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Abstract
The boundary layer plays a key role in several aspects of hurricane dynamics.
Here we focus on its contribution to the balanced circulation. Previous studies,
whilst including centrifugal terms, have not included an explicit balance in the
boundary layer. Here, we improve the balanced theory to include an Ekman bal-
ance, the so-called frictional axisymmetric vortex (FAV). This approach is analo-
gous to semigeostrophic theory that includes realistic boundary-layer diffusion:
semigeotriptic (SGT) theory. We formulate the FAV for an axisymmetric sys-
tem in cylindrical polar coordinates. We then derive a Sawyer–Eliassen equation
for the vertical circulation. Example solutions for idealised hurricane-scale and
synoptic-scale vortices are compared.
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1 INTRODUCTION

A hurricane vortex has a significant range of spatial and
time scales (Emanuel, 1991). For example, there is the
large-scale advective dynamics acting over tens of kilome-
tres, interacting with fast physics such as latent heating
and precipitation; there is also the boundary-layer and sur-
face turbulent transfer acting on scales smaller than 1 km.
None of these processes can be neglected in weather pre-
diction models, so the challenge is capturing this large
range of scales and their interactions through the dynam-
ics and the subgrid parametrizations. Whilst the full range
of processes is necessary for prediction, there is benefit
from isolating some of these processes to understand the
components of these hurricane dynamics. The approach of
this article is to focus on the boundary layer’s interaction
with the large-scale dynamics.

Despite the small horizontal scales of a hurricane,
Bui et al. (2009) demonstrated that a gradient-balanced
approach accounts for a substantial amount of the flow.
Also, Smith and Montgomery (2008) emphasised the
unbalanced advective flow in the hurricane core in the
boundary layer. Ji and Qiao (2023) provide a helpful
review of development of the Sawyer–Eliassen equation
for hurricane studies from its inception (Eliassen, 1962).
For this study, we pick up at the point in history of the
balanced approach of Bui et al. (2009); here they formu-
lated a Sawyer–Eliassen equation for the circulation in the
vertical plane (vertical and horizontal winds) by applying
gradient-wind thermal wind balance to the equations of
motion. The coefficients of the Sawyer–Eliassen equation
lead to a restrictive solvability condition, such that the
fields from a mesoscale model needed to be regularized
(smoothed) before being used in it. Moreover, Ji and

Abbreviations: FAV, frictional axisymmetric vortex; SGT, semigeotriptic.
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2 BEARE and CULLEN

Qiao (2023) modify the right-hand side of the equations of
Bui et al. (2009) to include unbalanced residuals.

In this article, we pursue an alternative approach
where the boundary layer is incorporated into the
thermal-wind balance and is imposed on the equations
of motion from the start, the so-called frictional axisym-
metric vortex (FAV). These FAV equations are analogous
to the frictional semigeostrophic ones, the so-called semi-
geotriptic (SGT) equations. The SGT equations are a
set of dynamical equations where the Ekman-balanced
(geotriptic) winds are used as the prognostic variables
instead of the geostrophic momentum in semigeostrophic
theory. Previously, in Beare and Cullen (2013), we derived
a Sawyer–Eliassen equation in Cartesian coordinates;
the Sawyer–Eliassen equation assumed geostrophic bal-
ance above the boundary layer and Ekman balance
within; the equation also includes advection due to the
boundary-layer flow. This approach leads to an improved
solvability condition within the boundary layer via
increased positive-definiteness of the vertical coefficients.
The theoretical approach is also discussed by Beare and
Cullen (2012); Beare and Cullen (2016). The full ver-
tically discrete boundary layer is incorporated in the
SGT diagnostic described by Cullen (2018); he showed
that, if the correct Met Office Unified Model surface
flux condition is also used, the boundary-layer structure
is reproduced well. Also, the axisymmetric generalisa-
tion of semigeostrophic theory is given by Cullen and
Sedjro (2015).

Bui et al. (2009) make it clear that their definition of
balance does not hold in the boundary layer and is a signifi-
cant limitation of their work. Our approach aims to correct
this deficiency by including a proper boundary-layer bal-
ance. Here, we aim to modify the axisymmetric equations
to include a boundary-layer balance. This approach will
thus extend our previous work (Beare and Cullen, 2013)
to include the centrifugal terms. We will demonstrate the
performance of our approach using idealised vortices with
scales in velocity and length of both a hurricane and a syn-
optic vortex. Comparing the hurricane solutions with the
synoptic scales will help identify the benefit of including
the new terms.

2 METHODOLOGY

2.1 Equations in cylindrical polar
coordinates

Most of the mathematical symbols used here are defined
in Table 1; other symbols are defined in the text. The
governing FAV equations can be viewed as extending

T A B L E 1 Symbols used in this article.

Symbol Meaning

(r, z, t) Cylindrical polar coordinates and time

(ue, ve) Frictional-gradient wind in radial and
azimuthal directions respectively

(u, v,w) Wind components in radial, azimuthal and
vertical directions respectively

D
Dt

Substantive derivative D
Dt
= 𝜕

𝜕t
+ u 𝜕

𝜕r
+ w 𝜕

𝜕z

f Coriolis parameter (constant)

𝜙(r, z, t) Geopotential perturbation

b(r, z, t) Buoyancy perturbation

N Brunt–Väisälä frequency (constant)

Km(r, z) Boundary-layer vertical momentum
diffusivity

Fb(r, z) Buoyancy tendency

D(r, z) Diffusion operator D() = 𝜕Km𝜕()
𝜕z2

D ′(r, z) Diffusion operator in circulation equation
D′() = 𝜕

2

𝜕z2 Km(). D ′ 𝜕
𝜕z
() = 𝜕

𝜕z
D()

𝜉(r, z, t) Twice the angular velocity 𝜉 = 2ve
r
+ f

F(r, z, t) F = ve
r
+ f

𝜁(r, z, t) Absolute vorticity 𝜁 = f + 1
r
𝜕(rve)
𝜕r

= F + 𝜕ve
𝜕r

Fu(r, z, t),
Fv(r, z, t)

Frictional acceleration in radial and
azimuthal directions

the semigeotriptic equations (Beare and Cullen, 2013) to
cylindrical polar coordinates and including centrifugal
terms. The FAV equations are

Due

Dt
− vve

r
− fv + 𝜕𝜙

𝜕r
= D (2ue − u), (1)

Dve

Dt
+ uve

r
+ fu = D (2ve − v), (2)

Db
Dt

+ wN2 = Fb, (3)

𝜕𝜙

𝜕z
= b, (4)

𝜕ru
𝜕r

+ 𝜕rw
𝜕z

= 0, (5)

where for simplicity we have assumed unity background
density. Setting the substantive derivative to zero gives

−
v2

e

r
− fve +

𝜕𝜙

𝜕r
= Due = Fu, (6)

veue

r
+ fue = Dve = Fv, (7)
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BEARE and CULLEN 3

the definition of frictional gradient winds (ue, ve).
Compared with Beare and Cullen (2013), Equations 1
and 2 now include centrifugal terms (second term
in each equation); moreover, mass conservation,
Equation 5, is appropriate for cylindrical polar coordi-
nates. Equations 1–7 differ from those of Bui et al. (2009)
and Kepert (2010), and a more recent article by Heng
et al. (2017), in that balance is applied to the equations
(the so-called semigeotriptic assumption) right at the
start of the derivation. In the next sections, we will show
that this process also allows for both physically real-
istic energy evolution and a circulation equation with
greater solvability. We also acknowledge the approach
of of Ji and Qiao (2023), where the right-hand sides of
the equations include terms that account for unbalanced
residuals.

2.2 Energetics

Consider the functional form of the Centrifugal terms,
second on the left-hand side of Equations 1 and 2, and the
frictional terms on the right-hand side; these functional
forms are justified by having the correct limit of frictional
gradient wind balance (for u → ue and v → ve) and a
physically realistic energy evolution. The derivation of the
energetic evolution is based on Beare and Cullen (2013),
so we give a summary here. Equations 6 and 7 are
deducted from Equations 1 and 2 respectively; the result-
ing radial momentum equation is then multiplied by ue
and azimuthal momentum equation by ve and the two
equations are summed. The centrifugal terms cancel out
of the energetics at this stage. The domain-integrated
energy (Eint) is defined as

Eint = 2𝜋∫
Hd

0 ∫
Rd

0

[1
2
(u2

e + v2
e) − zb

]
r dr dz, (8)

where the domain’s radial and height dimensions are given
by Rd and Hd respectively. The time evolution of Eint is then

dEint

dt
= −2𝜋∫

Hd

0 ∫
Rd

0
Km

[(
𝜕ue

𝜕z

)2

+
(
𝜕ve

𝜕z

)2
]

r dr dz,

(9)
which is negative-definite and thus physically realis-
tic under the action of friction. As discussed by Beare
and Cullen (2012) and Beare and Cullen (2013), the
form of the friction term on the right-hand side of
Equations 1 and 2 is necessary to ensure this phys-
ically realistic negative-definite energy relation; any
other formulation would not give the correct energy
evolution.

2.3 Idealised setup and solving
frictional gradient balance

For our idealised vortex test case, we prescribe the radial
pressure gradient as

𝜕𝜙

𝜕r
= Pmax exp

(
− z

Hv

){
r∕Rv, if r ≤ Rv,

R2
v∕r2

, otherwise,
(10)

where Rv and Hv define the size of the vortex in the radial
and vertical directions respectively, and Pmax is the max-
imum radial pressure gradient. By changing values of Rv,
we will impose either a hurricane or synoptic-scale vor-
tex. When cyclostrophic balance dominates within the
vortex radius (as for a hurricane), the azimuthal wind is
proportional to (r 𝜕𝜙∕𝜕r)1∕2 within the vortex radius, that
is, proportional to r, the same profile as a Rankine vortex
that Holland (1980) showed is a reasonable approxima-
tion in a hurricane. We note, though, that there have been
more recent updates to the Rankine formula to include
quadratic and cubic terms (Kepert and Wang, 2001). The
pressure gradient increases linearly from the centre, peak-
ing at r = Rv, then decreasing as an inverse quadratic. In
the absence of friction, gradient-wind balance is deter-
mined by solving a quadratic equation for the azimuthal
wind. For transparency and simplicity, we decided to
apply a similar solver here. This approach requires the
specification of frictional profiles first and then later infer-
ring the diffusion profiles. Typical similarity profiles are
used that are zero above the boundary layer and peak in
the middle. The profiles are

Fu =

{
Fu0(1 − z∕h)2, if z ≤ h,
0, otherwise,

(11)

Fv =

{
−AFu0(z∕h)(1 − z∕h)2, if z ≤ h,
0, otherwise,

(12)

where the no-slip surface boundary condition on ve is
ensured by

Fu0 =
𝜕𝜙

𝜕r
(z = 0). (13)

The constant A will be defined later in this section. The Fv
profile ensures the radial wind is zero at both the bottom
and top of the boundary layer.

The boundary-layer depth takes a functional form
that approximates figure 2 of Kepert and Wang (2001).
It increases linearly within the vortex centre, remaining
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4 BEARE and CULLEN

constant beyond r = Rv,

h = hmax

{
r∕Rv if r ≤ Rv,

1 otherwise.
(14)

Rearranging Equations 6 and 7 gives

v2
e + frve − r 𝜕𝜙

𝜕r
+ rFu = 0, (15)

ue =
rFv

ve + fr
. (16)

Taking the positive (cyclonic) root of the quadratic,
Equation 15 gives

ve = −
fr
2
+

[(
fr
2

)2

+ r
(
𝜕𝜙

𝜕r
− Fu

)]1∕2

, (17)

which is as the standard gradient-wind formula, but now
with a deduction from the pressure gradient to account for
friction. For the remaining circulation calculation, we then
diagnose diffusion such that

Dve = Fv, (18)

and, since ve and Fv are known, the diffusion opera-
tor, D, is inverted to determine Km. The constant A in
Equation 12 controls the inflow angle of the frictional gra-
dient wind. We are guided by the observed inflow angle
(Zhang et al., 2011; Zhang and Uhlhorn, 2012) of 22.6◦. The
value of A = 0.85 is thus used.

2.4 Circulation equation

In this section, we derive an equation for the ver-
tical circulation induced by the combination of
boundary-layer friction and heating. Mass continu-
ity, Equation 5, is encapsulated in the stream-function
definition

(u,w) =
(
−1

r
𝜕𝜓

𝜕z
,

1
r
𝜕𝜓

𝜕r

)
, (19)

where, for comparison purposes, we have used the
same sign convention as Bui et al. (2009). Taking
𝜕∕𝜕z of Equation 6 and substituting from Equation 4
gives

𝜕b
𝜕r
= 𝜉 𝜕ve

𝜕z
+ 𝜕Due

𝜕z
, (20)

the frictional thermal wind balance. Taking the time
derivative of Equation 20, assuming that Km does not vary
in time, gives

𝜕

𝜕r
𝜕b
𝜕t
=
(
𝜉

𝜕

𝜕z
+ 2

r
𝜕ve

𝜕z

)
𝜕ve

𝜕t
+ D ′ 𝜕

𝜕z

(
𝜕ue

𝜕t

)
. (21)

Note the change of diffusion operator from D and D′ (see
Table 2). The time derivatives in Equations 1–3 are substi-
tuted into Equation 21. Many of the first-order derivatives
in stream function cancel using Equation 20. Scaling
analysis indicated that the remaining first-order deriva-
tive terms were negligible. Given the axial flow is much
greater than the radial flow, we also follow Cullen (1989)
and Bannon (1998) by setting v = ve (the frictional equiv-
alent of the geostrophic momentum approximation of
Hoskins, 1975). The resulting diagnostic equation for the
stream function is

[
𝜉𝜁 + D ′2 + 𝜕ue

𝜕r
D ′

]
1
r
𝜕

2
𝜓

𝜕z2

+ N2 𝜕

𝜕r

(
1
r
𝜕𝜓

𝜕r

)
− 2𝜕b

𝜕r
1
r
𝜕

2
𝜓

𝜕r𝜕z

= −
[
𝜉F + D ′2

]
𝜕ue

𝜕z
+ 𝜕Fb

𝜕r
. (22)

Equation 22 is an elliptic diagnostic equation for stream
function; the equation is forced on the right-hand side by
friction (first group of terms) and heating (second term).
Equation 22 thus allows a useful diagnostic calculation
of the response of the dynamics to the physics for an
axisymmetric vortex. This circulation equation differs
from that in Bui et al. (2009); although both approaches
apply thermal wind balance, here a set of equations that
are rigorously balanced provides the starting point. As a
result, there is more positive definiteness in the resulting

T A B L E 2 Parameter values used for the hurricane and
synoptic cases.

Symbol
Hurricane
value

Synoptic
value

N 1.73 × 10−2 s−1 Same

f 1 × 10−4 s−1 Same

Rv 40 km 1000 km

Pmax 0.06 m⋅s−2 3 × 10−3 m⋅s−2

Hmax 25 K⋅h−1 2 K⋅h−1

LH 20 km 1000 km

Hmaxbl 12.5 K⋅h−1 5 K⋅h−1

Rossby no., max(ve)∕(fRv) 11 0.2

hmax 1500 m Same
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BEARE and CULLEN 5

coefficients in Equation 22, namely from the D′2 terms.
The solvability condition for Equation 22 is

[
𝜉𝜁 +

K2
m

Δz4 +
𝜕ue

𝜕r
Km

Δz2

]
N2 − 𝜕b

𝜕r

2
> 0, (23)

where the magnitude of the diffusion operator, D′,
is approximated by the coefficient Km∕Δz2. Within
the boundary layer, diffusion coefficients act to make
Equation 22 more elliptic. Positive absolute vorticity also
acts to make the solution of Equation 22 more positive
definite. In fact, when the absolute vorticity is very large
and positive, we anticipate that the the stream function
will be significantly reduced and thus suppressed in these
regions; we refer to this effect as ‘vortex shielding’.

It is helpful to compare this with the correspond-
ing Cartesian case described by Beare and Cullen (2013),
applying the same scaling assumptions as above, where

[
f
(

f + 𝜕ve

𝜕x

)
+ D′2 + 𝜕ue

𝜕x
D′
]
𝜕

2
𝜓

𝜕z2 + N2 𝜕
2
𝜓

𝜕x2 − 2𝜕b
𝜕x

𝜕

2
𝜓

𝜕x𝜕z

= −
[
f 2 + D′2]𝜕ue

𝜕z
+ 𝜕Fb

𝜕x
. (24)

Equations 22 and 24 have the same general structure with
the change of coordinate from r to x. Equation 22 also
has extra 1∕r terms contained in 𝜉, 𝜁 , and F that tend to
the Cartesian values at small Rossby numbers (as r →∞,
𝜉, 𝜁 ,F → f ). For this reason, comparing the hurricane and
synoptic scales will be helpful in highlighting the role of
these terms.

2.5 Idealised scenarios

In order to highlight the benefits of including centrifugal
terms in the FAV formulation, we considered two contrast-
ing horizontal scales and Rossby numbers. We thus pre-
scribe hurricane (large Rossby number) and synoptic-scale
(small Rossby number) vortices; the parameters for these
cases are given in Table 2. For the hurricane case, these
parameters are guided by the observed and modelled cases
of Holland (1980) and Bui et al. (2009). For each case, we
impose a tropospheric heating rate H, emulating that due
to latent heating with

H =
⎧
⎪⎨⎪⎩

Hmax cos (𝜋(r − Rv)∕LH)2

cos (𝜋(z −H∕2)∕H)2
if |r − Rv| ≤ LH∕2
and |z −H∕2| ≤ H∕2,

0 otherwise,
(25)

where the heating is maximum at the vortex radius Rv and
the mid troposphere and H is the depth of the troposphere.

Within the boundary layer, we also include a heating
rate

Hbl =

{
Hmaxbl(8z∕h)(1 − z∕h)2 if z ≤ h,
0 otherwise.

(26)

3 RESULTS

3.1 Balanced hurricane solutions

The frictional gradient winds for the hurricane-scale case
are shown in Figure 1a,b. On the one hand, the pressure
gradient forces the azimuthal wind to peak at the sur-
face; on the other hand, the boundary layer (below its
depth marked by the dashed line) forces the azimuthal
wind to zero over its depth. The boundary-layer depth
peaks with the maximum azimuthal wind. The radial wind

F I G U R E 1 (a) Azimuthal frictional gradient wind for
hurricane case, solid lines, contour interval 10 m⋅s−1.
Boundary-layer depth is marked by a dashed line. (b) Radial
frictional gradient wind, negative values dashed, contour interval
2 m⋅s−1.
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6 BEARE and CULLEN

in Figure 1b indicates an Ekman-layer-like wind turning
within the boundary layer of order 22.5◦, close to the value
of 22.6◦ observed by Zhang and Uhlhorn, 2012.

The maximum azimuthal wind is at r=40 km, with
a value of 44 m⋅s−1, comparable with the observations
of developing hurricanes in Holland (1980) and Bui
et al. (2009). The small radius means that the Rossby num-
ber is 11, much larger than one, so the geostrophic wind
will be completely inaccurate and the frictional gradient
wind and its cyclostrophic limit at small radius are far
more physically appropriate. In the cyclostrophic limit,
the pressure gradient in Equation 10 equates to just the
centrifugal term (v2

e∕r); the azimuthal wind thus varies as
r for r < Rv.

Figure 2a shows the surface pressure associated with
the hurricane vortex; the pressure depth is in agreement
with the observational studies of Holland (1980). There is
low pressure in the centre and the curvature of the pressure
with r varies in a similar way to the observations; integrat-
ing Equation 10 with respect to r gives a variation of sur-
face pressure as r2 for r < Rv. Figure 2b shows the potential
anomaly in thermal wind balance with the gradient wind,

F I G U R E 2 (a) Surface pressure with radial coordinate. (b)
Potential temperature anomaly, contour interval 2 K.

showing a warm anomaly of magnitude 10 K in the vortex
centre; this variation follows the friction thermal wind
balance, Equation 20, that is, the negative horizontal gra-
dient of buoyancy, balances the negative vertical gradient
of geostrophic wind. Since Equation 20 has vorticity as the
coefficient of vertical shear, instead of the much smaller
Coriolis parameter, this means that the horizontal gradient
of buoyancy is greater than the quasigeostrophic formula.

The boundary-layer diffusion is shown in Figure 3a.
This follows the imposed boundary-layer depth closely and
has a relatively large magnitude due to the large value
of the frictional gradient wind, with a maximum close
to the surface; the diffusion coefficient is closely corre-
lated to the vertical shear of the azimuthal wind. Figure 3b
shows the imposed heating rate, with components that are
similar to latent heating (Bui et al., 2009) in the mid tropo-
sphere and from the boundary layer. The imposed tropo-
spheric heating models latent heating close to r = Rv, as in
figure 3 of Bui et al. (2009), with a similar magnitude and
horizontal distribution above the boundary-layer height.

F I G U R E 3 (a) Boundary-layer diffusion, contour interval
50 m2⋅s−1. (b) Heating rate, contour interval 5 K⋅h−1.
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BEARE and CULLEN 7

The boundary layer heating is below the boundary-layer
depth and models the heating of a mixed layer below the
boundary-layer height.

Figure 4a,b shows the radial and vertical velocity com-
ponents diagnosed with the Sawyer–Eliassen equation,
Equation 22. The inflow velocity (Figure 4a) increases
from the right and peaks outside the radius of maximum
wind. The decrease of the inflow velocity then converts
into an Ekman-pumping-like ascent over the radius of
maximum wind; also there is a return radial flow above
the boundary layer. This distribution of vertical velocity
has more of a low-level boundary-layer component than
in Bui et al. (2009); comparing Figure 4b with figure 5d
of Bui et al. (2009), we see similar distributions of verti-
cal velocity, but more vertical velocity low down, due to
the imposed boundary-layer balance. This feature is a clear
strength of our formulation.

Figure 5a shows the the stream function. The ver-
tical clockwise circulation follows these stream lines,
showing both the low-level boundary-layer circulation

F I G U R E 4 (a) Radial velocity diagnosed from Equation 22,
contour interval 2 m⋅s−1, negative values dashed. (b) Vertical
velocity diagnosed from Equation 22, contour interval 0.1 m⋅s−1.

F I G U R E 5 (a) Stream function, contour interval
8 × 107 m3⋅s−1. (b) Absolute vorticity normalised by f , plotted against
r, at height 2500 km. (c) Ellipticity, contour interval 2 × 10−8 s−4.

and the mid-troposphere vertical velocity over the radius
of maximum wind. Also, the stream function is much
smaller within the first 40 km of radius, consistent with
the effect of the absolute vorticity in the coefficients of
Equation 22 supressing the stream function, or a “vortic-
ity shielding” effect. The positive radial return flow above
the boundary layer is consistent with this stream func-
tion. The stream-function distribution is also similar to
that in figure 4b in Bui et al. (2009), but with more ver-
tical gradients within the boundary layer. This effect is
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8 BEARE and CULLEN

illustrated further in Figure 5b, where the absolute vortic-
ity above the boundary layer is much higher within the
vortex radius. The high values of relative and absolute vor-
ticity for r < Rv appear in Equations 21 and 22 and reduce
the vertical shear of ve and decrease 𝜓 , respectively, akin
to a vorticity shielding effect.

The ellipticity is contoured in Figure 5c, peaking with
the boundary-layer diffusion in Figure 3a. In Equation 22,
the squared diffusion operator (D′2) is the coefficient of
𝜕

2
𝜓∕𝜕z2, making the solver more positive definite.

3.2 Contributions from heating
and friction

Figure 6 shows another benefit of Equation 22: the ability
to split up and associate the contribution of different phys-
ical processes to the vertical circulation. Figure 6a shows
the vertical velocity due to just the tropospheric heating
rate (Equation 25), with values proportional to the heat-
ing rate. Figure 6b shows the vertical velocity due to just
the boundary-layer drag, an example of the benefit of our
formulation; this vertical velocity can be viewed as the
analogue of Ekman pumping, but using the frictional gra-
dient balance as the basis. This component is not present
in the diagnosis of Bui et al. (2009). The horizontal radial
wind from the boundary layer converts, via continuity,
into a vertical velocity that is maximum at the vortex
radius. Finally, Figure 6c shows the contribution from
the heating rate in the boundary layer, of much smaller
magnitude than the other processes, peaking below the
region of maximum boundary-layer depth. Although the
boundary-layer heating has a significant magnitude, its
horizontal gradient is much smaller, contributing a much
smaller component to 𝜕Fb∕𝜕r on the right-hand side of the
Sawyer–Eliassen equation, Equation 22.

3.3 Comparison with Cartesian
formulation

It is useful to compare our results with the previous
Cartesian formulation of Beare and Cullen (2013), as this
helps highlight the benefits of including the centrifugal
terms here; in the Cartesian case, a geostrophic wind is
assumed above the boundary layer, compared with the
gradient wind. Figure 7 compares the frictional gradi-
ent wind and the frictional geostrophic values. Clearly
the geostrophic values are much larger by a factor of
10 and thus unrealistic; this difference is due to the
Rossby number being much greater than one within the
vortex radius and thus the geostrophic wind being very
inaccurate.

F I G U R E 6 (a) Vertical velocity, contour interval 0.1 m⋅s−1,
due to just tropospheric heating. (b) Vertical velocity, contour
interval 0.1 m⋅s−1, due to just boundary-layer drag. (c) Vertical
velocity, contour interval 0.005 m⋅s−1, due to just boundary-layer
heating. Note the smaller contour interval.

However, when we increase the radius to synop-
tic scales (Figure 8), the current formulation and the
geostrophic values are a lot closer; this result is con-
sistent with the Rossby number of 0.2 for the synoptic
case, compared with the value of 11 for the hurricane
scale. This change is further illustrated in the compari-
son of the vertical velocities from Equations 22 and 24
respectively in Figure 9. The distribution of vertical
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BEARE and CULLEN 9

F I G U R E 7 A comparison of ve calculated using (a) frictional
gradient balance and (b) the Cartesian (friction geostrophic)
balance for the hurricane case. Note the different contour intervals
used: 10 m⋅s−1 in (a), 100 m⋅s−1 in (b). Boundary-layer depth is
marked by a dashed line.

velocities is very close at the synoptic scale. Thus, the
new formulation can be seen as tending to the Carte-
sian one for large radii. However, even at synoptic
scales, the inclusion of the centrifugal correction gives a
small improvement in accuracy, as the Rossby number is
still finite.

4 CONCLUSIONS

In this article, we have improved the balanced theory
of hurricane dynamics (Bui et al., 2009) by including
an explicit boundary-layer balance. The so-called FAV
theory is analogous to the Cartesian balanced theory of
Beare and Cullen (2013), but now extended to cylindri-
cal polars including the centrifugal terms. As such, the
theory is now applicable to a hurricane vortex with large
Rossby numbers within the vortex radius. It also adds a

F I G U R E 8 Same comparison as Figure 7, but for the
synoptic case, contour interval 5 m⋅s−1.

next-order improvement to a synoptic-scale vortex. A key
result is the improvement of the boundary-layer conver-
gence and low-level ascent. The theory also improves on
Bui et al. (2009) by introducing extra positive-definiteness
to the circulation equation, and thus solvability in the
boundary layer.

Whilst we do not claim the theory captures the
additional imbalanced flow posited by Smith and
Montgomery (2008), it does also include advection within
the boundary layer. Others, such as Smith and Vogl (2008)
and Kepert (2010), have shown the benefit of idealised
treatments in understanding hurricane dynamics. Here
we have also shown idealised solutions for our circulation
equation. Of course, the same formulation could also be
applied to real data.

We demonstrated how the theory permits a split of
the flow due to heating and drag components. The max-
imum ascent was correlated with tropospheric heating,
and that due to Ekman pumping also peaked at the
radius of maximum wind. We anticipate that this ability
to identify the heating and drag contributions to the
flow should help identify the subgrid parametrizations
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10 BEARE and CULLEN

F I G U R E 9 Comparison between (a) cylindrical polar and (b)
Cartesian diagnosis of vertical velocity for the synoptic case,
contour interval 0.01 m⋅s−1.

responsible in weather prediction models. Not only did
the boundary-layer diffusion relax the circulation back
to the balanced velocity, but the high absolute vorticity
within the hurricane core acted to reduce the stream
function and thus deviate the ascent to over the radius of
maximum wind.

We now discuss some potential restrictions of our
methodology. The calculation of the frictional gradient
wind required prescribing drag profiles—this approach
provided a way of solving the nonlinear frictional gradi-
ent balance for this proof-of-concept study; a more gen-
eral method might involve combining a vertical solver
with the nonlinear solution, so that just a diffusion pro-
file can be prescribed. Whilst the boundary-layer diffusion
improves the solvability condition within the boundary
layer, a condition similar to that of Bui et al. (2009) still
applies outside it, so one has to ensure that stratification is
sufficiently large outside the boundary layer. In this arti-
cle, we have demonstrated the FAV theory for idealised
hurricane and synoptic vortices with scales motivated by
observations. There is still more work to be done with

full numerical weather prediction models and beyond the
idealised setting here. Although unbalanced motions are
still present in real cases (Smith and Montgomery, 2008),
the balanced perspective given here provides an invalu-
able starting point to understanding the flow. Splitting
the flow into unbalanced and balanced parts is a valuable
perspective.
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