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Anisotropic signatures in the spin-boson model
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Thermal equilibrium properties of nanoscale systems deviate from standard macroscopic predictions due to
non-negligible coupling to the environment. For anisotropic three-dimensional materials, we derive the mean
force corrections to the equilibrium state of a classical spin vector. Specifically, we consider cubic, orthorhom-
bic, and monoclinic symmetries, and compare their spin expectation values as a function of temperature.
The results are valid at arbitrary coupling strength. We underpin the correctness of the mean force state by
evidencing its match with the steady state of the simulated non-Markovian spin dynamics. The results show an
explicit dependence on the symmetry of the confining material. In addition, some coupling symmetries show
a spin-alignment transition at zero temperature. Finally, we quantify the work extraction potential of the mean
force-generated inhomogeneities in the energy shells. Such inhomogeneities constitute a classical equivalent to
quantum coherences.
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I. INTRODUCTION

Standard thermodynamics assumes that the interaction be-
tween the system and the bath is negligible compared to the
bare system’s energy. Over the last years, much effort has been
made to obtain a consistent thermodynamic theory of strongly
coupled systems in the classical and quantum regime [1–10].
Here, the thermal equilibrium state is described by the mean
force (Gibbs) state, which has been studied comprehensively
in the classical and quantum regime for one-dimensional
and isotropic three-dimensional interactions with the envi-
ronment [11–15]. Recently, it has been shown that for the
one-dimensional θ -angled spin-boson model, the quantum
mean force state becomes precisely the classical mean force
state in the large-spin limit [16]. This establishes the corre-
spondence principle for an open system for the first time.
Further, environment-induced coherences, so called energy-
shell inhomogeneities, are found to be present in the classical
mean force state [16,17].

Meanwhile, magnetic materials with anisotropic crystal
structures have been studied in condensed matter physics
and magnetism, such as the orthorhombic rare-earth com-
pound DyMnO3 [18–23]. Further examples are the Mn-doped
monoclinic ZrO2 compound [24] or monoclinic Fe3Se4

nanostructures [25–27]. Effects of the anisotropic crystal ge-
ometry lead to differences in the magnetization behavior with
respect to temperature.

In this paper, we consider a three-dimensional classical
spin-boson model, where the bath can be anisotropic. We give
an analytical expression of the classical mean force (CMF)
state and study the influence of cubic, orthorhombic and mon-
oclinic crystalline symmetries. We show that the CMF state
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is strongly dependent on the symmetry of the coupling. But
for the cubic (isotropic) bath the CMF state reduces to the
classical Gibbs (CG) state. Further, in the case of orthorhom-
bic crystal symmetry, we find a spin-alignment transition at
zero temperature. This results from a change in the potential
minimum in the transition from weak to strong system-bath
coupling. The observed classical spin-alignment transition
shows similarities with the quantum phase transition in the
one-dimensional quantum spin-boson model [28–33].

Lastly, anisotropic crystal symmetries lead to classical
energy-shell inhomogeneities in the phase space density.
These were recently linked to a work extraction potential by
Smith et al. [17]. We show that not all anisotropic baths lead to
energy-shell inhomogeneities even though they lead to mean
force corrections. For the orthorhombic mean force state, we
demonstrate that the maximal work extraction is a function of
the bath temperature and coupling strength.

In order to answer the question of how different bath
symmetries influence the equilibrium properties of a single
spin, the paper is organized as follows. In Sec. II, we em-
ploy the spin-boson model to calculate the three-dimensional
CMF state and use the Neumann principle to construct cou-
pling tensors that represent different crystal symmetries. In
Sec. III, we detail the mean force corrections caused by differ-
ent crystal symmetries. For orthorhombic crystal symmetries,
we observe a spin-alignment transition that we discuss in
more detail in Sec. IV. Classical mean force states lead to
energy-shell inhomogeneities, that we link to a work extrac-
tion potential in Sec. V. We conclude with a brief summary
and discussion in Sec. VI.

II. SETUP

The spin-boson model is used in many different physical,
chemical, and biological contexts [34–40]. For example, it is
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FIG. 1. Sketch of a lattice giving rise to an anisotropic noise
field. The spin (indicated in black) is surrounded by a bath of neigh-
boring atoms (shown in light blue) forming an anisotropic lattice.
Lattice vibrations (phonon excitations) at finite temperatures lead to
an anisotropic noise field (red shade). Differences in lattice geome-
tries result in different spin-bath interactions and thus to corrections
to the spin’s equilibrium state. The lattice parameters a, b, and c
together with the angles α, β, and γ characterize different crystal
classes, captured in the tensor C. We set the external magnetic field
Bext (green vector) to be aligned along the z direction.

adopted to describe the dissipation and decoherence effects
in graphene [41] and to study the heat transfer in nonequilib-
rium situations [42]. Further, environment-induced quantum
phase transitions between delocalized and localized states are
observed in the spin-boson model [31,43] and it describes
the physics of quantum emitters that are coupled to surface
plasmons [44].

A. 3D spin-boson model

Here, we introduce the system, which is composed of a
classical single spin vector S with length S0, exposed to an
external magnetic field Bext = (0, 0, Bz ), with ωL = |γ |Bz be-
ing the Larmor frequency (see sketch in Fig. 1). The system
Hamiltonian is given by

HS = −|γ |S · Bext = −ωLSz. (1)

The spin is embedded into a thermal bosonic bath. Even
though we assume the bosonic bath to consist of phonons in
a crystal lattice [45], one could also consider modes of an
electromagnetic field [46]. We model the phonon modes by
the Hamiltonian

HB = 1

2

∫ ∞

0
dω

(
P2

ω + ω2X2
ω

)
, (2)

where Pω and Xω are the three-dimensional phase space coor-
dinates of the bath mode with frequency ω. The interaction
between the system and the bath is assumed to be linear,
which is sensible in most settings [11]. Hence, the interaction
Hamiltonian is modelled as

Hint = S ·
∫ ∞

0
dω CωXω, (3)

with Cω being the coupling tensor that determines the strength
and the symmetry properties of the system-bath interac-
tion. Unlike previous investigations establishing the link to
the LLG equation [47] and the first open system quantum-
classical correspondence [16], in this paper, we investigate

the physical implications of the (3 × 3) second rank coupling
tensor Cω [45].

The total Hamiltonian of the combined system-bath com-
pound is given by [16,47]

Htot = HS + HB + Hint. (4)

This Hamiltonian guides the dynamical evolution and the
equilibrium features of the spin system interacting with a clas-
sical harmonic environment. The mean force state is generally
defined as [11]

τMF := trcl
B[τtot] = trcl

B

[
e−βHtot

Ztot

]
. (5)

This is the reduced state of the global Gibbs state τtot, with
the global partition function Ztot, the inverse temperature β =
1/kBT , where kB is the Boltzmann constant. Taking the partial
trace in the classical setting trcl

B[·] requires integrating over the
bath degrees of freedom (Xω, Pω ) [16]. In the Appendix A, we
show a detailed derivation and give the exact definitions of the
classical partial trace of the bath and the spin system.

B. 3D classical mean force state (CMF)

Carrying out the trace over the bath, we derive the three-
dimensional CMF state for arbitrary coupling strengths,

τMF = 1

Z̃cl
S

e−β

(
HS− 1

2

∫ ∞
0 dω

(
STCωCT

ωS
)
/ω2

)
, (6)

with Z̃cl
S = trcl

S [exp −β(HS − 1
2

∫ ∞
0 dω(STCωCT

ωS)/ω2)] being
the spin’s CMF partition function. This is the first result of
the paper and is an upgrade of the one-dimensional CMF
state discussed in [16]. Our result is valid for any three-
dimensional bath symmetry and all coupling strengths. It
remains an open task to find a closed expression for the quan-
tum mean force state for all coupling symmetries and coupling
strengths [11,14,15].

From here onwards we will assume that the frequency
dependence given by the spectral density Jω is isotropic,

Cω =
√

2ωJω · C. (7)

But the overall strength of coupling can vary in different
spatial directions, which is set by the elements of the tensor
C (Sec. II C). In what follows, we assume that the spec-
tral density of the lattice vibrations is of Lorentzian form
Jω = (A�ω)/(π (ω2

0 − ω2)2 + π�2ω2). This is a reasonable
assumption thanks to the bosonic spectral density Jω be-
ing proportional to the phononic density of states Dω, i.e.,
Jωω ∝ Dω. Note that Lorentzian shaped spectral densities are
a good choice to describe experimentally measured Dω [45].
Furthermore, a Lorentzian spectral density has the advantage
to lead to a closed set of differential equations when simulat-
ing the spin dynamics [16,47]. Under these assumptions, the
frequency integral in the exponent of Eq. (6) then simplifies to
the reorganization energy Q = A/(2ω2

0 ). While the dynamics
is governed by the peak width �, the eventual equilibrium
state only depends on the resonant frequency ω0 and the
spin-bath coupling strength A [47]. Further, we rename the
spin-matrix product STCCTS = S̃2 such that the CMF state
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FIG. 2. CMF results for the orthorhombic and the monoclinic symmetry. Expectation values of the orthorhombic CMF state (OR, purple
solid) and the monoclinic CMF state (MC, purple dotted) (a). We observe deviation from the CG state (orange dashed) in 〈sz〉 (sz = Sz/S0)
for both symmetries, and a nonzero expectation value 〈sx〉 (sx = Sx/S0) for the monoclinic CMF state (green-dotted line). The results are
supported by the corresponding dynamical CSS calculations (markers). The cubic CMF state is identical to the CG state (orange dashed). In
(b), we show the phase space distribution of the orthorhombic CMF state, and in (c) of the monoclinic CMF state. The white lines indicate shells
of equal probability. One sees that τMF is an inhomogeneous distribution over the energy shells of HS for the orthorhombic and monoclinic
symmetry, i.e., the white lines are not constant along ϕ. The expectation values and distributions are plotted for a temperature of kBT = h̄ωL,
a reorganization energy of Q = 2.5 ωL h̄−1, and a spin length of S0 = h̄.

simplifies to [16]

τMF(ϑ, ϕ) = 1

Z̃cl
S

e−β(HS−QS̃2 ). (8)

This τMF(ϑ, ϕ) is a distribution given in terms of the
angles of the spherical coordinates (ϑ, ϕ), where S =
S0(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ) for a fixed spin length S0.

The CMF state is postulated to be the thermal equilibrium
state of a spin in contact with a bath, i.e., the dynamical
classical steady state (CSS) in the long-time limit. While the
correspondence of the CMF state and the CSS is proven in the
weak-coupling limit [48] and the ultrastrong coupling regime
[8] of quantum systems, there remain some open questions
about the formal proof that this is valid for all coupling
strengths and coupling symmetries [11,15].

Here, we demonstrate that the dynamics of a classical
spin converges to the CMF state for classical noise, arbitrary
coupling strength, and especially, any crystalline coupling
symmetry, see Fig. 2(a). We do this by numerically solving
the spin dynamics equations with the analytical and numerical
methods detailed in Refs. [47,49]. These methods allow us to
calculate the first- and higher-order moments of the spin com-
ponents si = Si/S0 for i = x, y, z. For the spin vector rotating
on the sphere the expectation values 〈si〉 are the most informa-
tive as they determine the equilibrium orientation inside the
sphere. We find that the CMF expectation values and the CSS
expectation values match, see Fig. 2(a). Higher moments, i.e.,
〈s2

i 〉 and 〈sis j〉 for i, j = x, y, z, are also evaluated and found
to match, see Appendix C.

C. Crystal symmetries

Coupling the spin to a harmonic bath that reflects the
symmetry of the confining material requires knowledge about
the coupling tensors C. The specific form of the coupling
tensor can be deduced from the Neumann principle [50,51].

The Neumann principle arises from symmetry considerations
and connects the structure of a given crystal with its physical
properties [50,52,53]. As a result, the coupling tensor must
exhibit the same symmetry as the crystal it describes. This
leads to the intuitive observation that, for crystals with more
symmetries, the number of independent tensor components
decreases. In general, the Neumann principle only determines
the minimum number of symmetries of the coupling tensor.
The specific form of the tensors that arise from the Neumann
principle are discussed in the following by their contribution
to the CMF state.

So far, we solely discussed the coupling tensor C; however,
we observe that, in Eq. (8), the symmetric product CCT is
responsible for the mean force corrections. We restrict the
product of the matrices CCT to follow the Neumann principle.
In what follows, we refer to the components of CCT as

CCT =
⎛
⎝c11 c12 c13

c12 c22 c23

c13 c23 c33

⎞
⎠. (9)

Here, CCT is a symmetric, positive-definite tensor.
Different crystal classes are additionally characterized via

their lattice parameters a, b, c, and the angles α, β, γ , as
indicated in Fig. 1.

III. ANISOTROPIC MEAN FORCE CORRECTIONS

In this section, we summarize the effects that a three-
dimensional bath with a given lattice structure has on the CMF
state of the spin. In detail, we discuss cubic, orthorhombic,
and monoclinic crystal symmetries. For comparability of the
different crystal symmetries we always set the trace of the
diagonalized property tensor to unity, i.e., tr[CCT] = 1.

184402-3



F. HARTMANN, S. SCALI, AND J. ANDERS PHYSICAL REVIEW B 108, 184402 (2023)

A. Cubic

A cubic crystal symmetry, i.e., α = β = γ = 90◦ and a =
b = c, results via the Neumann principle in an isotropic
harmonic bath, i.e., the property tensor simplifies to CCT =
(1/3)13. It follows directly from the isotropy of the bath
that the classical mean force state reduces to the classical
Gibbs (CG) state, τ cubic

MF = τGibbs = e−βHS/trcl[e−βHS ], since
S̃2 = (1/3)S2

0 is constant and independent of (ϑ, ϕ). Thus, we
observe that classical isotropic three-dimensional noise leaves
the Gibbs state invariant with respect to any system-bath cou-
pling strength Q.

Before we proceed with analyzing the CMF states for
noncubic bath symmetries, we briefly remark on the quan-
tum case, which will be the subject of future investigations.
Firstly, in contrast to the classical cubic case discussed above,
the quantum mean-force (QMF) state for cubic bath symme-
try does show significant deviations from the corresponding
quantum Gibbs state [54]. These deviations can be attributed
to increased system-bath entanglement, i.e., the fact that the
cubic CMF reduces to the CG is a purely classical phe-
nomenon. Secondly, Ref. [16] proved the quantum-classical
correspondence for MF states of a spin coupled to a bath in
one arbitrary direction θ . But a similar proof for quantum
systems coupled to three-dimensional baths, with either cubic
or anisotropic symmetries, is so far missing.

Given the unsolved complexities of the three-dimensional
quantum problem, we here proceed with mapping out the
properties of the CMF for different three-dimensional sym-
metries.

B. Orthorhombic (OR)

Orthorhombic crystal symmetries have the following fea-
tures: a �= b �= c and α = β = γ = 90◦. This breaks the
isotropy of the cubic crystal in the sense that neighboring
atoms have different separations along orthogonal spatial
directions. Hence, the property tensor of the coupling func-
tion has only diagonal elements. As an example, in Fig. 2,
we choose c11 = 0.40, c22 = 0.35, c33 = 0.25 and the reor-
ganization energy in the strong coupling regime with Q =
2.5 ωL h̄−1 [16].

The spin expectation values in the x and y directions are
〈sx〉 = 〈sy〉 = 0, identical to those of the CG state. This arises
because the applied noise is invariant under rotation by ϕ = π

around the z axis. On the other hand, the expectation value 〈sz〉
for the CMF state slightly deviates from the one correspond-
ing to the CG state for most temperatures. But for T → 0 K
both reach 〈sz〉 = 1.0, see Fig. 2(a).

For higher coupling strengths, e.g., Q = 10 ωL h̄−1, we
observe a bump in the expectation value, as displayed in
Appendix B. In many-body systems, such bumpy magne-
tization vs temperature measurements are encountered in
materials that show a phase transition to anti–ferromagnetic
ordering [18–21,23]. In Appendix B, we plot the temperature-
dependent magnetization experiment of an orthorhombic
DyMnO3 single crystal from Ref. [18] together with the
bumpy expectation value of the orthorhombic CMF state.

In Fig. 2(b), we show the CMF phase space distribution in
the case of the OR symmetry. The contour white lines indicate
shells of constant probability. Deviations from the CG state

are obvious, since τGibbs would have straight parametric lines,
i.e., no ϕ dependence. In contrast, for τOR

MF a teeth-like pattern
is formed. It arises from the fact that c11 > c22, and therefore,
the spin components along the positive and negative x direc-
tion (ϕ = 0, π ) are weighted stronger than the components
along the y direction.

C. Monoclinic (MC)

Many features of classical mean force corrections are
already observed by considering the orthorhombic crystal
symmetry. However, by coupling to a monoclinic bath, further
properties are discovered. In general, a monoclinic crystal
structure is characterised via a �= b �= c and α = β = 90◦ �=
γ . This leads to a coupling tensor in Eq. (9) where we set
the off-diagonal element c13 �= 0 and fix the diagonal ele-
ments as for the orthorhombic symmetry. This geometrically
corresponds to rotating the neighboring atoms in the ±x di-
rection towards the z axis. It leads to a correction in the CMF
state, i.e., S̃2 = c11S2

x + c22S2
y + c33S2

z + 2c13SxSz, which has
a cross-term of the spin components SxSz ∝ cos ϕ sin ϑ cos ϑ .
This leads to a broken rotational invariance. We observe a
CMF phase space distribution [Fig. 2(c)] that has a maximum
rotated away from the positive z direction, towards the positive
x direction. Further, along the negative x direction there is
an increased probability to find the spin with a negative Sz

component. This also leads to a nonzero expectation value
〈sx〉 �= 0 for small temperatures kBT/h̄ωL < 1 [see Fig. 2(a)].

We conclude that the equilibrium properties of a classi-
cal spin vector drastically change when it is anisotropically
coupled to a three-dimensional bath. In fact, its equilibrium
features are highly dependent on the coupling strength, the
temperature, and the crystal symmetry, i.e., the coupling
tensor CCT.

IV. SPIN-ALIGNMENT TRANSITION

We want to study the classical spin expectation value 〈sz〉
at zero temperature while increasing Q. Figure 3 shows the
numerically calculated expectation values for the cubic, or-
thorhombic, and monoclinic symmetry at T = 0 K. For the
three-dimensional orthorhombic CMF state (OR), we observe
a spin-alignment transition, where the expectation value at a
critical coupling strength QOR

crit abruptly reduces from 〈sz〉 = 1
to 〈sz〉 = 0. The transition is characterized by minimizing the
energy HOR

MF (ϑ, ϕ) = HS − QS̃2, where we observe a reposi-
tioning of the energetic potential minimum,

ϑOR
min =

{
0 y < 1,

arccos
(

1
y

)
y � 1,

(10)

with y = Q/QOR
crit for c11 > c33. The critical coupling strength

is given by QOR
crit = ωL/(2(c11 − c33)S0), as indicated in Fig. 3

by the grey-dashed vertical line. The azimuthal angle ϕmin

of the energetic potential minimum becomes ϕmin = 0, π for
y � 1. In other words, the energetic potential minimum be-
comes degenerate for coupling strengths larger than QOR

crit .
In the zero-temperature limit, β → ∞, the orthorhombic
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the orthorhombic CMF state. At QOR
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of the spin changes from along the z axis towards the ±x axes. In
contrast, the monoclinic expectation value reduces continuously to a
finite expectation value 〈sz〉 > 0. All other parameters are as in Fig. 2.

expectation value is

〈sz〉β→∞ =
{

1 Q < QOR
crit ,

QOR
crit/Q Q � QOR

crit .
(11)

It is clear that the first derivative of (11) with respect to Q
is discontinuous at QOR

crit , and the expectation value 〈sz〉β→∞
changes quickly from 1 to 0 for increasing Q. At the critical
coupling strength it becomes energetically more convenient
for the classical spin vector S to align along the x axis, with
a consequent zero expectation value along the z direction,
〈sz〉 = 0. We note that this spin-alignment transition of a clas-
sical spin vector resembles the well-known quantum phase
transition in the one-dimensional quantum spin-boson model
[28–33,55]. This raises the question how the quantum phase
transition is influenced by three-dimensional anisotropic baths
in the quantum spin-boson model. This could be studied with
the recently developed FP–HEOM approach, which is robust
at zero temperature [56]. In contrast to the OR case, the
monoclinic CMF state (MC) shows a smooth transition from
〈sz〉 = 1 to a finite value 〈sz〉 > 0 for increasing Q (see Fig. 3).

We conclude that the observed classical spin-alignment
transition at zero temperature is highly dependent on the
anisotropy of the system-bath coupling.

V. WORK EXTRACTION POTENTIAL

CMF corrections in the presence of anisotropic system-
bath coupling can introduce energy-shell inhomogeneities
[16], see Figs. 2(b) and 2(c). Recently Smith et al. [17] showed
that classical inhomogeneities are equivalent to quantum co-
herences as a thermodynamic resource for work extraction
[57]. Here, we link CMF states with anisotropic coupling
to such a work extraction potential. Similar to the idea of
extracting work from quantum coherences by altering the state
with coherences to a state without coherences, one can extract

work from classical distributions by removing energy-shell
inhomogeneities [17]. The energy shells are latitude circles,
described by HS(ϑ ), where the spin phase space is a sphere
with radius S0. The maximal work extraction is given by

W = β−1(S[diag τMF(ϑ )] − S[τMF(ϑ, ϕ)]), (12)

where, as before, τMF(ϑ, ϕ) is the CMF state, which
may host energy-shell inhomogeneities, and diag τMF(ϑ ) =∫

dE η(E ) ωE (ϑ, ϕ) defines the homogeneous distribution.
Here, η(E ) is the distribution of energies of a phase space
density ρ(�) and ωE (·) is the classical microcanonical density.
In addition, S[ρ] refers to the Shannon entropy of a probability
distribution ρ.

Following [17], we calculate the homogeneous distribution
of the orthorhombic CMF state,

diag τOR
MF (ϑ ) = 1

Z̃cl
S

exp
[−β

(
HS − QS2

0F (ϑ )
)]

× I0

[
1

2
βQS2

0 (c11 − c22) sin2 ϑ

]
, (13)

where F (ϑ ) = 1
2 sin2 ϑ (c11 + c22) − c33 cos2 ϑ , and I0(x) is

the modified Bessel function of the first kind. A detailed
derivation is given in Appendix D. Equation (13) is solely
dependent on ϑ and, hence, is homogeneous in the en-
ergy shells HS(ϑ ). In order to calculate the classical work
potential W , one needs a coarse-grained phase space dis-
tribution. The probability of the kth cell is given by pk =∫

kth cell d�τMF(ϑ, ϕ) and 0 � pk � 1. Hence, the entropy in
Eq. (12) is calculated via

S[ρ] = −
∑

k

pk ln pk, (14)

for which S[ρ] � 0.
We want to compare the work potential of the orthorhom-

bic case to that of other crystal symmetries. For exam-
ple, the CMF state τUA

MF (ϑ ) ∝ exp[−β(HS − QS2
0 (c11 sin2 ϑ +

c33 cos2 ϑ )], is for coupling to the bath with uniaxial (UA)
symmetry. For this symmetry, a = b �= c and α = β = γ =
90◦, and the nontrivial elements in the tensor CCT [Eq. (9)]
are c11 = c22 �= c33. Even though the UA crystal symmetry
introduces mean force corrections, the CMF state τUA

MF (ϑ ) has
no energy-shell inhomogeneities, since it exclusively depends
on ϑ . We can also view Eq. (12), as a measure of how in-
homogeneous a given CMF state is for different system-bath
symmetries, coupling strengths, and temperatures.

In Fig. 4, we compare the work extraction potential W for
different crystal symmetries. As expected, the cubic crystal
symmetry leads to W = 0 (orange-dashed line). The same
is observed for the uniaxial CMF state (blue-dotted line),
since its mean force corrections do not host energy-shell in-
homogeneities. But for the orthorhombic crystal symmetry a
nonzero potential arises due to diag τOR

MF (ϑ ) �= τOR
MF (ϑ, ϕ).

In Fig. 4(a), we observe the following trend. At small Q,
lower temperatures (solid-light green) correspond to greater
work extraction potential. Notably, we find the opposite
behavior at increasing coupling strengths, where higher tem-
peratures (solid-dark green) lead to a greater potential, as
implied by the intersection of the two curves. In Fig. 4(b),
we show W as a function of temperature kBT/h̄ωL for two
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FIG. 4. Work extraction potential for different crystal symmetries. (a) W for the orthorhombic crystal symmetry as a function of the
reorganization energy Q, for two different temperatures (solid-green lines). For the cubic (orange dashed) and uniaxial (blue dotted) symmetry
one has W = 0, due to missing energy-shell inhomogeneities. (b) Same as (a) but now shown over temperature T , for two values of Q
(solid-green lines). At a fixed coupling strength, there exists an optimal temperature, at which the work extraction is maximized (e.g., if
Q = 25 ωL h̄−1 the maximal work can be extracted at a temperature of kBT/h̄ωL ≈ 0.3). This shows that the trade-off between the temperature
and the coupling strength is nontrivial. The purple filled (unfilled) squares and circles are plotted for easier comparison between (a) and (b).
Mind the semi-logarithmic scaling in the right figure. All other parameters are the same as in Fig. 2.

coupling strengths Q = 10.0 ωL h̄−1 (solid-dark green) and
Q = 25.0 ωL h̄−1 (solid-light green). For low temperatures
the limit of Eq. (12) is limβ→∞ W = 0. Likewise one has
limβ→0 W = 0 because mean force corrections become less
pronounced at higher temperatures [14,16] and thus energy-
shell inhomogeneities vanish in the β → 0 limit. This implies
the existence of a maximum of the work extraction potential
W at an intermediate temperature. That is, there is a trade-
off between the reorganization energy and the bare thermal
energy.

We conclude that some bath symmetries induce energy-
shell inhomogeneities in the CMF state that can be linked to
a work extraction potential W . But we highlight that not all
anisotropic baths generate such inhomogeneities.

VI. CONCLUSIONS

In this paper, we showed that anisotropic three-
dimensional baths acting on a classical spin vector S
substantially modify its equilibrium state, the mean force
state. Such baths arise whenever a spin is embedded in crys-
tal lattices of varying symmetries, such as the orthorhombic
or monoclinic symmetry. In addition to evaluating the mean
force states directly, we numerically solved the system’s
steady state, demonstrating convergence to the mean force
state.

Secondly, we identified the presence of a spin-alignment
transition in the classical spin-boson model. This is remi-
niscent of the well-known quantum phase transition, i.e., a
change of the ground state at zero temperature, in the quantum
spin-boson model. In the classical case, we find that the bath
symmetry determines whether this transition occurs smoothly
(monoclinic) or abruptly (orthorhombic).

Thirdly, we demonstrated how inhomogeneous distri-
butions of a classical open spin system, i.e., “classical
coherences”, lead to the presence of a thermodynamic work
extraction potential, equivalent to their quantum counterpart.
Here, the inhomogeneous nature of the CMF state is solely

determined by the crystal symmetry. The upper limit of the
work extraction potential depends on the coupling strength Q
and the bath temperature T .

Understanding the impact of the symmetry of the surround-
ing environment is crucial to predict the equilibrium state of
certain systems of interest. Examples of such systems include
magnetic materials, such as thin cobalt films, where signif-
icantly different inertial spin dynamics have recently been
observed for different crystal symmetries [58]. The presented
results will also be relevant for the modeling of biological
systems in highly complex environments [39], such as pho-
tosynthesis [39,59].
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APPENDIX A: DERIVATION OF THE CLASSICAL
MEAN FORCE STATE

1. Classical spin trace

The coordinates of a spin in a spherical coordi-
nate system are given as (Sx, Sy, Sz ) = (S0 sin ϑ cos ϕ,

S0 sin ϑ sin ϕ, S0 cos ϑ ) with ϑ ∈ [0, π ], ϕ ∈ [0, 2π ), and a
vector length of S0. The trace of a function A(Sx, Sy, Sz ) is

trcl
S [A(Sx, Sy, Sz )] = 1

4π

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑA(Sx, Sy, Sz ).

(A1)

The definition of Z̃cl
S follows trivially.
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2. Classical bath trace

The trace over the bath degrees of freedom is calculated via
a discrete version of the bath Hamiltonian HB = 1

2

∑
n(P2

ωn
+

ω2
nX2

ωn
). The bath partition function becomes

Zcl
B =

∏
n

[∫ ∞

−∞
dXωn

∫ ∞

−∞
dPωn e− 1

2 β

(
P2

ωn +ω2
nX2

ωn

)]
. (A2)

3. Mean force state

Following Ref. [16], the mean force in the three-
dimensional setting is calculated via the discretise bath
degrees of freedom [see Eq. (A 2)], such that Htot becomes

Htot = HS +
∞∑

n=0

[
1

2

(
P2

ωn
+ ω2

nX2
ωn

) − SCωn Xωn

]
. (A3)

We can simplify the integration over the bath degrees of free-
dom [see Eq. (A2)], by completing the square, via μn = SCωn ,

Htot = HS +
∞∑

n=0

[
1

2

[
P2

ωn
+ ω2

n

(
Xωn − μωn

ω2
n

)2
]

− μ2
ωn

2ω2
n

]
.

(A4)

The classical system-bath partition function is

Zcl
SB =

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑe−βHeff Zcl

B , (A5)

whereby we define the effective Hamiltonian as

Heff = HS − QS̃2. (A6)

The reorganization energy Q and S̃ are defined in the main text
(see Sec. II). This yields the partition function of the system

Z̃cl
S = Zcl

SB

Zcl
B

=
∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑe−βHeff , (A7)

and additionally the mean force state of the three-dimensional
spin-boson system,

τMF = 1

Z̃cl
S

e−βHeff . (A8)

4. Classical expectation values

The expectation value is defined by 〈Si〉 = ∫
d� Si τMF,

with d� = sin ϑ dϑ dϕ and i ∈ (x, y, z). We normalize the
expectation value with respect to the spin length, i.e., 〈si〉 =
〈Si〉/S0, such that

〈sx〉 = 1

Z̃cl
S

∫ 2π

0
dϕ cos ϕ

∫ π

0
dϑ sin2 ϑ e[−βHeff (ϑ,ϕ)], (A9)

〈sy〉 = 1

Z̃cl
S

∫ 2π

0
dϕ sin ϕ

∫ π

0
dϑ sin2 ϑ e[−βHeff (ϑ,ϕ)], (A10)

〈sz〉 = 1

Z̃cl
S

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑ cos ϑ e[−βHeff (ϑ,ϕ)]. (A11)

APPENDIX B: BUMPY EXPECTATION VALUE
VS TEMPERATURE PLOT

As mentioned in the main text, at large system-bath cou-
pling the magnetization is maximized above the T → 0 K

FIG. 5. Bumpy expectation value. (a) DC magnetization mea-
surements were conducted by Pękała et al. [18] for a single crystal
orthorhombic DyMnO3. The figure shows the temperature depen-
dence of the magnetization for different magnetic field orientations.
(Figure taken from Ref. [18].) (b) Our calculated expectation value of
the orthorhombic (OR) CMF state [Eq. (6)] at two different coupling
strengths Q = 2.5 ωL h̄−1 and Q = 10.0 ωL h̄−1. At strong reorgani-
zation energies the expectation value reaches a maximum far above
zero temperature (e.g., at Q = 10.0 ωL h̄−1 the maximal magnetiza-
tion is at kBT/h̄ωL ≈ 0.1). The inset shows the expectation value for
different magnetic field orientations, similar to the experiment shown
in (a).

limit. We show the bumpy expectation value in Fig. 5(b).
In addition, we simulate the CSS via Refs. [47,49], which
reproduces the bumpy expectation value [see Fig. 5(b)]. The
bump directly results from the anisotropy of the bath. In fact,
there is a competition between the energy term of the system
HS and the mean force correction term QS̃2. The external
magnetic field tries to align the spin in its direction, whereas
the correction term has other preferred directions. In the
low-temperature range the environment overcomes the system
energy and reduces the expectation value 〈sz〉 to a value below
its maximum. We encounter this bumpy behavior solely for
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FIG. 6. Second moments for different crystal symmetries. (a) For
the orthorhombic symmetry the second moments of the x and y
spin component are different, i.e., 〈s2

x〉 �= 〈s2
y〉 (solid-green line and

solid-blue line, respectively), for a certain temperature range. (b) The
monoclinic CMF state shows richer structure, such as 〈sxsz〉 > 0
(solid-red line) and 〈s2

x〉 �= 0 (solid-green line) at low temperatures.
The higher moments of the CMF and the CSS do match for the
cubic (not shown), orthorhombic, and monoclinic symmetry. The
parameters are kBT = h̄ωL, Q = 2.5 ωL h̄−1, and a spin length of
S0 = h̄.

the orthorhombic symmetry and for a coupling tensor (9),
where c12 �= 0 and c11, c22, c33 are as in the orthorhombic case.

As we have pointed out in the main text, similar magne-
tization curves are observed in experiments [18–21,23]. Here
we show the temperature-dependent magnetization measure-
ments from Ref. [18] [see Fig. 5(a)] for an orthorhombic
DyMnO3 single crystal for different external magnetic field
orientations. The inset in Fig. 5(b) shows a similar behavior
of the expectation value of the orthorhombic CMF state for
different external magnetic field orientations. We leave a more
detailed study for future work.

APPENDIX C: HIGHER MOMENTS

The second moments of the CMF state are calculated
via 〈sis j〉 = ∫ 2π

0 dϕ
∫ π

0 dϑ sis jτMF(ϑ, ϕ) with i, j = x, y, z. In
Fig. 6, we show the agreement between the mean force
(solid lines) and the steady-state (markers) moments. One can
easily show that in the high-temperature limit, i.e., β → 0,
〈s2

x〉 = 〈s2
y〉 = 〈s2

z 〉 = 1/3 for any crystal symmetry, leading to

a large variance of var(si) = 〈s2
i 〉 − 〈si〉2 = 1/3. In the low-

temperature limit, i.e., β → ∞, the spin is perfectly aligned
along its equilibrium position such that 〈s2

i 〉 = 〈si〉2 resulting
in var(si) = 0.

To conclude, we found that first-order spin expectation
values, as well as higher-order expectation values, that are
calculated with either the dynamical CSS or the CMF state,
all match. This evidences the equality of the CSS and CMF
states.

APPENDIX D: INHOMOGENEITIES

The orthorhombic CMF state is

τOR
MF (ϑ, ϕ) = 1

Z̃cl
S

e−β(HS−QS2
0 ((c11 cos2 ϕ+c22 sin2 ϕ) sin2 ϑ+c33 cos2 ϑ )),

(D1)

with c11 �= c22 �= c33. Following Ref. [17], we have to calcu-
late η(E ) = ∫

d�τMF δ(E − HS(ϑ )). It is helpful to consider
the following integral identity:∫ 2π

0
dϕ exp(a cos2 ϕ) = 2πea/2I0

(
a

2

)
, (D2)

where I0 is the modified Bessel function of first kind. Using
cos2 ϕ + sin2 ϕ = 1, we can rewrite Eq. (D1) and identify the
parameter a = βQS2

0 sin2 ϑ (c11 − c22), such that

η(E ) =2π

Z̃cl
S

∫ π

0
dϑ sin ϑ I0

(a

2

)
δ(E − HS(ϑ ))

× e[βωLS0 cos ϑ+ 1
2 βQS2

0 sin2 ϑ (c11+c22 )+βQc33 cos2 ϑ]. (D3)

The ϑ integration is straightforward due to δ(E − HS(ϑ )).
With the substitutions u = ωLS0 cos ϑ , du = −ωLS0 sin ϑdϑ ,
and the properties of the delta function, Eq. (D3) is

η(E ) = 2π

Z̃cl
S

1

ωLS0
e[−βE+βQω−2

L ( 1
2 (1−E2 )(c11+c22 )+c33E2 )]

× �(ωLS0 + E )�(ωLS0 − E )

× I0

(
1

2
βQω−2

L (c11 − c22)(1 − E2)

)
, (D4)

where �(·) is the step function. The classical microcanonical
density ωE (ϑ ) is [17]

ωE (ϑ ) = ωLS0

2π

δ(E − HS(ϑ ))

�(ωLS0 + E )�(ωLS0 − E )
. (D5)

The homogeneous phase space distribution diag τOR
MF (ϑ ) is

defined as diag τOR
MF (ϑ ) = ∫

dE η(E )ωE(ϑ, ϕ) (see Ref. [17]).
This leads to

diag τOR
MF (ϑ ) = 1

Z̃cl
S

I0

(a

2

)

× e[−β(HS− 1
2 QS2

0 sin2 ϑ (c11+c22 )−QS2
0 c33 cos2 ϑ )].

(D6)

We observe that diag τOR
MF (ϑ, ϕ) �= τOR

MF (ϑ ), therefore by
Eq. (12), W � 0.
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