal matrices of G with all positive entries on the diagonal (under the usual 
identification [3, Chapter V, Lemma 2.3]). With the modular function

ρ(a) =
∏
i<j

aj
ai

, (5.17)

the measure ρ(a) dn da is a left-Haar measure on NA [3, Chapter V, Lemma 2.4]. Recall 
that dk̃ is a Haar measure on K ′.

Lemma 5.7. We have that ρ(a) dn da dk̃ is a left Haar measure on HΦ̃ = NAK ′.
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Proof. By (5.6), we have that HΦ̃ = NAK ′. Let ρNAK′ and ρK′ be the modular func-
tions of NAK ′ and K ′, respectively. As K ′ is compact, we have that ρNAK′ |K′ = 1 and 
ρK′ = 1. Consequently, it follows that there exists a (left) NAK ′-invariant regular Borel 
measure ν, unique up to scalar multiple, on the homogeneous space NAK ′/K ′ such that 
dν dk̃ is a left Haar measure on NAK ′ [2, Corollary B.1.7]. Pushing forward ν via the 
homeomorphism NAK ′/K ′ ∼= NA yields a left Haar measure on NA. The desired result 
now follows. �

Thus by (5.16) and the lemma, we have that

y−d dμH
dy
y

= C0ρ(a) dn da dk̃ (5.18)

for a fixed positive constant C0. Using this, we could compute the measure of CT explic-
itly, but we only need a ratio:

Lemma 5.8. We have that˚
1CT (nak̃)ρ(a) dn da dk̃ = 1

T d

˚
1C(nak̃)ρ(a) dn da dk̃.

Proof. Recall from (5.9) that CT and C have the same K̃ and, hence, the integral over 
dk̃ cancels. Recall that the flow (

T 1/(d−1)Id−1
t0

0 T−1

)
commutes with K ′ and hence we can change coordinates

ã = a

(
T 1/(d−1)Id−1

t0
0 T−1

)
.

Note that

1CT (nãk̃) = 1C(nak̃).

Using (5.17) and the coordinates given by (5.6), we have that

ρ(ã) = 1
T d

ρ(a)

and, hence, we have that
ˆ
1CT (nãk̃)ρ(ã) dã =

ˆ
1C(nak̃)ρ(ã) dã = 1

T d

ˆ
1C(nak̃)ρ(a) da.

Finally, recall that the x-coordinates of CT and C are the same. Consequently, we have 
our desired result. �
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5.2.2. Volumes of thickened neighborhoods
Let B ⊂ Td−1. Let us now thicken our neighborhoods:

CN+(B) and CTN+(B).

Theorem 5.9. We have that

μ(CN+(B))

= 1
ζ(d)

⎛⎝ ˆ

Rd−1

1B(y′) dy′

⎞⎠(¨ 1C

(
M

(
y1/(d−1)Id−1

t0
0 y−1

))
y−d dμH

dy
y

)
.

Proof. Using (5.12) and (5.15) and changing variables yd 	→ y−1, we have

μ(CN+(B))

= ζ(d)−1
˚

1CN+(B)

(
M

(
y1/(d−1)Id−1

t0
0 y−1

)(
Id−1

t0
yy′/y 1

))
y−d dμH

dy
y
yd−1 dy′

yd−1

= ζ(d)−1
¨

1C

(
M

(
y1/(d−1)Id−1

t0
0 y−1

))(ˆ
1N+(B)

((
Id−1

t0
yy′/y 1

))
yd−1 dy′

yd−1

)
y−d dμH

dy
y
.

Now we have that
ˆ
1N+(B)

((
Id−1

t0
yy′/y 1

))
yd−1 dy′

yd−1 =
ˆ
1N+(B)

((
Id−1

t0
y′ 1

))
dy′

=
ˆ

Rd−1

1B(y′) dy′,

giving the desired result. �
Corollary 5.10. We have that

μ(CTN+(B)) = 1
T d

μ(CN+(B))

= 1
ζ(d)T d

⎛⎝ ˆ

Rd−1

1B(y′) dy′

⎞⎠(¨ 1C

(
M

(
y1/(d−1)Id−1

t0
0 y−1

))
y−d dμH

dy
y

)
.

Proof. Conjugation gives

N+(B) =
(
T 1/(d−1)Id−1

t0
−1

)−1

N+(T−d/(d−1)B)
(
T 1/(d−1)Id−1

t0
−1

)
.
0 T 0 T
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Since the diagonal flow preserves the Haar measure, we have that

μ(CTN+(B)) = μ
(
CN+(T−d/(d−1)B)

)
,

which, using Theorem 5.9, gives the desired result. �
Using full section coordinates, we could explicitly compute volumes for CT to obtain 

a formula in terms of α, γ, K̃, β+
ij , β

−
ij , and T . However, we will do this only in the case 

of ST :

Corollary 5.11. We have that

μ(STN
+(B)) = 1

dζ(d)
1

T d−1

ˆ

Rd−1

1B(y′) dy′.

Proof. Changing variables y = e(d−1)s in Theorem 5.9, we obtain

μ(STN
+(B)) = d− 1

ζ(d)

⎛⎝ ˆ

Rd−1

1B(y′) dy′

⎞⎠(¨ 1ST

(
MΦ−s

)
dμH e−d(d−1)s ds

)

= d− 1
ζ(d)

⎛⎝ ˆ

Rd−1

1B(y′) dy′

⎞⎠
⎛⎜⎝ ∞̂

1
d log(T )

e−d(d−1)s ds

⎞⎟⎠
= 1

dζ(d)
1

T d−1

ˆ

Rd−1

1B(y′) dy′. �

Finally, recall the definition of E from Section 1.2. We now compute the volume of 
ST E (also see Theorem 9.1 for a generalization).

Theorem 5.12. We have that

μ(STE) = d− 1
ζ(d)

˚
1{S

Tc−d/(d−1)n+(z′):z∈D
} (MΦ−sn+(x̃)

)
dμH(M)e−d(d−1)s ds dx̃.

Proof. Using (5.12), (5.15) and Lemma 4.1 and changing variables yd 	→ y−1, we have

μ(STE) = ζ(d)−1
˚

1{S
Tc−d/(d−1)n+(z′):z∈D

} (M (y1/(d−1)Id−1
t0

0 y−1

)(
Id−1

t0
yy′/y 1

))
y−d dμH

dy
y
yd−1 dy′

yd−1 .
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Changing variables y = e(d−1)s, we obtain

μ(STE)

= d− 1
ζ(d)

˚
1{S

Tc−d/(d−1)n+(z′):z∈D
} (MΦ−s

(
Id−1

t0
y′ 1

))
dμHe−d(d−1)s ds dy′,

giving the desired result. �
We also have an analog of Corollary 5.10 for STE (also see Theorem 9.2 for a gen-

eralization). First note that we can choose a convenient parametrization of G using full 
section coordinates (see (5.6)) and the Iwasawa decomposition of G. Namely, any element 
of G can be expressed as

⎛⎝1 xij

. . .
1

⎞⎠ y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
k t0
0 1

)
k̂

(5.19)

where k̂ ∈ K ′\ SO(d, R). Recall dk is the probability Haar measure on SO(d, R). It is 
well-known that ρ(a) dn da dk is a Haar measure on G [3, Chapter V, Lemma 2.5]. 
Since SO(d, R) and K ′ are both unimodular, there exists ([2, Corollary B.1.7]) a 
right K-invariant regular Borel measure dk′ (unique up to positive scalar multiple) on 
K ′\ SO(d, R) such that

dk = dk̃ dk′. (5.20)

Theorem 5.13. We have that

μ(STE) = T d−1
0

T d−1μ(ST0E).

Proof. We use full section coordinates and, in particular, Lemma 5.8. Let C := ST0 and

T̃ :=
(

T

T0

) d−1
d

.

Then, by (5.9), we have that CT̃ = ST . Since ST0 contains all of Γ\ΓH, then, using (5.5), 
we have that K̃ is all of K ′ where K̃ is the set defined in (1.5).

For g ∈ SO(d, R), let us denote its image under the natural projection map SO(d, R) →
K ′\ SO(d, R) by [g] and, similarly for subsets Ẽ ⊂ SO(d, R), let us denote its image by 
[Ẽ ] := {[g] : g ∈ Ẽ}. We note that [K̃E ] = [E ]. Using (5.20) and Lemma 5.7, we have
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˚
1CT̃ E(nak)ρ(a) dn da dk

=
˘

1CT̃ [E](nak̃k
′)ρ(a) dn da dk̃ dk′

=
(˚

1CT̃ (nak̃)ρ(a) dn da dk̃
)(ˆ

1[E](k′) dk′
)

= 1
T̃ d

(˚
1C(nak̃)ρ(a) dn da dk̃

)(ˆ
1[E](k′) dk′

)
= T d−1

0
T d−1

˘
1C[E](nak̃k′)ρ(a) dn da dk̃ dk′

= T d−1
0

T d−1

˚
1CE(nak)ρ(a) dn da dk,

where the third equality follows by an application of Lemma 5.8 with C and CT̃ . Since 
ρ(a) dn da dk is a positive constant multiple of the Haar measure μ, the desired result 
is immediate. �
5.3. Proof of Theorem 1.1 for L = Id

Recall the definition of C from Section 1.2 and that, in particular, it has lower height 
T− (which is a fixed constant). Set

T0 := T
d/2(d−1)
− .

Now consider the neighborhood C(TT−1
0 )(d−1)/d , which, by (5.9), is

C̃T := C(TT−1
0 )(d−1)/d

= CΦ− 1
d log(T/T0) (5.21)

and, using (5.6), has lower height T 2(d−1)/d. Note that the lower height of ST0 is the 
same as that of C, and the lower height of ST is the same as that of C̃T .

Recall that C̃T ⊂ S1 and we can (translate and) thicken this neighborhood by N+
ε (ỹ), 

namely we consider the set C̃TN+
ε (ỹ). As in the proof of Theorem 1.3, if the point 

Γt(n−(r)Φt)−1 intersects the neighborhood C̃T , then the N+-volume of the horosphere 
through this unique intersection point and meeting the thickening is given by

f̂T,ε(r, n−(r)Φt) :=
ˆ

N+

1A×C̃TN+
ε (ỹ)

(
r, t
(
n−(r)Φt

)−1
n+(x̃)

)
dñ(x̃).

Recall that we are given T ∈ [T d/2(d−1)
− , edtη]. We have the following lemma:

Lemma 5.14. Let

Q̃ = e(d−1)
(
t− 1

d log(T/T0)
)
.
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We have that

T d−1

Qd

∑
r∈FQ

f̂T,ε(r, n−(r)Φt) = T d−1
0

Q̃d

∑
r∈F

Q̃

f̂T0,ε

(
r, n−(r)Φt− 1

d log(T/T0)
)
.

Proof. Replace ST0 with C and ST with C̃T and use (5.21) in place of (3.4) in the proof 
of Lemma 3.1. We note that the set

Γt
(
n−(r)Φt− 1

d log(T/T0)
)−1

∩ C

is nonempty for all t large enough by (3.3) and Theorem 2.1. This yields the desired 
result. �

Using Lemma 5.14 in place of Lemma 3.1 in (3.7) yields

lim
t→∞

T d−1

|FQ|
∑

r∈FQ

f̂T,ε(r, n−(r)Φt) (5.22)

= d(d− 1)T d−1
0 εd−1

∞̂

0

ˆ

Td−1×ΓH\H

1A×C(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

= T d−1
0 dζ(d)μ

(
CN+

ε (ỹ)
) ˆ

Td−1

1A(x) dx.

Since

εd−1 =
ˆ

Rd−1

1N+
ε (ỹ)(y

′) dy′,

the second equality follows by changing variables y = e(d−1)s in Theorem 5.9. Conse-
quently, we have that

lim
t→∞

T d−1

Qd

∑
r∈FQ

f̂T,ε(r, n−(r)Φt) = T d−1
0 μ

(
CN+

ε (ỹ)
) ˆ

Td−1

1A(x) dx.

Now following the rest of the proof of Theorem 1.3, we have that

T d−1
ˆ

A

1C̃TN+
ε (ỹ)(n−(x)Φt) dx t→∞−−−→ T d−1

0 μ
(
CN+

ε (ỹ)
) ˆ

Td−1

1A(x) dx,

which completes the proof of Theorem 1.1 (when L = Id) for B = N+
ε (ỹ).

Finally, note that if we replace N+
ε (ỹ) with N+(B), the proof works provided that 

the thickening given by C̃TN+(B) does not self-intersect on Γ\G. By Lemma 6.1, the 
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latter condition is satisfied by choosing B ⊂
(

1√
d

( 3
4
)(d−1)/2

T
)
Zd−1\Rd−1. This proves 

Theorem 1.1 for L = Id.

6. Disjointness of translates of neighborhoods of ST

In this section, we give conditions for the disjointness of translates for stable directions 
and for spherical directions. Our aim is to understand how much we can thicken without 
overlaps. Pick a T ≥ 1. Recall that the lower height of C̃T is the same as that of ST , and, 
thus, C̃T ⊂ ST . Consequently, it suffices to consider the disjointness of translates of ST .

6.1. Stable directions

Consider elements of the set

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }n+(x̃1)

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }n+(x̃2).

Without loss of generality, by setting x̃ := x̃1 − x̃2, we may consider instead elements 
of the set

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }n+(x̃)

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }.

Such an element can be expressed as the following equality

γMΦ−sn+(x̃) = γ̂M̂Φ−ŝ, (6.1)

for some γ, ̂γ ∈ Γ, M, M̂ ∈ H and s, ̂s ≥ log T/d. Let

γ−1γ̂ :=
(
N tm
p q

)
M :=

(
B tb
0 1

)
M̂ :=

(
B̂ tb̂
0 1

)
. (6.2)

Computing using (6.1), we obtain the following:

x̃ = e(d−1)s+ŝpB̂. (6.3)

Note that, by (5.6), M̂ is an element in the Grenier domain of height 1.

Lemma 6.1. We have that

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }n+(x̃1)

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }n+(x̃2) = ∅

for all x̃1 �= x̃2 mod (CdT )Zd−1, where Cd is a constant depending only on Γ and d
and, for which, we have the following bounds:

Cd = 1 for d = 2
Cd ≥ 1√

( 3)(d−1)/2 for d > 2.

d 4
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Proof. For d = 2, we have that B̂ = 1 by the definition of H, and, using this in (6.3), 
the desired result is immediate.

For d > 2, let n ∈ Zd−1\{0} and α ∈ R. Using (5.6) and the observation that M̂ has 
height 1, we have that

(n, α) M̂

= (n, α)

⎛⎝1 xij

. . .
1

⎞⎠
⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
k t0
0 1

)
.

Since n ∈ Zd−1\{0}, multiplying the matrices gives us that∥∥∥∥∥∥(n, α)

⎛⎝1 xij

. . .
1

⎞⎠∥∥∥∥∥∥
∞

≥ 1.

Recalling that all the y2
d−k ≥ 3/4 ([10, Chapter 1, Lemma 4.1]) and that the rotation(

k t0
0 1

)
is invariant under ‖ · ‖2, we obtain our desired result when we set α = −ntb̂, set p = n

in (6.3), and note that (
p,−ptb̂

)
M̂ =

(
pB̂,0

)
. �

Remark 6.2. Note that Cd ≤ 1 in the lemma because we have that

Φ− 1
d logTn+(ejT ) =

(
Id−1

t0
ej 1

)
Φ− 1

d logT

for all j where {ej} is the set of standard basis vectors of Zd−1.

6.2. Spherical directions

Recall the definitions of z, E, D, and E from Section 1.2. Recall that

h0 :=

⎧⎨⎩1 if d = 2
√
d
( 4

3
) d−1

2 if d ≥ 3
.

Pick T > h0. Using Iwasawa decomposition and (5.6), we have that every element of
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H{Φ−s : s ∈ R≥ 1
d logT } SO(d,R) (6.4)

can be uniquely written as

⎛⎝1 xij

. . .
1

⎞⎠ y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
k t0
0 1

)
k̂

(6.5)

where k ∈ SO(d − 1, R) and k̂ ∈ K ′\ SO(d, R). Now (1.9) yields a diffeomorphism, call 
it ψ, between D and a submanifold of Sd−1 because it yields an injective immersion 
immediately and is, in fact, a proper map. To see that ψ is a proper map, one notes 
that any compact subset K of ψ(D) is closed and, hence, so is ψ−1(K), which because it 
also bounded must be compact. Consequently, we have made the first part of following 
observation:

Lemma 6.3. Given (ṽ, ̃c) ∈ edE(D)−1, there exists a unique z ∈ D and its corresponding 
element

E(z)−1 :=
(
A(z) tw(z)
v(z) c(z)

)
such that

(ṽ, c̃) = (v(z), c(z)).

Moreover, for each z ∈ D, E(z)−1 lies in a unique equivalence class of K ′\ SO(d, R).

Proof. For the second part, note that if E(z) and E(z̃) lie in the same equivalence class, 
then

E(z) =
(
k t0
0 1

)
E(z̃)

for some k ∈ SO(d − 1, R). Applying ed on the left yields the desired result. �
Remark 6.4. Hence, the lemma implies that for any element of E ⊂ SO(d, R), we may 

identify the equivalence class ̂E(z)−1 with the element E(z)−1 in (6.5). This continues to 
hold true even if, in (6.4), we replace H by a subset of H comprised of elements expressed 
uniquely as in (5.5) for a proper subset K̃ from (1.5). In particular, if we replace k̂ by 
E(z)−1, the decomposition (6.5) yields unique coordinates for the elements of

H{Φ−s : s ∈ R≥ 1 logT }E .
d
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6.2.1. The hemispherical case
We will first consider the case in which

c(D) > 0 (6.6)

holds. We note that in this case the induced diffeomorphism (1.9) is really into a hemi-
sphere.

Theorem 6.5. Let (6.6) hold and T > h0. For z1, z2 ∈ D, we have that

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }E(z1)−1

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }E(z2)−1 = ∅

whenever z1 �= z2.

Proof. The set

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }E(z1)−1

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }E(z2)−1

is equivalent to the set

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }k̂

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }

where

k = E(z1)−1E(z2). (6.7)

Recalling (6.2), we note that such an element can be expressed as the following equality

γMΦ−sk = γ̂M̂Φ−ŝ, (6.8)

for some γ, ̂γ ∈ Γ, M, M̂ ∈ H and s, ̂s ≥ log T/d.
Setting

k =
(
A tw
v c

)
(where A is a d −1 ×d −1 matrix and c is a real number) and using the same computation 
for the derivation of (6.3), we obtain its analog for spherical directions:

v = e(d−1)s+ŝpB̂. (6.9)

Since T > h0, we have that e(d−1)s+ŝ > h0 and the proof of Lemma 6.1 implies that 
any nonzero entry of v is strictly greater than 1, which is not possible for k ∈ SO(d, R). 
Consequently, we have that
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v = p = w = 0

and

c = q = det(N) = ±1.

Let us write

E(z1)−1 =
(
A1

tw1
v1 c1

)
:=
(
A(z1) tw(z1)
v(z1) c(z1)

)
E(z2)−1 =

(
A2

tw2
v2 c2

)
:=
(
A(z2) tw(z2)
v(z2) c(z2)

)
.

Using (6.7) and the fact that E(z2) = t(E(z2))−1, we have that

v1
tv2 + c1c2 = 1,

which implies that

(v1, c1) = (v2, c2), (6.10)

or

v1
tv2 + c1c2 = −1,

which implies that

(v1, c1) = (−v2,−c2). (6.11)

Both implications follow from the fact that the vectors are unit. The second implication 
is, however, not allowed by (6.6). Consequently, only (6.10) holds and we, moreover, 
must have that

c = q = det(N) = 1. (6.12)

Lemma 6.3 now implies that

z1 = z2

E(z1)−1 = E(z2)−1,

from which the desired result is immediate. �
Remark 6.6. Theorem 6.5 will remain true if we replace the condition (6.6) by the con-
dition c(D) < 0 because the only time we used (6.6) is to exclude the second implication 
from the proof of the theorem.
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Remark 6.7. Let

∂NSD := {v ∈ D\D : there exists an open neighborhood of v

on which the induced diffeomorphism ( 1.9) has

nonsingular differential}.

If, in Theorem 6.5, we replace the condition (6.6) by the condition

c(D) > 0 or c(∂NSD) ≥ 0,

then the proof shows that the only elements that may intersect are those for which 
c(∂NSD) = 0 holds. Note that, by making this change, we are allowing some points on 
the boundary of the hemisphere. Moreover, for each such element z ∈ ∂NSD for which 
c(z) = 0, there is at most one other element z′ ∈ ∂NSD that it intersects with. This 
one other element is its antipodal point (see (6.14)) and also lies on the boundary of 
the hemisphere. This observation about antipodal points will generalize to the complete 
spherical case.

6.2.2. The spherical case
This case is the general case. There are two natural ways to handle the general case 

and, since they are both potentially useful for further applications, we give both. In either 
way, we handle even and odd d differently. In particular, for even d, there is a canonical 
choice, which will become apparent later, and, for odd d, there is a number of natural 
choices, which will also become apparent later. (Our way of handling the odd case will 
work for the even case too, but the canonical choice for the even case simplifies the proofs 
and may be useful for later applications.) We choose one of the natural choices, namely 
using (

Ĩd−1
t0

0 −1

)

for d ≥ 3 and odd. Recall that Ĩd−1 is defined in (5.10). Other choices would give results 
analogous to ours.

Let us assume that we still have the mapping E from the hemispherical case; in 
particular, it satisfies the condition (6.6). The first way to handle the general case is to 
use E to define two related charts on Sd−1, which allows us to define the following subset 
of Sd−1:

Ẽ :=

⎧⎪⎨⎪⎩
{E(z)−1 : z ∈ D} � {−E(z)−1 : z ∈ D} if d is even,

{E(z)−1 : z ∈ D} �
{(

Ĩd−1
t0

0 −1

)
E(z)−1 : z ∈ D

}
if d is odd.

(6.13)
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The fact that the two unions are disjoint follows by Lemma 6.3. Note that we will not 
need to consider points for which c = 0 in this first way, as such points form a null set 
and do not affect any of our other results in this paper. For z ∈ D, let us also define

Ẽ(z) :=

⎧⎪⎨⎪⎩
{
E(z)−1,−E(z)−1} if d is even,{
E(z)−1,

(
Ĩd−1

t0
0 −1

)
E(z)−1

}
if d is odd.

Lemma 6.8. We have that(
Ĩd−1

t0
0 −1

)
H

(
Ĩd−1

t0
0 −1

)
= H.

In particular, given (
A tb
0 1

)
∈ H,

we have that(
Ĩd−1

t0
0 −1

)(
A tb
0 1

)(
Ĩd−1

t0
0 −1

)
=
(
Ĩd−1AĨd−1 −Ĩd−1

tb
0 1

)
.

Proof. Compute. �
Theorem 6.9. Let T > h0. For z1, z2 ∈ D and

E−1
1 ∈ Ẽ(z1) E−1

2 ∈ Ẽ(z2),

we have that

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }E−1

1

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }E−1
2 = ∅

if and only if z1 �= z2.
Moreover, if z1 = z2 =: z, then

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }E−1

1 = Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }E−1

2 .

If d is even, we have the even stronger assertion that, for any point

p ∈ Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT },

the set

pẼ(z)

consists of exactly one point in Γ\G.



J. Tseng / Advances in Mathematics 432 (2023) 109255 43
Proof. Write

E−1
1 =

(
A1

tw1
v1 c1

)
:=
(
A(z1) tw(z1)
v(z1) c(z1)

)
E−1

2 =
(
A2

tw2
v2 c2

)
:=
(
A(z2) tw(z2)
v(z2) c(z2)

)
.

Following the proof of Theorem 6.5, we have either (6.10) or (6.11).
The case (6.10) yields that c1 = c2 (and does not equal zero by assumption). If c1 > 0, 

then we are exactly in the same case as in Theorem 6.5 and we obtain the same answer, 
namely E1 = E2. If c1 < 0, then, by construction, we have that −E−1

1 , −E−1
2 , when d is 

even, or (
Ĩd−1

t0
0 −1

)
E−1

2

(
Ĩd−1

t0
0 −1

)
E−1

2 ,

when d is odd, are in the chart defined by c > 0. Lemma 6.3 now implies that z1 = z2
and E1 = E2.

The case (6.11) yields that c1 = −c2 (and does not equal zero by assumption). Without 
loss of generality, we may assume that c1 > 0. This implies that E1 and E2 are in different 
charts. Moreover, by construction, we have that E−1

1 and −E−1
2 , when d is even, or(

Ĩd−1
t0

0 −1

)
E−1

2 ,

when d is odd, are in the chart defined by c > 0. Lemma 6.3 now implies that z1 = z2
and that

E−1
1 =

⎧⎪⎨⎪⎩
−E−1

2 if d is even,(
Ĩd−1

t0
0 −1

)
E−1

2 if d is odd.

The first assertion is now immediate.
We now show the second assertion. We have that E−1

1 , E−1
2 ∈ Ẽ(z). When d is odd, 

we may, without loss of generality, assume that

E−1
1 =

(
Ĩd−1

t0
0 −1

)
E−1

2 .

Since (
Ĩd−1

t0
0 −1

)
commutes with Φ−s, is an element of Γ, and is its own inverse, the desired result follows 
by an application of Lemma 6.8.
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When d is even, we may, without loss of generality, assume that E−1
1 = −E−1

2 . This 
case of the second assertion and the third assertion follow because −Id commutes with 
all elements of SL(d, R), which implies that pE(z)−1 and p 

(
−E(z)−1) lie in the same 

equivalence class in Γ\G. �
Let us now assume that our mapping E is no longer constrained by the condition 

(6.6). The second way to handle the general case is to only use the original chart, but we 
note that a function (defined in Proposition 6.10) with values in SO(d − 1, R) depending 
on the smooth mapping E arises. In the special case of the exponential map, which allows 
us to use one chart for all of the sphere but a single point, the function is particularly 
simple and, potentially, useful for later applications.

Let us introduce some notation. Given a point z ∈ D, its antipodal point zap is the 
unique point in D, should it exist, for which

(v(zap), c(zap)) = (−v(z),−c(z)). (6.14)

The uniqueness follows immediately from Lemma 6.3. Clearly, we also have that 
(zap)ap = z, and hence we say z, zap are antipodal. Using Lemma 6.3, we, likewise, 
refer to E(z)−1 and E(zap)−1 as antipodal. Let us define

Ê(z) :=
{{

E(z)−1, E(zap)−1} if the antipode of z exists in D,{
E(z)−1} if the antipode of z does not exist in D.

Proposition 6.10. For any antipodal pair z, zap ∈ D, the mapping

E−1(z)E(zap) : Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT } → Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }

p 	→ pE−1(z)E(zap) =: q

is a smooth automorphism. This automorphism is solely a function of z. Moreover, the 
heights of p and q as elements of the Grenier fundamental domain are both equal.

Proof. Since k := E−1(z)E(zap) is invertible, it suffices, for the first assertion, to show 
that q is in

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }.

Write

E(z)−1 =
(
A(z) tw(z)
v(z) c(z)

)
E(zap)−1 =

(
Aap(z) twap(z)
−v(z) −c(z)

)
.

Since v(z)tv(z) + (c(z))2 = 1, we have that
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k =
(
A(z)tAap(z) + tw(z)wap(z) t0

0 −1

)

=

⎧⎪⎪⎨⎪⎪⎩
−
(
− (A(z)tAap(z) + tw(z)wap(z)) t0

0 1

)
if d is even,(

Ĩd−1
t0

0 −1

)(
Ĩd−1 (A(z)tAap(z) + tw(z)wap(z)) t0

0 1

)
if d is odd,

where − (A(z)tAap(z) + tw(z)wap(z)), if d is even, and Ĩd−1 (A(z)tAap(z)+
tw(z)wap(z)) are in SO(d − 1, R). Since

H

(
R t0
0 1

)
= H

for all R ∈ SO(d − 1, R) and k commutes with Φ−s, Lemma 6.8 gives the first assertion.
We now show the second assertion. Let γMΦ−s be the element of the equivalence 

class p and γ̂M̂Φ−ŝ be the element of the equivalence class q in the Grenier fundamental 
domain. Using (6.8) with (6.2) and solving for k, we have the analog of (6.9):

0 = e(d−1)s+ŝpB̂,

from which we may deduce that p = 0 as B̂ is invertible. This implies that

q = det(N) = −1,

which further implies that s = ŝ, which is the desired result.
Since zap depends only on z, the automorphism depends only on z. �

Remark 6.11. We will refer to the elements p, q ∈ Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT } as associ-

ated elements for the antipodal pair z, zap.

Theorem 6.12. Let T > h0. For z1, z2 ∈ D and

E−1
1 ∈ Ê(z1) E−1

2 ∈ Ê(z2),

we have that

Γ\ΓH{Φ−s : s ∈ R≥ 1
d logT }E−1

1

⋂
Γ\ΓH{Φ−s : s ∈ R≥ 1

d logT }E−1
2 = ∅

if and only if z1 �= z2.
Moreover, if z1 = z2 =: z, then

Γ\ΓH{Φ−s : s ∈ R≥ 1 logT }E(z)−1 = Γ\ΓH{Φ−s : s ∈ R≥ 1 logT }E(zap)−1.

d d
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Proof. Write

E−1
1 =

(
A1

tw1
v1 c1

)
:=
(
A(z1) tw(z1)
v(z1) c(z1)

)
E−1

2 =
(
A2

tw2
v2 c2

)
:=
(
A(z2) tw(z2)
v(z2) c(z2)

)
.

Following the proof of Theorem 6.5, we have either (6.10) or (6.11).
The case (6.10) yields that c1 = c2. Here, we also allow c1 = c2 = 0. The first assertion 

for the case (6.10) follows as in Theorem 6.9. The case (6.11) yields that c1 = −c2. Here, 
we also allow c1 = c2 = 0. Likewise, the first assertion for the case (6.11) follows as in 
Theorem 6.9.

The second assertion follows from Proposition 6.10. �
7. Spherical directions: the general case

The general case has two independent aspects. We first consider thickenings of subsets 
of ST defined by lower bounds for the yi-coordinates on the Grenier domain. Then we 
consider thickenings by general subsets of the sphere, including all of the sphere. Recall 
the definitions of D, E, E , v, and c from Section 1.2 and z′ and cmin from Section 4. 
Before we show either aspect, we consider measurable sets in SO(d, R) induced by our 
smooth mapping E.

7.1. Subsets of SO(d, R) induced by E

Recall, from Section 6.2, that E induces a diffeomorphism ψ from D onto a submani-
fold of Sd−1 = K ′\ SO(d, R). Let P : SO(d, R) → K ′\ SO(d, R) be the natural projection. 
Then Lemma 6.3 implies that

P|E : E → ψ(D)

is a bijection. We say a subset U ⊂ SO(d, R) is induced by E if

P(U) = ψ(D).

For any U ⊂ SO(d, R) induced by E, define the slice of U through E−1(z) as the 
following:

K̃U (z) := K ′E−1(z) ∩ U.

Lemma 7.1. For any subset U induced by E, we have that

� K̃U (z) = U.

z∈D
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Proof. The disjointness follows by Lemma 6.3. Let g ∈ U . Then P(g) = ψ(z) for some 
z ∈ D. Now P−1(ψ(z)) = K ′h for some h ∈ SO(d, R). Consequently, both g and E−1(z)
are in K ′h, which implies the desired result. �

We note that the largest set induced by E is K ′E , as it contains every set induced 
by E. The largest set is also an open subset of SO(d, R) because D is open and K ′E =
P−1(ψ(D)).

7.2. Thickenings of subsets of ST and Cholesky factorization

To state the result precisely, recall from Section 1.2 our definition of the neighborhood

C := CT−,T+ := C(α,γ, K̃, β−
ij , β

+
ij)

in the fundamental domain F ′
d. Let us restrict our consideration of such neighborhoods 

of F ′
d to those for which the values for any xij are only constrained because they are 

the coordinates of a point in F ′
d:

S̃ := S̃(z) := S̃T−,T+(z) := S̃
(
α,γ, K̃(z)

)
where T−, T+, α, and γ are as in Section 1.2, and, for any z, K̃(z) is a subset of K ′.9
Set

T0 := T
d/2(d−1)
− . (7.1)

Now apply the flow to these neighborhoods using (5.9):

S̃T := S̃T (z) := S̃(TT−1
0 )(d−1)/d

= S̃Φ− 1
d log(T/T0), (7.2)

9 As an aside, which is not necessary for our proof, note that we have precisely the following. Set

S̃(α,γ, K̃(z)) = C(α,γ, K̃(z), β−
ij , β

+
ij)

with

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
β−
1j = 0 and β+

1j = 1/2 for j = 2, · · · , d − 1
β−
1j = −1/2 and β+

1j = 1/2 for j = d

β−
ij = −1/2 and β+

ij = 1/2 for 2 ≤ i < j ≤ d

if d is even,

{
β−
1j = 0 and β+

1j = 1/2 for j = 2, · · · , d
β−
ij = −1/2 and β+

ij = 1/2 for 2 ≤ i < j ≤ d
if d is odd.

See Section 1.2.



48 J. Tseng / Advances in Mathematics 432 (2023) 109255
which, using (5.6), has lower height T 2(d−1)/d. Note that the lower height of ST0 is the 
same as that of S̃, and the lower height of ST is the same as that of S̃T . Also note that, 
for any L ∈ G, the set AL is as defined in Section 8.2.

Theorem 7.2. Let 0 < η < 1 be a fixed constant, L ∈ G, T+ ≥ T− > h
2(d−1)/d
0 , A ⊂ AL

be a bounded subset with measure zero boundary with respect to dx, U ⊂ SO(d, R) be a 
subset measurable with respect to dk and induced by E, and let (1.13) hold. Let

S̃(z) := S̃T−,T+(z) := S̃
(
α,γ, K̃U (z)E(z)

)
,

and S̃T be defined using (7.1), (7.2). Then

T d−1
ˆ

Rd−1

1A×{S̃T (z)E−1(z):z∈D}(x, Ln−(x)Φt) dx

t→∞−−−→ T
d/2
− μ({S̃(z)E−1(z) : z ∈ D})

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ (7.3)

uniformly for all T ∈ [T d/2(d−1)
− , edtη].

Remark 7.3. Without loss of generality, we may assume that T d/2(d−1)
− ≤ edtη. By The-

orem 9.2, the right-hand side is also equal to

lim
t→∞

T d−1μ
({

S̃T (z)E−1(z) : z ∈ D
})⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ .

Also note that one could obtain an explicit formula for μ 
(
{S̃T (z)E−1(z) : z ∈ D}

)
in 

terms of the variables xij , y� from (5.6) using Grenier coordinates and the induced subset 
U ⊂ SO(d, R).

The proof for the case L = Id will be a modification of the proof of Theorem 1.5 for 
the case L = Id and will be given in Section 7.2.3. The proof for generic L ∈ G is given 
in Section 8.5.

7.2.1. Preliminaries
An important precursor to the proof, for d ≥ 3, is to recognize that the left-

multiplication of the expression A − twz′ from (4.2) with any k̃ ∈ SO(d − 1, R) is, 
heuristically and non-rigorously speaking, a “rotation” up to a symmetric factor. We 
now make this precise and explicitly determine the factor to precisely understand its 
affect on the subset of ST . Also, note that we are requiring c > 0 because (1.13) holds. 
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Let us assume in this section (Section 7.2.1) that d ≥ 3 unless we explicitly state that 
d = 2 is under consideration.

Lemma 7.4. Let d ≥ 3 and k̃ ∈ SO(d − 1, R). We have that

k̃
(
A− twz′) t(A− twz′)tk̃ = Id−1 + k̃twwtk̃

c2

t
(
A− twz′) (A− twz′) = Id−1 +

tvv

c2
.

Moreover, these products are invertible:

det
(
Id−1 + k̃twwtk̃

c2

)
= c−2/(d−1) = det

(
Id−1 +

tvv

c2

)
.

Proof. We prove the first assertion. The second is proved in an analogous manner. Re-
calling (1.11), we have that

(
A tw
v c

)
t

(
A tw
v c

)
= Id,

which yields

AtA + tww = Id−1 (7.4)

Atv + twc = t0

vtA + cw = 0

vtv + c2 = 1.

Simplifying, we have that

(
A− twz′) t(A− twz′) = AtA− 1

c
Atvw − 1

c
twvtA + ‖v‖2

2
c2

tww

= Id−1 + tww

(
1 + ‖v‖2

2
c2

)
= Id−1 +

tww

c2
,

where the last two equalities follow by applying (7.4). Since k̃tk̃ = Id−1, we have shown 
the first assertion.

The final assertion concerning determinants follows immediately from (4.2) and our 
requirement that c > 0. �
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To compute the factor, we wish to find a d − 1 × d − 1 upper triangular matrix B
satisfying the following equation

BtB = Id−1 + k̃twwtk̃

c2
. (7.5)

Let 0i denote the i-vector with all zero entries.

Theorem 7.5. Let d ≥ 3, k̃ ∈ SO(d − 1, R), and (w̃1, · · · , w̃d−1) := wtk̃. The solution to 
(7.5) is the matrix

B =

⎛⎜⎜⎜⎜⎝
βd−1

tsd−2
tsd−3 · · · ts1

01 βd−2
02 βd−3

. . .
0d−2 β1

⎞⎟⎟⎟⎟⎠
where

β2
k :=

⎧⎨⎩1 + w̃2
d−1
c2 for k = 1

1 + w̃2
d−k

c2+w̃2
d+1−k+···+w̃2

d−1
for 2 ≤ k ≤ d− 1

and

sk :=

⎧⎪⎪⎨⎪⎪⎩
w̃d−1

c
√
c2+w̃2

d−1
(w̃1, · · · , w̃d−2) for k = 1

w̃d−k√(
c2+w̃2

d+1−k+···+w̃2
d−1

)(
c2+w̃2

d−k+···+w̃2
d−1

) (w̃1, · · · , w̃d−1−k) for 2 ≤ k ≤ d− 2 .

This is the only d − 1 × d − 1 upper triangular matrix that is a solution.

The symmetric factor mentioned above is, indeed, B and the rotation mentioned above 
is the following.

Corollary 7.6. Let d ≥ 3 and k̃ ∈ SO(d − 1, R). We have that

B−1k̃
(
A− twz′) ∈ SO(d− 1,R).

Moreover, given an open, respectively measurable, subset K̂ ⊂ SO(d − 1, R), we have a 
smooth, respectively measurable, mapping

R : K̂ ×D →
(

SO(d− 1,R) t0
0 1

)
(k̃,z) 	→

(
B−1k̃ (A− twz′) t0

0 1

)
such that R(·, z) is injective for any fixed z ∈ D.
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Proof. Apply Theorem 7.5 and Lemma 7.4 to (7.5). Note that the invertibility of B
follows from the fact that, for any z ∈ D and k̃ ∈ SO(d − 1, R), we have that βk ≥ 1 for 
every k = 1, · · · , d − 1.

The proof of the injectivity statement is as follows. Recall that B depends on k̃. Let 
B1 and B2 be as in the theorem for k̃1 and k̃2, respectively. Note that B−1

1 = n1a1 and 
B−1

2 = n2a2 for some upper triangular unipotent matrices n1 and n2 and some diagonal 
matrices a1 and a2 with all positive diagonal entries. Hence,

R(k̃1, z) = R(k̃2, z) ⇐⇒ B−1
1 k̃1 = B−1

2 k̃2 ⇐⇒ n1a1k̃1 = n2a2k̃2.

The latter expression is in Iwasawa coordinates for SL(d − 1, R), and, hence, it follows 
that n1 = n2, a1 = a2, and k̃1 = k̃2, which gives the desired result concerning injectivity. 
This proves the corollary. �
7.2.2. Proof of Theorem 7.5

Let us continue to assume in this section (Section 7.2.2) that d ≥ 3 unless we explicitly 
state that d = 2 is under consideration. First, we make a simple observation to be used 
later. Let us use the notation 0i×j to denote the i × j matrix of all zero entries, and 
recall that the notation [·] is defined in (5.1).

Lemma 7.7. Let M̂, N̂ be square matrices of the same dimension i. We have that

(
[M̂ ]N̂ 0i×j

0j×i Ij

)
=
[

M̂ 0i×j

0j×i Ij

](
N̂ 0i×j

0j×i Ij

)
Proof. Compute. �

Also, we note that Lemma 7.4 applied to the general theory of positive definite ma-
trices (see [7, Theorem 4.2.1] for example) implies that

C1 := Id−1 + k̃twwtk̃

c2

is invertible and symmetric positive definite. Consequently, we are guaranteed that there 
exists a unique decomposition of the form U tU where U is upper triangular using 
Cholesky factorization (see [7, Theorem 4.2.5] for example).

The proof will be a computation. We will follow the general idea of the outer product 
Cholesky factorization [7, Section 4.2.5], except the block decomposition of the matrices 
will be different to allow us to obtain a U tU decomposition directly. The details of this 
reverse outer product Cholesky factorization are as follows.

Recall that we are in the case for which d ≥ 3. Set � := d −1 and u := (u1, · · · , u�) :=
(wtk̃)/c. Note that we have
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tuu =

⎛⎜⎜⎝
u2

1 u1u2 u1u3 · · · u1u�

u2u1 u2
2 u2u3 · · · u2u�

. . .
u�u1 u�u2 · · · u�u�−1 u2

�

⎞⎟⎟⎠ .

Let us distinguish the upper � − 1 × � − 1 block and add it to I�−1:

D1 :=

⎛⎜⎜⎝
1 + u2

1 u1u2 u1u3 · · · u1u�−1
u2u1 1 + u2

2 u2u3 · · · u2u�−1
. . .

u�−1u1 u�−1u2 · · · u�−1u�−2 1 + u2
�−1

⎞⎟⎟⎠ .

Let us also distinguish the last element of the last row and add one to it

β2
1 := 1 + u2

� , (7.6)

and let us denote the rest of that last row

r1 := (u1u� u2u� · · · u�−1u� ) . (7.7)

Consequently, we have that

C1 =
(
D1

tr1
r1 β2

1

)
.

Recalling the definition of the notation [·] in (5.1), a direct computation gives us the 
following decomposition:

C1 =
[
I�−1

tr1
β1

0 β1

](
D1 −

tr1r1
β2
1

t0
0 1

)
. (7.8)

This is the first step in the reverse outer product Cholesky factorization.
If d = 3, this first step will suffice. Note that we have

β2
1 = 1 + u2

2 r1 = u1u2 D1 = 1 + u2
1,

from which it follows that

D1 −
tr1r1

β2
1

= 1 + u2
1

1 + u2
2

=: β2
2 .

Applying Lemma 7.7 to (7.8) yields

C1 =
[
β2

r1
β1

0 β

]
,

1
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from which Theorem 7.5 for d = 3 immediately follows.
Consequently, from this point forth, we may assume d ≥ 4 and thus � ≥ 3. We now 

use recursion. Let us distinguish the upper � − 1 × � − 1 block of the second matrix from 
(7.8):

C2 := D1 −
tr1r1

β2
1

.

Note that

tr1r1 =

⎛⎜⎜⎝
u2

1u
2
� u1u2u

2
� u1u3u

2
� · · · u1u�−1u

2
�

u2u1u
2
� u2

2u
2
� u2u3u

2
� · · · u2u�−1u

2
�

. . .
u�−1u1u

2
� u�−1u2u

2
� · · · u�−1u�−2u

2
� u2

�−1u
2
�

⎞⎟⎟⎠
and that D1 and 

tr1r1
β2
1

are symmetric. Consequently, for each row of C2, we only need 
specify the elements at and to the right of the principal diagonal.

Let 1 ≤ i ≤ � − 1 and 1 ≤ j ≤ � − 1 such that i < j. Computing the elements on the 
principal diagonal, we have that

(C2)ii = 1 + u2
i

1 + u2
�

≥ 1.

Computing the elements to the right of the principal diagonal, we have that

(C2)ij = uiuj

1 + u2
�

.

Thus, we have

C2 =

⎛⎜⎜⎜⎜⎜⎝
1 + u2

1
1+u2

�

u1u2
1+u2

�

u1u3
1+u2

�
· · · u1u�−1

1+u2
�

u2u1
1+u2

�
1 + u2

2
1+u2

�

u2u3
1+u2

�
· · · u2u�−1

1+u2
�

. . .
u�−1u1
1+u2

�

u�−1u2
1+u2

�
· · · u�−1u�−2

1+u2
�

1 + u2
�−1

1+u2
�

⎞⎟⎟⎟⎟⎟⎠ =:
(
D2

tr2
r2 β2

2

)

where we have, analogous to the previous step, denoted the upper � − 2 × � − 2 block 
by D2, the last element of the last row by β2

2 , and the rest of the last row by r2. The 
analogous direct computation from the previous step gives us the following:

C2 =
[
I�−2

tr2
β2

0 β2

](
D2 −

tr2r2
β2
2

t0
0 1

)
. (7.9)
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If d = 4, two steps will suffice. Note that we have

β2
1 = 1 + u2

3 β2
2 = 1 + u2

2
1 + u2

3
r1 = (u1u3, u2u3) r2 = u2u1

1 + u2
3

D2 = 1 + u2
1

1 + u2
3
,

from which it follows that

D2 −
tr2r2

β2
2

= 1 + u2
1

1 + u2
2 + u2

3
=: β2

3 .

(Note that this computation is direct and is similar to the computation for (Ck+1)11 in 
Lemma 7.8 below.) Applying Lemma 7.7 to (7.8) and (7.9) yields

C1 =

⎡⎣1 0 u1u3√
1+u2

3
0 1 u2u3√

1+u2
3

0 0 β1

⎤⎦⎡⎣1 u1u2√
(1+u2

3)(1+u2
2+u2

3)
0

0 β2 0
0 0 1

⎤⎦[β3 0 0
0 1 0
0 0 1

]

=

⎡⎣β3
u1u2√

(1+u2
3)(1+u2

2+u2
3)

u1u3√
1+u2

3
0 β2

u2u3√
1+u2

3
0 0 β1

⎤⎦ ,
from which Theorem 7.5 for d = 4 immediately follows.

Consequently, from this point forth, we may assume d ≥ 5 and thus � ≥ 4. Setting C3
to be the upper � − 2 × � − 2 block of the second matrix

C3 := D2 −
tr2r2

β2
2

,

we recursively repeat the decomposition in step 2 until we arrive at C�. We now show 
that this recursion is valid and that C� is a number.

Lemma 7.8. Let 2 ≤ k ≤ � − 1. Let 1 ≤ i ≤ � + 1 − k and 1 ≤ j ≤ � + 1 − k such that 
i < j. We have that Ck is an � + 1 − k × � + 1 − k symmetric matrix with entries

(Ck)ii = 1 + u2
i

1 + u2
�+2−k + · · · + u2

�

≥ 1 and (Ck)ij = uiuj

1 + u2
�+2−k + · · · + u2

�

.

(7.10)

Moreover, we have that

Ck =

⎛⎜⎜⎜⎝
1 + u2

1
1+u2

�+2−k
+···+u2

�

u1u2
1+u2

�+2−k
+···+u2

�

u1u3
1+u2

�+2−k
+···+u2

�
· · · u1u�+1−k

1+u2
�+2−k

+···+u2
�

u2u1
1+u2

�+2−k
+···+u2

�
1 + u2

2
1+u2

�+2−k
+···+u2

�

u2u3
1+u2

�+2−k
+···+u2

�
· · · u2u�+1−k

1+u2
�+2−k

+···+u2
�

. . .
u�+1−ku1

1+u2
�+2−k

+···+u2
�

u�+1−ku2
1+u2

�+2−k
+···+u2

�
· · · u�+1−ku�−k

1+u2
�+2−k

+···+u2
�

1 + u2
�+1−k

1+u2
�+2−k

+···+u2
�

⎞⎟⎟⎟⎠
=:
(
Dk

trk
rk β2

k

)
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where Dk is an � − k × � − k matrix and β2
k is a real number.

Proof. The proof is by induction on k. We have already shown the case k = 2. Assume 
that the case k holds. We have that the (recursive) definition of Ck+1 is

Ck+1 := Dk −
trkrk
β2
k

.

By the induction hypothesis, Ck and thus Dk are symmetric, which further implies that 
Ck+1 is symmetric. The size of Ck+1 is the same as that of Dk, namely � − k × � − k.

Let us set

n := � + 1 − k and α := 1 + u2
�+2−k + · · · + u2

� = 1 + u2
n+1 + · · · + u2

�

for convenience of exposition. This notation and the induction hypothesis gives us that

α2β2
k = α(α + u2

n)

and that

trkrk
β2
k

= 1
α(α + u2

n)

⎛⎜⎜⎝
u2

1u
2
n u1u2u

2
n u1u3u

2
n · · · u1un−1u

2
n

u2u1u
2
n u2

2u
2
n u2u3u

2
n · · · u2un−1u

2
n

. . .
un−1u1u

2
n un−1u2u

2
n · · · un−1un−2u

2
n u2

n−1u
2
n

⎞⎟⎟⎠ .

Let 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1 such that i < j. (Recalling that we are now in 
the case that d ≥ 5 and thus � ≥ 4, we have that n − 1 ≥ 2.) We have that(

trkrk
β2
k

)
ii

= u2
iu

2
n

α(α + u2
n) and

(
trkrk
β2
k

)
ij

= uiuju
2
n

α(α + u2
n) .

The induction hypothesis further gives

(Dk)ii = 1 + u2
i

α
and (Dk)ij = uiuj

α
.

Consequently, we have that

(Ck+1)ii = 1 + u2
i

1 + u2
�+1−k + · · · + u2

�

and (Ck+1)ij = uiuj

1 + u2
�+1−k + · · · + u2

�

,

which yields the desired result. �
Lemma 7.9. We have that

β2
� := C� = 1 + u2

1
2 2 .
1 + u2 + · · · + u�
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Proof. We note that the proof of Lemma 7.8 (namely, the induction hypothesis) yielding

(Ck+1)ii = 1 + u2
i

1 + u2
�+1−k + · · · + u2

�

for 1 ≤ i ≤ n − 1 is still valid when k = � − 1. This yields the desired result. �
Remark 7.10. Lemma 7.9 also holds for � = 2 and � = 3, as we have shown when we 
considered the cases d = 3 and d = 4, respectively.

Proposition 7.11. For 1 ≤ k ≤ � − 1, we have that

Ck =
[
I�−k

trk

βk

0 βk

](
Dk − trkrk

β2
k

t0
0 1

)
.

Proof. Applying Lemma 7.8 to the analogous computation as for C1 gives the desired 
result. �

We now finish the proof of Theorem 7.5. We will use zero vectors of different lengths. 
For clarity, we use the notation 0i to denote the i-vector with all zero entries. Also, note 
that the vector rk is an � − k-vector and that Ck is an � + 1 − k × � + 1 − k matrix.

Lemma 7.12. We have that10

C1 =

⎡⎢⎢⎢⎢⎢⎣
I�−k

trk

βk

trk−1
βk−1

· · · tr1
β1

0�−k βk

0�−(k−1) βk−1
. . .

0�−1 β1

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

Ck+1
t0�−k

t0�−(k−1) · · · t0�−1
0�−k 1

0�−(k−1) 1
. . .

0�−1 1

⎞⎟⎟⎟⎟⎠
for 1 ≤ k ≤ � − 1.

Proof. We induct on k. The case k = 1 is Proposition 7.11. Assume that the case k
holds. Applying Proposition 7.11 with Lemma 7.7 and directly multiplying yields⎡⎢⎢⎢⎢⎢⎣

I�−k
trk

βk

trk−1
βk−1

· · · tr1
β1

0�−k βk

0�−(k−1) βk−1
. . .

0�−1 β1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

C̃k+1
t0�−k

t0�−(k−1) · · · t0�−1
0�−k 1

0�−(k−1) 1
. . .

0�−1 1

⎤⎥⎥⎥⎥⎦
10 Note that the matrix in the square brackets is upper triangular and the matrix in the round brackets is 
symmetric.
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⎛⎜⎜⎜⎜⎝
Ck+2

t0�−(k+1)
t0�−k · · · t0�−1

0�−(k+1) 1
0�−k 1

. . .
0�−1 1

⎞⎟⎟⎟⎟⎠
where C̃k+1 is the � − k × � − k block

C̃k+1 :=
(
I�−(k+1)

tr(k+1)
β(k+1)

0�−(k+1) β(k+1)

)
.

Multiplying the matrices in the square brackets yields the desired result. �
Proposition 7.13. We have that

C1 =

⎡⎢⎢⎢⎢⎢⎣
β�

tr�−1
β�−1

tr�−2
β�−2

· · · tr1
β1

01 β�−1
02 β�−2

. . .
0�−1 β1

⎤⎥⎥⎥⎥⎥⎦ .

Proof. Apply Lemma 7.12 with k = � − 1 and, to the result, apply Lemmas 7.9 and 7.7. 
This yields the desired result. �

Consequently, using the proposition, we have proved Theorem 7.5. Note that the 
values of βk and sk come from (7.6) and (7.7) and Lemmas 7.8 and 7.9.

7.2.3. Proof of Theorem 7.2 for L = Id
We adapt the proof of Theorem 1.5 for the case L = Id to give a proof of Theorem 7.2

for the case L = Id. The key equation to use is (4.2), which we now restate in a more 
convenient form:

Φ−sE(z)−1n+(−z′) = Φ−s

(
Id−1 c−1(tw)

0 1

)(
c1/(d−1)(A− twz′) t0

0 1

)
Φlog c/(d−1).

(7.11)

Define the natural projection map

ι : K ′ → SO(d− 1,R),
(
k t0
0 1

)
	→ k.

The analog of Lemma 4.1 is
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Lemma 7.14. We have that{
S̃T (z)E−1(z) : z ∈ D

}
=
{
S̃
(

T

c2T−
α1,

T

c2T−
γd−1, 1

)
n+(z′) : z ∈ D

}
if d = 2 and

{
S̃T (z)E−1(z) : z ∈ D

}
=

⎧⎨⎩ �
k̂∈K̃U (z)

S̃
((

βd−1

βd−2
α1, · · · ,

β2

β1
αd−2,

β1T

cT
d/2(d−1)
−

αd−1

)
,

(
βd−1

βd−2
γ1, · · · ,

β2

β1
γd−2,

β1T

cT
d/2(d−1)
−

γd−1

)
,R
(
ι
(
k̂E(z)

)
, z
))

n+(z′) : z ∈ D
}

if d ≥ 3. Here, β� is as in Theorem 7.5.

Remark 7.15. Note that application of the flow Φ−s does not affect the K̃ coordinate.

Proof. Applying (7.11), (5.6), (5.9), (7.2), we have that an arbitrary element g ∈ S̃TE is 
of the form

g =

⎛⎝1 xij

. . .
1

⎞⎠y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
k t0
0 1

)

(
Id−1 c−1(tw)

0 1

)(
c1/(d−1)(A− twz′) t0

0 1

)
Φlog c/(d−1)n+(z′)

where z ∈ D, γi ≥ yi ≥ αi for i = 1, · · · , d − 2, T−d/2(d−1)
− Tγd−1 ≥ yd−1 ≥

T
−d/2(d−1)
− Tαd−1, and k ∈ K̃U (z)E(z). (The only constraint on xij is that g lies in 

F ′
d.) Since (

k t0
0 1

)(
Id−1 c−1(tw)
0 1

)
=
(
Id−1 kc−1(tw)
0 1

)(
k t0
0 1

)
and the diagonal element

y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠ (7.12)

acts by conjugation on the subgroup of upper triangular unipotent matrices, we have 
that
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g =

⎛⎝1 x̃ij

. . .
1

⎞⎠y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
k t0
0 1

)

(
c1/(d−1)(A− twz′) t0

0 1

)
Φlog c/(d−1)n+(z′).

Consider the case d = 2 first. Equation (7.11) implies that c1/(d−1) (A− twz′) = 1, 
from which the desired result follows by an application of (5.9).

Now consider the case d ≥ 3. Multiplying matrices, we have

g =

⎛⎝1 x̃ij

. . .
1

⎞⎠y−1/2

⎛⎜⎜⎜⎜⎝
yd−1yd−2 · · · y1

. . .
yd−1yd−2

yd−1
1

⎞⎟⎟⎟⎟⎠
(
B t0
0 c

)(
B−1k (A− twz′) t0

0 1

)
n+(z′)

where B is as in Theorem 7.5. Also we have

(
B t0
0 c

)
= n(B)

⎛⎜⎜⎜⎜⎝
βd−1

. . .
β2

β1
c

⎞⎟⎟⎟⎟⎠
where n(B) is an upper triangular unipotent matrix. Using the conjugation action of the 
diagonal element from (7.12) yields the desired result.

Note that the disjointness of the union follows from the injectivity assertion in Corol-
lary 7.6. �

For convenience of notation, let us denote some of the sets in the lemma by

ŜT (z) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S̃
(

T
c2T−

α1,
T

c2T−
γd−1, 1

)
if d = 2,

�k̂∈K̃U (z) S̃
((

βd−1
βd−2

α1, · · · , β2
β1
αd−2,

β1T

cT
d/2(d−1)
−

αd−1

)
,(

βd−1
βd−2

γ1, · · · , β2
β1
γd−2,

β1T

cT
d/2(d−1)
−

γd−1

)
,R
(
ι
(
k̂E(z)

)
, z
))

if d ≥ 3.

(7.13)

Lemma 7.16. For any z ∈ D, the lower height of ŜT (z) is

T 2(d−1)/d

2 .

c2(d −2d+2)/d(d−1)
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Proof. The result for d = 2 is a direct computation. For d ≥ 3, a direct computation 
yields that the lower height is (

T 2(d−1)

c2(d−1) β
2
1 · · ·β2

d−1

)1/d

.

Applying Theorem 7.5, (7.5), and Lemma 7.4 yields the desired result. �
Corollary 7.17. We have that⋃

z∈D
ŜT (z) ⊂ ST and

⋃
z∈D

ŜT0(z) ⊂ ST0 .

Proof. Apply the lemma with the fact that 0 < c ≤ 1. �
We now follow the proof of Theorem 1.5 for the case L = Id, but replacing

STc−d/(d−1) with ŜT (z) and ST0c−d/(d−1) with ŜT0(z). (7.14)

We have the analogs of

f̂T,D(r, n−(r)Φt) and f̂T,D,α(r, n−(r)Φt).

Letting

ũ ∈
⋃
z∈D

ŜT (z) and u ∈
⋃
z∈D

ŜT0(z),

we have the analog of (4.7) also.
Also, the statement of Lemma 4.2 is unchanged. Its proof is changed as follows. First, 

we also make the changes in (7.14). Next, the definitions of I(r, t, T ) and J (r, t, T ) are 
slightly altered as follows:

I(r, t, T ) := Γt
(
n−(r)Φt

)−1 ∩
⋃
z∈D

ŜT (z)

J (r, t, T ) := Γt
(
n−(r)Φt− 1

d log(T/T0)
)−1

∩
⋃
z∈D

ŜT0(z).

The reason that J (r, t, T ) is nonempty for all t large enough is exactly the same as in 
the proof of Lemma 5.14. The mapping ϕ is the same and a direct computation using 
(5.9) shows that it is a bijection. The proof up to and including (4.9) is the same. To 
prove the analog of (4.10), we use the same proof along with Corollary 7.17. The rest of 
the proof of the lemma is the same.

The proof of the analog of (4.11) is also the same, except we replace Theorem 5.12
with Theorem 9.1. The remaining proof to obtain the analog of (4.12), which is also the 
desired result, is the same. This concludes the proof of Theorem 7.2 for the case L = Id.
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7.3. Thickenings by subsets of SO(d, R)

In this section, we generalize Theorem 7.2 by removing the restriction (1.13). As 
discussed in Section 6.2.2, there are two different ways of removing this restriction, 
leading to two slightly different generalizations (Theorems 7.19 and 7.23).

7.3.1. Two charts with c(z) bounded away from zero
The first generalization is in the context of Theorem 6.9, namely for the induced 

diffeomorphism ψ (i.e., the mapping from (1.9)) to still satisfy the restriction (1.13), but 
from which we construct two charts Ẽ for Sd−1 (see (6.2.2)), one for one hemisphere and 
the other for the other. For this context of the two charts, we generalize the notion of 
an induced subset of SO(d, R) (see Section 7.1). First note that, in order for a subset 
U ⊂ SO(d, R) to satisfy the constraint given by Theorem 6.9, we require

U =

⎧⎪⎨⎪⎩
−U if d is even,

U

(
Ĩd−1

t0
0 −1

)
if d is odd,

(7.15)

where Ĩd−1 is defined in (5.10). A subset U ⊂ SO(d, R) is induced by Ẽ if it satisfies 
(7.15) and if

P(U) = ψ(D) � (−ψ(D)) .

For any U ⊂ SO(d, R) induced by Ẽ , define the slice of U through E−1(z) as the following:

K̃+
U (z) := K ′E−1(z) ∩ U

and slice of U through 

⎧⎪⎨⎪⎩
−E−1(z) if d is even,(
Ĩd−1

t0
0 −1

)
E(z)−1 if d is odd

as the following:

K̃−
U (z) :=

⎧⎪⎨⎪⎩
K ′ (−E−1(z)

)
∩ U if d is even,

K ′
(
Ĩd−1

t0
0 −1

)
E(z)−1 ∩ U if d is odd.

We also have the analog of Lemma 7.1.

Lemma 7.18. For any subset U induced by Ẽ, we have that

� (
K̃+

U (z) � K̃−
U (z)

)
= U.
z∈D
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Proof. The disjointness follows by Lemma 6.3 and the fact that the charts are in different 
hemispheres and thus correspond to disjoint sets. Let g ∈ U . Then P(g) = ψ(z) or −ψ(z)
for some z ∈ D and the rest of the proof is similar to that of Lemma 7.1. �
Theorem 7.19. Let 0 < η < 1 be a fixed constant, L ∈ G, T+ ≥ T− > h

2(d−1)/d
0 , A ⊂ AL

be a bounded subset with measure zero boundary with respect to dx, and U ⊂ SO(d, R)
be a subset measurable with respect to dk and induced by Ẽ. Let

S̃+(z) := S̃+
T−,T+

(z) := S̃
(
α,γ, K̃+

U (z)E(z)
)

S̃−(z) := S̃−
T−,T+

(z) :=

⎧⎪⎨⎪⎩
S̃
(
α,γ, K̃−

U (z) (−E(z))
)

if d is even,

S̃
(
α,γ, K̃−

U (z)E(z)
(
Ĩd−1

t0
0 −1

))
if d is odd,

and S̃+
T , S̃−

T be defined using S̃ := S̃+(z), S̃ := S̃−(z) in (7.1), (7.2), respectively. Let

S̃±(z)Ẽ(z) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
S̃+
T (z)E−1(z) : z ∈ D

}
�
{
S̃−
T (z)

(
−E−1(z)

)
: z ∈ D

}
if d is even,{

S̃+
T (z)E−1(z) : z ∈ D

}
�
{
S̃−
T (z)

((
Ĩd−1

t0
0 −1

)
E−1(z)

)
: z ∈ D

}
if d is odd.

Then

T d−1 ´
Rd−1 1A×

(
S̃±(z)Ẽ(z)

)(x, Ln−(x)Φt) dx (7.16)

t→∞−−−→ T
d/2
− μ

(
S̃±(z)Ẽ(z)

) (´
Rd−1 1A(x) dx

)
uniformly for all T ∈ [T d/2(d−1)

− , edtη].

Proof. There are two charts whose points are given in pairs by (6.13). Fix a point z ∈ D. 
Let p ∈ S̃T (z).

Consider d even. Then Theorem 6.9 gives the points pE−1(z) and p 
(
−E−1(z)

)
are 

the same point in Γ\G. Since −Id ∈ Γ commutes with all elements of G and (7.15) holds, 
we can apply Theorem 7.2 to both charts to obtain the desired result.

Finally consider d odd. Applying Lemmas 5.2 and 6.8 to S̃T (z), we have that(
Ĩd−1

t0
0 −1

)
S̃T (z)

(
Ĩd−1

t0
0 −1

)
= S̃T (z). (7.17)

Now (7.17) and Theorem 6.9 give that there exists a unique point q in the embedded 
submanifold S̃T (z) such that pE−1(z) and
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q

(
Ĩd−1

t0
0 −1

)
E−1(z)

are the same point in Γ\G. Since (7.17), (7.15) hold, we can apply Theorem 7.2 to both 
charts to obtain the desired result. �
Remark 7.20. This proof works for both the case L = Id and the case of generic L ∈ G. 
For L ∈ G, we apply Theorem 7.2 for this L and note that the proof of Theorem 7.2 for 
generic L is in Section 8.5.

7.3.2. The general case: removing the restriction on c(D)
In this section, we remove the restriction (1.13) and, in particular, we have that 

−1 ≤ c(D) ≤ 1. We will use one chart.
Let us first show that, when c = 0, there is no contribution. We will show this in 

general. Define

K0 :=
{(

A tw
v c

)
∈ SO(d,R) : c = 0

}
.

Lemma 7.21. There exists a null set N with respect to dx such that, for every t ∈ R, we 
have that

{x ∈ Rd−1 : n−(x)Φt ∈ S1K0} ⊂ N .

Moreover, N can be chosen to be a countable union of affine hyperplanes in Rd−1 of 
dimension d − 2.

Remark 7.22. Note that N is independent of t.

Proof. Let x ∈ Rd−1 and t ∈ R be elements such that n−(x)Φt ∈ S1K0. Then there 
exists an γ ∈ Γ such that

γ−1
(
B tb
0 1

)(
y1/2(d−1)Id−1

t0
0 y−1/2

)(
A tw
v 0

)
= n−(x)Φt. (7.18)

Let

(p, q) = (0, 1)γ, (7.19)

and applying it on the left yields

(y−1/2v, 0) = (e−tp, e(d−1)t(ptx + q)).

In particular we have
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ptx + q = 0. (7.20)

If p = 0, then (7.20) implies that q = 0, and, thus, γ has a row with all entries zero, 
which is not possible. Thus p �= 0, and there exists an entry pi �= 0. We now have 
that xi is some linear combination of the other entries translated by −q/pi along the 
i-th coordinate, yielding an affine hyperplane in Rd−1 of dimension d − 2. As q and the 
entries of p are integers, there are only a countable number of such affine hyperplanes. 
This yields the desired result. �

We have the following generalization of Theorem 7.2.

Theorem 7.23. Let 0 < η < 1 be a fixed constant, L ∈ G, T+ ≥ T− > h
2(d−1)/d
0 , A ⊂ AL

be a bounded subset with measure zero boundary with respect to dx, and U ⊂ SO(d, R)
be a subset measurable with respect to dk and induced by E. Let

S̃(z) := S̃T−,T+(z) := S̃
(
α,γ, K̃U (z)E(z)

)
,

and S̃T be defined using (7.1), (7.2). Then

T d−1
ˆ

Rd−1

1A×{S̃T (z)E−1(z):z∈D}(x, Ln−(x)Φt) dx t→∞−−−→

T
d/2
− μ({S̃(z)E−1(z) : z ∈ D})

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ (7.21)

uniformly for all T ∈ [T d/2(d−1)
− , edtη].

Proof. We prove the case L = Id and defer the proof of the case of generic L ∈ G

to Section 8.5. We will partition the chart into a sequence of upper and lower charts 
as follows. Let m ≥ 2 be an integer. Replace the open bounded set D with the open 
bounded sets

D+
m := D ∩ E−1

({(
A tw
v c

)
∈ SO(d,R) : c > 1

m

})
,

D−
m := D ∩ E−1

({(
A tw
v c

)
∈ SO(d,R) : c < − 1

m

})
.

The restriction of the chart to D+
m and D−

m give the upper and lower charts (for a given 
m), respectively. Note that E−1 in the definitions of D+

m and D−
m denotes the preimage 

of the smooth mapping E (defined in (1.8)) and should not be confused E−1(z), which 
is the inverse in SO(d, R) of E(z).
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The restrictions of the smooth mapping E to D+
m and D−

m are smooth mappings. 
Thus, replacing the chart given by D by the upper chart given by D+

m allows us to apply 
Theorem 7.2.

For the lower chart given by D−
m, we have two cases: d is even and d is odd. For 

both cases, we note that Theorem 6.12 implies that the thickenings given by E−1(z) and 
E−1(zap) are the same set. Moreover, given a point pE−1(z) in the thickening (thus in 
Γ\G), there exists a unique point qE−1(zap) in the thickening of E−1(zap) such that 
pE−1(z) = qE−1(zap) by Proposition 6.10. (Note that p, q ∈ S̃T (z).) Consider the case 
of even d first. Since −Id ∈ Γ commutes with all elements of G, we can apply Theorem 7.2
to lower chart given by D−

m by replacing E−1(zap) with −E−1(zap). This concludes the 
case d even.

Consider the d odd. As in the proof of Theorem 7.19, we have (7.17), which implies 
there exists a unique q̃ ∈ S̃T (z) such that(

Ĩd−1
t0

0 −1

)
qE−1(zap) = q̃

(
Ĩd−1

t0
0 −1

)
E−1(zap).

This allows us to apply Theorem 7.2 to the lower chart given by D−
m by replacing 

E−1(zap) with (
Ĩd−1

t0
0 −1

)
E−1(zap).

This concludes the case d odd.
Thus, we have the desired result restricted to the upper and lower charts given by D+

m

and D−
m, respectively, for all m ≥ 2. Explicitly, we have

T d−1
ˆ

Td−1

1A×{S̃T (z)E−1(z):z∈D+
m∪D−

m}(x, n−(x)Φt) dx t→∞−−−→

T
d/2
− μ({S̃(z)E−1(z) : z ∈ D+

m ∪ D−
m})

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠ (7.22)

for m ≥ 2. To lift this restriction, what remains to be shown lies in the restriction of the 
(original) chart to the sequence of domains

D\
(
D+

m ∪ D−
m

)
⊃ D\

(
D+

m+1 ∪ D−
m+1
)
.

Note that ⋃
m≥2

(
D+

m ∪ D−
m

)
=: D∞. (7.23)
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We now use the following approximation technique. First note that

μ({S̃(z)E−1(z) : z ∈ D∞}) = μ({S̃(z)E−1(z) : z ∈ D})

because K0 is a null set of K (see [16, Pages 19-20]). Recall that T depends on t and, for 
the duration of this proof, we will make this explicit by using the notation T (t). Using 
(7.23) with the continuity of μ from below and using (7.22), we have that, for every 
ε > 0, there exists t0 > 0 and m0 ≥ 2 such that, for every t ≥ t0 and m ≥ m0, we have 
that ∣∣∣∣∣∣T (t)d−1

ˆ

Td−1

1A×{S̃T (t)(z)E−1(z):z∈D+
m∪D−

m}(x, n−(x)Φt) dx (7.24)

−T
d/2
− μ({S̃(z)E−1(z) : z ∈ D})

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠∣∣∣∣∣∣ < ε.

Using (7.23) to apply the monotone convergence theorem, we have, for every t > 0, 
that

lim
m→∞

T (t)d−1
ˆ

Td−1

1A×{S̃T (t)(z)E−1(z):z∈D+
m∪D−

m}(x, n−(x)Φt) dx (7.25)

= T (t)d−1
ˆ

Td−1

1A×{S̃T (t)(z)E−1(z):z∈D∞}(x, n−(x)Φt) dx.

Taking the limit as m → ∞ in (7.24) and applying (7.25) yield∣∣∣∣∣∣T (t)d−1
ˆ

Td−1

1A×{S̃T (t)(z)E−1(z):z∈D∞}(x, n−(x)Φt) dx (7.26)

−T
d/2
− μ({S̃(z)E−1(z) : z ∈ D})

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠∣∣∣∣∣∣ < ε

for every t ≥ t0. Taking the limit t → ∞, we obtain∣∣∣∣∣∣ limt→∞
T (t)d−1

ˆ

Td−1

1A×{S̃T (t)(z)E−1(z):z∈D∞}(x, n−(x)Φt) dx (7.27)

−T
d/2
− μ({S̃(z)E−1(z) : z ∈ D})

⎛⎝ ˆ

Td−1

1A(x) dx

⎞⎠∣∣∣∣∣∣ < ε.
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As ε is arbitrary, we have shown the desired result when c �= 0.
For c = 0, apply Lemma 7.21. This yields the desired result for the case L = Id. �

Remark 7.24. Note that, as long as

{z, zap} ⊂ D+
m ∪ D−

m

holds, we obtain the thickening given by E−1(z) for the upper and lower charts. Thus, 
different open bounded sets D may yield the same thickenings, and, as long as one of 
every antipodal pair is in the open bounded sets, then we obtain the same thickening.

8. Translated horospheres

In this section, we consider STHE for translated horospheres. All of the STHE results 
that we have proved for the horosphere can also be proved for any translated horosphere, 
as we show in Section 8.5. First, we need to find the correct analog of the Farey points, 
which is done in Section 8.1, and to prove a suitable generalization of Theorem 2.1, 
namely Theorem 1.7.

The proofs of our STHE results for translated horospheres are essentially the same 
as that for the horosphere considered in the previous sections. The changes are, briefly, 
checking that (a piece of) a translated horosphere intersects S1 through a unique point 
along the N+-directions and that our generalization of Theorem 2.1 can be applied. The 
details are as follows.

Recall that a translated horosphere corresponds to a fixed L ∈ G. Checking the inter-
section property is easy. Let us assume that Γt(Ln−(x)Φt)−1 intersects S1. Then a nearby 
point Γt(Ln−(y)Φt)−1 = ΓtL−1n+(−y)Φ−t on the Φt-translate of the translated horo-
sphere is in the N+-directions with respect to the intersection point Γt(Ln−(x)Φt)−1 =
ΓtL−1n+(−x)Φ−t, an observation which follows by applying (3.1). We now simply need 
to check that the N+ directions do not locally lie in the section S1, namely that the 
intersection is transverse.

Lemma 8.1. Let L ∈ G and n, n′ ∈ N+. If Ln, Ln′ ∈ H{Φ−s : s ∈ R}, then n = n′.

Proof. Let

L :=
(
A B
C D

)
n :=

(
Id−1

t0
x̃ 1

)
n′ :=

(
Id−1

t0
x̃′ 1

)
.

Thus we have

Ln =
(
A + Bx̃ B
C + Dx̃ D

)
Ln′ =

(
A + Bx̃′ B

′

)
.

C + Dx̃ D
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Since Ln, Ln′ ∈ H{Φ−s : s ∈ R}, we have that C + Dx̃ = 0 and C + Dx̃′ = 0 and 
that the diagonal blocks must not have determinant 0. In particular, we have that the 
number D �= 0 and thus the desired result. �
Lemma 8.2. Let L ∈ G and n, n′ ∈ N+ such that n, n′ lie in a small neighborhood. If 
Ln, Ln′ ∈ S1, then n = n′.

Proof. Since the left action by an element of G is continuous, Ln and Ln′ lie in a small 
neighborhood, which we may assume is small enough so that it lies in some fundamental 
domain for the Γ action. Applying Lemma 8.1 yields the desired result. �
Theorem 8.3. The intersection of any left-translated horosphere with S1 is transverse. 
Moreover, the local intersection is a point.

Proof. Apply Lemma 8.2. �
Consequently, the (local) geometry of intersections between our original horosphere 

(i.e. when one sets L = Id) and S1 and between a translated horosphere and S1 are the 
same for us. Note that we can, using Lemma 6.1, give a good estimate of what nearby 
means in this case, but it is not necessary for this proof.

8.1. Translated Farey sequences

Up to now, we have restricted the Farey sequence to lie in Td−1 (see Section 2), 
but it is more convenient in motivating the definition of translated Farey sequences to 
regard the Farey sequence as lying in Rd−1. Thus, we consider the Farey sequence as the 
following subset of Rd−1:

F̃ :=
∞⋃

Q=1
F̃Q :=

∞⋃
Q=1

(
FQ + Zd−1) .

It is shown in [13] that F̃Q corresponds to the intersection points of the horosphere 
t(ΓN−Φt)−1 with the closed embedded submanifold Γ\ΓH{Φ−s : s ≥ σ}. (Recall that 
Q := e(d−1)(t−σ) for a fixed σ ∈ R.)

We now use the analogous correspondence to define the elements of a translated Farey 
sequence on Rd−1. The translated Farey sequence (corresponding to ΓLN−) is the subset 
I of Rd−1 where I := I(L) := ∪∞

Q=1IQ and

IQ :=IQ(L) := (8.1){(
α1

αd
, · · · , αd−1

αd

)
∈ Rd−1 : (α1, · · · , αd) = (0, 1)γtL−1, γ ∈ ΓH\Γ, 0 < αd ≤ Q

}
.
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First we note that, using the bijection ([13, (3.18)] or [20])

ΓH\Γ → Ẑd ΓHγ 	→ (0, 1)γ,

we have that {(0, 1)γtL−1 : γ ∈ ΓH\Γ} = ẐdtL−1 is the set of primitive points of the 
lattice ZdtL−1, or, equivalently, the set of the points of the lattice ZdtL−1 visible from 
the origin of Rd [14, Section 2.4]. Let(

ẐdtL−1
)+

Q
:=
{

(α1, · · · , αd) ∈ ẐdtL−1 : 0 < αd ≤ Q
}

and (
ẐdtL−1

)+
:=
{

(α1, · · · , αd) ∈ ẐdtL−1 : 0 < αd

}
.

It is easy to see that IQ and 
(
ẐdtL−1

)+

Q
are in bijection for every Q ∈ N and that I is 

in bijection with 
(
ẐdtL−1

)+
.

Let A ∈ G and δ(A) = Ad,d be its (d, d)-th entry. Recall that we have the parametriza-
tion (5.11).

Lemma 8.4. Let γ ∈ Γ. We have that δ(γA) > 0 if and only if there exist M ∈ H and 
y := (y′, yd) ∈ Rd−1 × (0, ∞) such that

γA = M

(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
and that δ(γA) < 0 if and only if there exist M ∈ H and y := (y′, yd) ∈ Rd−1 × (−∞, 0)
such that

γA =

⎧⎪⎪⎨⎪⎪⎩
−IdM

(
(−yd)−1/(d−1)Id−1

t0
−y′ −yd

)
if d is even,(

Ĩd−1
t0

0 −1

)
M

(
(−yd)−1/(d−1)Id−1

t0
−y′ −yd

)
if d is odd.

Moreover, whenever it exists, the decomposition is unique.

Remark 8.5. Recall that the use of (
Ĩd−1

t0
0 −1

)
is one of several natural possible choices. We can regard this decomposition as coordinates 
and will refer to it as (H, Rd)-coordinates. The H-coordinate and Rd-coordinate will 
refer to the H-part and the Rd-part, respectively, of the (H, Rd)-coordinate. Note that, 
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regardless of whether δ(γA) > 0 or δ(γA) < 0, the d-th entry of the Rd-coordinate of 
γA is always > 0.

Proof. ( =⇒ ). Set y = (0, 1)γA. Thus we have that yd �= 0. If yd > 0, then we may set

M = γA

(
y
−1/(d−1)
d Id−1

t0
y′ yd

)−1

,

which is easy to see is in H.
If yd < 0, then set⎧⎪⎨⎪⎩

(ỹ′, ỹd) =: ỹ = (0, 1) (−IdγA) if d is even,

(ỹ′, ỹd) =: ỹ = (0, 1)
(
Ĩd−1

t0
0 −1

)
γA if d is odd.

Thus, we have ỹ = −y. In particular, we have that ỹd > 0, and applying the above proof 
for positive d-th coordinate with ỹ in place of y and⎧⎪⎨⎪⎩

−Idγ if d is even,(
Ĩd−1

t0
0 −1

)
γ if d is odd,

in place of γ yields the desired result.
( ⇐= ). This is immediate.
To see uniqueness, we note that the intersection of the following subgroups of SL(d, R)

is the trivial group:

H ∩
{(

y
−1/(d−1)
d Id−1

t0
y′ yd

)
: y′ ∈ Rd−1, yd > 0

}
= {Id}. �

The lemma has an immediate corollary:

Corollary 8.6. Let γ ∈ Γ and t ∈ R. We have that γAN+Φ−t intersects

H

{(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
: y := (y′, yd) ∈ Rd−1 × (0,∞)

}
if and only if δ(γA) > 0, and γAN+Φ−t intersects⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−IdH

{(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
: y := (y′, yd) ∈ Rd−1 × (0,∞)

}
when d is even,(

Ĩd−1
t0

0 −1

)
H

{(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
: y := (y′, yd) ∈ Rd−1 × (0,∞)

}
when d is odd,
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if and only if δ(γA) < 0.

Lemma 8.7. There exists a γ ∈ Γ such that δ(tLγ) > 0.

Proof. We first show that there exists a γ ∈ Γ such that δ(tLγ) �= 0. Assume not. Then 
δ(tLγ) = 0 for all γ ∈ Γ. Hence δ(tL) = 0 and (w′, 0) = (0, 1)tL. Consequently, for every 
γ ∈ Γ, we have that

(0, 1)tLγ = (w′, 0)γ = (u, 0)

for some u depending on γ. Now, since the last column of an element of Γ can be any 
standard basis vector of Rd, it follows that Rd ⊂ t(w′, 0)⊥, which implies that w′ = 0
and that L is not invertible. This yields a contradiction and shows that there exists a 
γ ∈ Γ such that δ(tLγ) �= 0.

For this γ ∈ Γ, if δ(tLγ) > 0, then we have shown the desired result. Otherwise, we 
have δ(tLγ) < 0 and, in this case, taking the γ and replacing it by⎧⎪⎨⎪⎩

γ(−Id) if d is even,

γ

(
Ĩd−1

t0
0 −1

)
if d is odd,

yields the desired result. �
For i ∈ {1, · · · , d}, let si,d ∈ Γ be the matrix with all entries either 0, 1, or −1 such 

that left-multiplying by it performs the elementary row operation of replacing the i-th 
row with the d-th row and either replacing the d-th row with the i-th row or replacing 
the d-th row with the negation of the i-th row, depending on which choice corresponds 
to det(si,d) = 1.

Now, for

M :=
(
AM

tbM
cM aM

)
∈ G,

we make the following observation:

M =

⎧⎪⎪⎨⎪⎪⎩
(

Id−1
t0

cMA−1
M −cMA−1

M
tbM + aM

)(
AM

tbM
0 1

)
if det(AM ) �= 0,

si,d

(
Id−1

t0
ĉM Â−1

M −ĉM Â−1
M

tb̂M + âM

)(
ÂM

tb̂M
0 1

)
if det(AM ) = 0,

(8.2)

where (
ÂM

tb̂M
)

:= s−1
i,dM
ĉM âM
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and the index i is chosen such that det(ÂM ) �= 0. Since M ∈ G, we have that

−cMA−1
M

tbM + aM = 1
det(AM ) and − ĉM Â−1

M
tb̂M + âM = 1

det(ÂM )
. (8.3)

Lemma 8.8. Let M ∈ G such that δ(M) �= 0 holds. Then there exists i ∈ {1, · · · , d} such 
that δ(s−1

i,dM) �= 0 and δ(M−1si,d) �= 0.

Proof. Let

M :=
(
AM

tbM
cM aM

)
.

Using (8.2), we have two cases.
Case: det(AM ) �= 0. We will show that the lemma holds with i = d. It is enough to 

show that δ(M−1) �= 0. Note that we have

M−1 =
(
A−1

M −A−1
M

tbM
0 1

)( Id−1
t0

−cMA−1
M

−cMA−1
M

tbM+aM

1
−cMA−1

M
tbM+aM

)
.

Now −cMA−1
M

tbM + aM �= 0 for, otherwise, det(M) = 0, which leads to a contradiction. 
Thus

δ(M−1) = 1
−cMA−1

M
tbM + aM

�= 0 (8.4)

is the desired result.
Case: det(AM ) = 0. If âM �= 0, then replacing M with s−1

i,dM in the previous case 
yields the desired result. Now for any j ∈ {1, · · · , d}, we can consider(

Âj
tb̂j

ĉj âj

)
:= s−1

j,dM,

and, if there does not exist j such that det(Âj) �= 0 and âj �= 0, then det(M) = 0, which 
leads to a contradiction. Thus such a j exists; setting i = j gives the desired result.

This completes the proof of the lemma. �
Remark 8.9. Note that we have γtL−1N+Φ−t intersects

ΓH
{(

y
−1/(d−1)
d Id−1

t0
y′ yd

)
: y := (y′, yd) ∈ Rd−1 × (0,∞)

}
for every γ ∈ Γ (i.e. regardless of the value of δ(γtL−1).) Corollary 8.6 implies this 
for δ(γtL−1) �= 0. If δ(γtL−1) = 0, then, for some choice of i, δ(s−1

i,dγ
tL−1) �= 0 and 

Corollary 8.6 will again imply this.
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Given A ∈ G such that δ(A) > 0, let AHAy be the unique decomposition from 
Lemma 8.4 where AH ∈ H and y = (0, 1)A. Note that, for all M ∈ H, we have that 
(MA)H = MAH and (MA)y = Ay.

Theorem 8.10. Fix σ, t ∈ R and let Q := e(d−1)(t−σ). The set of intersection points of 
the translated horosphere t(ΓLN−Φt)−1 with Γ\ΓH{Φ−s : s ≥ σ} is

{
t
(
ΓLn− (y′/yd)Φt

)−1 : (y′, yd) ∈ IQ

}
=
{

t
(
ΓLn− (y′/yd) Φt

)−1 : (y′, yd) ∈
(
ẐdtL−1

)+

Q

}
.

Proof. Let L̃ := tL−1. First, let us show that these points are intersection points. Let 
y := (y1, · · · , yd) ∈ IQ. Then there exists γ ∈ ΓH\Γ such that y = (0, 1)γL̃ and 
0 < yd ≤ Q. Thus δ(γL̃) > 0 and Lemma 8.4 gives the unique decomposition

γL̃ = (γL̃)H
(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
,

which yields

γL̃n+(−y′/yd)Φ−t = (γL̃)HΦ−t+ 1
d−1 log(yd) ∈ H{Φ−s : s ≥ σ}.

This shows that these are the desired intersection points.
Let us show all intersection points are of the desired form. Let

t
(
ΓLN−Φt

)−1 ∩ Γ\ΓH{Φ−s : s ≥ σ} �= ∅.

Then there exist γ ∈ Γ and x ∈ Rd−1 such that

γL̃n+(x)Φ−t = MΦ−r

where M ∈ H and r ≥ σ. Hence, we have

γL̃ = MΦ−r+tn+(−x).

A direct computation shows that δ(γL̃) = e(d−1)(t−r) > 0. Lemma 8.4 gives that

(γL̃)H
(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
= M

(
Φ−r+tn+(−x)

)
where (y′, yd) = (0, 1)γL̃ and that this decomposition is unique. This uniqueness implies 
that M = (γL̃)H and
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(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
= Φ−r+tn+(−x).

Thus x = −y′/yd and yd = e(d−1)(t−r) ≤ Q. This concludes the proof. �
Remark 8.11. Let (y′, yd) ∈ IQ and γ(y′,yd) be an element of Γ for which

(0, 1)γ(y′,yd)L̃ = (y′, yd). (8.5)

It is easy to see that the only elements γ ∈ Γ for which (0, 1)γL̃ = (y′, yd) holds 
are exactly the elements γ of the coset ΓHγ(y′,yd). Note that each element (y′, yd) ∈
IQ is in bijective correspondence to the following collection of intersection points of 
t(ΓLN−Φt)−1 with H{Φ−s : s ≥ σ}:

{
γL̃n+(−y′/yd)Φ−t : for all γ ∈ Γ such that (0, 1)γL̃ = (y′, yd)

}
= ΓHγ(y′,yd)L̃n+(−y′/yd)Φ−t.

Consequently, each element (y′, yd) ∈ IQ is in bijective correspondence to exactly one 
intersection of the translated horosphere with ΓH\H{Φ−s : s ≥ σ}.

Let us consider the following finite subset of IQ,

ÎQ :=
{(

α1

αd
, · · · , αd−1

αd

)
∈ IQ : 0 ≤ αi ≤ Q for i = 1, · · · , d− 1

}
, (8.6)

for which I = ∪∞
Q=1ÎQ.11 Hence, the set ÎQ is comprised of the points of the set ẐdtL−1

in the region [0, Q]d−1 × (0, Q], and, using the Gauss circle problem or its various gener-
alizations (see [15, Proposition 3.2] for example), we have the following asymptotics:

#(ÎQ) ∼ Qd

ζ(d) as Q → ∞. (8.7)

8.2. Points on a translated horosphere in the same Γ-coset

In this section, fix t ∈ R. Let x and y be two distinct elements of Rd−1. When the 
cosets ΓLn−(x)Φt and ΓLn−(y)Φt are equal, we refer to them as Γ-duplicates. As Γ-
duplicates are identified on Γ\G, we wish to find a (maximal) region AL in Rd−1 which 
corresponds to points of the translated horosphere with no Γ-duplicates. As the following 
theorem shows, AL is either all of Rd−1 or the fundamental domain of a torus lying in 
Rd−1. Let sj,d and δ(·) be as defined in Section 8.1.

11 Note that the sets ÎQ are defined in a slightly different way than the sets FQ from (2.1).
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Theorem 8.12. We have AL = Rd−1 for Haar-almost all L ∈ G. Otherwise, for L in the 
complementary subset of G, we have

AL =

⎧⎨⎩Td−1
(

A−1

det(A)

)
if det(A) �= 0

Td−1
(

Â−1

det(Â)

)
if det(A) = 0

.

Here, (
A tu
v c

)
:= L−1

and, if det(A) = 0, (
Â tû
v̂ ĉ

)
:= L−1sj,d (8.8)

where the index j is chosen such that det(Â) �= 0.

Remark 8.13. Note that such a j always exists. Also, as the proof below is independent 
of t, the region AL is independent of t.

Proof. Two points, ΓLn−(x)Φt and ΓLn−(y)Φt, on the Φt-translate of the translated 
horosphere are Γ-duplicates if and only if there exists a γ ∈ Γ\{Id} such that12

γ−1L = Ln−(y − x). (8.9)

Letting

L−1 =
(
A tu
v c

)
γ =
(
N tr
p q

)
s = x− y,

we have that (8.9) can be rewritten as(
A tu
v c

)(
N tr
p q

)
=
(
Id−1

t0
s 1

)(
A tu
v c

)
, (8.10)

which yields four equations, two of which are

A(N − Id−1) + tup = 0d−1,d−1 (8.11)

Atr + tu(q − 1) = t0.

Expressing this pair of equations in matrix form, we obtain

12 Note that, if we let γ = Id in (8.9), then we have that x = y. The converse of this statement also holds.
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(
A tu

)(N − Id−1
tr

p q − 1

)
=
(
A tu

)
(γ − Id) = 0d−1,d,

or, equivalently,

(tγ − Id)
(

tA
u

)
= 0d,d−1.

Here, 0i,j denotes, for i, j ∈ N, the i × j matrix with all zero entries.
Consequently, a necessary condition for the two points to be Γ-duplicates is for the 

first d −1 rows of L−1 to lie in the eigenspace of some γ ∈ Γ\{Id} for the eigenvalue 1. By 
the rank-nullity theorem, the geometric multiplicity of this eigenspace for any element 
of Γ\{Id} is at most d − 1. As Γ is countable, we have that, when Γ-duplicates exist, the 
first d − 1 rows of L−1 lie in a countable union of d − 1-dimensional hyperplanes in Rd.

We now show that such L lie in a set of Haar measure zero. Let M−1 ∈ G. Now, if 
the first row of M−1 lies in a d − 1-dimensional hyperplane p in Rd, then the first row of 
t1/dM−1, for every real number t > 0, also lies in p. Thus, by (5.14), we have that M−1

lies in a set of Haar measure zero. As the Haar measure on G is invariant under taking 
inverses, we have that M lies in a set of Haar measure zero. By the countable additivity 
of measure, we have shown that Γ-duplicates exist only for elements L in a set of Haar 
measure zero. This proves the first assertion.

We now prove the rest of the theorem. Now let L lie in the set of Haar measure zero for 
which Γ-duplicates exist. Consequently, (8.10) holds for some s ∈ Rd\{0}. Now (8.10) is 
equivalent to the two equations from (8.11) and the following two additional equations:

sA = v (N − Id−1) + cp

stu = vtr + c(q − 1).

Moreover, these four equations are equivalent to(
A tu
v c

)(
N − Id−1

tr
p q − 1

)
=
(

0d−1,d−1
t0

sA stu

)
. (8.12)

Multiplying by L on both sides and solving for p yields

p = δ(L)sA. (8.13)

There are two cases: det(A) �= 0 and det(A) = 0. For det(A) �= 0, we have that A is 
invertible and, thus, s = pA−1

δ(L) where δ(L) is computed as in (8.4). Using (8.3) gives the 

desired result. Finally, for det(A) = 0, we have that det(Â) �= 0. Using (8.8) and

(
N̂ tr̂

)
:= s−1

j,dγsj,d ∈ Γ\{Id}
p̂ q̂
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in (8.10) allows us to apply the previous case to obtain the desired result. This proves 
the theorem. �
8.3. Equidistribution of translated Farey sequences: preparation

To prove the equidistribution of translated Farey sequences (namely, Theorem 1.7), 
we need the following version of Shah’s theorem ([18, Theorem 1.4]), namely [14, Theo-
rem 5.8].

Theorem 8.14. Let λ be a Borel probability measure on Rd−1 which is absolutely con-
tinuous with respect to the Lebesgue measure and f : Rd−1 × Γ\G → R be a bounded 
continuous function. Then, for every L ∈ G, we have that

lim
t→∞

ˆ

Rd−1

f(x, Ln−(x)Φt) dλ(x) =
ˆ

Rd−1×Γ\G

f(x,M) dλ(x) dμ(M).

Remark 8.15. Note that the Portmanteau theorem (see [19, Chapter III] for example) 
allows us to extend Theorem 8.14 to the indicator functions of continuity sets (i.e. sets 
whose topological boundaries have measure zero). Also note that Theorem 8.14 is a 
consequence of mixing and does not require Ratner’s theorems (see the end of Section 5.4 
in [14]).

8.4. Equidistribution of translated Farey sequences: proof of Theorem 1.7

The proof is an adaptation of the proof of Theorem 2.1 in [13], but with a different 
version of Shah’s theorem (namely with Theorem 8.14). Since we are adapting the proof 
in [13], Steps 0 – 6 will refer to the original proof in [13]. First, note that multiplying 
L on the left by an element of Γ leaves the intersection points invariant, and it follows 
that, without loss of generality, we may assume

δ(L) > 0 (8.14)

because, if this were not so, then we replace L by tγL for some γ ∈ Γ for which Lemma 8.7
holds. Now, let L̃ := tL−1 and let us define the following subsets of ÎQ:

ÎQ,θ :=
{(

α1

αd
, · · · , αd−1

αd

)
∈ ÎQ : θQ < αd ≤ Q

}
for any θ ∈ (0, 1). The constant θ remains fixed until the very end of Step 6. By the 

bijection between I and 
(
ẐdtL−1

)+
, we have that each element of

(
α1

αd
, · · · , αd−1

αd

)
∈

∞⋃
ÎQ,θ
Q=1
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determines a unique element (α′, αd) := (α1, · · · , αd) for which αd > 0 and also deter-
mines a unique element γ(α′,αd) ∈ ΓH\Γ.

With the change of the version of Shah’s theorem used in the proof in [13] and the 
replacement of FQ,θ with ÎQ,θ, we need to make the following changes to Steps 0 – 6. 
(The main changes are to Steps 1, 5.)

8.4.1. Step 0: uniform continuity
The assertions in this step are the same for us. However, since we have replaced the 

torus Td−1 with A ⊂ Rd−1, we need to specify the compact support of f . The only 
change in this step is that we have compact sets Â ⊂ Rd−1 and C ⊂ G such that 
supp(f), supp(f̃) ⊂ Â × Γ\ΓC.

Note that the uniform continuity is expressed as the following: given δ > 0, there 
exists ε > 0 such that, for all (x, M), (x′, M ′) ∈ Rd−1 ×G,

‖x− x′‖2 < ε and d(M,M ′) < ε =⇒ |f(x,M) − f(x′,M ′)| < δ. (8.15)

The same applies to f̃ .

8.4.2. Step 1: thicken the translated Farey sequence
We thicken the points in the set ÎQ,θ under the correspondence given by Theorem 8.10

as follows. Let

Cε :=
{
(y1, · · · , yd) ∈ Rd : ‖(y1, · · · , yd−1)‖2 < εyd, θ < yd ≤ 1

}
.

For any u ∈ Rd (thought of as a row vector), define

Hε(u) :=
{
M̃ ∈ G : uM̃ ∈ Cε

}
.

An important relationship between G and Rd is the following observation.

Lemma 8.16. For every M ∈ G and every u ∈ Rd, we have that

MHε(uM) = Hε(u).

Proof. The proof follows from the fact that

uM̃ ∈ Cε ⇐⇒ uMM−1M̃ ∈ Cε. �
Moreover, we have that ([13, (3.20)])

H1
ε := Hε((0, 1)) = H

{(
y
−1/(d−1)
d Id−1

t0
y′ yd

)
: (y′, yd) ∈ Cε

}
. (8.16)
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We claim that, for each α′/αd ∈ ÎQ,θ and its unique corresponding γ := γ(α′,αd) ∈
ΓH\Γ, we have that their unique corresponding intersection point

p := p(α′,αd) := t
(
tγ−1Ln−(α′/αd)Φt

)−1

lies in H1
ε . We now prove the claim. Since α′/αd ∈ ÎQ,θ, we have that δ(γL̃) > 0 and 

Lemma 8.4 gives a unique decomposition

γL̃ = (γL̃)H
(
α
−1/(d−1)
d Id−1

t0
α′ αd

)
because (α′, αd) = (0, 1)γL̃. Consequently, we have that

p = (γL̃)H
(
α
−1/(d−1)
d Id−1

t0
α′ αd

)
n+

(
−α′

αd

)
Φ−t = (γL̃)H

(
(αd

Q )−1/(d−1)Id−1
t0

0 αd

Q

)
where in Step 0 we have set σ = 0 and thus have Q = e(d−1)t. This shows that p ∈ H1

ε . 
Finally, to see that the element of ΓH\Γ corresponding to α′/αd is unique, we set

(γL̃)−1
H γL̃ = (γ̂L̃)−1

H γ̂L̃,

from which it follows that γ, ̂γ are in the same coset in ΓH\Γ. This proves the claim.
Note that the claim allows us to regard H1

ε as a thickening of the translated Farey 
points.

8.4.3. Step 2: disjointness
This step is unchanged. The result is the following [13, (3.22)]. Given a compact subset 

C ⊂ G, there exists an ε0 > 0 such that

γH1
ε ∩H1

ε ∩ ΓC = ∅

for every ε ∈ (0, ε0], γ ∈ Γ\ΓH .

8.4.4. Step 3: apply Theorem 8.14
This step is essentially unchanged, except we apply a translated version of Shah’s 

theorem. The details are as follows. For all M ∈ ΓC, Step 2 gives

χε(M) =
∑

γ∈ΓH\Γ
χ1
ε(γM)

where χ1
ε is the indicator function of H1

ε and χε(M) is the indicator function of the 
disjoint union

Hε ∩ ΓC :=
⋃ (

γH1
ε ∩ ΓC

)
.

γ∈Γ/ΓH
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Applying Theorem 8.14 and Remark 8.15, we have

lim
t→∞

ˆ

Rd−1

f(x, Ln−(x)Φt)χ̃ε(Ln−(x)Φt) dx =
ˆ

Rd−1×Γ\G

f(x,M)χ̃ε(M) dx dμ(M)

(8.17)

=
ˆ

Rd−1×Γ\G

f̃(x,M)χε(M) dx dμ(M).

8.4.5. Step 4: a volume computation
Except for the fact that the domain of the first variable of the function f is a compact 

subset Â of Rd−1, this step is unchanged. In particular, the proofs are exactly the same. 
The result is the following [13, (3.46)]:∣∣∣∣∣∣ limt→∞

ˆ

Rd−1

f(x, Ln−(x)Φt)χ̃ε(Ln−(x)Φt) dx (8.18)

− (d− 1) vol(Bd−1
1 )εd−1

ζ(d)

| log θ|/(d−1)ˆ

0

ˆ

Rd−1×ΓH\H

f̃(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

∣∣∣∣∣∣∣
<

vol(Bd−1
1 )δεd−1 vol(Â)

dζ(d)
(
1 − θd

)
for δ, ε > 0 coming from Steps 0, 2. Here, Bd−1

1 denotes the open ball around 0 of radius 
1 in Rd−1, and vol is the Lebesgue measure on Rd−1.

8.4.6. Step 5: distance estimates

Lemma 8.17. Let α′/αd ∈ ÎQ,θ and γ := γ(α′,αd) be its unique corresponding element of 
ΓH\Γ. Then

γL̃n+(−x)Φ−t ∈ H1
ε

if and only if ∥∥∥∥α′

αd
− x

∥∥∥∥
2
< εe−dt and θQ < αd ≤ Q

hold.

Proof. Recall that Q = e(d−1)t. Consider

(0, 1)γL̃n+(−x)Φ−t = (0, 1)(γL̃)H
(
α
−1/(d−1)
d Id−1

t0
′

)
n+(−x)Φ−t
α αd
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= (0, 1)
(
etα

−1/(d−1)
d Id−1

t0
et(α′ − xαd) e−(d−1)tαd

)
.

The desired result now follows by the definitions of the sets H1
ε and Cε. �

Step 2, the lemma, and the fact that f and f̃ are both left Γ-invariant give us that
ˆ

Rd−1

f(x, Ln−(x)Φt)χε(L̃n+(−x)Φ−t) dx (8.19)

=
ˆ

Rd−1

f̃(x, L̃n+(−x)Φ−t)χε(L̃n+(−x)Φ−t) dx

=
∑

γ∈ΓH\Γ

ˆ

Rd−1

f̃(x, γL̃n+(−x)Φ−t)χ1
ε(γL̃n+(−x)Φ−t) dx

=
∑

α′
αd

∈ÎQ,θ

ˆ
∥∥∥ α′

αd
−x
∥∥∥
2
<εe−dt

f̃(x, γL̃n+(−x)Φ−t) dx

=
∑

α′
αd

∈ÎQ,θ

ˆ
∥∥∥ α′

αd
−x
∥∥∥
2
<εe−dt

f(x, Ln−(x)Φt) dx.

Applying the uniform continuity with δ, ε > 0 as above gives∣∣∣∣∣∣∣∣∣
ˆ

∥∥∥ α′
αd

−x
∥∥∥
2
<εe−dt

f(x, Ln−(x)Φt) dx− vol(Bd−1
1 )εd−1

ed(d−1)t f

(
α′

αd
, Ln−

(
α′

αd

)
Φt

)∣∣∣∣∣∣∣∣∣
(8.20)

<
vol(Bd−1

1 )δεd−1

ed(d−1)t

uniformly for all t ≥ 0.

8.4.7. Step 6: conclusion
This step is essentially unchanged. Using (8.18), (8.19), (8.20) and the uniform con-

tinuity, we have, as δ → 0,

lim
t→∞

1
ed(d−1)t

∑
α′
αd

∈ÎQ,θ

f

(
α′

αd
, Ln−

(
α′

αd

)
Φt

)
(8.21)

= d− 1
ζ(d)

| log θ|/(d−1)ˆ

0

ˆ

Rd−1×ΓH\H

f̃(x,MΦ−s) dx dμH(M)e−d(d−1)s ds.
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The asymptotics (8.7) show that

lim sup
t→∞

#
(
ÎQ\ÎQ,θ

)
ed(d−1)t ≤ θ

ζ(d) ,

which allows us to take the limit θ → 0 in (8.21). This proves Theorem 1.7 for σ = 0
and f compactly supported. The general case follows in exactly the same way as in [13]. 
This completes the proof of Theorem 1.7.

8.5. Shrinking target horospherical equidistribution for translated horospheres

We now prove our STHE results for translated horospheres by adapting our proofs 
for the horosphere.

Proof of Theorem 1.3 for any L ∈ G. In the proof of Theorem 1.3 for the case L = Id, 
replace the Farey sequence with the translated Farey sequence corresponding to ΓLN−. 
All of the proof up to (3.7) remains the same. Applying Theorem 1.7 in place of Theo-
rem 2.1, we obtain the analog of (3.7):

lim
t→∞

T d−1

#(ÎQ)

∑
α′
αd

∈ÎQ

fT,ε

(
α′

αd
, Ln−

(
α′

αd

)
Φt

)
(8.22)

= (d− 1)T d−1
0 εd−1

∞̂

0

ˆ

Rd−1×ΓH\H

1A×ST0
(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

= εd−1

d

ˆ

Rd−1

1A(x) dx.

Finally, as in Theorem 1.3 for the case L = Id, we normalize with respect to the Haar 
measure on N−, namely the Haar measure of Φ−tN−(Td−1)Φt = Φ−tN−([0, 1]d−1)Φt to 
obtain the desired result. �
Remark 8.18. The sets ÎQ, FQ are defined slightly differently and, in particular, have dif-
ferent asymptotics, namely (2.3) and (8.7), respectively. That these two sets are different 
does not affect any of our STHE results.

Proof of Theorem 1.1 for any L ∈ G. In the proof of Theorem 1.1 for the case L = Id, 
replace the Farey sequence with the translated Farey sequence corresponding to ΓLN−. 
All of the proof up to (5.22) remains the same. Applying Theorem 1.7 in place of Theo-
rem 2.1, we obtain the analog of (5.22):
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lim
t→∞

T d−1

#(ÎQ)

∑
α′
αd

∈ÎQ

f̂T,ε

(
α′

αd
, Ln−

(
α′

αd

)
Φt

)
(8.23)

= (d− 1)T d−1
0 εd−1

∞̂

0

ˆ

Rd−1×ΓH\H

1A×C(x,MΦ−s) dx dμH(M)e−d(d−1)s ds

= T d−1
0 ζ(d)μ

(
CN+

ε (ỹ)
) ˆ

Rd−1

1A(x) dx.

Finally, as in Theorem 1.1 for the case L = Id, we normalize with respect to the Haar 
measure on N−, namely the Haar measure of Φ−tN−(Td−1)Φt = Φ−tN−([0, 1]d−1)Φt to 
obtain the desired result. �
Proof of Theorem 1.5 for any L ∈ G. In the proof of Theorem 1.5 for the case L = Id, 
replace the Farey sequence with the translated Farey sequence corresponding to ΓLN−. 
All of the proof up to (4.11) remains the same. Applying Theorem 1.7 in place of Theo-
rem 2.1, we obtain the analog of (4.11):

lim
t→∞

T d−1

#(ÎQ)

∑
α′
αd

∈ÎQ

f̂T,D

(
α′

αd
, Ln−

(
α′

αd

)
Φt

)
= ζ(d)T d−1

0 μ(ST0E)

⎛⎝ ˆ

Rd−1

1A(x) dx

⎞⎠ .

(8.24)

Finally, as in Theorem 1.5 for the case L = Id, we normalize with respect to the Haar 
measure on N−, namely the Haar measure of Φ−tN−(Td−1)Φt = Φ−tN−([0, 1]d−1)Φt to 
obtain (1.14). �
Proof of Theorem 7.2 for any L ∈ G. In the proof of Theorem 7.2 for the case L = Id, 
replace the Farey sequence with the translated Farey sequence corresponding to ΓLN−

and follow the proof of Theorem 1.5. �
The analog of Lemma 7.21 is

Lemma 8.19. Let L ∈ G. Then there exists a null set N with respect to dx such that, for 
every t ∈ R, we have that

{x ∈ Rd−1 : Ln−(x)Φt ∈ S1K0} ⊂ N .

Moreover, N can be chosen to be a countable union of affine hyperplanes in Rd−1 of 
dimension d − 2.

Proof. Replace n−(x) with Ln−(x) in (7.18) and replace (7.19) with

(p, q) = (0, 1)γL. (8.25)
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This yields (7.20) and an affine hyperplane as in Lemma 7.21. Finally, the latter re-
placement gives that (p, q) ∈ I(tL−1), which is comprised of the points of the set ẐdL, 
implying that there are at most a countable number of such affine hyperplanes. This 
yields the desired result. �

Finally, we have

Proof of Theorem 7.23 for any L ∈ G. In the proof of Theorem 7.23 for the case L = Id, 
replace the Farey sequence with the translated Farey sequence corresponding to ΓLN−

and use Theorem 7.2. For the case c = 0, replace Lemma 7.21 with Lemma 8.19. �
9. More on volumes

In this section, we compute more volumes. These results are used in previous sec-
tions. Recall the definition of S̃T (z) in (7.2) and that of ŜT (z) in (7.13). The following 
generalizes Theorem 5.12:

Theorem 9.1. We have that

μ
({

S̃T (z)E−1(z) : z ∈ D
})

= d− 1
ζ(d)

˚
1{ŜT (z)n+(z′):z∈D

} (MΦ−sn+(x̃)
)

dμH(M)e−d(d−1)s ds dx̃.

Proof. Use Lemma 7.14 in place of Lemma 4.1 in the proof of Theorem 5.12 to obtain 
the desired result. �

The following generalizes Theorem 5.13:

Theorem 9.2. We have that

μ
({

S̃T (z)E−1(z) : z ∈ D
})

= T d−1
0

T d−1μ
({

S̃(z)E−1(z) : z ∈ D
})

.

Proof. Using Iwasawa coordinates, we have that

dμ = C̃0ρ(a) dn da dk,

where C̃0 > 0 is a constant. Equation (7.2) states that S̃T (z) and S̃(z) are the same in 
Iwasawa coordinates except for a factor of Φ− 1

d log(T/T0). Equation (5.17) implies that 
we obtain the factor

T d−1
0

T d−1 ,

which is the desired result. �
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