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Abstract
The frequency of hot days in much of the world is increasing. What is the impact of high 
temperatures on productivity? Can technology-based adaptation mitigate such effects of 
climate change? We provide some answers to these questions by examining how high out-
door temperatures affect a high-technology, precision manufacturing setting. Exploiting 
individual-level data on the quantity and quality of work done across 35,190 worker-shifts 
in a leading NYSE-listed silicon wafer maker in China, we evidence a negative effect of 
outdoor heat on productivity. The effects are large: in our preferred linear specification, an 
increase in wet bulb temperature of 10 ◦ C causes a reduction in output of 8.3%. Tempera-
ture effects exist even though the manufacturer’s work-spaces are indoors and protected by 
high-quality climate control systems. Results are not driven by extreme weather events and 
are robust to alternative modelling approaches. They illustrate the potential future adverse 
economic effects of climate change in most of the industrialised world.
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1  Introduction

One of the many consequences of climate change is the increase in frequency and inten-
sity of hot days. Indeed, most of the highly-populated and highly-industrialised parts 
of the world (especially in Asia) are expected to face marked increases in the number 
of hot and very hot days over the next few decades. For example, in rapidly modernis-
ing India there were five days with average dry-bulb temperature above 35 ◦ C ( 95 ◦ F) 
between 1957 and 2000. But under a business-as-usual scenario, the well-known Hadley 
model (HadCM3) predicts India will experience 75 such days in a typical year between 
2075 and 2100. In the US the same model predicts an increase from 0 to 29 such days 
over the same period (Burgess et al. 2017). In China, a 1.5◦ rise in global temperature 
will make extreme warm events twice more likely (Li et al. 2017).

Extreme heat has negative consequences on a variety of human activities. It causes 
discomfort, fatigue (Nielsen et al. 1993; Galloway and Maughan 1997; González-Alonso 
et al. 1999) and even cognitive impairment (Epstein et al. 1980; Ramsey 1995; Pilcher 
et al. 2002; Hancock et al. 2007). Extreme heat restricts the time people can spend in 
productive activities (Graff-Zivin and Neidell 2014) and has a negative impact on work-
place productivity (Zhang et al. 2018; Somanathan et al. 2021), as well as the academic 
performance of high school students (Goodman et al. 2020; Park 2022). At the macro-
economic level, very high temperatures have a detrimental impact on economic growth 
(Dell et  al. 2012; Burke et  al. 2015), as well as on agricultural and industrial output 
(Dell et  al. 2012). Heat could impact human economic performance either directly in 
the workplace, or indirectly through poor health (Ebi et al. 2017; Degallier et al. 2010), 
or by undermining one’s recovery capacity through poor rest or sleep (Rifkin et  al. 
2018), which in turn has a negative impact on economic outcomes (Banks and Dinges 
2007; Lim and Dinges 2010; Bessone et al. 2021).

Could the negative impact of extreme heat on productivity be avoided, or at least 
mitigated, through technological adaptation of our workplaces? Air-conditioning work 
spaces is most natural, readily-available and effective form of adaptation against extreme 
heat. Barreca et al. (2016) document that the adoption of residential air conditioning in 
the 1960 s accounts for most of the decline in the statistical relationship between mor-
tality and extreme heat in the United States. Using data from US high schools, Park 
et al. (2020) show that heat has a substantial and long-term negative impact on learning, 
which can be mitigated through air-conditioned classrooms.

We examine the impact of high temperature events on worker productivity in a high-
tech industry, whose production technology already incorporates the climate-controlled 
working environments. In particular, we study data from a leading NYSE-listed Chinese 
manufacturer of multi-crystalline, 165 μ m (0.165 mm) silicon wafers, a key component 
of solar panels. The manufacture of the wafers takes place in a number of workshops 
at a single main facility in South East China. Employees operate specialised, precision 
cutting equipment. The delicate nature of the wafers means that, to ensure quality, all 
workshops have installed climate control systems designed to keep the workshops at a 
constant temperature of 25 ◦ C ( 77 ◦ F) and relative humidity level of 60%. We study an 
archetypal ‘modern economy’ activity. The type of work plausibly parallels that done 
by many other workers in precision manufacturing settings across the world. The facil-
ity that we study is located in a highly-populated and heavily-industrialised part of the 
world. It experiences many hot days, and their frequency is likely to increase.
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We study fine-grained worker productivity data, which includes the number of wafers 
made in a given shift in a given day, and the quality grade of each wafer. Our estimating 
sample includes data on 35,190 worker-shift days and relates to 635 separate workers from 
September 2013 to August 2017. We match this worker productivity data with historical 
data on local temperature and humidity to estimate the statistical relationship between 
temperature, humidity and worker productivity. The granularity and coverage of our data 
means that we observe each worker under many different ‘treatment’ conditions, allowing 
us to rely on within-worker estimates throughout.

To preview results, taken together our analyses make a persuasive case for there being a 
substantial and robust negative effect of shift-day temperature on worker productivity, even 
in the presence of high-tech climate adaptation solutions. In our central linear specifica-
tion, other things equal, each degree increase in shift-day maximum wet-bulb temperature 
causes a reduction in productivity of 0.83%. In our binary specification model, a day where 
maximum wet-bulb temperature exceeds 28 ◦ C is associated with 5.8% lower productivity 
compared to a typical day in the estimating sample when it does not.

2 � Study Setting

The silicon wafer is an important input to twenty-first century living. It is the material from 
which semiconductors, used in integrated circuits and to be found in all types of electronic 
devices, are made. It is also the core component of solar cells which are assembled to make 
photovoltaic (PV) or ‘solar’ panels, used to convert solar energy to electricity.

Manufacturing wafers requires that polycrystalline silicon (polysilicon) be formed into 
cylindrical ingots which are then sliced very thinly using a multi-wire saw. The process is 
one of high precision: an average wafer is between 0.16 and 0.24 mms thick.

We obtained privileged access to detailed daily wafer production data from a leading 
NYSE-listed manufacturer of wafers in China. The company specialises in multicrystalline 
165 μ m (0.165 mm) wafers for supply to the solar industry, and its products are distributed 
widely within China and exported to many other countries.

The manufacture of wafers takes place in a number of workshops at a single main facil-
ity in southeastern China. Employees operate specialized equipment (in particular preci-
sion cutting equipment). The delicate nature of the wafers means that, to ensure quality, 
all workshops have installed climate control systems designed to keep the workshops at a 
constant temperature of 25 ◦ C ( 77 ◦ F) and relative humidity level of 60%.

There are a number of wafer workshops in the company manufacturing plant spread 
across different buildings. Specialized equipment (see Fig. 4a in Appendix) is used in the 
workshops for wafer manufacturing. The wafer manufacturing process involves slicing a 
large silicon ingot through densely arranged single-layer wires (see Fig. 4b in Appendix).

The main task for workers in a wafer workshop is to prepare the saw machine, load 
the ingot onto a precise cutting location, perform the cut, remove the wafers and clean up 
the machine. Each ingot has a surface area of 158 × 156 mm and a maximum length of 
500 mm. Each ingot can weigh up to 2800 kg (just over 6000 lbs). The resulting wafers are 
later counted and checked by the quality control department and are each given a grade. 
The number of wafers are a function of the length of the ingot and the quality of the work 
performed by the worker.

Attention and care are required from the workers every step of the process. It usually 
takes several hours to perform one cut. During the cutting, the workers have to perform 
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regular checks on the wire, the water pressure, the electric voltage and the cooling system. 
They also need to monitor the flow of the slurry. In short, the wafer cutting is a time-con-
suming, labor intensive task. It is both physically demanding and reasonably sophisticated 
given the complexity of the machinery.1 Variations in output can occur if workers are not 
careful or attentive. In the time frame of our data set, workshops operated on a day shift 
from 8:30am to 8:30pm. Workers are expected to perform multiple cuts in a shift.

All workers in our data set were male. The overwhelming majority of workers were 
experienced: at the earliest date in our data set, 87% of workers had at least one month’s 
experience with the firm; the median worker had over 9 months’ experience. The majority 
of workers (66%) operated in the same workshop and shift for the duration of the data set. 
We have no information as to how workers were allocated to shifts. The remaining work-
ers are recorded working in more than one workshop or shift. Our data set indicates that 
such workers predominantly worked in a specific workshop (around 90% of the time) and 
worked in other workshops on other occasions. We assume that workshop/shift changes 
were likely due to workers covering for an absent colleague, or doing an extra shift.2 The 
overwhelming majority of workers had secondary school education, with a few having 
completed vocational college-level education.

We analyse detailed data on silicon wafer production from September 2013 to August 
2017. Each observation describes an individual cut, including the number of wafers pro-
duced from the cut, the type of machine used to perform the cut, the worker who oper-
ated the machine, the shift the worker was on, the particular workshop where the cut took 
place, the cutting time, and the resulting percentages of grade A, A − , B, and B − wafers 
that resulted (the letters denote quality of cut, with A being the best).

A worker executes many cuts per shift; for our preferred outcome productivity met-
ric, we aggregate to a worker-shift count the number of wafers produced. As a robustness 
check for consistency, we re-estimate our main specification using a worker-shift count of 
the wafers produced at different grades as the left-hand-side variable.

Our main estimating sample includes data on 35,190 worker-shift days and relates to 
635 separate workers. Worker remuneration includes piece-rate and bonus elements, and 
the temperature treatment effects identified here are understood to be conditional on that 
pattern of remuneration, and any other idiosyncratic features of our producer.

Our objective is to investigate the causal impact of outdoor temperature in the vicinity 
of the plant on wafer production at worker-shift level. We take historical weather simula-
tion data on hourly temperature and humidity from www.meteoblue.com, with a spatial 
resolution at no more than 30 km from the city where the facility is located. The data is 
complete (no missing points) and we use it in hourly steps and daily aggregations.

As both temperature and humidity are well-established to have human impacts, in 
this study we adopt wet bulb temperature (WBT) as our central measure of heat (Parsons 
2014). WBT combines temperature and relative humidity into a single number that cap-
tures the ‘experience’ of heat and is probably the most widely used and validated index for 
assessing occupational heat stress. It is the measure of heat burden used, for example, by 
Somanathan et al. (2021). It is approximated by using the following formula (Lemke and 
Kjellstrom 2012):

1  Each machine cost at the time of purchase in excess of USD 800,000.
2  We unfortunately do not have HR data detailing if shift reallocation was planned or unplanned.
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where T is ambient dry-bulb temperature (in degrees Celsius) and � is the water vapor pres-
sure calculated from relative humidity (RH) by:

While WBT is our preferred measure of heat, for the purposes of robustness we also pre-
sent main results using dry-bulb temperature and relative humidity included as separate 
regressors.

Because our focus here is on heat effects, and WBT is typically regarded as valid only 
at levels above 20, we limit attention to data from the months of May through September 
inclusive—the hot months of the year. This is consistent with Fig.  1a which shows that 
almost all days are in the range where WBT is valid and there are few such days outside 
those months.

(1)WBT = 0.567T + 0.216� + 3.38,

(2)� =
RH

100
× 6.105 exp

(

17.27T

237.7 + T

)

Table 1   Summary statistics Mean St.d

Output (number of wafers) 9390.37 3892.88
Temperature ( ◦C) 26.15 2.44
Temperature 24-hr average ( ◦C) 24.27 2.34
Temperature daytime average ( ◦C) 24.04 2.31
Temperature ( ◦C)>24 0.82 0.39
Temperature ( ◦C)>26 0.57 0.49
Temperature ( ◦ C) >28 0.22 0.42
Precipitation (mm) 5.73 13.21
Cloud coverage (%) 59.49 33.76
Sunshine duration (min) 256.94 246.17
Wind gust (km/h) 10.02 5.63
Wind speed (km/h) 7.52 3.73
Observations 35,190
Workers 635
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Table 1 presents summary statistics for variables used in the main analysis.3 Figure 1b 
shows that there is a substantial variation in the preferred temperature metric (maximum 
daily WBT) across shifts. It is this variation on which identification is based.

3 � Empirical Strategy

We estimate a series of worker fixed-effects models that incorporate temperature in several 
different ways. Our base specification is:

Outputi,t is the production (count of wafers) by worker i on the day-shift on day t. Tempt 
indicates WBT on date t, Temp(t) is the vector of temperature measures and f(.) is a para-
metric function. In the linear specification f (Temp(t)) = �1Tempt . The vector Xt contains 
other date-level meteorological variables. The terms ui , vyear and wmonth are worker, year 
and month fixed effects (FEs) respectively.

Non-linear models A challenge in exploring heat effects is the potential for non-linearity 
and we address this in three ways. First, consistent with common empirical practice we 
estimate a quadratic specification in which f (Temp(t)) = �1Tempt + �2Temp

2
t
 . Second, we 

set f (Temp(t)) = 𝛽1I(Tempt > Thigh) where I(⋅) is an indicator function and Thigh is some 
threshold value. Depending on the threshold, Thigh is variously set equal to 24 ◦ C, 26 ◦ C and 
28 ◦ C. Finally, we consider a semi-parametric model in which we use a set of dummy vari-
ables corresponding to 3 ◦ C temperature bins. The width of the bins was selected to ensure 
roughly equal numbers across bins. This model will capture any non-linear effects without 
assuming a functional form.

Inter-day effects Besides examining the impact of same-day temperature on workers pro-
ductivity we also investigate possible lagged and inter-day effects. The potential for com-
plex lagged relationships and existence of serial correlation in the treatment variable makes 
pinning down any exact dynamic structure empirically challenging, and we approach this 
in several different ways.

First, defining

we estimate the impact of the mean daily maximum WBT over a three-day period on out-
put in day t (and analogous five-day and seven-day periods).

Second, we report a weekly analysis which regresses worker-level output over a five day 
working week with mean daily maximum WBT during that working week.

Third, we estimate lag structures by applying finite distributed-lag models. In particular 
to apply a finite distributed lag model with s lags would imply setting f(Temp(t)) as

The coefficients from this model allow for estimation of the impact on productivity of both 
temporary (single-day) and longer term changes in temperature.

(3)Outputi,t = �0 + f (Temp(t)) + Xt� + ui + vyear + wmonth + �i,t,

f (Temp(t)) = �1 ×
Tempt + Tempt−1 + Tempt−2

3
,

(4)f (Temp(t)) = �0Tempt + �1Tempt−1 + ... + �sTempt−s.

3  For completeness Appendix Table 11 summarises all variables, including those that feature in the robust-
ness exercises but not in the main analysis.
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Auto-correlation in daily maximum WBT means that the specification in equation (4) 
suffers from multicollinearity, and to mitigate this we also apply polynomial distributed 
lag models (Parsons 2014). Such models constrain the admissible form of lagged effects 
by restricting attention to a coefficient sequences that satisfy a low degree polynomial; 
we report results from the quadratic model in the main text and quartic polynomials as a 
robustness check.

The quadratic and quartic models generate coefficients on same-day and lagged values 
of temperature that best fit the data subject to the lag structure taking, respectively, the 
form

and

The steps required to execute these specifications are reported in the Appendix.

4 � Results

Before reporting our main results, we present a simple data plot. Figure 2 plots residual 
worker-shift output from a regression containing only worker, month and year fixed effects 
against shift-day temperature. These are binned and the size of markers in the figure is pro-
portional to the number in each bin.

While we can see a few outliers (particularly at the right-hand end), most observations 
fall in the 22–28 ◦ C range. The plot suggests a negative relationship between temperature 
and output. It also clarifies that any negative effects that the regression analysis that follows 
will generate are not being driven by extreme heat realisations, but rather by impacts across 

(5)�j = �0 + �1j + �2j
2, j = 0, 1, ..., s.

(6)�j = �0 + �1j + �2j
2 + �3j

3 + �4j
4, j = 0, 1, ..., s.
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Fig. 2   Temperature and output
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a wider interval of mid-range realisations. We will confirm this intuition by conducting a 
number of different outlier exercises.

4.1 � Contemporaneous Effect of Heat

Table 2 shows the results from a model estimating a linear relationship between WBT and 
worker-shift output. Our preferred specification includes worker, month, and year fixed 
effects, as well as weather controls. The estimated slope coefficient in our preferred speci-
fication is −78.00, which implies that a 1 ◦ C increase in WBT causes a reduction of 78 
wafers produced by a worker in a shift. Across the whole sample, the average number of 
wafers produced by a worker per shift is 9390, so this constitutes an.83% fall in output per 
1-degree increase. The estimates are similar in magnitude to the most saturated model (5); 
the coefficient is slightly smaller in most other specifications, but still implying an eco-
nomically important effect: the smallest estimated effect (Column 2) amounts to a.54% fall 
in output per 1-degree increase. For completeness, we include a specification (6) with Year 
× Month fixed effects, which capture any changes over time in the seasonality of tempera-
ture and productivity. That is, this specification controls for the fact that summers might 
be getting hotter over time, and that may drive any results. The fact that we only have one 

Table 2   Estimates from linear model

The dependent variable in all regressions is output per worker-shift. WBT refers to the maximum wet bulb 
temperature on day of shift. Robust standard errors clustered at the worker level are presented in parenthe-
ses, and ***p < 0.01 , **p < 0.05 , * p < 0.1 . The sample comprises all day shifts from May to September

(1) (2) (3) (4) (5) (6) (7) Pref

WBT −57.941∗∗∗ −51.245∗∗∗ −56.614∗∗∗ −55.967∗∗∗ −76.030∗∗∗ −8.857 −78.001∗∗∗

(9.170) (10.433) (9.156) (9.113) (9.901) (8.880) (9.869)
Precipitation −6.225∗∗∗ −3.325∗∗∗ −6.348∗∗∗

(1.165) (1.166) (1.165)
Cloud cover −0.984 0.614 −0.996

(1.142) (1.119) (1.131)
Sunshine duration 0.114 0.169 0.104

(0.155) (0.145) (0.154)
Wind gust −16.144∗∗∗ −3.220 −16.849∗∗∗

(5.528) (5.030) (5.386)
Wind speed 12.210∗∗∗ −8.444 14.721∗∗∗

(7.773) (7.139) (7.654)
Obs 35,190 35,190 35,190 35,190 35,190 35,190 35,190
No. of workers 635 635 635 635 635 635 635
Worker FE Yes Yes Yes Yes Yes Yes Yes
Year × Month FE No No No No No Yes No
Year FE Yes Yes Yes Yes Yes No Yes
Month FE Yes No Yes Yes Yes No Yes
Week FE No Yes No No No No No
Day of week No No Yes Yes Yes No No
Building FE No No No Yes Yes No No
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geographical location may hinder the effectiveness of this approach, since we may not have 
enough variation in temperature, which may lead to imprecise estimates. Figures 6 and 7 
in the Appendix plot monthly average temperature and monthly average productivity over 
time, respectively. We cannot find major changes in seasonality from the plot over the time 
series, which suggests that that changes in seasonality over time are not driving the results. 
Furthermore, Fig. 8 in the Appendix plots the residuals of the regression of WBT on year-
by-month fixed effects. Other than the case of 29 ◦ C, the relationship is, in the main, flat 
around zero. Residuals are negative below 20 ◦ C, but they are a very small proportion of 
the sample. We conclude that indeed there is lack of variation in the data once we control 
for year-by-month fixed effects, which in turn contributes to the lack of precision of the 
estimates in that regression.

Existing research has identified non-linear relationships between temperature and a 
range of human outcomes. Indeed, the relationship between temperature and worker pro-
ductivity could not just be non-linear but in fact non-monotonic: increasing up to some 
‘comfortable’ mid-range value and decreasing thereafter. Focusing only on summer months 
plausibly mitigates the worst of these concerns – restricting attention to days on the hotter-
than-comfortable part of the support - but not necessarily completely. As such we consider 
a number of alternative, non-linear, models.

Columns 1–6 in Table 3 display the results from a model estimating a quadratic rela-
tionship between WBT and output under different specifications. In our preferred specifica-
tion (column 6) output has an inverted-u relationship as a function of WBT: output rises at 
low temperatures, reaching an estimated ‘turning point’ at 23.3 ◦ C, with reasonably tight 
bounds (95% confidence interval: [ 22.6 ◦ C, 23.9 ◦C]). The estimates are robust to the inclu-
sion of building-specific fixed effects and other weather controls.

Another alternative non-linear specification involves defining an indicator variable that 
equals 1 if the maximum temperature on day t exceeds some threshold and zero otherwise. 
In other words, we estimate the independent effect of a day being ‘hot’ compared to ‘non-
hot’. Columns 7–9 display the results using 24 ◦ C, 26 ◦ C, and a 28 ◦ C thresholds. Tempera-
tures exceeding 28 ◦ C reduce the number of wafers produced by a worker in a shift by 548 
or 5.8% compared to a reference day in which that threshold is not exceeded. Again, this is 
a substantial effect.

Finally, we estimate a semi-parametric model, in which we do not impose any func-
tional form to the relationship between WBT and output. We achieve this by regressing 
output on a set of dummies for 3 ◦ C temperature bins (to ensure equal numbers across bins; 
the omitted category is WBT ≤ 21 ◦C). Column 10 displays the estimates. The model hints 
at a quadratic relationship: there is an initial non-significant increase in productivity when 
WBT rises from <21◦ C to 21–24◦ C, followed by a decline thereafter, which becomes very 
marked at high temperatures. Again, this points to our parametric estimates being very 
robust, without rejecting outright the linear model (from which we derive our headline 
result).

4.2 � Inter‑day Effects

So far we have limited our analysis to the contemporaneous effect of temperature on pro-
ductivity. However, high temperatures could have a long-lasting or even cumulative impact 
on productivity.

Table 4 shows results from estimates of a regression of worker-shift output on the aver-
age maximum WBT over the previous 3, 5, and 7 days, respectively. The effects are again 
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sizeable: an increase in mean daily maximum WBT of 1 ◦ C over the last 3 days leads to an 
average decrease in output of 141 wafers (1.5%). Over 5 days, the effect is larger ( −179, 
1.9%), and the effect over 7 days is larger still: 221 fewer wafers or a decline of 2.4%.

4.3 � Cumulative Effect of Heat

It is plausible to assume that the effects of heat do not all occur simultaneously, but are 
distributed over time. That is, a particular hot day can influence outcomes not just that day 
but also on the next day, the day after, and so on.4 PDL models are used when collinearity 
is expected to be a serious problem, as in our setting. They involve imposing a time horizon 
(the number of lags to consider) and restricting attention to estimates of the weights on lag 
terms that satisfy a particular polynomial structure (Almon 1965), since it is plausible that 
the more recent experiences of temperature may be more impactful than those in the more 
distant past.

We follow common practice in the application of PDLs by imposing a quadratic 
structure on the lag weights—we report results for a quartic function for purposes of 

Table 4   Inter-day effects

The dependent variable in regressions (1)–(3) is output per worker-shift. WBT refers to the maximum wet 
bulb temperature on day of shift. The dependent variable in regressions (4) is average daily output per 
worker-shift during a week. Average WBT refers to mean daily maximum WBT. Robust standard errors 
clustered at the worker level are presented in parentheses, and ***p < 0.01 , **p < 0.05 , * p < 0.1 . The 
sample of specification (1)–(3) comprises all day shifts from May to September. The sample of specifica-
tion (4) comprises average of day shifts by workers worked 5 or 6 days over a week in May to September

(1) (2) (3) (4)
Daily Daily Daily Daily average

Average WBT last 3 days −141.168***
(12.359)

Average WBT last 5 days −178.997***
(14.765)

Average WBT last 7 days −221.540***
(17.134)

Average WBT in week −97.857***
(14.427)

Observations 35,190 35,190 35,190 12,023
Number of workers 635 635 635 446
Worker FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Other weather Yes Yes Yes Yes

4  Such models are routinely used in many areas of economics, for example to model the effect of advertis-
ing expenditure on sales. For examples see Joo et al (2014), Kappe et al (2014).
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robustness. We estimate models with 5 and 10 lags, corresponding to different time 
horizons.

Though it is reasonable from first principles (as well as consistent with the results 
in Table  4) to assume that the effect of high temperature decays over time –in other 
words productivity on day t would be more sensitive to temperature on day (t − 1) than 
on day (t − 2) , and so on—the restriction that the rate of decay be quadratic in pattern 
is ad hoc. However, in each case we report a specification test that fails to reject the 
null hypothesis that the pattern observed in the data is consistent with the PDL model 
versus the corresponding unrestricted finite distributed lag model.

PDL models separately generate (a) estimates of same day impact and (b) estimates 
of the cumulative impact, summed over the specified number of periods over which the 
model is estimated.

Table  5 displays the estimation results. The estimated same-day effect of a 1 ◦ C 
increase in temperature is rather stable across models, with an implied reduction in 
productivity per worker-shift of between 22.6 and 33.4 wafers. The estimated cumu-
lative effect of a 1 ◦ C increase in maximum WBT on the shift day as well as each of 
the preceding five days is a reduction in productivity of 79.9 wafers per worker-shift. 
The corresponding cumulative effect of a 1 ◦ C temperature increase over 10 days is 
to reduce the productivity by 61.9 wafers per worker-shift. Estimates from the quar-
tic model for the contemporaneous effect are similar to those of the quadratic model; 
however, the estimated cumulative effect is substantially higher in the quartic model, 
regardless of the number of lags.

Table 5   Polynomial distributed lag model

Robust standard errors clustered at the worker level are presented in parentheses, and ***p < 0.01 , 
**p < 0.05 , * p < 0.1 . P-values of the polynomial specification tests indicate none of the polynomial dis-
tributed lagged model specifications can be rejected. The sample comprises all day shifts from May to Sep-
tember

Polynomial Quadratic Quartic

 Number of lags 5 10 5 10

Impact effect (same day) −33.405*** −22.260*** −32.660*** −29.892***
(8.461) (6.058) (10.384) (9.056)

Cumulative effect −79.886*** −61.903*** −138.392*** −97.132***
(11.653) (11.391) (14.319) (13.018)

Polynomial specification test
test-stat ( �(1)) 0.68 2.10 0.88 1.58
P-value 0.409 0.147 0.349 0.208
Observations 35,190 35,190 35,190 35,190
Number of workers 635 635 635 635
Worker FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Other weather Yes Yes Yes Yes
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4.4 � Robustness

We have presented results from a number of different approaches, and for most of these, we 
estimate a number of alternative specifications. Here we report additional robustness tests 
and falsification exercises applied to the linear model.

Alternative estimating sample In defining the sample we were explicit that (a) the 
research question relates to the effect of heat (not cold) on productivity and (b) the best 
measure of heat stress is WBT, which is typically regarded as valid only above 20 ◦ C. Rec-
ognising this, and in light of the patterns of temperature summarised in Fig.  1a, led us 
to restrict the sample to the calendar months of May through September. An alternative 
approach would have been to take shifts from all months of the year in days where WBT 
exceeded 20 ◦ C. This increases the sample size by 18,265. The results of re-estimating the 
preferred linear specification on this alternative sample are similar to those derived from 
the restricted sample (see Table 6).

Alternative temperature measures We used daily maximum WBT as our preferred 
measure of temperature. WBT combines dry-bulb temperature and humidity. We estimate 
a model in which dry-bulb temperature and humidity enter as separate regressors (see 
Table 11 in Appendix). We also estimated our model with WBT as the regressor, but tak-
ing the daytime (8 am–8 pm) mean WBT and the 24-hour (midnight - midnight) mean 
WBT respectively (see Table 6). Because the regressor definition has changed, the coef-
ficients are not directly comparable, but remain consistent with earlier results (Table 7).

Alternative productivity measure Every wafer produced by a worker on a shift is qual-
ity-rated and we observe both total product and the amount produced at specific quality 
grades, from A (highest) to B- (lowest). Table 8 replicates our preferred linear model speci-
fication using as the dependent variable total output (model 1), as well as each individual 
grade models (2-5).

We find a significant negative coefficient on WBT in all grades except B-, where the 
coefficient on WBT is positive and significant. In other words, the evidence suggests that 
WBT has a detrimental impact on output quality, as opposed to on output – which would 
result if the firm would lower production on extremely hot days in order to offset the cost of 
maintaining the workshops at 21 ◦C.

Pollution controls An important recent literature points to air quality having a causal 
effect on worker productivity, even among those working in indoor environments (Chang 
et al. 2019; Heyes et al. 2019). To verify this further, we augmented out model with daily 
pollution controls. These comprised daily average measures of PM2.5, PM10, SO2 , NO2 , 
CO, and O 3 , measured for the city where the plant is located (Table 6).5 Results are not 
disturbed qualitatively and the implied temperature effect is, if anything, somewhat larger.

Worker random effects Our results are qualitatively unchanged if we control for worker 
characteristics (age, years in education, and the log-transformed measure of worker experi-
ence at the facility in days) and estimate our model by worker random effects rather than 
worker fixed effects.

5  Following Yao et al. (2022), we also consider estimations in which we instrument our pollution controls 
using thermal inversions. The sign, magnitude and significance of our main variable of interest remain the 
same. See Table 13 in the Appendix.
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Night-time temperature One of the possible mechanisms through which tempera-
ture may affect productivity is by negative physical recovery and fatigue. To investi-
gate this channel, we incorporated the previous night’s WBT as an additional regressor 
(in both linear and quadratic forms) in our linear and quadratic day time temperature 
models. We find significant coefficients on night-time WBT suggesting that it may 
have an important effect on productivity. Humid heat increases wakefulness, decreases 
rapid eye movement sleep and slow-wave sleep; it also suppresses the natural decrease 

Table 7   Estimates from linear model using dry bulb temperature

The dependent variable in all regressions is output per worker-shift
Robust standard errors clustered at the worker level are presented in parentheses, and ***p < 0.01 , 
**p < 0.05 , * p < 0.1

The sample comprises all day shifts from May to September

(1) (2) (3) (4) (5) (6)

Dry Bulb Temperature −32.965*** −27.726*** −31.334*** −33.113*** −57.412*** −259.628***
(DBT) (6.329) (6.947) (6.341) (6.311) (7.324) (75.035)
Relative Humidity −6.816** −12.032*** −5.665** −8.448*** 5.306* −64.527**
(RH) (2.754) (2.790) (2.798) (2.706) (3.150) (25.289)
DBT X RH 2.200***

(0.795)
Observations 35,190 35,190 35,190 35,190 35,190 35,190
Number of workers 635 635 635 635 635 635
Worker FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Month FE Yes No Yes Yes Yes Yes
Week FE No Yes No No No No
Day of week No No Yes No No No
Building FE No No No Yes No No
Other weather No No No No Yes Yes

Table 8   Output quality

(1) (2) (3) (4) (5)
Total Grade A Grade A- Grade B Grade B-

WBT −78.001*** −68.120*** −3.218*** −9.878*** 2.192**
(9.869) (8.609) (1.156) (1.829) (0.938)

Other weather Yes Yes Yes Yes Yes
Obs 35,190 35,190 35,190 35,190 35,190
No. of workers 635 635 635 635 635
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Table 9   Lagged night-time WBT effects

The dependent variable of all regressions is output per worker-shift. Day WBT refers to the maximum 
wet bulb temperature on day of shift. Night WBT refers to the minimum wet bulb temperature of the last 
night of the day shift. Robust standard errors clustered at the worker level are presented in parentheses, and 
***p < 0.01 , **p < 0.05 , * p < 0.1 . The sample comprises all day shifts from May to September

(1) (2) (3) (4)

Day WBT −55.943*** −50.935*** 851.939*** 764.446***
(10.079) (10.164) (130.440) (129.152)

Day WBT2 −18.163*** −16.332***
(2.588) (2.562)

Night WBT −69.754*** 387.761*** −56.658*** 273.542***
(9.105) (93.082) (9.206) (92.446)

Night WBT2 −10.284*** −7.451***
(2.062) (2.047)

Observations 35,190 35,190 35,190 35,190
Number of workers 635 635 635 635
Worker FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Week FE No No No No
Day of Week No No No No
Building FE No No No No
Other weather Yes Yes Yes Yes

Table 10   Outliers

The dependent variable of all regressions is output per worker-shift. WBT refers to the maximum wet bulb 
temperature on day of shift. Trim temperature (output) excludes observations with temperature (output) 
higher than the 95th percentile and lower than the 5th percentile. Winsorize temperature (output) indicates 
that temperature (output) below the 5th percentile set to the 5th percentile, and above the 95th percentile set 
to the 95th percentile. Robust standard errors clustered at the worker level are presented in parentheses, and 
***p < 0.01 , **p < 0.05 , * p < 0.1

(1) (2) (3) (4)
Trim WBT Winsorize WBT Trim output Winsorize output

WBT −105.599*** −98.335*** −67.055*** −71.912***
(11.558) (10.296) (8.456) (8.766)

Observations 31,765 35,190 31,667 35,190
Number of workers 589 635 536 635
Worker FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Other weather Yes Yes Yes Yes
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in core body temperature that occurs during night-time sleep. Humid heat may also 
increase heat stress because the additional air humidity prevents the body’s natural 
sweat response, since the skin remains wet (Okamoto-Mizuno and Mizuno 2012). 
Sleep, in turn, is positively correlated with productivity (Gibson and Shrader 2018). 
This evidence suggests that heat impairs workers’ ability to recover and through it, 
productivity.

While night-time WBT seems to have an important role in determining productivity, the 
sign and significance of the coefficients on contemporaneous day-time temperature effect 
are unchanged, though somewhat smaller in magnitude. However, the fact that our same-
day effect remains suggests other mechanisms are also responsible for lower productivity 
(Table 9).

Outliers To verify that the results are not being driven by a small set of extreme values, 
we executed a number of exercises to remove or reduce the effect of outliers on estimates 
(see Table 10). First, we remove (column 1) and winsorise (column 2) the top and bottom 
5% of shifts by temperature. Second, we remove (column 3) and winsorise (column 4) the 
top and bottom 5% of worker-shifts by productivity. Our qualitative conclusions remain 
unchanged in each case.

Placebos Placebo tests are tests of study design. If estimating the chosen specification, 
but replacing the true value of the regressor of interest with an alternative we know should 
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be irrelevant, delivers significant results then we know those to be spurious and therefore 
generated by a flaw in the study design.

We conduct a ‘meta’-placebo exercise based on repeated within-sample randomization. 
First, true WBT on date of shift was replaced by temperature from another, randomly-cho-
sen date in sample without replacement (if a date was assigned a placebo temperature from 
another date in the same month of the same year then the observation was dropped). Sec-
ond, the specification from column 6 of Table 3 was estimated using the resulting placebo 
temperature series and the resulting coefficient and t-statistic on the temperature variable 
collected.

This process was repeated with 1000 randomizations. The bar charts in Fig.  3 sum-
marise the coefficients and t-statistics harvested. There is some variation, as would be 
expected. The lack of symmetry around zero suggests, if anything, something in the study 
design that imparts an upward bias on the temperature coefficient. None of the placebo 
runs generate values anywhere close to those derived under true assignment, denoted by 
the dashed vertical lines, which reinforces our confidence in the results.

Absenteeism Extreme heat may cause workers to miss work. Absenteeism can lead to 
lower productivity because it forces the firm to replace workers across shifts (leading to 
potentially less rest time), or by employing casual workers, which could have a detrimen-
tal effect on the productivity of experienced workers. We could not access company HR 
records about planned or unplanned shift changes. However, we calculated the number of 
workers working on a given shift. We regressed that variable on WBT as well as month and 
year FEs, as well as a specification including year, week and day-of-week FEs. Table 15 in 
the Appendix summarizes the results. We find that a 1 degree increase in WBT leads to a 
reduction by one worker in shift attendance.

5 � Discussion and Conclusion

Climate change is likely to result in higher average temperature and more extremely hot 
days. However, the impact that will have on economic outcomes remains disputed (Stern 
2007). While economy-level models have been prominent in debate in recent years, evi-
dence of the mechanisms linking outdoor temperature to key economic drivers at micro-
level is inadequately developed. The results here contribute to the nascent literature of 
the causal impact of outdoor temperature on skilled labour productivity, complementing 
important recent evidence (Somanathan et al. 2021).

In addition to studying a new setting, we also take forward the challenge of unpick-
ing possibly non-linear and lagged relationships of temperature on productivity, applying 
a range of tools. Our results provide compelling evidence that high outdoor temperatures 
have a substantial negative effect on the productivity of skilled labour, even when produc-
tion takes place in climate controlled spaces.

The fine-grained nature of the data allows for within-worker estimation, netting out a 
wide set of time-invariant but unobservable individual characteristics that would confound 
results from cross-sectional analysis. The effects we find are large: in our preferred linear 
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model, absent lags, each degree increase in shift-day maximum WBT causes a reduction 
in productivity of 0.83%. In our binary specification model, a day where maximum WBT 
exceeds 28 ◦ C is associated with 5.8% lower productivity compared to a typical day in the 
estimating sample when it does not.

Note that we observe attendance but not failure to attend a scheduled shift. If we assume 
that those workers more sensitive to heat are at least more likely to be absent on days when 
temperature is high than those less sensitive, then our estimates derived from non-absent 
workers are likely to be conservative estimates of population-level effects. We find that 
shift-level absenteeism rates are higher on hot days, which provides some support to this 
claim.

Sleep quality is already established to be damaged by high temperatures and humid-
ity. Consistent with this, our estimates of inter-day, night-time, and cumulative heat effects 
suggest humid heat may impair productivity by undermining the ability of workers to phys-
ically recover between shifts. Nevertheless, we estimate substantial same-day effects of 
heat on productivity even when accounting for these effects.

We caveat our results by pointing out that our data comes from a single activity (wafer 
slicing) in a single manufacturing facility. We have no reason to suspect that the firm 
that we study is atypical of the sector, but cannot rule out the possibility that firm-spe-
cific factors, for example shift-pattern management practices, choice and maintenance of 
of machinery, or A/C usage policy, influence how outdoor temperature effects productiv-
ity in our setting, such that similar patterns would not be found in other firms or at other 
facilities. As such it would be valuable in future research to replicate our analysis in other 
manufacturing sectors and in other locations to get a more complete picture, and to probe 
external validity more broadly, for example in other sectors that involve different forms of 
precision manufacturing.

In terms of policy implications, the negative, same-day effect of heat on productivity 
is important because it is observed in workplaces already benefiting from the protection 
of good quality climate control technology. Importantly, in terms of understanding the 
economic burden of high temperatures, the effect sizes should be interpreted as already 
accounting for the most obvious technological approach to adaptation. Analogous effects 
will plausibly arise in other high-value precision manufacturing settings.

To the extent that part of our results may be driven by poor recovery between shifts (for 
example as a result of disturbed sleep), a natural policy recommendation is to expand the 
coverage of residential air conditioning, especially in parts of the world (such as Southeast 
Asia) where humid heat is predicted to increase. Our findings provide a cautionary tale to 
policy-makers that simple adaptive strategies can be expected to protect only partially from 
the negative consequences of increased heat. The implications for firms are that climate 
control on its own is not sufficient to insulate the firm in our study from the deleterious 
effects of high outdoor temperature—and might point to alternative defensive strategies, 
such as geographical relocation, as potentially valuable in a warming world.

A Polynomial Distributed Lag Model

Taking the quadratic polynomial distributed lag model as an example, in order to estimate 
the parameters of �j ( j = 0, 1, ..., s ), we substitute Eqs. (5) to (4) and yield:
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By constructing the new regressors of 
∑s

j=0
Tempt−j , 

∑s

j=0
j ⋅ Tempt−j , and 

∑s

j=0
j2 ⋅ Tempt−j , 

we estimate Eq. (3) with f(Temp(t)) defined by Eq. (7) to get the estimated parameters of �0 , 
�1 , and �2 . According to Eq. (5), the original model parameters of �j ( j = 0, 1, ..., s ) can be 
derived. For any higher degree of polynomial, a similar procedure can be applied.

The restrictions imposed by a polynomial distributed lag model can be tested as linear 
restrictions on the parameters of finite distributed lag model. Taking the quadratic poly-
nomial distributed lag model as an example, we difference �j of Eq. (5) in terms of j to get

and then difference Eq. (8) again to get

It shows that the restrictions imposed by quadratic polynomial distributed lag model are 
equivalent to restricting the second difference of �j of the distributed lag model as a con-
stant, i.e.

Therefore, we can test the restrictions Eq. (10) on the lag coefficients of �j to test the quad-
ratic polynomial lag model.

Following a similar procedure to the fourth difference of �j , we can get the restrictions 
on �j equivalent to those imposed by a quartic polynomial lag model are

B Sample Characteristics and Additional Results

See Tables 11, 12 and 13.

(7)

f (Temp(t)) = �0

s
∑

j=0

Tempt−j + �1

s
∑

j=0

j ⋅ Tempt−j

+ �2

s
∑

j=0

j2 ⋅ Tempt−j.

(8)
�j − �j−1 =

(

�0 + �1j + �2j
2
)

−
(

�0 + �1(j − 1) + �2(j − 1)2
)

= �1 + �2(2j − 1), j = 1, 2, ..., s,

(9)
(�j − �j−1) − (�j−1 − �j−2) =

(

�1 + �2(2j − 1)
)

−
(

�1 + �2(2(j − 1) − 1)
)

= 2�2, j = 2, 3, ..., s.

(10)�j − 2�j−1 + �j−2 = �j−1 − 2�j−2 + �j−3, j = 3, 4, ..., s.

(11)
�j − 4�j−1 + 6�j−2 − 4�j−3 + �j−4 = �j−1 − 4�j−2 + 6�j−3 − 4�j−4 + �j−5, j = 5, 6, ..., s.
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Table 11   Variable description

Variable Description

Output Total amount of product produced by a worker on a day
Output_A Total amount of grade-A product produced by a worker on a day
Temperature Maximum wet bulb temperature of a day
Temperature 24-hr average Average wet bulb temperature over 24 h of a day
Temperature daytime average Average wet bulb temperature from 8am to 8pm of a day
Temperature>24 Binary indicator of the maximum wet bulb temperature of a day higher than 

24
Temperature>26 Binary indicator of the maximum wet bulb temperature of a day higher than 

26
Temperature>28 Binary indicator of the maximum wet bulb temperature of a day higher than 

28
Dry bulb temperature Maximum dry bulb temperature of a day in Celsius
Relative humidity Maximum relative humidity of a day in per cent
Precipitation Total precipitation of a day, in millimeter
Cloud coverage Total cloud coverage, in per cent
Sunshine duration Sunshine duration over a day, in minute
Wind gust Average wind gust, in km/hour
Wind speed Maximum wind speed, in km/hour
PM2_5 in μg∕m3

PM10 in μg∕m3

SO
2 in μg∕m3

NO
2 in μg∕m3

CO in mg/m3

O
3 in μg∕m3

Output_d Daily average amount of product produced by a worker over a week
Output_A_d Daily average amount of grade-A product produced by a worker over a week
Temp._d Averaged maximum wet bulb temperature over a week
Temp._hot Number of days with maximum wet bulb temperature higher than 28 in a 

week
Precipitation_d Daily average of total precipitation in a week, in millimeter
Cloud coverage_d Daily average of total cloud coverage in a week, in per cent
Sunshine duration_d Daily average of sunshine duration in a week, in minute
Wind gust_d Average of wind gust in a week, in km/hour
Wind speed_d Average of maximum wind speed in a week, in km/hour
Age Worker age in years
Education Maximum year in education
Slicer Post of the worker is slicer or not
Lnexp Ln transformation of worker’s working time (in days) at the factory
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B.1 Using Thermal Inversion as Instrumental Variable for Pollution Variables

Following Yao et al. (2022), we construct a measure of thermal inversions by using NASA 
MERRA dataset. We extract the six-hourly air temperature at the 10kmX10km grid where 
the factory is located for each of the 72 atmospheric layers, over the sample time period, 
i.e. from September 2013 to August 2017. To measure thermal inversions, we use the air 
temperature at the 72nd layer (representing approximately 110 m in altitude) and the 70the 
layer (representing approximately 550 m in altitude). First, we generate a binary variable 
indicating thermal inversion occurrence if air temperature at the 70th layer is higher than 
that at the 72nd layer. Second, we average the four thermal inversion indicators over a day 
to get a measure of daily thermal inversion. We use this measure as the instrumental vari-
able (IV) for pollution variables. As we only have one IV, but we have six pollution vari-
ables, i.e., PM2.5, PM10, SO2 , NO2 , CO, and O 3 , we run the IV regression separately for 
each pollution variable. The results are reported in Table 13 and 14.

See Tables 14  and 15.
See Fig. 4.

Table 14   IV estimates (NO
2
 , CO, and O 

3
)

(1) (2) (3) (4) (5) (6) (7) (8)
OLS OLS 

Pref
OLS IV OLS IV OLS IV

WBT −

107.325∗∗∗
−

78.001∗∗∗
−

74.811∗∗∗
−

102.847∗∗∗
−

47.518∗∗∗
−

141.765∗∗∗
−

106.236∗∗∗
−240.053∗∗∗

(13.992) (9.869) (12.217) (14.575) (13.226) (25.141) (12.621) (60.652)
PM2.5 Yes No No No No No No No
PM10 Yes No No No No No No No
SO

2
Yes No No No No No No No

NO
2

Yes No Yes Yes No No No No
CO Yes No No No Yes Yes No No
O

3
Yes No No No No No Yes Yes

Obs 24,546 35,190 24,546 24,546 24,546 24,546 24,546 24,546
No. of work-

ers
437 635 437 437 437 437 437 437

Table 15   Absenteeism (1) (2)

WBT −1.039*** −0.971**
(0.380) (0.403)

Year FE Yes Yes
Month FE Yes No
Week FE No Yes
Day-of-week FE Yes Yes
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C Working Environment

Given the delicate nature of the wafer production and for quality control purposes, all 
workshops are equipped with temperature and humidity control systems. Those systems 
keep the workshops at a constant temperature of 25 ◦ C (77F) and a humidity level of 60%. 
The layout of a typical workshop in the manufacturing plant is shown in Fig. 5.

See Figs. 5, 6, 7 and 8.

(a) Wire Saw Model - HCT E500SD (b) Wafer Production Process

Fig. 4   Solar wafers production equipment and process

Fig. 5   A typical workshop
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