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Abstract—In state estimation problems, the Kalman filter
(KF) algorithm considers the noise in the measurements and
the systems facilitating convergence to the true state. This
paper presents the Bayesian derivation of the discrete-time KF
algorithm for a simple example known as the random walk
model. However, if the KF coefficients are not well-tuned, it can
significantly impact the estimation accuracy and may lead to
algorithmic inconsistency. The Kalman gain is a quantitative
measure which plays a crucial role in achieving the optimum
convergence and stability. In this study, we evaluate the
importance of the Kalman gain in the KF algorithm across
several choices of the error covariance within the context of
the random walk model. Furthermore, we demonstrate that the
optimal Kalman gain is determined by minimizing the mean
squared error (MSE), producing an unbiased and efficient
estimate. This adaptive adjustment enables the KF to tune
parameters easily. The theoretical and numerical investigations
were carried out using the random walk plus noise model.

Index Terms—Kalman filter, Kalman gain, convergence, ran-
dom walk model, state estimation, noise covariance

I. INTRODUCTION

Accurate state estimation is fundamental in estimation the-
ory and control systems for a wide range of applications.
The Kalman filter (KF) [1] is a standard mathematical tool
that provides an optimal and unbiased solution for linear and
Gaussian systems by minimizing mean squared error (MMSE)
between the state variables and its estimates. The KF algorithm
works recursively by incorporating the noisy measurements in
the dynamic system model to estimate the hidden variables
or partially observed systems along with their uncertainty [2].
The KF algorithm works in two phases. The first phase is
the prediction step which is the estimation of the current
state along with their uncertainties. The second phase is the
correction step which works once the noisy measurement has
arrived. Then the previous step is updated and improved by
scaling it using a weighted average value called the Kalman
gain matrix Kt. This leads to a new state estimate that
places between the predicted and the measured state with a
reduced uncertainty degree. The Kalman gain matrix Kt is a
crucial component of the Kalman filter algorithm, which is
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responsible for stabilizing and converging the direction of the
algorithm see e.g. [3]–[5]. There is little literature addressing
the significant role of the Kalman gain. In [6], the Kalman
gain matrix was employed to mitigate the influence of sample
size on the estimation process. In [7], the authors investigated
the characteristic of the Kalman gain within a type of Kalman
filter known as the cubature Kalman filter. In [8], the Kalman
gain has been used to estimate the ellipsoidal states. The
comparisons of the Kalman gain regularization and covariance
regularization methods were reported in [9] which found that
Kalman gain regularization is more accurate for predicting the
real data. However, it is important to note that there are several
modifications of the conventional Kalman filter algorithm,
such as the unscented Kalman filter, extended Kalman filter,
ensemble Kalman filter, and skew Kalman filter. The Kalman
gain may have a different formula for each type, but they are
equivalent in functionality and serve the same purpose. We
will discuss in this paper the derivation of the KF algorithm
from the Bayesian perspective and then the significance of the
Kalman gain Kt selection in a simple Gaussian dynamic linear
model. Numerous studies have addressed Kalman filter tuning,
e.g. [10]–[14]. In this study, we aim to address the Kalman
filter tuning problem via the Kalman gain performance since it
remained an unsolved problem for a long time. This challenge
has remained without a definitive solution, particularly in the
context of high-dimensional systems. The default method is
by trial and error approach which continues to be popular in
the KF setting in an interactive way.

II. KALMAN FILTER FROM A BAYESIAN PERSPECTIVE

The KF algorithm has been derived from different per-
spectives such as the Bayesian filtering approach [15], [16],
maximum likelihood [17], Newton method [18] and least
squares estimation [2]. The most popular derivations of the
KF are Bayesian filtering and the least squares estimation,
providing optimal solutions of the KF which are recognized in
the theoretical literature. However, a fully detailed derivation
of the KF algorithm using a purely Bayesian approach is
missing as explained in [19]. The reason behind this is that
the Bayesian filtering cannot be performed analytically in the
non-Gaussian case and least squares estimation is preferable



Fig. 1: Structure for the state space model shows the depen-
dency between the states xt and the observations Yt.

in those cases. Despite that the Bayesian approach is still
utilized in complex tasks e.g. an interesting application that
used the Bayesian approach is searching for the disappearance
of flight MH370 as mentioned in [20]. Therefore, in this paper,
we will review the Bayesian approach in the KF algorithm,
within the field of state estimation for a dynamic linear-
Gaussian model where this approach is a powerful tool for
dealing with uncertainty, combining the available information
and facilitating updated estimations.

The state space models formally consist of two components,
the observed process Yt = (y1, . . . , yt) and the unobserved
states Xt = (x1, . . . , xt) satisfying the the two main assump-
tions:

Assumption 1. {Xt, t = 0, 1, 2, . . . } is a Markov chain i.e.
Xt does not depend on the entire past sequences but only on
the previous value Xt−1.

Assumption 2. The Yt’s are independent observations and
conditional on (Xt, t = 0, 1, 2, . . . ). It follows that Yt|Xt

has a joint conditional density
∏n

t=1 π(Yt|Xt), n ≥ 1. Figure.
1 represents graphically the assumptions of the state space
models.

The assumptions (1)and (2) for satisfying the state space
model assign the initial density π(X0), the state transition
density π(Xt|Xt−1) and the conditional density π(Yt|Xt−1).
We consider the discrete-time state-space model with two
equations; the system equation and the observation equation.

The system equation is:

Xt+1 = FXt +Wt, (1)

where, Xt is the state of a variable at time t, denoted as Xt ∈
Rn, F is a state transition matrix of size n × n that has the
Markovian property which describes the state movements from
time (t − 1) to t and Wt is the process noise assumed to be
Gaussian with zero mean and covariance matrix Q which can
be expressed as Wt ∼ N(0, Q).

The observation equation is:

Yt = HXt + Vt, (2)

where Yt ∈ Rm is the measurement vector of the observed
data at time t, H is the observation matrix of size m × n
which maps between the measurements and the state and
the Vt is the observation noise which is assumed to be
Gaussian with zero mean and covariance R. This matrix can

be expressed as Vt ∼ N(0, R), and the noise sequences {Wt}
and {Vt} are assumed to be uncorrelated and independent.
To begin deriving the KF algorithm, we can describe it as
a recursive Bayesian filtering technique based on the Bayes’
rule, restricted to linear Gaussian estimation problems only.
The main purpose of the Bayesian approach is to obtain the
conditional posterior probability of state π(Xt|Yt). To achieve
the Bayesian filtering, two stages are required: prediction and
update. This approach is successfully applied in the filtering
literature, e.g. [21], [22]. The prediction and the correction
steps are carried out through the Bayes rule. The one-step-
ahead predictive density π(Xt|Yt−1) can be computed as:

π(Xt|Yt−1) =

∫
π(Xt−1|Yt−1)π(Xt|Xt−1)dXt−1. (3)

The state transition density π(Xt|Xt−1) is the probability
density function (PDF) of the state at time t given the previous
state at time (t − 1) which satisfies the Markovian property
mentioned in the assumption (1). The above equation is called
Chapman-Kolmogorov equation [23] and is used to estimate
the prior distribution and in some literature (old posterior) and
the π(Xt|Xt−1) can be estimated from the system equation
(1).

The updated PDF of the current state is derived using the
Bayes rule:

π(Xt|Yt) =
π(Yt|Xt)π(Xt|Yt−1)

π(Yt|Yt−1)
,

π(Xt|Yt) =
π(Yt|Xt)π(Xt|Yt−1)

C
,

π(Xt|Yt) ∝ π(Yt|Xt)π(Xt|Yt−1),

(4)

where, C = π(Y1, Y2, . . . Yn) is the normalizing constant,
and is obtained by:

π (Yt | Yt−1) =

∫
π (Yt | Xt)π (Xt | Yt−1) dXt. (5)

The measurement (likelihood) density π (Yt | Xt) in the
equation (5) can be computed from the measurement equa-
tion (2) and it follows the assumption (2) which states
they are conditionally independent given the current state
as Yt∥Y1:t−1 | Xt. According to the equations (4), the last
expression summarizes the Bayesian state estimation principle
that moves from (t − 1) to t where the posterior π(Xt|Yt)
contains all the information about the current state Xt by
combining the prior distribution and the likelihood density,

Posterior ∝ Observed likelihood × Prior.

In the Gaussian context, it is likely to convert the Bayesian
estimation to the point estimation and express the posterior
PDF by the mean and covariance which can be computed
recursively. Then the general solution of the linear Gaussian
problems lead to the KF algorithm. Since the assumptions of
the prior probability density π(Xt|Yt−1) and the likelihood
density π(Yt|Yt−1) result in Gaussian distribution then the
sub-vector, conditional/marginal densities are Gaussian and



then the posterior probability density π(Xt|Yt) is also Gaus-
sian. Then we can derive the KF algorithm in the Bayesian
scheme as a sequential estimator by computing the means E(.)
and the covariances Cov(.) of the states over time t for the
quantities in the equation (6) as shown in Figure ??.

π (Xt−1 | Yt−1)︸ ︷︷ ︸
posterior known at time (t−1)

−→ π (Xt | Yt−1)︸ ︷︷ ︸
prediction at time t

−→ π (Xt | Yt) .︸ ︷︷ ︸
correction at time t

(6)
Now, we will introduce the conventional KF algorithm

which has the following steps:

Theorem 1 (Kalman filter algorithm, [24]). Let
{Ht, Ft, Qt, Rt} be a Gaussian dynamic linear model
in discrete time satisfying the assumptions (1 )and (2). If
we have (Xt−1|Dt−1) ∼ Np(X̂t−1, P̂t−1) where t ≥ 1 and
denote the collection of the available information of Y1, ..., Yt

as Dt. Then,
1) The one-step-ahead state predictive density of Xt given

Yt−1 is a Gaussian with parameters

π(Xt|Dt−1) ∼ Np(X̂t−1, P̂t−1),

where, X̂t−1 = FX̂t−1 and P̂t−1 = FP̂t−1F
T + Qt,

for t ≥ 1.
2) One-step forecast density of yt given Dt−1 is Gaussian

with parameters

π(yt|Dt−1) ∼ Nm(ŷt, ϵt),

where, ŷt = HtX̂t−1 and ϵt = HtP̂t−1H
T
t +Rt.

3) The filtering density of Xt given Dt is a Gaussian with
parameters

π(Xt|Dt) ∼ Np(X̂t, P̂t),

where X̂t|t = X̂t−1 + P̂t−1F
T
t ϵtet,

P̂t = P̂t−1 − P̂t−1H
T
t ϵ

−1
t HtP̂t−1 with et = yt − ŷt.

where et is called the measurement innovation.

Proof. 1) From the system equation (1), taking the expec-
tation value on both sides:

E(Xt|Dt−1) = E(FtXt−1 + Vt|Dt−1)

= E(FtXt−1|Dt−1) + E(Vt|Yt−1︸ ︷︷ ︸
0

)

= FtX̂t−1.︸ ︷︷ ︸
prior mean X̂t−1

(7)

E(ξt|Yt−1) = 0 for all t as the process noise term does
not correlate with the measurement noise. Now, taking
the covariance value for both sides:

Cov(Xt|Dt−1) = Cov(FtXt−1 + Vt|Dt−1)

= Cov(FtXt−1|Dt−1) + Cov(Vt|Dt−1)

= FtP̂t−1F
T
t +Qt.︸ ︷︷ ︸

prior covariance p̂t−1

(8)

At this stage, we compute the KF prediction of the state
at time t conditional in the time (t− 1), and in the next
steps, we compute the KF update equations.

2) From the observation equation (2), taking the expecta-
tion value on both sides:

E(Yt|Dt−1) = E(HtXt +Wt|Dt−1)

= HtX̂t|t−1.︸ ︷︷ ︸
mean forecasting

(9)

Now taking the covariance value for the observation
equation on both sides as:

Cov(Yt|Dt−1) = Cov(HtXt +Wt|Dt−1)

= HtP̂t|t−1H
T
t +Rt︸ ︷︷ ︸

variance forecasting

. (10)

3) Using Bayes formula to compute π(Xt|Dt) by taking
π(Xt|Dt−1) as the prior distribution and π(yt|Dt−1) as
the likelihood function, we have:

π(Xt|Dt) ∝ π(Xt|Dt−1)π(Yt|Dt−1). (11)

Now substitute the means and variances from equations
(7), (8),(9), (10) into equation (12) which is the multi-
variate Gaussian PDF as:

π(Xt|Dt) ∝ e{
−1
2 (Xt−FtX̂t−1)

T (FtP̂t−1F
T
t +Q)−1(Xt−FtX̂t−1)}

e{
−1
2 (Yt−HtX̂t|t−1)

T (Htp̂t|t−1H
T
t +Rt)

−1(Yt−HX̂t|t−1)}.
(12)

After algebraic manipulation, the posterior distribution
of π(Xt|Dt) will be obtained in the Gaussian distribu-
tion. The updated posterior mean X̂t can be written as:

X̂t = X̂t|t−1 + P̂t|t−1H
T
t (HtP̂t|t−1H

T
t +Rt)

−1︸ ︷︷ ︸
Kt

(Yt −HtX̂t|t−1)︸ ︷︷ ︸
et

,
(13)

where, the term P̂t|t−1H
T
t (HtP̂t|t−1H

T
t +Rt)

−1 is the
weight of the correction term by the gain matrix called
the Kalman gain matrix Kt and it is 0 ≤ Kt ≤ 1, which
adjusts the estimation process between the predicted
state and the measurements based on their uncertainties
in the correction step to minimize the estimation error.
The term et presents the measurement errors which are
also called innovations and for a sequence of {et}, t ≥ 1
this error has an expected value equal to zero and the
error sequences et are uncorrelated independent across
time steps [24].
The updated posterior covariance p̂t is expressed as:

P̂t = P̂t−1 + P̂t−1H
T
t {HtP̂t−1H

T
t +Rt}−1HtP̂t−1.

(14)
Summarizing the KF equations as:
• The posterior mean is

X̂t = X̂t−1 +Ktet, (15)



which gives the KF estimate of the state.
• The Kalman gain is

Kt = P̂t|t−1H
T
t (HtP̂t|t−1H

T
t +Rt)

−1. (16)

• The posterior covariance is

P̂t = P̂t|t−1 +KtHtP̂t|t−1, (17)

which gives the covariance of the KF state estimate.

III. EXAMPLE OF GAUSSIAN DYNAMIC LINEAR MODEL
AS THE UNIVARIATE RANDOM WALK PLUS NOISE MODEL

This section presents an example of a dynamic linear model
called the random walk plus noise model. Then we will
describe the recursive steps for computing the Kalman filter
algorithm where the assumptions of linearity and Gaussianity
are held. The random walk plus noise model [25], [26], also
called the local level model as presented in [24] and the steady
model as called in [27] is a simple polynomial model used to
represent a time series that has random steps influenced by the
assumed noise. This model is usually used in the case where
the rate of change in the process is stable or the system has
gradual drift with consideration of noisy measurements. The
random walk model is applied in many applications in natural
sciences such as anthropological research in [28], to estimate
the true level of the Nile river in [24], to model the stock prices
in [29]. The random walk plus noise model is appropriate for
a short time interval where the process has a clear trend where
changes such as persistent growth or decline are either absent
or limited. Consequently, the model may not be suitable for
a long-term behaviour estimate or high data variation where
the main objective is to capture the current level/state within
a short time frame. This model can be expressed and analysed
in the univariate case, in a simpler way.

The observation equation is

yt = xt + εt, εt ∼ N(0, σ2
ε), (18)

where, yt is the univariate observation, xt is the random
change in the level at time t and the εt is a measurement
random error at time t Gaussian distributed with zero mean
and covariance σ2

ε . The corresponding system equation is

xt = xt−1 + η
t
, η

t
∼ N(0, σ2

η), (19)

where, ηt is a random system disturbance at time t, Gaussian
distributed with zero mean and covariance σ2

η . The error com-
ponents {ε

t
} and {η

t
} for all t, are both independent within

them and between them. The dynamic linear representation of
the random walk plus noise has m = n = 1, Ft = 1, Ht = 1,
Rt = σ2

ε and Qt = σ2
η . This is the simple form of the model

and may contains extra terms such as the trend, expenditure
or seasonality according to the application of interest.

IV. KALMAN FILTER DERIVATIONS FOR THE RANDOM
WALK PLUS NOISE MODEL

Now we can illustrate the KF theory for the random
walk noise model in the above example using the Bayesian
approach.

• Initialize the state x0 with mean x̂0 and covariance p̂0.
• Define the posterior distribution for the random walk

noise model as π(xt−1|Dt−1) with expected value equal
to x̂t−1 and covariance equal to p̂t−1. Then:

π(xt−1|Dt−1) ∼ N(x̂t−1, p̂t−1). (20)

• Applying Bayes rule to estimate the posterior estimate of
the state xt we get:

π(xt|Dt) ∝ π(xt|Dt−1)π(yt|xt). (21)

To find the π(yt|xt) and π(xt|Dt−1) recall the system
and measurement equations of the random walk noise
model in equation (18) and equation (19). First, compute
the conditional mean and the covariance for the posterior
density π(xt−1|Dt−1) from the system equation (19) as:

E(xt|Dt−1) = E(xt−1 + ηt|Dt−1)

= E(xt−1|Dt−1) + E(ηt|Dt−1)︸ ︷︷ ︸
0

= x̂t−1.

V(xt|Dt−1) = V(xt−1 + ηt|Dt−1)

= V(xt|Dt−1) + V(ηt|Dt−1)

= p̂t−1 + σ2
η,

= rt.

(22)

Then the Gaussian probability distribution of the prior
density π(xt|Dt−1) is

π(xt|Dt−1) ∼ N(x̂t−1, rt),

π(xt|Dt−1) ∝ e−
1

2rt
(xt−x̂t−1)

2

.
(23)

Now find the probability distribution of the predictive
density for the observations π(yt|xt) from the observation
equation (18) as:

E(yt|xt) = E(xt + ϵt|xt),

= E(xt|xt) + E(ϵt|xt)︸ ︷︷ ︸
0

,

= xt,

V(yt|xt) = V(xt + ϵt|xt),

= V (xt|xt)︸ ︷︷ ︸
0

+V(ϵt|xt),

= σ2
ϵ .

(24)

Then the Gaussian probability distribution of the prior
density π(xt|Dt−1) is

π(yt|xt) ∼ N(xt, σ
2
ϵ )

π(yt|xt) ∝ e
− 1

2σ2
ϵ
(yt−xt)

2

.
(25)



Now substituting π(xt|Dt−1) and π(yt|xt) in the equa-
tion (21) we get:

π (xt | Dt) ∝ exp

{
−1

2

(yt − xt)
2

σ2
ε

+
(xt − x̂t−1)

2

rt

}
.

(26)
Taking the natural logarithm and multiplying both sides
of the equation (26) by -2, we get:

−2 lnπ (xt | Dt) ∝
(yt − xt)

2

σ2
ε

+
(xt − x̂t−1)

2

rt
, (27)

−2 lnπ (xt | Dt) ∝
y2t
σ2
ε

−2
ytxt

σ2
ε

+
x2
t

σ2
ε

+
x2
t

rt
−2

x̂t−1xt

rt
+
x2
t−1

rt
,

(28)

= constant+x2
t

(
1

σ2
ε

+
1

rt

)
−2

(
x̂t−1

rt
+

yt
σ2
ε

)
xt. (29)

Now put,

A1 =
1

σ2
ε

+
1

rt
and A2 =

x̂t−1

rt
+

yt
σ2
ε

. (30)

A1 =
σ2
ε + rt
σ2
εrt

= p̂−1
t ,

(31)

and

A2 =
x̂t−1

rt
+

yt
σ2
ε

+
x̂t−1

σ2
ε

− x̂t−1

σ2
ε

,

= x̂t−1

(
σ2
ε + rt
σ2
εrt

)
+

1

σ2
ε

(yt − x̂t−1) .

(32)

=
σ2
ε + rt
σ2
εrt

(
x̂t−1 +

(
rt

(σ2
ε + rt)

)
(yt − x̂t−1)

)
,

= p̂−1
t

(
x̂t−1 +

rt
(σ2

ε + rt)
(yt − x̂t−1)

)
,

= p̂−1
t x̂t,

(33)

where, x̂t is the mean posterior which is given by:

x̂t = x̂t−1 +
rt

(σ2
ε + rt)

(yt − x̂t−1) . (34)

Now, substitute the A1 and A2 values in the Eq. 29

−2 lnπ (xt | Dt) = constant+p−1
t x2

t −2p̂−1
t x̂txt. (35)

where the constant term does not contain the parameter
of interest.
After subtracting and adding the term p−1

t x̂2
t into equa-

tion (35), we will have

−2 lnπ (xt | Dt) ∝ p̂−1
t (xt − x̂t)

2, (36)

Thus,
π(xt|Dt) ∝ e−

1
2p̂t

(xt−x̂t). (37)

We can express the KF equations for the random walk
plus noise model as the following:
The updated mean is x̂t is

x̂t = x̂t−1 + kt(yt − x̂t−1). (38)

Fig. 2: The random walk model approach with different values
of the noise measurements covariance σ2

ϵ .

Fig. 3: The random walk model approach with different values
of the covariance noise system σ2

η .

The Kalman gain kt is

kt =
rt

σ2
ε + rt

. (39)

The updated covariance p̂t is

p̂t = σ2
εkt. (40)

We have seen how we obtained the updated posterior
PDF in a Gaussian distribution after successive iterations
through the tractable Bayesian approach, which makes
the KF algorithm an optimal solution for the linear
Gaussian problems. It is worth mentioning that the choice
between Bayesian and Frequentist approaches in the KF
derivations depends on the availability of prior knowledge
and the nature of the phenomena e.g. linear, nonlinear,
Gaussian, and non-Gaussian. The Bayesian approach is
often flexible in linear case and automatically capture
the uncertainty which is helpful for a wider range of
situations. But it requires the specification of prior distri-
butions which is unlikely in the frequentist methods.

V. SIMULATION RESULTS OF KALMAN FILTERING WITH
RANDOM WALK PLUS NOISE MODEL

In this section, we conduct a simulation over 30 iterations
that utilises arbitrary values to practically investigate the
effect of noise in the filtering and convergence processes. We
examine the noise in the system and the observations, along
with the behaviour of the Kalman gain kt and its implications



in the random walk plus noise model. The Kalman gains
stabilise the estimation process and mitigate the effect of noise
and disturbances in either the measurements or the system.
Thus tuning and understanding of these parameters is essential
to achieve good performance of the filter algorithm as also
mentioned in [5].

A. Understanding the Impact of Varying the Observation
Noise Variance on the Model

We examine the impact of different levels of uncertainty
in the observation noise on the accuracy and stability of
the system which could be stock prices, weather forecasting,
or any other measurable quantity. From Figure 2 even in
the absence of covariance σ2

ϵ = 0 or small value σ2
ϵ =

0.001 the system responds to the changes and quantifies the
trend/random components with repeats quite regularly in its
behaviour over time. However, increasing the variance σ2

ϵ does
not have a significant impact on the model as we see the
σ2
ϵ = 1, 10 which means the small value of σ2

ϵ that added
it can be adequate.

B. Understanding the Impact of Varying the System Noise
Covariance on the Model

In this case, we assume the system is perfect with no error.
The model shows more sensitivity to the change of the system
variance σ2

η . From Figure 3 with the absence of the variance
and the small value the system remains constant over time
and the model will not be able to capture the patterns in
these values which may be the invalid case. In contrast, with
σ2
η =10, the model has a complex pattern which adds more

flexibility to capture a complex time series. Then, this suggests
the influence of the σ2

η is important and should be adjusted to
have appropriate predictive outcomes.

C. Understanding the Impact of Varying the Kalman Gain on
the Model

The Kalman gain kt fundamentally can be used to stabilize
the filter, to improve the initialization and determine the
level of confidence on the predicted state estimate versus the
available measurements since it is a ratio of the covariance
matrices of the measurement error and the state estimate
error. The Kalman gain kt ranges between 0 and 1 and then
gradually converges to a constant value in for convergence.
Otherwise, if the Kalman gain is not stable, then it indicates
improper initialization of error covariances leading to poor
performance of the filter. A Kalman gain value closer to 0
indicates that more weight is given to the predicted state
estimate, the uncertainty in the measurements is very high
and the updating process is primarily driven by the model.
Then, the estimates do not change from one step to the
next step meaning xt = xt−1. A Kalman gain value closer
to 1 indicates that more weight is given to the observed
measurement, and the update is primarily driven by the new
measurement information. The simulation evolves recursively
by applying the KF equations with fixed initial mean and
covariance as x0 = 10, p0 = 0.02.

Fig. 4: Kalman gain convergence with different values of σ2
ϵ

and fixed value σ2
η = 0.4.

Fig. 5: Variance pt trajectory that associated with variability
values of of σ2

ϵ .

We conducted a simulation of the KF to investigate the
Kalman gain trajectory with different values of covariance
σ2
ϵ as shown in Figure 4. A Kalman gain value for this case

presented in Figure 4 is approximately close to 1 with σ2
ϵ = 0

and 0.01 which quickly stabilises at t = 1 leading to the steady
state with reduced covariance estimate pt in Figure 5 with a
value between 0 and 0.000618. This means that the filter is
trying to make a balance between the predicted state and the
measurements which is a sign that the convergence to the true
state and kt gives more weight to the current measurement.
By dynamically adapting to these changing conditions, the
Kalman gain enhances the filter’s ability to accurately estimate
the true state. In Figure 6, we test the same range of σ2

η values
that were used in model 3 where we fixed the σ2

ϵ = 0.40.
We obtained a small Kalman gain for σ2

η = 0, 0.01 over
time which takes the value of kt = 0.020408 with variance
pt value approximately to 0.00816 as shown in Figure 7.
Moreover, the Kalman gain in approach to model 1 with σ2

η

=10 with the largest value of variance pt approximately equal
to 0.39 as shown in Figure 7. To conclude this simulation we
highlighted the behaviour of the Kalman gain and observed
the adaptability of the Kalman gain which is a key feature
that allows the KF to achieve accurate state estimation and
suggests where the filter can be adjusted. It’s important to note
that, through the visualization, the Kalman gain is influenced
by different factors such as the uncertainties in the process and
measurement noise and if we increase the noises will have a
non-stationary variance but the Kalman gain still might be able
to succeed in stabilizing the variance over time.



Fig. 6: Kalman gain convergence with different values of σ2
η

and fixed value σ2
ϵ = 0.40.

Fig. 7: Variance pt trajectory that associated with variability
values of of σ2

η .

VI. CONCLUSION

This paper presents the random walk plus noise model in the
univariate case with derived KF equations. The performances
of the model in the absence and presence of the uncertainties
are addressed and visualized. We show the random walk
plus noise model is capable of capturing irregularities and
jumps, but it needs further effort to adjust the variance values.
Understanding the Kalman Gain’s role in the Kalman filter
helps in solving complex problems. Furthermore, the Kalman
gain’s performance in different scenarios have been visualized
and aligned with the trajectories of the variance to minimize
the mean square error which is a useful indicator of how good
the filtering algorithm works. All The interpretations of the
underlying system are synthetic, in the future, we will use
the model to estimate real-time applications in epidemiology,
robotics, navigation, engineering/natural systems [30], [31].
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