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Abstract—Robots with autonomous navigation capabilities
have become increasingly popular after the advances in
robotic automation, particularly in the area of pathfinding
algorithms. These algorithms enable robots to safely traverse
through complex environments with both stationary and moving
obstacles. Applications of this field range from data acquisition
to surveys of hazardous situations and transportation by
industrial robots. The most commonly utilized approach for
two-dimensional obstacle avoidance is grid-based pathfinding
algorithms. These methods function by initially generating a grid
consisting of nodes and edges based on the environment. In this
paper, we explore an implementation of a variation of the A*
pathfinding algorithm on a 15x15 grid. The A* algorithm was
chosen because it guarantees finding the optimal route between
starting and ending points. A* is a grid-based algorithm that falls
under the category of search-based algorithms. The Maximum
Velocity Obstacle (MVO) algorithm undergoes rigorous testing
to evaluate its performance, and we examine how the simulation
input parameters influence the algorithm’s effectiveness. The
experimental results indicate that the MVO algorithm is an
efficient and reliable solution for dynamic obstacle avoidance in
a grid-based setting. Moreover, this study demonstrates that the
algorithm can be further optimized by using more advanced
techniques such as combining it with existing pathfinding
algorithms, like artificial neural networks. This would enable
the robot to adapt to unpredictable environments in future
research.

Index Terms—Obstacle-avoidance, grid-based path-finding, A*
algorithm, mobile robot simulation.

I. INTRODUCTION

The operations of autonomous and semi-autonomous ve-
hicles rely heavily on obstacle avoidance algorithms. These
algorithms enable robots to determine the optimal path based
on information collected about their environment. Advances
in sensor technology and big data processing have led to
innovative applications of these algorithms.In practice, various
sensors such as lidar (light detection and ranging), sonar, radar,
cameras, and infrared rangefinders are used to gather data
on the robot’s surroundings. This information helps the robot
understand its environment and make decisions on the best
course of action to avoid collisions with nearby objects [1],
[2]. In nature, we can observe evidence of super-intelligence
in the way that individual animals work together in a swarms.
This phenomenon is exhibited by creatures such as bees,
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termites, and birds. Scientists have drawn inspiration from this
biomimicry, developing algorithms that imitate these nature-
inspired behaviors in artificial systems. One critical challenge
in modeling swarm behavior is ensuring effective obstacle
avoidance among swarm members [3]-[5]. Methods such as
the Boid algorithm [6], [7], simulate the flocking behavior
of birds using three rules namely, separation, cohesion, and
alignment. Among these rules, separation deals with dynamic
obstacle avoidance. Another algorithm commonly used to
solve obstacle avoidance in swarm problems is the self-
organizing migrating algorithm (SOMA) [3], [8]. SOMA is
a population-based algorithm that uses fuzzy logic and neural
networks to simulate the intelligent behavior of a group of
animals in competition-cooperation with each other to look
for food [9]-[11].

Obstacle avoidance is a technique used by unmanned aerial
vehicles (UAVs) to avoid collisions while in flight. The UAVs
must avoid collisions in three dimensions in this setting
[12], using millimeter wave radar and monocular camera
data fusion techniques amongst many other sensing methods.
The unmanned surface vehicles (USVs), on the other hand,
avoid collisions in two dimensions using algorithms like the
extended Kalman filter (EKF) [13] and multiple variants of
sensor data fusion, state estimators or observers, controllers,
and control objectives [14]. Since the environment of the
robot has multiple dimensions, different algorithms must be
employed and compared in these situations. Similarly for un-
manned underwater vehicles (UUVs) [15], the obstacle avoid-
ance algorithms include recurrent neural networks (RNNs)
with convolution [16], fuzzy relation-based sonar image pro-
cessing for potential field and edge detection using gradient
detection [17] and a combination of intelligent algorithms
like A* algorithm, artificial potential field, rapid-exploring
random tree, neural networks, genetic algorithms, fuzzy logic,
reinforcement learning etc. [18]. In a two-dimensional space,
dynamic obstacle avoidance is the main topic of this paper.
Robots that detect landmines, clean houses, drive themselves,
work as industrial robots in material transport, and other appli-
cations mostly use UAVs, USVs, and UUVs. Since 2D obstacle
avoidance algorithms are widely used in both the military and
civilian applications, it is crucial to understand them through
numerical simulations. The capacity to avoid obstacles is a
key component for ground mobile robots, allowing them to



effectively and safely undertake a wide range of duties and
tasks such as exploration and transportation [19].

II. RELATED WORKS ON OBSTACLE AVOIDANCE

Obstacle avoidance can be summarized into two distinct
problems, namely, environment modelling and the obstacle
avoidance algorithm [9].Environment modeling serves as the
foundational step in implementing obstacle avoidance. It in-
volves creating representations of the environment, such as
spatial and topological maps, based on the specific application
requirements. The accuracy and reliability of environment
processing and modeling are crucial for the successful op-
eration of obstacle avoidance algorithms, as they depend on
a precise understanding of their surroundings.Various rep-
resentations are commonly used for environment modeling,
including metric, topological, and hybrid approaches. The
metric representation employs a world coordinate system to
define the locations of objects within the environment. In
contrast, the topological representation relies on nodes for
object location and edges to demonstrate the relationships
between these nodes. By accurately modeling the environ-
ment, obstacle avoidance strategies can operate effectively and
predictably. Hybrid representation combines the two (metric
and topological) representations to perform a simultaneous
location and mapping of the environment [9]. Other types of
environment processing techniques such as the Otsu algorithm
are used when an image of the environment is used as an input
to an obstacle avoidance algorithm [19]. The Otsu algorithm
for instance converts the input image to a binary representation
of the environment [12]. This study will focus on the metric
environment model, specifically, a branch of metric represen-
tation referred to as the grid map metric representation. This
technique divides the environment into a grid and defines the
location within the grid using the grid coordinates.

Various path-finding algorithms have been developed to
solve the problem of obstacle avoidance. They are categorized
into different groups based on the algorithm’s approach to the
problem. For instance, the genetic algorithm and the neural
networks are categorized as intelligent algorithms. They are
ideal for environments with unlabeled features such as the use
of image recognition in model environment processing. An
additional characteristic of these algorithms is that they draw
inspiration from biological processes in the way they operate
[20]. In real-world applications, physical properties such as the
kinematics of the robot have to be considered while designing
path planning algorithms. This prevents the algorithms from
producing a physically impossible route compromising the
safety of the robot. Circle grid trajectory cell (CGTC) algo-
rithms consider kinematics and dynamics constraints during
the computation of a safe path during USV obstacle avoidance.
This is achieved in three distinct steps. The first step involves
scanning the environment using the circle grid to make sure
that the most efficient route and waypoints of the robot
have a smooth rate of change during its search process.
The second step involves incorporating the robot’s dynamics
and kinematics into the pathfinding algorithm. It does this

by mathematically modelling the robot and simulating the
proposed path on the robot to optimize the path for a given
robot. Lastly, the algorithm smoothens the path based on the
results in step two [21].

This section will discuss the development of pathfinding
algorithms under different categorizations i.e. sampling-based
and search-based algorithms since they are commonly used in
graph-based high-dimensional environments. Sampling-based
path-finding algorithms are probabilistic algorithms that oper-
ate by randomly sampling the environment or space to find the
optimum path to the target position. The probabilistic road-
map (PRM) and the rapidly-exploring random trees (RRT)
algorithms are the most preferred sampling algorithm due to
their accuracy in practice. In addition, both of these algorithms
are considered to be probabilistic complete which means that
the probability of a collision exponentially decays to zero as
the number of samples taken in the state-space increases [22].
This makes these types of path-finding algorithms ideal for
optimal motion planning for large state space/environments.

On the other hand, a searching-based algorithm, collect
data about their environment to decide the next move. Early
versions of searching-based pathfinding algorithms were used
for static obstacle avoidance. They do this by searching the
whole environment and computing the most efficient path to
the target. One major drawback of this technique was that the
computation cost directly affects the time cost of running the
algorithm i.e. the time cost linearly increases with an increase
in the environment state space. In programming terms, the
algorithm has a complexity of O(n). Efficient variations of
searching-based algorithms have been developed to tackle this
problem. Localized searching-based algorithms only search
their neighbor location for obstacles and through fuzzy logic
decide on the next move. Agents that use this technique do
not have a complete picture of the whole environment space
[3]. An example of a Localized searching-based pathfinding
algorithm is the A* algorithm. Similar to this, the random-
walk search technique used in this study [23] is that enables
the swarm of robots to investigate unknown environment while
avoiding static obstacle. In complicated and dynamic contexts
where a pre-defined map might not be available or might be
continually changing.

The A* algorithm is a heuristic algorithm that is used in
the autonomous navigation of USVs. It is preferred due to its
high accuracy in obstacle avoidance, both static and dynamic
obstacles, and its simplicity in implementation [20]. In addi-
tion, the A* algorithm can be used in higher dimensional path-
finding applications such as obstacle avoidance in 3D space for
drones. A variation of the A* algorithm will be implemented in
this paper to demonstrate dynamic obstacle avoidance. Other
notable pathfinding algorithms are different neural network
variants that utilize modern deep learning methods to analyze
the environment and based on the experience of the model,
the neural network computes an optimum path while avoiding
obstacles in the environment.
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Fig. 1. A frame of the simulation animation showing a 15 by 15 grid
environment with the robot, target and dynamic obstacles.

ITI. MATERIAL AND METHODS
A. Implementing the Grid Environment

In the current numerical implementation, a 15 by 15 grid
has been created using the Python programming language and
the Matplotlib visualization library. An axis is plotted with z-
limits and y-limits set to 0 and 15, which defines the size and
boundaries of the environment. The lines z = 0,z = 15,y =
0, and y = 15 are considered virtual static boundaries, which
means that agents within these boundaries are confined to the
grid boundaries and should treat the virtual boundaries as static
obstacles. This ensures that the agents do not move beyond the
boundaries of the environment. Overall, this implementation
provides a structured and well-defined environment for the
agents to navigate through. The robot is represented by a blue
circle on the plot, the obstacles are represented by a red star,
and the target is represented by a green X symbol as in Fig.
1.

B. Implementing the Dynamic Obstacles

This involves setting the representation of obstacles in
the matplotlib axes and defining how the obstacle agents
move within the environment. Obstacles are instantiated in
random positions in the environment in the first iteration.
Next, obstacles move randomly within the environment in
only four directions i.e., up, down, left, and right. Obstacles
just like the robot can move 1 time-step in each iteration of
the simulation. The algorithm movement is decided using the
algorithm represented by the flowchart shown in Fig. 2.

Agents, which include the obstacles and robots, move at a
constant velocity i.e. with acceleration = 0. Since the agents
move one step per unit time step (iteration), the distance per
iteration for each agent is calculated as: distance = v * ¢t
where, ¢ is a unit (one) time unit and v is the agent’s velocity.
Therefore, the distance moved in a unit time step is given by:
distance = v since v * 1 = v.

Using the distance per unit step, calculated above, an agent
calculates its position in the next iteration by adding the
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Fig. 2. flow chart showing the algorithm that defines the behavior of obstacles
in its environment

distance to its current position in the environment i.e., For right
and left movements, next position = (z=4distance, y), while for
up and down movement: next position = (x, y=+distance).

C. Implementing an Obstacle Avoiding Robot

The MVO algorithm was used for the robot navigation. But
at first, the robot had to be instantiated in the environment.
The robot is initialized at position [0, 0]. The robot’s target
position is set in the opposite corner of the environment at
[15, 15]. This maximizes the chance of collision between the
robot and the randomly initialized obstacles since the robot
needs to transverse the 15 by 15 grid to get to the target at
the farthest corner.

The motion of the robot within the defined environment
was dictated by the MVO algorithm. The obstacle avoidance
algorithm works by calculating the distance of each obstacle
in the environment and then determining the direction of the
obstacle relative to the current position of the robot. If the
distance between the robot and the obstacle is less than the
sum of their velocity there is a chance of collision if the
robot moves in the direction of the obstacle hence the robot is
programmed to avoid moving in the direction of the obstacle
if the sum of the obstacles and robot’s velocity is less than
the distance between them, therefore, avoiding collision with
the obstacle. This process is repeated for each obstacle before
deciding on the next position for each iteration. In addition
to obstacle avoidance, the algorithm also prioritizes motion
in the direction that brings the robot’s position closer to the
target position and uses the Euclidean distance between each
obstacle and the robot and determines if the obstacle can
reach the robot in the current step. The robot’s ability to move
in each direction is then checked, along with the position
of each obstacle in relation to the robot. Then,it decides on
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Fig. 3. flow chart showing the algorithm that defines the behaviour of the
robot in its environment

the direction to move based on the current position of the
robot and the distance to the target. It then updates the new
position of the robot, the distance between the robot and each
obstacle, was calculated using the formula:

d = \/(z(robot) — z(obstacle))2 + (y(robot) — y(obstacle))?

In Figure 3, the simulation is designed to run a loop until the
robot reaches its target destination. During each iteration of the
simulation, each agent, including the obstacle and the robot,
takes a step forward in the environment. This process continues
until the robot successfully reaches its target location.

IV. RESULTS AND DISCUSSIONS

The software implementing the simulation was designed in
such a way that it could only run one simulation at a time.
After each simulation, an animation shows the step-by-step
movement of the agents during the simulation run.

Figure 4 shows a series of 4 screenshots showing dynamic
obstacle avoidance.The simulation parameters in Fig. 4 are:
a) Robot velocity = 1,

b) Obstacle velocity = 2,
¢) Number of obstacles = 3.

Fig. 5 shows a series of 4 screenshots showing dynamic
obstacle avoidance. The simulation parameters in Fig. 4 are:
a) Robot velocity = 1,

b) Obstacle velocity = 2,
¢) Number of obstacles = 5.

In the second test shown in Fig. 5 with five obstacles, the
results differ slightly as compared to those obtained in the
first test in Fig. 4. More specifically, there was one collision
within the 30 iterations of the simulation time that took to get
the robot to the target. In the first test with three obstacles,
there was no collision in the 29 iterations, which the robot took
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Fig. 4. A sequence of screenshots of the simulation environment demonstrat-
ing the dynamic obstacle avoidance with three obstacles.
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Fig. 5. A sequence of screenshots of the simulation environment demonstrat-
ing the dynamic obstacle avoidance with five obstacles.

in the simulation to reach its goal.The simulation performance
indicators offer crucial data for assessing the MVO algorithm’s
efficacy and efficiency. The number of steps required for the
robot to reach the destination without running into obstacles
is shown by the step cost metric. Better performance is shown
by lower step cost values since the robot can reach the target
with fewer steps. The simulation performance metrics offer a
quantitative framework for assessing and contrasting various
iterations of the same method.By modifying the parameters
and observing changes in the step cost in addition to other
metrics, researchers can enhance the algorithm’s performance
in dynamic settings with differing amounts of obstacles.This
optimization technique enables better effectiveness and flexi-
bility.

A. Simulation Performance Metrics

To better understand the performance of the implemented
MVO algorithm, a summary of the output was generated from
the simulation, compiled from the 60 independent simulation



TABLE I
CORRELATION COEFFICIENT OF THE SIMULATION INPUTS VS. THE
PERFORMANCE METRICS

Data Series Pearson Correlation
under Investigation coefficient
No. of obstacles, step cost 0.4644
No. of obstacles, No. of collisions 0.3880
Obstacles’ velocity, step cost 0.4948
Obstacles’ velocity, No. of collisions 0.0752

runs. The step cost refers to the number of steps it takes
the robot to get to the target without colliding with the
obstacles. The following properties of the MVO algorithm can
be deduced from the simulation run data:

1) Average error

% error — no.of sim runs with collisions
no.of sim runs

% error = & x 100 = 28.3%

x 100

D

This means the algorithm has a 71.7%
avoiding dynamic obstacles.
2) The maximum error in a single simulation

accuracy in

' ' . Lisi
% error (single sim) = %ﬁ’fﬂf x 100

2
% error (single sim) = 45 x 100 = 12.5% @

3) Correlation coefficient of the number of collisions com-
pared to the step cost

B. Correlation between Simulation Metrics

Table I shows the correlation coefficient comparing the
simulation’s input variables i.e. the number of obstacles vs.
the obstacles’ velocities and also the simulation performance
metrics i.e., the step cost vs. the number of collisions per
simulation iteration.

From the reported results, the following can be concluded:

1) No. of obstacles is directly proportional to the step cost.

2) No. of obstacles is directly proportional to the number
of collisions.

3) The Obstacles’ velocity is directly proportional to the
step cost.

The correlation coefficient between the obstacles’ velocity
and the no. of collisions is quite small and is assumed to be
negligible and thus the two factors are not proportional to each
other.

C. Distribution of the Simulation Performance Metrics

From the boxplot of the 4 variables i.e. the no. of obstacles,
s tep cost, no. of collisions, and obstacles’ velocities shown
in Fig. 8 revealed the following:

1) There is a maximum of 40 steps per iteration, a mini-
mum of 20 steps per iteration, with an upper quartile of
31, a lower quartile 24 and a median of 26.5 steps.

2) There is a maximum of 2 collisions per iteration and a
minimum of O collisions per iteration, with an upper
quartile of 1, a lower quartile 0 and a median of 0
collisions.
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Fig. 6. Scatterplot showing the correlation between the inputs Number of
obstacles compared to with the step cost over 60 simulation iterations
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Fig. 7. Scatterplot showing the correlation between the inputs Number of
obstacle’s velocity compared to with step cost over 60 simulation iterations

3) There is a maximum of 5 obstacles velocity per iteration
and a minimum of 1 obstacles velocity per iteration, with
an upper quartile of 3, a lower quartile 2 and a median
of 3.5 obstacles velocity.

4) There is a maximum of 8 obstacles per iteration and
a minimum of 2 obstacles per iteration, with an upper
quartile of 5, a lower quartile 3 and a median of 4.5
obstacles.

The two cases with three and four collisions in a single

iteration were considered as statistical outliers during the
analysis.

V. CONCLUSION AND FUTURE WORK

This study showcases the implementation of dynamic ob-
stacle avoidance in a grid-based environment by developing
a mobile robot capable of avoiding dynamic obstacles within
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Fig. 8. Boxplot of performance metrics in 60 independent simulation runs.

a 15x15 grid with an accuracy of 71.7. The effectiveness of
the MVO (Maximum Velocity Obstacle) algorithm decreases
with an increase in the obstacle’s speed and a slight increase
in the number of obstacles in the simulation environment.
Unfortunately, the program often crashes when dealing with
a larger number of obstacles, indicating that the algorithm
is not optimized for environments with a high potential for
collision.Future improvements to the simulation could lead to
better efficiency in terms of time or step cost by modifying
the robot’s movement rules. Currently, the robot can move in
four directions (90-degree steps), but expanding its range to
include eight directions (45-degree angular steps) could result
in shorter and more efficient paths. Adding obstacles with
various sizes and shapes to the environment would further
test the MVO algorithm’s efficiency as it navigates around
detours and optimizes its route.Optimizing the MVO algorithm
to better adapt to changes in moving obstacles’ direction or
velocity, as well as a dynamic environment, could enhance
its performance. To achieve this, the MVO algorithm could be
integrated with other navigation algorithms or augmented with
an artificial neural network to observe the robot’s behavior in
unpredictable environments. This approach would allow for a
more flexible and efficient navigation response, ultimately con-
tributing to a more dynamic and effective obstacle avoidance
algorithm.
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