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Summary
Background Smoking impacts DNA methylation, but data are lacking on smoking-related differential methylation by
sex or dietary intake, recent smoking cessation (<1 year), persistence of differential methylation from in utero
smoking exposure, and effects of environmental tobacco smoke (ETS).

Methods We meta-analysed data from up to 15,014 adults across 5 cohorts with DNA methylation measured in blood
using Illumina’s EPIC array for current smoking (2560 exposed), quit < 1 year (500 exposed), in utero (286 exposed),
and ETS exposure (676 exposed). We also evaluated the interaction of current smoking with sex or diet (fibre, folate,
and vitamin C).

Findings Using false discovery rate (FDR < 0.05), 65,857 CpGs were differentially methylated in relation to current
smoking, 4025 with recent quitting, 594 with in utero exposure, and 6 with ETS. Most current smoking CpGs
attenuated within a year of quitting. CpGs related to in utero exposure in adults were enriched for those previously
observed in newborns. Differential methylation by current smoking at 4–71 CpGs may be modified by sex or dietary
intake. Nearly half (35–50%) of differentially methylated CpGs on the 450 K array were associated with blood gene
expression. Current smoking and in utero smoking CpGs implicated 3049 and 1067 druggable targets, including
chemotherapy drugs.
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InterpretationMany smoking-related methylation sites were identified with Illumina’s EPIC array. Most signals revert
to levels observed in never smokers within a year of cessation. Many in utero smoking CpGs persist into adulthood.
Smoking-related druggable targets may provide insights into cancer treatment response and shared mechanisms
across smoking-related diseases.
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Research in context

Evidence before this study
While it is well established that smoking leads to changes
in DNA methylation at specific CpG sites, several important
research gaps that remain. First, it is unknown how recent
quitting (quit less than 1 year) may impact DNA
methylation. Second, there are few data examining
whether smoking effects on DNA methylation may differ
by sex and certain dietary intakes. Third, while there is
evidence that changes in DNA methylation from in utero
smoking exposure can persist to adolescence, no studies
have examined whether these methylation signatures can
be observed in adults. Fourth, exposure to environmental
tobacco smoke (ETS) can lead to adverse health outcomes,
but it is not well studied whether ETS alters DNA
methylation at specific CpG sites.

Added value of this study
This large genome-wide methylation meta-analysis addresses
these four major research gaps. We identified several
thousand CpGs that smoking may impact that had not been

previously reported. We also provide evidence that quit
smoking less than a year ago can reverse the effects of
smoking on DNA methylation. Smoking-related methylation
at some CpG sites may differ by sex or dietary factors, though
the small number of findings suggest that healthy dietary
intakes may exert minimal protection against the epigenetic
effects of smoking. We found evidence that exposure to in
utero smoking alters DNA methylation with persistence into
adulthood.

Implications of all the available evidence
The results from our study contribute to improving our
understanding of the health effects of smoking and can be
used in the future to create more robust biomarkers of
smoking and in utero smoking exposure in adults. Pathway
analyses across smoking exposures provide insights into
smoking-related health outcomes that persist after quitting.
Drug targets of implicated genes provide insights into
treatment response and how smoking-related health
outcomes are correlated.
Introduction
Smoking causes adverse health outcomes throughout
life.1 Alterations in DNA methylation could contribute to
smoking-related disease mechanisms. In a large meta-
analysis of adults, current smoking was associated
with widespread differential methylation in blood using
the Illumina 450 K methylation array.2 The Illumina 450
K array has been superseded by the more comprehen-
sive EPIC array (∼850 K CpGs, ∼3% of all CpG sites in
the human genome), which was designed to improve
coverage of functionally important sites like enhancers.
Despite smaller sample sizes, the few previous studies
examining the impacts of current smoking on DNA
methylation using this more comprehensive EPIC array
identified additional cytosine-phosphate-guanine sites
(CpGs) that were differentially methylated.3,4

Among former smokers, methylation at many, but
not all, of these smoking-related CpGs reverted to
levels observed in non-smokers.2,3,5–8 However, data
remain insufficient on how quickly signals observed
in current smokers degrade in the months following
quitting. In long-term cohort studies, former smokers
are typically defined as not smoking in the past 12
months and many formers smokers studied quit
many years ago.2,3,5,6 We are not aware of studies that
have examined smokers who quit smoking more
recently (i.e., quitting within a year of sampling).

Other aspects of smoking exposure not well stud-
ied in relation to blood DNA methylation include
whether smoking-related methylation differs by sex,
whether changes in DNA methylation from in utero
smoking exposure persist into adulthood, whether
environmental tobacco smoke (ETS) alters DNA
methylation at specific CpG sites, and whether
smoking-related methylation is modified by dietary
factors.
www.thelancet.com Vol 100 February, 2024
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Sex differences have been identified in some smok-
ing related health outcomes.9–12 Some studies of
maternal smoking during pregnancy have reported dif-
ferential methylation by infant sex,13,14 but studies
examining sex interactions for differential methylation
in adults are lacking.

Limited evidence suggests that differential methyl-
ation from in utero exposure to maternal smoking
persists into adulthood at certain CpGs,14,15 and
epigenome-wide association studies (EWAS) using the
EPIC array to examine the persistence into adulthood of
differential DNA methylation related to in utero expo-
sure to smoking are sparse. The ability to reliably detect
signals of prenatal exposure to smoking in adults that do
not reflect their own smoking history would aid the
detection of long-term effects of in utero exposure.

ETS can lead to lung cancer and cardiovascular dis-
ease in non-smokers, as well as non-malignant respira-
tory illness.16 Whether postnatal exposure to ETS leads
to differential methylation remains inconclusive. One
study examined only one CpG,17 and another did not
include a replication study.18

Evidence exists that maternal dietary factors (i.e.,
intake of folate, vitamin C) may modify newborn
methylation at some smoking CpGs in either placenta19

or blood,13,20 but whether these dietary factors modify
methylation differences related to current smoking in
adults is unknown. Studies have reported that higher
dietary fibre intake reduces adverse health outcomes
among smokers,21,22 but we are not aware of studies that
have examined whether dietary fibre may modify
methylation at smoking CpGs.

Because of the importance of replication and large
sample size for epigenome-wide association studies, we
conducted an EWAS meta-analysis of 5 cohorts
(N = 15,014) to identify blood-based differentially methyl-
ated CpGs in relation to current smoking, recency of
quitting smoking, persistence of effects of in utero smok-
ing exposure, and ETS using the EPIC array. We also
evaluated possible differences in effects of smoking on
methylation by sex. Additionally, we conducted exploratory
analyses of interactions between current smoking and
dietary intakes of fibre, folate, and vitamin C.
Methods
Study populations
We analysed data from the following studies: 1) a sub-
study of the Norwegian Mother, Father, and Child
Cohort Study (MoBa) called STudy of Assisted Repro-
ductive Technology (START), 2) the Agricultural Lung
Health Study (ALHS), 3 and 4) Generation Scotland
(GS) which included two sub-studies GS1 and GS2, and
5) the Strong Heart Study.

Details of MoBa have been described in previous
publications.23–26 Briefly, START selected 978 complete
MoBa mother-father-newborn trios who conceived
www.thelancet.com Vol 100 February, 2024
using assisted reproductive technology and 1017
randomly selected complete mother-father-newborn
trios who conceived naturally between 2000 and 2008.
Blood was collected from mothers (henceforth
“women”) and from fathers (henceforth, “men”) at
gestational week 18. This study is focused on DNA
methylation measured from whole blood and smoking
exposures reported by the parents in the MoBa baseline
questionnaire answered around gestational week 17.

The Agricultural Lung Health Study (ALHS) is a case–
control study of asthma nested within the Agricultural
Health Study (AHS) (data version P3REL201209.00)
cohort of farmers from Iowa and North Carolina and
their spouses. The ALHS enrolled 3301 participants from
the AHS between 2009 and 2013. Details of the AHS and
ALHS have been previously described.27,28 Methylation
was measured on a subset of 2391 individuals of Euro-
pean ancestry based on genotyping and available in 2286
after applying quality control procedures.

GS is a family-based study comprising approximately
24,000 individuals (>99% self-reported as white Scot-
tish) in 7000 family groups, aged 18–99 years at baseline
(2006–2011).29,30 This study includes two sub-studies
that measured DNA methylation in approximately
10,000 individuals (GS1 and GS2). GS1 comprises of
5087 related individuals. For this study, a subset of 2578
unrelated individuals was analysed. GS2 comprises of
4450 individuals unrelated to each other and unrelated
to GS1 participants.

The Strong Heart Study (henceforth “Strong Heart”)
is a study of 4549 American Indian adults recruited
from Arizona, Oklahoma, North Dakota, and South
Dakota. Strong Heart previously published epigenome-
wide analyses of current smoking using EPIC array.4

To increase power for discovery, we included their re-
sults in our meta-analysis of current smoking.

Ethics
START was approved by the Regional Committees for
Medical and Health Research Ethics (REK) South-East
(2017/1362) in Norway. The establishment of MoBa
and initial data collection were based on a license from
the Norwegian Data Protection Agency and an approval
from the Regional Committees for Medical and Health
Research Ethics. The MoBa cohort is now regulated by
the Norwegian Health Registry Act. The ALHS was
approved by the Institutional Review Board at the Na-
tional Institutes of Health (08EN136) and its contractors.
All components of GS received ethical approval from the
NHS Tayside Committee on Medical Research Ethics
(REC Reference Number: 05/S1401/89). All participants
in MoBa, ALHS, and GS provided informed consent.

Smoking assessment
In each study, participants were categorized, based on
questionnaire data, as never smokers, former smokers,
or current smokers. Information on whether former
3
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smokers quit within the past year was available in START
and GS. Information on in utero smoking exposure was
available in women in START and participants of both
sexes in the ALHS. Data on ETS were available in women
in START and participants of both sexes in ALHS and
GS. Participants were considered exposed to ETS if they
reported being exposed to passive smoke at home or
exposed for at least an hour a day on average.

DNA methylation pre-processing, quality control,
and cell type proportion estimation
DNA methylation was measured in blood using Illu-
mina’s EPIC array. Each cohort applied study-specific
quality control procedures and normalization on their
methylation data. Details of the pre-processing and
quality control of the methylation data have previously
been described5,31,32 and are available in Additional File
S1: Methods. Briefly, studies corrected for batch ef-
fects by either using random effects modeling, Com-
Bat33 or adjusting for processing batch in the model. To
reduce the impact of extreme outliers in the methylation
data, all studies, except Strong Heart, replaced extreme
outliers with winsorized values (winsorize.pct = 0.005).34

CpGs on the sex chromosomes were excluded. Six cell
type proportions (monocyte, CD4T, CD8T, B cell, NK,
and neutrophil) were estimated using the Houseman
method with a reference panel.35–37

Cohort-specific analyses
Epigenome-wide analyses were conducted with current
smoking (versus never smoked) as the exposure and
DNAmethylation as the outcome, using linear regression
with robust sandwich estimators. The two datasets from
GS were analysed separately. START used a mixed linear
regression (“nlme” package in R) to account for batch
effects. Assumptions for linear regression were met.

Models were adjusted for age at enrolment, body
mass index, sex, estimated cell type proportions
(monocyte, CD4T, CD8T, B cell, NK, and neutrophil),
and study-specific covariates (e.g., processing batch,
phenotype for which recruitment was selected on (i.e.,
case/control status), highest level of completed educa-
tion, state of residence at enrolment). To explore
whether current smoking signals differ by sex, we
repeated the analyses including an interaction product
term for current smoking and sex. Analyses of differ-
ential methylation in relation to in utero smoking expo-
sure (yes versus no) and ETS (yes versus no) were
restricted to never smokers (Fig. 1).

Meta-analysis and additional filtering
For current smoking, we meta-analysed 863,435 CpGs
from START, ALHS, GS, and Strong Heart. The recent
quitting meta-analysis included 862,776 CpGs from
START and GS. The in utero smoking exposure meta-
analysis included 836,401 CpGs from START and
ALHS. The remaining meta-analyses (ETS and current
smoking × sex interaction) included 863,046 CpGs from
START, ALHS, and GS. Meta-analyses were conducted
using fixed-effects with inverse-variance weighting in
METAL.38,39

After meta-analysis, we removed 66,353 probes pre-
viously reported to be potentially problematic (i.e., “ch”
probes, probes with a SNP in the extension base that can
cause color channel switch, probes with extension base
inconsistencies, and cross-reactive probes).40 The removal
of potentially problematic probes at this stage does not
affect the cohort-specific quality control procedures that
were applied. We also excluded CpGs available only in
one study. Significance was assessed using both a family-
wise error rate (FWER) (p < 9 × 10−8) and Benjamini-
Hochberg false discovery rate (FDR<0.05),41 applying a
similar approach recommended for genome-wide asso-
ciation studies.42 We visualized meta-analysed results
using Miami plots43 and study-specific results using for-
est plots.

Smoking and diet interaction
Dietary information was available only for START
women who completed a validated food frequency
questionnaire administered in mid-pregnancy.44 Explor-
atory analyses were conducted to examine whether intake
of dietary fibre, total dietary folate (from food and sup-
plements), or vitamin C may modify the effects of
smoking on DNA methylation (Fig. 1). Our focus on
these three dietary factors was based on previous findings
in the literature (i.e., folate and vitamin C modifying
prenatal smoking exposure on infant DNA methyl-
ation13,20 and dietary fibre reducing adverse effects of
smoking21,22). We excluded 35 women with estimated
improbable total energy intake (KJ < 4500 or
KJ > 20,000).45 In these analyses, we included smoking,
the dietary intake, and the interaction of smoking and
dietary intake and adjusted for the same covariates as
previously stated, in addition to total energy. Blood draw
occurred around the 18th week of gestation for all
women, therefore we did not adjust for week of gestation.
Because these analyses have not been conducted before,
we modelled the dietary factors both continuously on the
log-scale to increase power and dichotomized for clinical
relevance using Institute of Medicine guidelines for
pregnant women46: fibre ≥28 g/day and total dietary
folate equivalent (DFE) ≥600 DFE/day. For vitamin C,
most women consumed more than the recommended
daily intake of 85 mg/day,46 so the median (≥182 mg/day)
was used. We considered that there was evidence sup-
porting interaction if the p-value of the interaction was
smaller than the corrected p-value using FDR < 0.05.41

Pathway analyses
CpGs were annotated to genes using Illumina’s mani-
fest. Pathway analyses were conducted using the
“methylGSA” package in R, which accounts for probe
number bias.
www.thelancet.com Vol 100 February, 2024
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Fig. 1: Schematic of analyses and results. Depicts the analyses conducted, the studies that contributed to each analysis, the results, and
downstream analyses that were conducted.
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Enrichment of genomic features
We used eFORGE v2.0 to identify tissue- and cell type-
specific enrichment for DNase I hotspots, 15 chromatin
states, and five histone marks.47–49 Features were
compared to their distribution across the EPIC array (i.e.,
background”). eFORGE utilizes data from NIH Roadmap
Epigenomics Mapping Consortium, which is the most
comprehensive source available and measured histone
marks across different tissues. The top 1000 differentially
methylated CpGs (default maximum) were inputted.
Transcription factor motif enrichment analyses were
performed using AME, a component of the MEME Suite
5.0.550 using the HOCOMOCOv11 database.51

Expression quantitative trait methylation (eQTM)
We examined whether methylation at CpGs related to
smoking exposures in this study correlated with gene
expression. Because there are no large studies with
methylation data from the EPIC array and gene expres-
sion data, we ran analyses for our FDR significant CpGs
that overlapped in the 450 K array in 3075 individuals of
European ancestry in the Biobank-based integrative
omics study (BIOS) consortium.52 DNA methylation and
gene expression were measured in blood. Cis-eQTM
analyses were conducted for gene expression transcripts
within ±250 kb of each CpG site using linear regression.

Smoking-related druggable targets
Genes annotated to significant CpGs were linked to
Uniprot IDs to search for approved or experimental (i.e.,
Phase 3 or 4) druggable targets in the ChEMBL database.53
www.thelancet.com Vol 100 February, 2024
Role of funders
The funders did not have any role in study design, data
collection, data analyses, interpretation, or writing of
report.
Results
There were 15,014 participants with eligible data:
3513 in START, 2286 in the ALHS, 6890 in GS (2501
in GS1 and 4389 in GS2), and 2325 in Strong Heart.
Median ages ranged from 32.7 years in START to
62 in ALHS (Table 1). Median age was not available
for Strong Heart, but 71% of participants were at least
50 years old.4 The proportion of current smokers
ranged from 4% in ALHS to 38% reported for Strong
Heart where 29% were never smokers.4 Additional
characteristics of START, ALHS, and GS can be found
in Table 1.

Meta-analysis of current smoking and DNA
methylation
Meta-analysing results from START, ALHS, GS, and
Strong Heart, we compared 2560 current smokers to
8521 never smokers. There were 12,691 CpGs signifi-
cant at FWER (p < 9 × 10−8) and 65,857 CpGs significant
at FDR < 0.05 (Figs. 1 and 2A, Additional File 2:
Supplementary Table S1). The 12,691 FWER significant
CpGs implicated 4673 unique genes; current smoking
was associated with lower methylation at 7045 (55.5%)
CpGs compared to never smokers (median absolute
difference of 0.005 between smokers and nonsmokers,
IQR: 0.004–0.008). Of the FWER significant CpGs,
5
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START (n = 3513) ALHS (n = 2286) GS1 (n = 2501) GS2 (4389)

N (%) N (%) N (%) N (%)

Adult smoking

Current smoker 429 (12.2) 96 (4.2) 456 (18.2) 686 (15.6)

Quit smoking 319 (9.1) 667 (29.2) 780 (31.2) 1419 (32.3)

Quit < 1 year 319 (9.1) – 66 (2.6) 115 (2.6)

Quit ≥ 1 year – 667 (29.2) 714 (28.5) 1304 (29.7)

Never smoked 2765 (78.7) 1523 (66.6) 1265 (50.6) 2284 (52.0)

In Utero smoking exposurea

Yes 174 112 – –

No 641 1341 – –

ETS exposurea

Yes 242 267 65 102

No 1120 1255 1087 1981

Fibre

≥28 g/day 1920 (54.7) – – –

<28 g/day 1412 (40.2) – – –

Missing 181 (5.2)

Folate

≥600 DFE/day 1741 (49.6) – – –

<600 DFE/day 1553 (44.2) – – –

Missing 219 (6.2)

Vitamin C

≥182 g/day 1655 (47.1)

<182 g/day 1639 (46.7)

Missing 219 (6.2)

Selection factorb

Yes 1656 (47.1) 944 (41.3) – –

No 1857 (52.9) 1342 (58.7) – –

Sex

Male 1862 (53.0) 1173 (51.3) 960 (38.4) 1924 (43.8)

Female 1651 (47.0) 1113 (48.7) 1541 (61.6) 2465 (56.2)

Education

Less than high school 254 (7.2) – 175 (8.0) 265 (6.8)

High school 1050 (29.9) – 289 (13.1) 517 (13.3)

Some college 1221 (34.8) – 421 (19.1) 770 (19.8)

College and higher 844 (24) – 738 (33.6) 1369 (35.1)

Other 144 (4.1) – 576 (26.2) 974 (25.0)

Missing – – 302 494

State

Iowa – 1634 (71.5) – –

North Carolina – 652 (28.5) – –

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Age 32.7 (29.5–36.1) 62 (54–71) 52.3 (43.1–58.3) 52.9 (42.9–61.3)

Body mass index (kg/m2) 24.8 (22.6–27.4) 29.4 (26.0–33.6) 26.4 (23.5–30.0) 26.0 (23.3–29.3)

Cell type

Monocyte 0.07 (0.05–0.08) 0.08 (0.06–0.10) 0.09 (0.08–0.11) 0.09 (0.08–0.11)

CD4T 0.15 (0.11–0.20) 0.16 (0.12–0.21) 0.15 (0.12–0.18) 0.15 (0.12–0.19)

CD8T 0.10 (0.07–0.13) 0.06 (0.03–0.10) 0.01 (0–0.04) 0.03 (0.01–0.06)

B cell 0.05 (0.04–0.07) 0.05 (0.03–0.07) 0.05 (0.04–0.06) 0.04 (0.03–0.06)

NK 0.06 (0.04–0.08) 0.06 (0.03–0.09) 0.08 (0.06–0.10) 0.08 (0.06–0.10)

Neutrophil 0.60 (0.49–0.71) 0.58 (0.50–0.65) 0.61 (0.56–0.65) 0.59 (0.54–0.63)

#CpGs before filtering 770,577 817,235 860,926 773,845

aRestricted to individuals who identified as never smokers. START in utero smoking exposure also restricted to women. bSTART’s selection factor is assisted reproductive
technology status; ALHS’s selection factor is asthma status.

Table 1: Characteristics of the study population in START, ALHS, and GS.
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Fig. 2: Miami plot of meta-analysed results for A) current smoking (2560 exposed vs 8521 unexposed) and B) in utero smoking exposure
(286 exposed vs 1982 unexposed). In each Miami plot, the top portion of the graph shows the −log10 p-value of all CpGs with a positive effect
estimate. The bottom portion of the graph shows the −log10 p-value of all CpGs with an inverse effect estimate. The top five CpGs with higher
(top) or lower (bottom) differential methylation are annotated. Blue horizontal line is the FWER threshold (p = 9E-08) and the dashed line is the
FDR threshold.
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5394 overlapped with CpGs on the 450 K, implicating
2557 unique genes; the remaining 7297 CpGs (57.5%)
were unique to the EPIC array, implicating an additional
www.thelancet.com Vol 100 February, 2024
2115 genes. Compared to the largest meta-analysed
EWAS of current smoking using the 450 K (2433 cur-
rent smokers)2 and a smaller meta-analysis using the
7
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CpG Chr Position Beta SE p FDR Directionb Gene name

cg14391737 11 86,513,429 −0.062 0.0016 <1.14E-305 <7.39E-301 −−−−− PRSS23

cg17739917 17 38,477,572 −0.067 0.0012 <1.14E-305 <7.39E-301 −−−−− RARA

cg00475490 11 86,517,110 −0.025 0.0007 1.14E-305 7.39E-301 −−−−− PRSS23

cg21911711 19 16,998,668 −0.034 0.0009 1.24E-298 7.42E-293 −−−−− F2RL3

cg18110140 15 75,350,380 −0.049 0.0013 2.07E-293 1.46E-293 −−−−−

cg02738868 14 74,221,164 −0.014 0.0004 4.94E-264 2.40E-259 −−−−− ELMSAN1

cg00045592 1 160,714,299 −0.036 0.001 4.32E-257 1.98E-252 −−−−− SLAMF7

cg05086879 22 39,861,490 −0.037 0.0011 8.06E-247 3.30E-242 −−−−− MGAT3

cg09338374 22 39,888,390 0.028 0.0008 1.49E-237 5.80E-233 +++++

cg19885130 11 68,146,832 −0.044 0.0013 2.09E-234 7.75E-230 −−−−− LRP5

cg27215690 1 25,344,157 −0.023 0.0007 4.00E-222 1.42E-217 −−−−−

cg22675726 18 3,179,889 −0.041 0.0013 2.16E-212 7.01E-208 −−−−− MYOM1

cg25001882 14 78,619,077 −0.019 0.0006 1.97E-188 4.79E-184 −−−−−

cg10765427 19 17,005,225 −0.019 0.0007 9.76E-186 2.23E-181 −−−−− CPAMD8

cg24797066 20 48,407,084 −0.017 0.0006 1.66E-185 3.69E-181 −−−−−

cg17738628 15 67,155,520 −0.018 0.0006 4.28E-183 9.25E-179 −−−−−

cg25845814 14 74,224,613 −0.014 0.0005 8.16E-179 1.67E-174 −−−−− MIR4505

cg07390844 18 72,935,911 −0.029 0.001 1.97E-172 3.65E-168 −−−−− TSHZ1

cg05157376 1 92,781,750 −0.032 0.0012 1.35E-163 2.28E-159 −−−−− RPAP2

cg06421013 20 19,194,143 −0.031 0.0012 9.64E-159 1.56E-154 −−−−− SLC24A3

cg25197654 8 21,914,006 −0.016 0.0006 3.28E-154 4.82E-150 −−−−− DMTN

cg09834951 19 1,265,877 −0.017 0.0006 5.03E-153 7.12E-149 −−−−−

cg05009104 7 45,002,980 0.036 0.0014 1.47E-148 1.97E-144 +++++ MYO1G

cg05753553 17 2,689,486 0.024 0.0009 4.79E-141 6.11E-137 +++++

cg10041129 11 117,685,550 −0.012 0.0005 4.04E-140 4.99E-136 −−−−−

aTop 25 based on p-value. Model adjusted for age at enrolment, body mass index, sex, six estimated cell type proportions (monocyte, CD4T, CD8T, B cell, NK, and
neutrophil), cohort-specific selection factors, as well as education in START and state in the ALHS. The meta-analysis included 2560 current smokers who were compared to
8521 never smokers. bDirection of beta estimate in ALHS, START, GS1, GS2, and Strong Heart, respectively.

Table 2: Top 25 CpGs differentially methylated in relation to current smoking unique to EPIC array.a
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EPIC array (269 current smokers),3 our meta-analysis
identified 1405 smoking-related genes not previously
reported. The top 25 CpGs unique to the EPIC array are
presented in Table 2. In keeping with the large number
of expected findings, the genomic inflation factor (ʎ)
was 1.87 (Additional File 1: Supplementary Fig. S1),
which is within range of previous epigenome-wide as-
sociation studies of smoking.54,55

Because smoking might have different effects in
pregnant women, we compared the epigenome-wide
association analyses restricted to START women to the
overall meta-analysis. In the START women, 2024 CpGs
had an FDR < 0.05 in EWAS of current smoking, of
which 81% had the same direction of effect and FDR <
0.05 in the overall meta-analysis.

Meta-analysis of current smoking by sex
interaction in relation to DNA methylation
Meta-analysis of the smoking × sex interaction term
identified 15 autosomal CpGs with FDR < 0.05 (Fig. 1;
Table 3; Additional File S3). Ten of these CpGs were
also identified in the current smoking meta-analysis
without the interaction term. There was no evidence
of genomic inflation (λ = 0.97, Additional File 1:
Supplementary Fig. S2).
Meta-analysis of recently quitting smoking and
DNA methylation
Meta-analysis of results for 500 individuals who quit
smoking less than 12 months prior to methylation
measurement compared to 6331 never smokers identi-
fied 671 CpGs significant at FWER (p < 9 × 10−8) and
4025 at FDR < 0.05 (Fig. 1; Additional File 1:
Supplementary Figs. S3 and S4; Additional File 2:
Supplementary Table S2). The 4025 CpGs annotated to
1918 genes, of which 1790 (93.3%) genes overlapped
with the genes implicated with current smoking. The
genomic inflation factor was 1.35.

Of the 12,691 CpGs FWER significant in the current
smoking meta-analysis, 12,673 were available in the
meta-analysis of quit smoking within a year (Additional
File 2: Supplementary Table S3), and 1191 (9.4%) met
significance at look-up replication level (p < 3.95 × 10−6

[0.05/12,673]), including 661 (5.2%) meeting FWER
significance. Furthermore, 7283 CpGs (57.4%) repli-
cated at a nominal level of p < 0.05 and same direction
of association (penrichment < 1 × 10−323). Among these
7283 CpGs, the effect estimates in 75% of these probes
attenuated by a median of 25.6% (IQR: 14.6%–37.6%) in
those who quit within a year compared to current
smokers (Additional File 2: Supplementary Table S3).
www.thelancet.com Vol 100 February, 2024
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CpG Chr Position Betab SE p FDR Directionc Gene name In 450 K array

cg23256579 12 11,002,403 −0.028 0.0033 1.16E-17 8.98E-12 −−−− PRR4 Yes

cg08035323 2 9,843,525 −0.019 0.0028 1.32E-11 5.12E-06 −−−− Yes

cg27615582 12 11,002,411 −0.012 0.0019 9.12E-11 2.36E-05 −−−− PRR4 Yes

cg24035363 17 34,906,848 −0.011 0.0019 5.09E-09 0.0008 −−−− GGNBP2

cg04513422 13 111,522,314 −0.016 0.0027 5.18E-09 0.0008 +−−− C13orf29 Yes

cg09932507 17 47,643,410 −0.012 0.0021 1.07E-08 0.0012 −−−− LOC100288866

cg01212120 7 123,397,715 −0.005 0.0009 1.17E-08 0.0012 −−−−

cg18842174 6 147,996,557 −0.021 0.0036 1.20E-08 0.0012 −−−−

cg09653610 20 46,631,362 −0.007 0.0012 3.96E-08 0.0032 −−−−

cg16032841 13 111,522,222 −0.014 0.0026 4.18E-08 0.0032 +−−− C13orf29 Yes

cg11603447 3 150,446,034 −0.008 0.0014 4.59E-08 0.0032 −−−−

cg25057461 10 130,507,759 0.004 0.0008 1.89E-07 0.0112 ++++ Yes

cg26582982 3 194,742,712 0.002 0.0005 2.00E-07 0.0112 ++−−

cg03482123 16 54,964,029 −0.001 0.0002 2.03E-07 0.0112 −−+− IRX5 Yes

cg18560003 1 108,577,346 0.002 0.0003 5.53E-07 0.0286 ++−+

aModel included current smoking, current smoking × sex, age at enrolment, body mass index, sex, six estimated cell type proportions (monocyte, CD4T, CD8T, B cell, NK,
and neutrophil), cohort-specific selection factors, as well as education in START and state in the ALHS. Meta-analysis of 764 female smokers, 903 male smokers, 4378
females never smokers, and 3449 male never smokers. bCurrent smoking was coded yes = 1, no = 0, and sex was coded female = 1, male = 0. The beta reflects the effect
estimate for female smokers compared to non-smokers and male smokers. cDirection of beta estimate in ALHS, START, GS1, and GS2, respectively.

Table 3: 15 FDR significant CpGs in meta-analysis of current smoking × sex interaction term.a

Articles
Of the 1825 CpGs without attenuation, 1061 (58.1%)
were unique to the EPIC array.

Meta-analysis of in utero smoking exposure and
DNA methylation
Restricting to never smokers, we compared 286 adults
with exposure in utero to 1982 unexposed and found 108
CpGs significant at FWER (p < 9 × 10−8) and 594 at FDR
< 0.05 (Figs. 1 and 2B; Additional File 2: Supplementary
Table S4; Additional File S4). Methylation was higher in
those exposed to in utero smoking at 545 (91.8%) CpGs.
The median absolute difference was 0.015 (IQR:
0.01–0.02). There was minimal evidence of genomic
inflation (λ = 1.19, Additional File 1: Supplementary
Fig. S5). The 594 FDR CpGs annotated to 280 genes
including 42 that do not overlap with genes implicated
in our meta-analysis of current smoking, such as
NKAPL (9 CpGs), GABRG1 (5 CpGs), and HIST1H1A
(5 CpGs). The top 25 CpGs (based on p-value) unique to
the EPIC array are presented in Table 4.

Meta-analysis of environmental tobacco smoke
(ETS) and DNA methylation
Restricting to never smoking adults, we compared 509
with ETS exposure to 2375 unexposed. Six CpGs were
significant at FWER (p < 9 × 10−8) or FDR < 0.05
(λ = 1.30, Additional File 1: Supplementary Fig. S6), and
methylation was lower with exposure to ETS (Fig. 1,
Table 5, Additional File S5, Miami plot in Additional
File 1: Supplementary Fig. S7).

Interaction between current smoking and diet in
relation to DNA methylation in pregnant women
We conducted exploratory interaction analysis of current
smoking with dietary factors in 1372 START women
www.thelancet.com Vol 100 February, 2024
(Fig. 1; Additional File 2: Supplementary Table S5).
Dietary fibre was weakly correlated with dietary folate
equivalent (DFE) (rPearson = 0.25) and moderately
correlated with vitamin C (rPearson = 0.49). DFE was
moderately correlated with vitamin C (rPearson = 0.43).
For dietary fibre (g/day), 99 unique CpGs had an
interaction term with FDR < 0.05 (45 from the contin-
uous variable, λ = 1.12; 61 from the dichotomized var-
iable, λ = 1.42). The lowest number of significant
interaction terms was observed with DFE – four CpGs
with an interaction term FDR < 0.05 (4 from the
continuous variable, λ = 0.90; 0 from the dichotomized
variable, λ = 0.97). For vitamin C, 77 unique CpGs had
an interaction term FDR < 0.05 (71 from the continuous
variable, λ = 1.15; 10 from the dichotomized, λ = 1.22).

Pathway analysis
Seventy-seven pathways were enriched for current
smoking implicated genes (FDR < 0.05). Given the better
power of the current smoking analysis, many more
pathways were significantly enriched than for other
smoking exposures. Highly enriched pathways for cur-
rent smoking include MAPK signalling, pathways in
cancer, focal adhesion, regulation of actin cytoskeleton,
and chemokine signalling pathway (Additional File 2:
Supplementary Table S6). Despite the lower power of the
recent quitting analysis, hematopoietic cell lineage was
more highly enriched than for current smoking (Addi-
tional File 2: Supplementary Table S7). For in utero
smoking exposure and ETS, findings were not enriched
for any pathways at FDR < 0.05 (Additional File 2:
Supplementary Tables S8 and S9). Because the meta-
analyses contained different sample sizes and thus po-
wer, we created a heatmap using the nominal p-value for
9
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CpG Chr Position Beta SE p FDR Directionb Gene Name

cg05009104 7 45,002,980 0.0475 0.0037 2.67E-37 4.87E-32 ++ MYO1G

cg14391737 11 86,513,429 0.0327 0.0037 2.26E-18 1.65E-13 ++ PRSS23

cg02858514 18 5,488,972 0.0237 0.0028 1.54E-17 9.38E-13 ++ EPB41L3

cg05640346 7 148,038,174 0.0192 0.0024 2.98E-15 1.67E-10 ++ CNTNAP2

cg18110140 15 75,350,380 −0.0282 0.0039 9.12E-13 3.17E-08 −

cg18979916 6 28,226,941 0.0341 0.005 8.60E-12 2.32E-07 ++ ZKSCAN4

cg14630801 10 14,372,155 0.0277 0.0042 6.14E-11 1.54E-06 ++ FRMD4A

cg04198471 2 38,325,317 0.0326 0.005 7.97E-11 1.88E-06 ++

cg13997680 6 28,226,980 0.0284 0.0044 1.13E-10 2.50E-06 ++ ZKSCAN4

cg21189356 19 30,864,709 0.0502 0.0082 7.54E-10 1.28E-05 ++ ZNF536

cg18163683 2 38,324,984 0.0122 0.002 1.48E-09 2.35E-05 ++

cg13480228 5 16,807,017 0.0243 0.0041 2.77E-09 4.21E-05 ++ MYO10

cg26974661 21 36,258,596 0.0606 0.0103 4.21E-09 6.03E-05 ++ RUNX1

cg04340894 16 31,500,246 0.0189 0.0032 5.21E-09 7.03E-05 ++ SLC5A2

cg17673841 7 45,001,924 0.0066 0.0012 1.21E-08 0.000145 ++

cg17538881 10 14,372,108 0.0054 9.00E-04 1.28E-08 0.000151 ++ FRMD4A

cg12305845 8 36,957,694 0.0196 0.0035 1.38E-08 0.000157 ++

cg25660691 10 81,967,281 0.0264 0.0047 1.48E-08 0.000163 ++ LINC00857

cg10037994 18 32,556,108 0.0124 0.0022 2.47E-08 0.00025 ++ MAPRE2

cg26486466 5 150,284,616 0.0126 0.0023 2.65E-08 0.000264 ++ ZNF300

cg08063306 9 35,406,604 0.0211 0.0038 3.61E-08 0.000329 ++ ATP8B5P

cg26842454 1 120,439,125 0.0197 0.0036 4.25E-08 0.000369 ++ ADAM30

cg24432832 5 24,645,212 0.0089 0.0016 5.52E-08 0.000458 ++ CDH10

cg18630503 8 93,031,570 0.0158 0.0029 5.84E-08 0.000471 ++ RUNX1T1

cg00881696 2 43,328,003 0.0222 0.0041 6.02E-08 0.000477 ++

aTop 25 based on p-value. Model adjusted for age at enrolment, BMI, sex, six estimated cell type proportions (monocyte, CD4T, CD8T, B cell, NK, and neutrophil), cohort-
specific selection factors, as well as education in START and state in the ALHS. Meta-analysis of the 2268 never smokers included 286 exposed in utero and 1982 unexposed.
bDirection of beta estimates in START and ALHS, respectively.

Table 4: Top 25 CpGs differentially methylated in relation to in utero smoke exposure among never smokers unique to EPIC array.a
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comparison (Fig. 3). Most of the pathways with a
nominal p < 0.05 for in utero smoking and ETS expo-
sures were enriched in current smoking.

In pathway analyses for the dietary interaction
models (Additional File 1: Supplementary Fig. S8), di-
etary fibre results were enriched for 37 pathways when
modelled continuously and 17 when modelled dichoto-
mously. The results for DFE were enriched for 25 and
16 pathways for the continuous and dichotomous
models, respectively. For vitamin C, 16 pathways were
enriched based on results from the continuous model
and 12 pathways enriched in the dichotomized model.
CpG Chr Position Beta SE p

cg26697320 7 26,437,681 −0.0065 0.0011 2.88

cg20562586 2 182,269,967 −0.002 0.0004 1.01

cg27647038 13 78,520,478 −0.0016 0.0003 1.16

cg06987255 3 142,935,287 −0.0012 0.0002 2.03

cg17669497 10 89,945,974 −0.002 0.0004 3.50

cg01678383 3 187,903,164 −0.0012 0.0002 3.67

aAnalyses restricted to participants who never smoked. Model adjusted for age at enrolm
NK, and neutrophil), cohort-specific selection factors, as well as education in START and
ETS compared to 2375 not exposed. bDirection of beta estimate in ALHS, START, GS1

Table 5: Six FDR significant CpGs associated with environmental tobacco sm
Enrichment of genomic features
No enrichment analyses were conducted for ETS and
smoking × diet interactions due to ≤100 FDR signifi-
cant CpGs. Because the epigenome-wide results for
recent quitting were largely similar to current smoking
but attenuated, we focused on the findings with current
smoking. For current smoking (Additional File 6:
Supplementary Fig. A), eFORGE identified enrichment
for DNase I hotspots in blood, including hematopoietic
progenitor cells. Examination of the 15 chromatin
states showed significant enrichment for enhancers
and transcription start sites in blood (Additional File 6:
FDR Directionb Gene name In 450 K array

E-09 0.0022 − Yes

E-07 0.0301 −−−+ Yes

E-07 0.0301 −−+− EDNRB

E-07 0.0394 −

E-07 0.0475 − Yes

E-07 0.0475 − LPP Yes

ent, BMI, sex, six estimated cell type proportions (monocyte, CD4T, CD8T, B cell,
state in the ALHS. Meta-analysis of 2884 never smokers included 509 exposed to
, and GS2, respectively.

oke exposure, among never smokers.a
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Fig. 3: Heatmap of enriched pathways for implicated genes from current smoking, recent quitting, in utero smoking exposure, and
environmental tobacco smoke exposure models. Column indicates the smoking model. Rows are the specific pathways. Darker shade of red
means more significant enrichment.

Articles
Supplementary Fig. B). In embryonic stem cells and
induced pluripotent stem cells, eFORGE identified
enrichment for enhancers but not transcription start
sites. The top 1000 current smoking CpGs were also
enriched in blood histone marks H3K4me1 (enhancer-
associated) and H3K4me3 (promoter-associated).
H3K4me1 but not H3K4me3 was also enriched in
embryonic stem cells and induced pluripotent stem
cells (Additional File 6: Supplementary Fig. C). Across
DNase I hotspots, chromatin states, and histone marks,
the most significant enrichments were observed in
hematopoietic progenitor cells.

For in utero smoking exposure, eFORGE identified
enrichment for DNase I hotspots in several tissues,
including embryonic stem cell and induced pluripotent
stem cells, but not blood (Additional File 7:
Supplementary Fig. A). There was also enrichment for
several tissue-specific chromatin states, including
flanking active transcription start site in embryonic
stem cells, mesenchymal cells, and epithelial cells
(Additional File 7: Supplementary Fig. B). With histone
marks, we identified enrichment for H3K27me3,
H3K4me1, and H3K4me3 in embryonic stem cells,
foetal lung, and induced pluripotent stem cells (Addi-
tional File 7: Supplementary Fig. C). Generally,
H3K27me3 and H3K4me1 were enriched in blood but
not H3K4me3.
www.thelancet.com Vol 100 February, 2024
Because there was enrichment of transcription factor
binding sites for current smoking, recent quitting, and
in utero exposure, we used the HOCOMOCOv11 data-
base to identify enriched transcription factor motifs. For
current smoking and recent quitting, many of the top
motifs implicated the Erythroblast Transformation
Specific (e.g., ETV6, ETV4, ETV7) and RUNX (e.g.,
RUNX1, RUNX3) family of transcription factors (Addi-
tional File 2: Supplementary Table S10). The FDR sig-
nificant CpGs with in utero exposure were enriched for
transcription factor motifs associated with TFDP1 and
the E2F family (e.g., E2F4, E2F1) (Additional File 2:
Supplementary Table S11).

Expression quantitative trait methylation (eQTM)
We conducted cis-eQTM analyses in the BIOS con-
sortium for CpGs that overlapped with the 450 K array
and thus are available in BIOS (Additional File 2,
Supplementary Table S12). For current smoking, of the
30,894 overlapping CpGs, 14,667 (47%) were associated
with nearby gene expression (Additional File 2,
Supplementary Table S13). Of the 1657 CpGs from the
recent quitting model available in BIOS, 46% were
associated with nearby gene expression (Additional File
2, Supplementary Table S14). From the current smok-
ing with sex interaction model, seven CpGs overlapped
in BIOS and three were significant cis-eQTMs
11
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(Additional File 2, Supplementary Table S15). For in
utero smoking exposure, 140 (35%) of the 399 CpGs
available in BIOS were associated with nearby gene
expression (Additional File 2, Supplementary
Table S16). Two of the four CpGs associated with ETS
were associated with nearby gene expression (Additional
File 2, Supplementary Table S17).

Smoking-related druggable targets
Current smoking FDR significant CpGs implicated 3049
unique drug compounds (Additional File 2,
Supplementary Table S18). The most common drug
compounds were imatinib and dasatinib, chemothera-
peutic agents used to treat leukaemia. CpGs associated
with in utero smoking exposure implicated 1067 unique
drug compounds (Additional File 2, Supplementary
Table S19). Again, the most frequent drug compounds
were used to treat cancers (i.e., sorafenib, palbociclib).
Discussion
We conducted a large epigenome-wide meta-analysis of
smoking using the EPIC array. We identified several
thousand CpGs related to current smoking in adults,
implicating an additional 1405 genes from CpGs unique
to the EPIC array. Although the question of whether
smoking-related differential methylation differs by sex
has been raised in the literature, we found limited evi-
dence for sex interaction. While methylation at most
smoking CpGs reverted to levels observed in non-
smokers within less than one year after cessation, 25%
of CpGs did not attenuate within one year. We identified
in utero smoking CpGs that appear to persist into
adulthood. We also found differential methylation
related to ETS. We provide some preliminary evidence
that dietary factors modify methylation at some
smoking-related CpGs in pregnant women.

Smoking has been associated with a large number of
differentially methylated CpGs across the genome.2

Joehanes et al. reported 18,760 FDR significant CpGs,2

of which 16,602 were available in our study and 9176
(48.9%) were FDR significant and had the same direc-
tion of association in our similarly powered meta-
analysis. Replication was higher at the gene level.
Applying the annotation used in our meta-analysis to
the Joehanes et al. results,2 the 18,760 CpGs annotated
to 8690 unique genes and 7580 (87%) overlapped with
the genes implicated in our meta-analysis (Additional
File 2, Supplementary Table S20). Using the more
comprehensive EPIC array, we identified 34,933 differ-
entially methylated CpGs unique to the array. Some of
these CpGs implicated genes not previously identified,
including FILIP1L (10 CpGs) and PLA2G6 (3 CpGs). In
human lung tissue, smoking has been demonstrated to
downregulate FILIP1L, which can drive lung adenocar-
cinoma.56 In our epigenome-wide analysis, we observed
that smoking was associated with lower DNA
methylation in FILIP1L (cg15554421). Based on our
eQTM results, lower DNA methylation at cg15554421
increases gene expression in blood. Another study
measuring DNA methylation in lung tissue reported
that smoking pack-years was associated with differential
DNA methylation at five CpGs.57 We looked up their
CpGs in our study, including one that annotated to
PLA2G6,57 but none were significant. The lack of repli-
cation between smoking CpGs in lung tissue and our
blood-based findings highlights the importance of
tissue-specificity in epigenetic studies.58

There is epidemiological evidence that sex or dietary
factors modify the effect of smoking on lung function,
COPD, and coronary artery disease.9–12 We provide
preliminary evidence of smoking CpGs that might be
modified by sex or diet, which may provide mechanistic
insights for future studies. However, given the relatively
few significant sex interactions (15 CpGs) and lack of
replication between results for dietary factors modelled
continuously versus dichotomously, mechanisms other
than DNA methylation may better explain the modified
effects. Of the 15 CpGs identified in our current
smoking by sex interaction model, the top three CpGs
(cg23256579 [PRR4], cg08035323, and cg27615582
[PRR4]) have been previously reported to be differen-
tially methylated by sex59,60 and were associated with
gene expression in our eQTM analyses. Sex differences
in DNA methylation at cg23256579 and cg27615582
may be driven by testosterone.61 A role of PRR4
in smoking-related disease is unclear. Further research
is needed to validate our findings in mechanistic
studies.

As previously reported, differentially methylated
CpGs related to smoking attenuate with increasing
length of cessation.2,5,62 Focusing on recent quitting,
most smoking-related CpGs attenuate within a year of
cessation. In downstream analyses, results with recent
quitting were less enriched for most pathways,
including pathways in cancer and non-small cell lung
cancer, than current smoking. Pathway analysis also
suggests that smoking might have lingering effects on
hematopoietic stem cell differentiation, as CpGs iden-
tified with quitting within a year were more enriched for
genes involved in hematopoietic cell lineage than those
with current smoking. Because the EPIC array contains
almost double the number of probes as the 450 K array,
our findings implicated genes that were not identified in
Joehanes et al. smoking meta-analysis,2 including
ADGRG1. In mice, knockout of ADGRG1 partially al-
ters hematopoietic cell development and differentiation,
biasing cells towards myeloid.63 In GWAS, a SNP
annotating to ADGRG1 has been reported to be asso-
ciated with red blood cell count.64 Despite quitting, those
who have ever smoked are at an increased risk of
developing haematological malignancies65,66 and persis-
tence of signals could be related to activation of cells in
bone marrow by smoking.67
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Our findings with in utero smoking contribute to the
literature that epigenetic effects of in utero smoking
exposure might persist into adulthood.14,15 An earlier
meta-analysis in PACE examined the 6074 CpGs
differentially methylated in newborns in relation to
maternal prenatal smoking54 and reported that 69 CpGs
were significant (p < 1 × 10−7) in adults. Of the 67 of
these 69 CpGs available in our study, 48 were FDR
significant. The 399 FDR significant CpGs from our
meta-analysis of in utero exposure that are present on the
450 K array were highly enriched for those previously
identified in newborns for maternal sustained smoking
during pregnancy (180 CpGs (45%), penrichment =
2.46 × 10−219) (Additional File 2, Supplementary
Table S21).54 These findings further reinforce the
importance of reducing in utero smoking exposure.

For ETS, our study (500 exposed) identified six CpGs
differentially methylated. We are only aware of one other
EWAS of ETS in adults (120 exposed) which reported 7
CpGs at p < 1 × 10−5.18 Of the six CpGs identified in our
study, cg26697320 replicated in the previous study
(β = −0.008, p = 0.01)18 and was also associated with gene
expression in our eQTM analyses (Additional File 2,
Supplementary Table S15). Five of the 7 CpGs identified
in the previous study were available in our meta-analysis
only cg26874015 had a p < 0.05 in our meta-analysis and
same direction of association (Additional File 2,
Supplementary Table S22). These two studies highlight
the relative paucity of differential methylation identified
for this much weaker exposure compared to active
smoking. Most likely, detection of reliable signals for
differential methylation by ETS exposure would require
much larger sample sizes and objective exposure
assessment, like high sensitivity cotinine measurements
or environmental nicotine monitors.

For current smoking, recent quitting, and in utero
smoking exposure, the FDR significant CpGs were
significantly enriched for enhancers, highlighting that
the EPIC array contains functionally significant differ-
ential methylation over and above its predecessors.
Comparison of functional enrichments across the
different smoking exposures examined is hampered by
the greater power and thus larger number of differen-
tially methylated CpGs in the current smoking analyses.
However, notably, the in utero smoking CpGs were
enriched for DNase I hypersensitive sites in foetal brain,
embryonic stem cells, and induced pluripotent stem
cells but not hematopoietic progenitor cells. Conversely,
the current smoking CpGs were enriched for DNase I
hypersensitive sites in hematopoietic progenitor cells
and mesenchymal stem cells but not induced pluripo-
tent stem cells. The CpGs related to in utero smoking
exposure were enriched for the E2F and TFDP1 family
transcription factor motifs and were not enriched in the
CpGs related to current smoking. Together, there is
evidence that current and in utero smoking have both
overlapping and different functional impacts.
www.thelancet.com Vol 100 February, 2024
Identification of genes differentially methylated by
smoking can shed light on mechanisms underlying the
myriad of health effects from smoking, with potential
implications for treatment. Impaired pulmonary func-
tion and thus chronic obstructive pulmonary disease
(COPD) was one of the earliest recognized conse-
quences of smoking. Diabetes has been causally linked
to smoking68 and also correlates with lower lung func-
tion,69 but mechanisms underlying these relationships
are unknown. Using GTEx,70 we examined which of our
smoking associated CpGs are significantly related to
gene expression (eQTMs) in lung and then investigated
drug targets. Two genes are targets of drugs approved
for treatment of hyperglycemia: alpha glucosidase
(GAA), targeted by miglitol, and SLC5A2 (aka SGLT2),
targeted by dapagliflozin. This suggests shared causal
pathways in the deleterious impacts of smoking on both
glucose control and lung function and the potential role
for these medications in low lung function.

Imatinib and dasatinib are chemotherapy drugs to
treat patients with chronic myeloid leukaemia (CML).
While smoking is not an established risk factor of CML,
there is evidence that CML patients who smoke have
higher mortality than those who do not smoke.71 The
implicated current smoking genes that overlap with the
genes that imatinib and dasatinib target may provide
mechanistic insights into why smokers with CML have
poorer treatment outcomes.

We used the EWAS Toolkit72 to evaluate overlap of
our top 1000 current smoking CpGs with epigenome-
wide results of traits in the EWAS Atlas.73 We found
enrichment for 73 health conditions and traits,
including mortality, lung cancers, lung function,
reduced birthweight and various metabolic traits
(Additional File 2, Supplementary Table S23). Whether
the extensive methylation signals for smoking mediate
the causal pathway to smoking-related disease is of great
interest, but from an epidemiological standpoint, the
current state of the field is unable to answer this ques-
tion. Because DNA methylation at smoking CpGs cap-
tures smoking exposure better than questionnaire data,
mediation analyses tend to overestimate the mediated
effect by smoking CpGs.74,75 Mechanisms underlying the
reproducible, site-specific differential methylation for
smoking remain unknown. Mechanistic studies are
needed to robustly examine the role of DNA methylation
in overlapping CpGs between smoking and disease in
relevant tissues, as have been noted in prior EWAS.76

This study has some limitations. Other than Strong
Heart, our populations are largely of European ancestry.
We had meta-analysis results for 281/288 CpGs re-
ported in Strong Heart4 (Additional File 2,
Supplementary Table S24), and 94% were FDR signifi-
cant in our meta-analysis. Joehanes et al. reported that
the effect estimates were highly correlated between in-
dividuals of European versus African ancestry
(Spearman ρ = 0.89).2 Together, this suggests that the
13
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effects of smoking are largely similar across ancestry.
We dichotomized ETS at 1 h/day given the low fre-
quency of longer exposure in our populations. As pre-
viously observed with one CpG,17 it is possible that
differential methylation observed for ETS might occur
in more highly exposed populations than are now
common. We uncovered evidence that intake of fibre,
DFE, and vitamin C may modify the effects of current
smoking but found no data for replication. Additionally,
the dietary analyses we conducted in pregnant women
may not be generalizable. Finally, given our focus on
less well-examined aspects of the smoking-methylation
association, we did not examine amount of smoking.
Despite these limitations, this study is the most
comprehensive meta-analysis of different smoking ex-
posures to date using the newer EPIC array.

Our study enhances the literature on epigenetic im-
pacts of smoking in several ways. A major strength is
substantial power in our meta-analysis to identify smok-
ing signatures using the newer EPIC methylation array.
Further, we addressed several questions that have been
raised on the impacts of smoking on methylation that
have not been well explored. START is unique in having a
population with a relatively high proportion of smokers
who recently quit—mothers and fathers during the
mother’s pregnancy. Pregnancy is a strong motivator for
parents to quit. In most long-term cohort studies, follow-
up intervals for smoking cessation often examine multiple
years since quitting. In addition, the issue of possible sex
differences in effects of smoking has been raised,77 but
rarely evaluated. We did not find strong evidence that sex
modifies the impact of smoking on methylation genome-
wide. This provides some reassurance for interpretating
the bulk of the literature that did not consider sex inter-
action and is informative for future analyses. Another
question raised in smaller prior studies, which we
examined in our meta-analysis, was whether the impacts
of maternal smoking during pregnancy on offspring are
modified by dietary intakes. Further, by including studies
with data on smoking during the pregnancy of the
mother, we were able to examine persistence of signals of
prenatal exposure into adulthood.

Conclusions
In this large meta-analysis of current smoking, recent
quitting, in utero smoking exposure, and ETS, using
Illumina’s EPIC array, we identified many CpGs and
genes related to current smoking and provided evidence
that most differences in DNA methylation levels atten-
uate within less than a year of cessation. Smoking dif-
ferences in DNA methylation levels among those who
quit within the past year may impact haematological
developmental processes. We provide further evidence
of the persistence of maternal smoking CpGs into older
adulthood, demonstrating that pregnancy is a vulnerable
window of susceptibility that can alter DNA methylation
throughout the life. Analysis of druggable targets of
implicated genes provides insights into correlated health
effects of smoking with potential implications for
treatment.
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