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ABSTRACT:
Frieze patterns follow a set of tiling instructions including reflection, rotation, and translation, and tile the infinite

strip. Many metamaterials function due to the underlying symmetry, and its strategic breaking, of their constituent

sub-structures that allow tailoring of the dispersion of modes supported by the structure. We design, simulate, and

experimentally characterize seven one-dimensional acoustic metasurfaces whose unit cells each belong to one of the

distinct Frieze groups. VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Utilizing the symmetry and translation of simple, or

complex designs is as prevalent in decorating ancient pot-

tery1,2 as it has been over the last few decades in the engi-

neering of dispersive metamaterials.3,4 The effects of

symmetry, and its strategic breaking, have been utilized

across wave physics, from the passive beam-steering appli-

cations to topological surfaces and insulators.5–10

There has been a recent interest in the design of re-

configurable one-dimensional (1D) waveguiding struc-

tures,11–14 whereby the symmetries of the unit cell are used,

or broken, to tailor the dispersion of supported modes.

Glide-symmetry has been extensively investigated in the

electromagnetic regime,15–18 with notable studies done by

Hessel et al. in 197319 with periodically loaded waveguides.

Glide-symmetry is a translation along a line followed by a

reflection over that line; its uses in wave systems have

recently been extended to acoustics20–23 where the band-

pinching effect has been utilized to create broadband regions

of sub-sonic sound. A typical dispersion relation of a system

with glide-symmetry has band-gaps that close, i.e., the

bands “pinch,” at the first Brillouin zone boundary (BZB),

leading to locally linear dispersion, analogous to Dirac

points and cones in electron bands.24–27 Degeneracies at

wavevectors not equal to the first BZB are referred to as

accidental, i.e., the phenomena of “band-sticking” is where

a pair of modes “stick” together due to the imposed degener-

acy of the symmetry.28–30

Other possible unit cell symmetries are mirror transla-

tions (horizontal and vertical), that have been implemented

in the design of tunable band-gaps in acoustic waveguides31

as well as in conjunction with rotational symmetry in the

case of topological insulators.32–34 One particular set of

motifs that utilize these operations (in addition to glide

reflections) are Frieze patterns, whose elements, along with

these operations, form a mathematical group. A Frieze

group is then formally a class of infinite discrete symmetry

groups of patterns on a strip.35 The spectral properties of

wave systems composed of structures with such symmetries

have received recent attention,36 with applications in nonre-

ciprocal waveguiding in the presence of external fields.37,38

Despite the wealth of literature on the properties of

glide-symmetric structures, across several wave

domains,17–19,21,39,40 and whilst the wave-dynamics of sys-

tems underpinned by Frieze geometries (and general space

groups) is well established,41–43 there is a lack of a compre-

hensive experimental review of the dispersive properties of

acoustic waveguides that possess Frieze symmetries.

In this paper we seek to fill this gap and show how

deliberate use of symmetry and translation conditions can be

applied to an acoustic metasurface, ensuring that it belongs

to one of the seven distinct Frieze groups. We experimen-

tally and numerically (using finite elements) model the dis-

persion of its supported modes through the strategic

breaking of these symmetries, and provide an overview of

the dispersive properties of all seven Frieze groups that pro-

vides motivation towards their combinations for wave-

guiding applications. The metasurfaces are 3D printed and

formed from arrays of rectangular cavities that couple

through diffractive near-fields along the surface, and

through submerged meander channels within the substrate.

Altering the form of the meander, i.e., removing it entirely,

and changing the boundary conditions of the cavities at the

surface replicates structures that belong to each of the Frieze

groups.

This paper is structured as follows: Section II briefly

introduces Frieze groups, and a description of acoustic meta-

materials. Section III brings these concepts together and
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describes acoustic waveguides obeying these Frieze symme-

tries. Section IV describes the methods. Section V presents

the results and discussion.

II. BACKGROUND

A. Frieze groups

Frieze groups are two-dimensional line groups whose

constituent patterns tile along a line to form a 1D periodic

lattice: the infinite strip. There are seven unique Frieze

groups which describe the invariance of a particular pattern,

forming the unit cell, that tiles the strip under the operations

of translation, horizontal, and vertical reflections, and rota-

tions in the plane. Here, following similar notation to Ref.

37 we consider a unit cell that is a-periodic in the x direc-

tion, with the seven Frieze patterns defined in the x-y plane.

The associated symmetry operators are translation, horizon-

tal reflection, vertical reflection, and rotation, each defined,

respectively, as

T̂aðx; yÞ 7! ðxþ a; yÞ;
R̂hðx; yÞ 7! ðx;�yÞ;
R̂vðx; yÞ 7! ð�x; yÞ;
R̂pðx; yÞ 7! ð�x;�yÞ; (1)

where a ¼ a defines the 1D periodicity of the unit cell in x;

all Frieze symmetry groups are invariant under T̂ a. An

important combination of two of these operations is a glide

reflection that combines a horizontal translation and reflec-

tion about the axis of translation, namely, R̂T̂aðx; yÞ such

that a < a. We will see the importance of defining several

Frieze groups under a specific case of this which we define

as Ĝðx; yÞ � R̂T̂ a=2ðx; yÞ; when referring to glide reflections

we will explicitly assume the operation of Ĝðx; yÞ.
We introduce seven examples of the Frieze groups (Fn)

in Fig. 1, following the notation from the International

Union of Crystallography (IUC), used to identify members

of wallpaper groups through four characters; the operations

underpinning each symmetry group are encoded within a

series of numbers and the letters. First, as each of the Frieze

patterns form a primitive group the naming convention starts

with the letter p, followed by a number that denotes the n-

fold rotation of the pattern. The following two characters

then describe two reflections with vertical mirrors first (hori-

zontal reflection), and horizontal mirrors second (vertical

reflection), both denoted by m, with glide reflections

denoted g.37,44,45 If there is either no rotational or mirror/

glide symmetries present a place holder “1” denotes an

orthogonal direction with no reflections. Applying IUC

notation, we identify some examples: (i) The p1 symmetry

has only translation symmetry T̂a, i.e., is covered by one full

rotation of 2p with all m, g omitted. (ii) p1m1 has a single

vertical mirror symmetry R̂v. (iii) p2mg contains a twofold

rotational symmetry R̂p, a single vertical mirror plane and a

glide translation. (iv) p2mm contains a twofold rotational

symmetry and both vertical and horizontal mirror

reflections. There are, of course, other crystallographic nota-

tions such as Conway and Coxeter notation one could

adopt.46 In Fig. 1 we show schematics of “ball-and-stick”

patterns that represent the seven Frieze groups. The ball-

and-stick notation we present has a physical interpretation

that represents the acoustic channels and boundary condi-

tions that we detail below.

B. Acoustic waveguides with metamaterial concepts

Acoustic metasurfaces are commonly comprised of an

array of periodically spaced resonators, separated by a dis-

tance kp, with the canonical example being cavities that cou-

ple to their nearest neighbors through the diffractive near-

field.47 We assume the substrate is acoustically rigid (sound

hard). Under these conditions, an acoustic surface wave

(ASW) can be formed, localized at the interface between the

metasurface and the surrounding fluid, decaying evanes-

cently from the surface,22,31,47,48 analogous to electromag-

netic spoof-surface plasmons on perfectly conducting

patterned substrates.49,50 In such a system, with a reciprocal

lattice vector of size jGj ¼ 2p=kp, the dispersion curves con-

tains a fundamental mode that approaches the first BZB

FIG. 1. (Color online) Table of the seven Frieze groups, Fn, with IUC nota-

tion. Symmetry operations are shown schematically in red. Two unit cells

are shown for each group (dashed vertical black lines), along with five

repeated cells showing the Frieze pattern. The “ball-and-stick” patterns cor-

respond to the acoustic properties of the metasurface detailed in Fig. 2.
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with vanishing group velocity (and well defined asymptotic

frequency20) whereby a standing wave is formed along the

surface due to Bragg scattering.51

Crucially the cavity feature size is sub-wavelength with

respect to the free-space acoustic wave at the same fre-

quency. A similar asymptotic, slow-sound, character can

been seen when the simple resonant cavity is replaced with

a compact continuous meander channel, or space-coiled

design.20,52–55 In such a system, sound is forced to propagate

through a channel which is longer than the external unit-cell

length, leading to an increased effective refractive index.20

The sound which travels through these channels accumu-

lates a large phase delay compared to the free-space wave

which, when mixed, can be used in the design of 1D wave-

guides with broadband frequency ranges of slow sound.

In Sec. III we describe a systematic approach to apply-

ing symmetry conditions to a particular pattern so to design

acoustic metasurfaces, whose underlying unit cell belongs to

a Frieze group.

III. FRIEZE-GROUP WAVEGUIDE DESIGN

Having introduced the key concepts and notation sur-

rounding the Frieze groups, we now combine the two con-

cepts in the design of a 1D waveguide with Frieze

symmetries. To generate a physical system for experimental

analysis, we take each of the patterns presented in Fig. 1 and

we assign some physical properties. First, we identify the

blue connecting lines form an acoustic channel, embedded

in some 3D printed structure, in which sound can propagate.

At junctions along this channel, we place two nodes, either

turquoise circles or blue squares, that represent two bound-

ary conditions with the former being an open boundary and

the latter being a closed boundary. In the case of the meta-

surface design, these nodes occur at the surface of the struc-

ture, with the open boundaries permitting sound to travel

along the surface of the waveguide via diffraction. The

closed, or sound-hard, boundaries are achieved by covering

the relevant openings at the surface. In practice this is done

with a thick layer of adhesive tape so to not alter the path

length of the cavities.

In Fig. 2 we show three configurations of the 3D printed

unit cells, with example closed/open boundaries and their

representative ball and stick diagrams. We note that the

Frieze pattern is preserved in the cross section along the

centre of the unit cell as our structures are obviously three

dimensional, whilst the Frieze pattern itself is two dimen-

sional. The acoustic channel is thus a void in the 3D printed

structure of thickness t. We stress that with only these three

unit cells, along with the relevant boundary conditions, we

can recover all seven Frieze patterns. Figure 2(a) shows a

unit cell with a meander structure that inherently breaks hor-

izontal mirror symmetry and so covers the cases of p1,

p11g, p2, and p2mg, whilst Fig. 2(b) contains no meander (a

straight through channel) that allows p1m1 and p2mm to be

realized. For the particular case of p11m, we have only a

horizontal mirror symmetry; we are therefore free to break

the vertical mirror symmetry by ensuring the separation of

the channels (with different boundary conditions) is <a=2

(see Fig. 1). In practice, for the dimensions detailed in Fig. 2

and for the printing filament used (see below), this results in

the wall separating the two channels becoming too thin,

leading to coupling to the elastic motion of the wall. To

avoid this and the undesirable result that the boundary can

no longer be considered sound hard, we instead alter the

thickness of the two channels such that t1 6¼ t2 in Fig. 2(c).

This is equivalent to breaking the vertical mirror symmetry

shown by F3 in Fig. 1.

We then form a 1D periodic array, comprising of 40

unit cells, for each of the configurations shown in Fig. 2.

The result is three acoustic metasurfaces whose dispersion is

dictated by the combination of the periodic cavity array and

the waveguide-like meander/through-channels. For the cases

of the through-channel, i.e., removing the meander, the sub-

strate depth forms a singular channel through the length of

the sample, resembling a loaded waveguide. In all cases, the

structures support coupled waveguide modes; energy can

propagate along the surface of the array and through the

waveguide channels. The dispersive characteristics of each

array are ultimately dictated by the underlying symmetry

group of the unit cell, i.e., the length and form of the wave-

guide channels and the boundary conditions at the surface.

In Sec. IV we detail the experimental and numerical meth-

ods used to verify the dispersive properties of the structure.

IV. METHODS

A. Sample fabrication

Samples are fabricated with a Ultimaker S5 3D printer.

Polylactic acid (PLA) filament is printed with a 40% infill

density to ensure acoustically rigid exterior and interior

boundaries. The external dimensions of each sample are:

thickness h¼ 30 mm, width s¼ 35 mm, and total length

Ltotal ¼ 480 mm comprised of 40 unit cells with periodicity

FIG. 2. (Color online) Example unit cell geometries: 3D printed PLA

(cream colour) with acoustic channel (void) highlighted in blue-gray.

Example open/closed boundaries are shown in turquoise and light blue,

respectively, with representative ball-and-stick diagrams shown. Example

Frieze groups are shown with (a) p2mg, (b) p1m1, and (c) p11m. The

dimensions are detailed such that the cavities height h¼ 30 mm, thickness

t¼ 4 mm, and width w¼ 15 mm. The unit-cell has a periodicity kp¼ 12 mm.

Connecting channels have thickness d¼ 4 mm and are spaced symmetri-

cally h1¼69.75 mm about the centre of the cavity height. The cavity

widths are revised in (c) for the p11m pattern with t1¼ 4 mm and t2¼ 2 mm.
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kp¼ 12 mm. The internal dimensions for each unit cell are

detailed in Fig. 2.

B. Acoustic measurements

Near-field acoustic measurements are performed by

measuring the evolution of an acoustic pulse along the

waveguide. Samples are excited by a tweeter (Scanspeak

R3004/602000 26 mm) mounted within a conical attachment

with a 3 mm exit diameter. The loudspeaker is driven by an

arbitrary waveform generator (Keysight 33500B) producing

single-cycle Sine-Gaussian pulses centred at fc ¼ 8 kHz.

The loudspeaker exit aperture is positioned over the first

open cavity to excite the acoustic modes, see Fig. 3 for illus-

trative render.

The ASW pressure field is measured with a needle

microphone (Br€uel & Kjaer Probe Microphone type 4182)

positioned 0.5 mm above the centre of the open cavities.

Acoustic data are recorded by an oscilloscope (Picoscope

5000a) at sampling frequency fs ¼ 312:5 kHz. The micro-

phone is mounted on a motorized xy scanning stage (in-

house with Aerotech controllers) and scanned with 0.45 mm

step-size for length 474 mm in the propagation direction to

spatially map the acoustic signal. An average was taken

over eight measurements at each spatial position to improve

the signal-to-noise ratio.

Acoustic data are analysed using Fourier techniques to

obtain the wavenumber-frequency dependence of the local-

ized waves. The fast-Fourier transform (FFT) (operator F )

of the measured signal, voltage V(x, t) returns the complex

Fourier amplitude in terms of the wavenumber parallel to

the surface kk and frequency f F xðjF tðVðx; tÞÞjÞ. Data are

windowed using a Tukey window, and zero-padded (in both

space and time) by a factor of 2, before the FFT. These dis-

persion data are normalized by the maximum value at each

frequency.

C. Numerical modeling

Numerical simulations are used to calculate the disper-

sion relations for each sample investigated. These were per-

formed with finite element package COMSOL MULTIPHYSICS

(version 6.0).56 Using the pressure acoustics module, unit

cell geometries were represented and assigned appropriate

boundary conditions to approximate the physical system;

Floquet-periodic boundaries were applied to represent an

infinite sample, and sound-hard boundary conditions

approximate the walls of the designed waveguides.

Simulations return eigenmodes as a function of in-plane

wavenumber.

V. RESULTS

We fabricate, experimentally characterize, and numeri-

cally model the proposed acoustic waveguides obeying the

Frieze symmetries (in Sec. III) using the methods described

above. The results are collected and presented in Fig. 4. For

each Frieze group we present the experimental characteriza-

tion, with modelled eigenmodes, on the same dispersion plot

within the first BZ. Due to our choice of spatial Fourier

transform, positive and negative wavenumbers are equiva-

lent; and modes that exist beyond the first BZ are band-

folded to the first BZ, hence we show data from C to X only.

In all plots, the surface mode dispersion is presented

below the sound-line (frequency f ¼ ck0=2p with c the

sound speed and k0 the free space wavenumber), indicating

the modes are sub-sonic and localized at the sample surface.

The dark bands that disperse from the sound-line are the sur-

face modes; we recall here that the X-point is the edge of the

first Brillouin zone, i.e., kk ¼ p=kg, and that the gradient

these modes is the group velocity (vg ¼ @ðxÞ=@kÞ. In all

cases the numerical model shows excellent agreement with

experiment.

We present the discussion of these data in two parts: (1)

for the meander-like samples with (a) p2mg, (b) p11g, (c)

p1, and (d) p2 symmetries and then (2) for the loaded-

waveguide samples with (e) p2mm, (f) p11m, and (g) p1m1

symmetries.

First, we consider the p2mg and p11g symmetries

shown in Figs. 4(a), 4(b). The samples for these symmetries

have the meander waveguide, with all cavities open (p2mg)

at the surfaces above and below, or every other cavity open

(p11g) as viewed by the wave in the waveguide.

In both cases, at low frequency a mode disperses from

zero frequency/zero wavenumber up the sound-line, before

dispersing with a near-constant gradient towards the first

BZB at X. This band continues through the first BZ and is

visualized in these diagrams as a “bandfolded” mode now

dispersing back from the X-point toward C without any dis-

continuity in its Fourier amplitude. This demonstrates

eigenmodes of the system that are degenerate at the first

BZB.

Above the fundamental mode, a mode cuts on at higher

frequency, dispersing up the sound-line before exhibiting

the same dispersion from the sound-line. The region of lin-

ear dispersion exhibited as both modes leave the sound-line,

is an expected consequence of the glide symmetry of the

unit cell due to the meander structure.20

The difference between the frequency of each mode is

due to the effective path length of the acoustic field within

FIG. 3. (Color online) Render illustrating the acoustic measurement experi-

ment; a loudspeaker mounted within a conical housing positioned at the end

of the sample and the microphone positioned over the open cavities.
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the waveguide; the p2mg sample has all cavities open and

disperses at relatively higher frequencies, when the cavities

are closed the internal tortuous waveguide path is now lon-

ger, which pulls the frequencies of the guided acoustic

waves to a lower frequency.

Next, we consider the p1 and p2 symmetries shown in

Figs. 4(c), 4(d). Again, these are based on the meander

waveguide, with selected cavities closed. The p1 sample has

three covered cavities, and p2 has one cavity covered top

and bottom. The key change between previous dispersion

diagrams is that band-gaps have now opened at the X-point

for both symmetries, i.e., the placement of these coverings

has lifted the degeneracies seen in the previous two symme-

try groups; this is expected for geometries than do not pos-

sess a glide symmetry. In these dispersion diagrams, the

modes now meet the first Brillouin zone boundary (jkkj)
with zero-gradient and, consequently, diminished Fourier

amplitude, indicating reduced propagation down the sample

length. The p1 experimental data shows the modes exist at a

reduced frequency due to the increased path length through

the meander between open cavities. A band-split pair of the

fundamental mode is shown in the first Brillouin zone in

both symmetry cases, with the width of the gap influenced

by the meander path length.

The higher-order modes, at approximately 10 kHz, are

different between samples: in the p1 sample data both band-

split modes are detected, whilst for p2, the higher frequency

mode is not detected at approximately 11 kHz as the model

predicts. This is because the mode has a near-zero group

velocity, and therefore cannot propagate from source to

detector.

Finally, we compare the p2mm; p11m, and p1m1 sym-

metries shown in Figs. 4(e)–4(g), respectively, where there

is no meander present. These waveguides are an arrange-

ment of adjacent cavities about a through cavity running the

length of the sample. The cavities are either open or closed

on the top and/or bottom of the waveguide to generate the

symmetries of the groups. These arrangements allow cou-

pled k=2- or k=4-like resonances of the cavities, and result

in symmetric/anti-symmetric resonances depending on the

positions of the open/closed boundary conditions.

Figures 4(e)–4(g) show the experimental results with

the model eigenmodes overlaid. For these samples, the

numerical model predicts four modes in the frequency range

studied. The modes that disperse up and from the sound line

are well resolved in all cases. The flat-banded modes are not

resolved experimentally; this is due to distribution of the

pressure field along the sample and is discussed and eluci-

dated via a tabular notation which we which we highlight in

Fig. 5. We adopt this notation for brevity in describing the

many features of the dispersion relations. It is motivated by

inspecting the eigenmodes obtained from numerical model-

ling, at the edge of the first BZ, which show the symmetries

of the eigenmodes (dictated by the underlying Frieze

patterns.).

Following the notation introduced in Fig. 5, the p2mm
and p11m samples have the cavities are represented as open

(o) and closed (c), arranged around the central waveguide

(�). For p2mm the distribution is
o c

o c
.

The four modes predicted, in increasing frequency,

have these allowed pressure field distributions at the cavity

ends (following the tabular notation), at the BZB:

0 þ
0 þ ;

0 þ
0 � ;

þ 0

þ 0
, and

þ 0

� 0
(highlighted in Fig. 5).

The first two pressure field distributions are the symmetric

and anti-symmetric modes with fields concentrated in the

close-ended cavities. The other two distributions are the

symmetric/anti-symmetric mode-pair for fields in the open-

ended cavities. The resonant frequencies are dictated by the

effective volume of air within these structures.

The experimental data for p2mm and p11m is visually

similar; three dispersing modes are measured. For the lowest

FIG. 4. (Color online) Experimental

dispersion relations for Frieze group

acoustic waveguides: (a) p2mg, (b)

p11g, (c) p1, (d) p2, (e) p2mm, (f)

p11m, and (g) p1m1. Insets show the

pictorial representation of each Frieze

group. Color maps represent the abso-

lute value of the normalized Fourier

spectra. Orange points are the eigenso-

lutions from FEM simulations. Results

are shown within the first Brillouin

zone from the C-point (kk ¼ 0) to the

X-point (kk ¼ p=kg).
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mode,
0 þ
0 þ , the Fourier amplitude diminishes as the mode

approaches the X-point, because the pressure field becomes

localized in the closed-portion of the waveguide and

presents a low amplitude (and decaying) pressure field at the

open cavities. In contrast, the modes localized in the open

cavities are detected experimentally through probing the

pressure field at the surface.

In both cases, the mode predicted to meet the BZB at

approximately 6 kHz, which corresponds to the
0 þ
0 � pres-

sure distribution, is not measured. This mode is flat-banded

and highly localized in the waveguide because the field

amplitude is zero between the closed-ended cavities due to

the p-phase difference in pressure relative to one another.

This prevents the mode from propagating through the

structure.13

The final sample, p1m1, has 1 open and 3 closed cavi-

ties configured as
o c

c c
. The results [Fig. 4(g)] show two

clearly resolved modes approaching the BZB at approxi-

mately 5 and 9.5 kHz, and two flat bands predicted by the

numerical model, but not experimentally observed. Here, by

replacing on open cavity with a closed cavity the
þ 0

þ 0
,

mode has become flat-banded and reduced in frequency as

the closed boundary condition has reduced the effective cav-

ity volume.

VI. CONCLUSIONS

We have manufactured three samples, patterned with a

1D array of resonant cavities while concealing additional

connective channels within the substrate. Through strategic

replacement of open boundary conditions with sound-hard,

these three unit cells can inherit the symmetry properties of

all seven Frieze groups. The dispersion of the supported modes

changes whether or not the structure obtains a glide reflection,

where band-pinching is observed at the edge of the first BZB,

resulting in locally linear dispersion and slow sound. Whilst

we chose to implement the various Frieze symmetries via mod-

ification to open or closed boundary conditions, we note that it

is possible to obtain the same effects through modification (by

shape or size) to the unit-cell structure factor. The presented

results form a comprehensive experimental summary of acous-

tic metasurfaces possessing Frieze symmetries that provides

motivations for their combinations which finds uses in design-

ing acoustic devices for sensing applications using regions of

sub-sonic sound to increase sensitivity within a fixed frequency

range and engineering interface states for 1D topological surfa-

ces23 using common band-gaps between different symmetries.

ACKNOWLEDGMENTS

The authors wish to acknowledge financial support from

the Engineering and Physical Sciences Research Council

(EPSRC) of the United Kingdom via the EPSRC Centre for

Doctoral Training in Metamaterials (Grant No. EP/ L015331/

1). D.B.M. and T.A.S. acknowledge the financial support of

Defence Science and Technology Laboratory (DSTL) through

Grants Nos. DSTLXR1000154754 and AGR 0117701. G.J.C.

gratefully acknowledges financial support from the Royal

Commission for the Exhibition of 1851 in the form of a

Research Fellowship. The authors are grateful to Professor A.

P. Hibbins and Professor Sir J. R. Sambles for useful

conversations.

AUTHOR DECLARATIONS

Conflict of Interest

The authors declare no competing interests.

DATA AVAILABILITY

All data created during this research are openly avail-

able from the University of Exeter institutional repository.57

1E. Makovicky, Symmetry: Through the Eyes of Old Masters, 1st ed.

(Walter de Gruyter, New York, 2016).
2U. Bismayer, S. Srilomsak, Y. Treekamol, W. Tanthanuch, and K.

Suriyatham, “Artefacts from Ban Chiang, Thailand: Pottery with

hematite-red geometric patterns,” Z. Kristallogr. – Cryst. Mater. 235(11),

559–568 (2020).
3N. Engheta and R. W. Ziolkowski Metamaterials: Physics and
Engineering Explorations (Wiley-IEEE, New York, 2006).

4G. Ma and P. Sheng, “Acoustic metamaterials: From local resonances to

broad horizons,” Sci. Adv. 2(2), e1501595 (2016).
5H.-S. Lai, Y.-L. Xu, B. He, X.-C. Sun, C. He, and Y.-F. Chen, “Tunable

topological surface states of three-dimensional acoustic crystals,” Front.

Phys. 9, 789697 (2021).
6Z.-K. Lin, Y. Wu, B. Jiang, Y. Liu, S.-Q. Wu, and F. Li, “Topological

Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic

crystal Zhi-Kang,” Nat. Mater. 21(4), 430–437 (2022).

FIG. 5. (Color online) Eigenmodes and tabular notation of p2mm Frieze

pattern: A schematic of the unit cell is shown with the dashed lines

highlighting the plane at which the eigensolution is extracted from the

numerical model. Shown too are the eigenmodes (color showing normalised

pressure) at the BZB for the curves marked I–IV in Fig. 4(e). Floquet-Bloch

boundary conditions are applied at the left and right sides, with radiation

conditions top and bottom. Below we show two tabular notations: the first

represents the cavity boundary conditions with open (o) and closed (c) rep-

resenting the circles and squares of the ball-and-stick diagrams. Second, the

symmetry of the mode-shapes are emphasised through the symbols þ,�,0,

representing maximum, minimum, and vanishing pressure, respectively, at

the cavity opening/closings.

J. Acoust. Soc. Am. 155 (1), January 2024 Moore et al. 573

https://doi.org/10.1121/10.0024359

 23 January 2024 14:21:17

https://doi.org/10.1515/zkri-2020-0076
https://doi.org/10.1126/sciadv.1501595
https://doi.org/10.3389/fphy.2021.789697
https://doi.org/10.3389/fphy.2021.789697
https://doi.org/10.1038/s41563-022-01200-w
https://doi.org/10.1121/10.0024359


7N. Laforge, V. Laude, F. Chollet, A. Khelif, M. Kadic, Y. Guo, and R.

Fleury, “Observation of topological gravity-capillary waves in a water

wave crystal,” New J. Phys. 21(8), 083031 (2019).
8A. Darabi and M. J. Leamy, “Reconfigurable topological insulator for

elastic waves,” J. Acoust. Soc. Am. 146(1), 773–781 (2019).
9H. Fan, B. Xia, L. Tong, S. Zheng, and D. Yu, “Elastic higher-order topo-

logical insulator with topologically protected corner states,” Phys. Rev.

Lett. 122(20), 204301 (2019).
10Y. Chen, D. Liu, Y. Wu, P. Yu, and Y. Liu, “Valley Hall elastic topologi-

cal insulator with large Chern numbers,” Int. J. Mech. Sci. 239, 107884

(2023).
11S. Periyannan, P. Rajagopal, and K. Balasubramaniam, “Re-configurable

multi-level temperature sensing by ultrasonic ‘spring-like’ helical wave-

guide,” J. Appl. Phys. 119(14), 144502 (2016).
12M. J. Frazier, “Multi-stable acoustic metamaterials with re-configurable

mass distribution,” J. Appl. Phys. 131(16), 165105 (2022).
13D. B. Moore, G. P. Ward, J. D. Smith, A. P. Hibbins, J. R. Sambles, and

T. A. Starkey, “Confined acoustic line modes within a glide–symmetric

waveguide,” Sci. Rep. 12(1), 10954 (2022).
14G. J. Chaplain, I. R. Hooper, A. P. Hibbins, and T. A. Starkey,

“Reconfigurable elastic metamaterials: Engineering dispersion with

beyond nearest neighbors,” Phys. Rev. Appl. 19(4), 044061 (2023).
15F. Maurin, C. Claeys, L. Van Belle, and W. Desmet, “Bloch theorem with

revised boundary conditions applied to glide, screw and rotational sym-

metric structures,” Comput. Methods Appl. Mech. Eng. 318, 497–513

(2017).
16B. Fischer and G. Valerio, “Wideband homogenization of a glide-

symmetric holey parallel-plate waveguide,” in Ursi Gass 2021, Rome,

Italy (2021), Vol. 1.
17O. Quevedo-Teruel, C. Qiao, F. Mesa, N. Fonseca, and G. Valerio, “On

the benefits of glide symmetries for microwave devices,” IEEE J.

Microwave 1(1), 457–469 (2021).
18P. Zhang, “Symmetry and degeneracy of phonon modes for periodic

structures with glide symmetry,” J. Mech. Phys. Solids 122, 244–261

(2019).
19A. Hessel, M. H. U. I. Chen, C. M. Robert, and A. A. Oliner,

“Propagation in periodically loaded waveguides with higher symmetries,”

Proc. IEEE 61(2), 183 (1973).
20J. G. Beadle, I. R. Hooper, J. R. Sambles, and A. P. Hibbins, “Broadband,

slow sound on a glide-symmetric meander-channel surface,” J. Acoust.

Soc. Am. 145(5), 3190–3194 (2019).
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