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i 41 Abstract

Z 42  Objectives: Interpretations of the primate and human fossil record often rely on the
7

8 43  estimation of somatic dimensions from bony measures. Both somatic and skeletal
9

10 44  variation have been used to assess how primates respond to environmental change.

45  However, it is unclear how well skeletal variation matches and predicts soft tissue. Here,
15 46  we empirically test the relationship between tissues by comparing somatic and skeletal
17 47  measures using paired measures of pre- and post-mortem rhesus macaques from Cayo
48  Santiago, Puerto Rico.

22 49  Materials and Methods: Somatic measurements were matched with skeletal dimensions
24 50 from 105 rhesus macaque individuals to investigate paired signals of variation (i.e.,

26 51  coefficients of variation, sexual dimorphism) and bivariate codependence (reduced

29 52  maijor axis regression) in measures of: 1) limb length; 2) joint breadth; and 3) limb

31 53 circumference. Predictive models for the estimation of soft tissue dimensions from

33 54  skeletons were built from Ordinary Least Squares regressions.

55  Results: Somatic and skeletal measurements showed statistically equivalent coefficients
38 56  of variation and sexual dimorphism as well as high epiphyses-present OLS correlations
40 57 inlimb lengths (R2>0.78, 0.82), joint breadths (R2>0.74, 0.83) and, to a lesser extent,

42 58  limb circumference (R2>0.53, 0.68).

45 59  Conclusion: Skeletal measurements are good substitutions for somatic values based

47 60 on population signals of variation. OLS regressions indicate that skeletal correlates are
49 61 highly predictive of somatic dimensions. The protocols and regression equations

5o 62 established here provide a basis for reliable reconstruction of somatic dimension from

60 John Wiley & Sons, Inc.
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catarrhine fossils and validate our ability to compare or combine results of studies

based on population data of either hard or soft tissue proxies.

Key Words: Musculoskeletal, soft tissue reconstruction, catarrhine, body

proportions, morphometrics
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1. Introduction

Interpretation of the human and primate fossil record is challenged by the lack of soft
tissue information. Nevertheless, understanding soft tissue variation remains the
ultimate goal of many bioarchaeological (Havelkova, Villotte, Veleminsky, Polacek, &

Dobisikova, 2011; Hawkey & Merbs, 1995; Karakostis, Wallace, Konow, & Harvati,

John Wiley & Sons, Inc.
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i 86 2019; Molnar, Ahlstrom, & Leden, 2011; Villotte et al., 2010) and paleoanthropological

Z 87 (e.g., Bryant & Seymour, 1990; Eliot & Jungers, 2000) studies, particularly for soft tissue
7

8 88 features that relate to individual evolutionary fitness. Size (e.g., Smith and Jungers,

9

1? 89  1997; Zihiman and McFarland, 2000; Turcotte et al., 2022a), body proportions (e.g.,

:; 90 Shapiro and Raichlen, 2006; Druelle et al. 2018; Ruff et al., in press), and body

14

15 91 composition [such as degree of body fat, and muscular development] (e.g., Kuzawa,

17 92  1998; Steegmann et al., 2002; Fietz et al. 2003; Muroyama et al., 2006; Dittus, 2013;
93  Zihlman and Bolter, 2015) are all important variables for understanding individual and
22 94  population life history strategies. Given the importance of such soft tissue parameters to
24 95 understanding ecological niche and behaviors, numerous studies have used skeletal

26 96 measures to try to reconstruct body mass (e.g., Demes and Jungers, 1993; Aiello &

29 97  Wood, 1994; Grabowski, Hatala, Jungers, & Richmond, 2015; Jungers, Grabowski,

31 98 Hatala, & Richmond, 2016; McHenry, 1992; Ruff et al., 2012; Perry et al. 2018) and the
33 99 architecture and size of specific muscles from bone (e.g., Antén, 1996; Antén, 1999;
100  Anton 2000; Schlecht, 2012; Rabey et al., 2015; Turcotte et al., 2019; Wallace et al.,

38 101 2017, Turcotte et al. 2022b). However, the precise relationship between soft tissue

40 102 characters of interest and skeletal metrics remains poorly understood in part because

fé 103 few datasets include both soft and hard tissue variables from the same individuals.
44
45 104 Additionally, despite the interest of many investigators in understanding the
46

47 105 relationship between physical outcomes for individuals and their environmental
49 106  contexts, skeletal and somatic data collection protocols are not usually developed with
s 107  the primary aim of comparison across subject types (i.e., skeletal vs soft tissue). For

54 108 example, primatological studies interested in assessing the influence of diet on growth

60 John Wiley & Sons, Inc.
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(e.g., Turnquist and Kessler, 1989; Turner et al. 1997; Anapol et al., 2005) often collect
somatic data from trapped and released animals. However, the ways in which somatic
measures are taken are not easily translatable into skeletal measures because the
dimensions taken in living animals or humans routinely cross joints, include multiple
bones, and/or lack reference to a bony landmark (but see Anton & Snodgrass, 2009;
Turner et al., 2018). As a result, although studies of skeletons, human volunteers, and
trapped and released nonhuman primates often have similar goals and employ broadly
similar measures to estimate frame size and proportions, it is unclear how well these
different kinds of measures (skeletal vs. soft tissue) map onto one another. Even those
protocols that are developed with an eye to comparability across subject type (skeleton
vs. fully body; e.g., Anton & Snodgrass, 2009; Turner et al., 2018) have seen little
testing or ‘ground-truthing’ of the relationship between paired variables of the same
individual (but see Fernandez-Duque, 2011) or assessment of whether signals from
these matched proxies provide similar interpretations of a population (see Anton et al.,
2016). That is, we know neither the extent to which population variation in a somatic
variable (such as limb length) matches population variation of its paired skeletal
measure nor how well the matched-variables (skeletal and fleshed) predict one another
in the same individual. While there is good reason to believe that the two should be
strongly related, we do not have any direct evidence quantifying this relationship.

As a result, comparing or combining data between studies that use living animals
such as those acquired during trap/release interventions (e.g., Turner et al. 1997;
Anapol et al., 2005) and those that use skeletal specimens remains a speculative

process (see Anton et al., 2016). Primatologists and osteologists frequently aim to

John Wiley & Sons, Inc.
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address the same kinds of questions regarding how populations respond to marginal vs
plentiful environments, changes in climate, predation, resources and more, but rarely
combine soft and hard tissue datasets. Despite the advantages that could accrue by
being able to combine somatic data acquired from living animals during trap/release
interventions in which a wealth of contextual data are known but temporal and
geographic spread are limited, with skeletal data acquired from museum collections that
sample geographically, temporally, and numerically more abundant individuals, datasets
are rarely combined at least in part because we have little information as to how the two
datasets perform relative to one another in known individuals. Our ultimate aim is to
provide a firmer foundation for the combination of such datasets in order to more
robustly approach questions of the physical relationship between outcomes and
environments. The data analyzed here are uniquely suited to answering these core
questions about tissue variation because we measured the somatic anatomy of living
animals and then with the bony anatomy measured after the same individuals have
died.

Limb lengths, breadths and joint dimensions are popular metrics for the
estimation of frame size and dimorphism in skeletal, human biological and
primatological studies alike. While body proportions and mass can be directly measured
in living humans and non-human primates, skeletal studies rely on bone proxies of the
same. For example, paleoanthropological studies use skeletal length and joint
dimensions to estimate body size (e.g., Grabowski et al., 2015; Hartwig-Scherer &
Martin, 1992; McHenry, 1992; Pontzer, 2012; Ruff, Trinkaus, & Holliday, 1997; Ruff and

Niskanen 2018; Holliday et al. 2018; Cunningham et al. 2018), whereas human

John Wiley & Sons, Inc.
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biologists and primatologists use limb length, circumference and knee breadth for the
same purpose (e.g., Jungers 1984, 1985; Pomeroy et al., 2012; Turner et al., 2016;
Anapol, 2005). Aspects of behavior have also been estimated through long bone
circumference or cross-sectional properties under the premise that bone adapts
structurally to load throughout one’s lifetime both on a cellular level and in terms of
gross morphology by increasing or redistributing cortical bone tissue, trabeculae or
bone mineral density (Burr, Robling, & Turner, 2002; Chamay & Tschantz, 1972; Enlow,
1962; Judex & Zernicke, 2000; Pearson & Lieberman, 2004; Pontzer et al., 2006; Rabey
et al., 2015; C. Ruff, Holt, & Trinkaus, 2006; Ryan & Shaw, 2015). And it is the case that
there exists a general relationship between bone shape and use (e.g., Shaw, 2011), as
well as interspecific trends for tissue types such as muscle volume (Muchlinski,
Snodgrass, & Terranova, 2012). Given the importance of these types of data, it is
essential to understand the relationship between measures of soft tissues and bones
particularly for the long bones, which are more frequently preserved in the fossil record.
Here we address some of these questions by using a data protocol specifically
designed to closely match somatic and skeletal measures and then compare these
measures within the same individual. This design allows us to ‘ground-truth’ the
relationship of soft-tissue morphology and bone correlates. To do so we use a unique
sample of individuals from a free-ranging rhesus macaque population of Cayo Santiago,
Puerto Rico. This project has two aims, to assess: i) the comparability of paired somatic
and skeletal measures, and ii) the prediction of soft tissue states from skeletal
measures. We specifically address the relationship between skeletal length and somatic

limb length, skeletal joint breadths and living joint breadths, and long bone

John Wiley & Sons, Inc.
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i 178  circumference and somatic limb circumference. The relationship between these

5 . . . .

6 179 measures and body mass is explored elsewhere (Turcotte et al., in review). The metrics
7

8 180 assessed here represent an array of features of interest to the paleoanthropology and

9

10 181  bioarchaeology communities, with varying degrees of relatedness to soft tissue

182  condition. Because somatic limb circumference includes muscle, skin and fat volume we
15 183  anticipate that their correlation with skeletal morphology will be weaker than for other

17 184 somatic variables. Quantifying the relationships between skeletal and somatic

185 dimensions will inform our ability to infer soft tissue states from primate bone, which can
5> 186  then be used for reference in future bioarchaeological or paleoanthropological studies.
24 187

26 183 2. Materials and Methods

29 189 2.1 Samples and Measurement Protocols

31 190 We compare skeletal dimensions with soft tissue measures from the same individual

33 191 using a model primate. The specimens included in this study are individually identifiable
192  Macaca mulatta of known age and sex from the free-ranging colony on the island of

38 193 Cayo Santiago, Puerto Rico, managed by the Caribbean Primate Research Center

40 194 (CPRC) of the University of Puerto Rico. These animals are provisioned by the CPRC
195  with fresh water and monkey chow, but also forage on naturally occurring vegetation.

45 196  While these do not precisely mimic circumstances of wild macaques, the animals have
47 197 been shown to follow broadly similar patterns of behavioral and somatic development as
49 198  wild populations. The rhesus macaques of Cayo Santiago are only partially provisioned
55 199  and therefore still need to search for food (Widdig et al. 2016), though they do not

54 200 experience risk from predators (Maestripieri and Hoffman, 2012). Further, the Cayo

60 John Wiley & Sons, Inc.
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Santiago macaques exhibit physical similarities to their wild counterparts, in terms of
lifespan (Maestripieri and Hoffman, 2012) as well as body weight and size dimorphism
(Turcotte et al., 2022). This colony represents an unprecedented opportunity for
collection of both somatic and skeletal data from the same time in the individual’s life.
This population is likely the best, large scale sample that we can expect from a non-
captive source as efforts such as these for wild animals offer important insights but are
likely to be limited in the number of individuals available and to somatic and skeletal
metrics taken at different points during an animal’s life (see Fernandez-Duque, 2011 for
an example of comparisons of skeletal and lifetime measures in owl monkeys). As such,
the Cayo Santiago rhesus macaques represent an important middle ground between
much rarer wild specimens and more accessible captive animals, which are less
physically representative of primates in naturalistic settings due to more substantive
differences in diet and physical activity.

Our sample consists of 105 individuals from a single social group (HH), which
was removed from the island in 2016 as part of a CPRC program of population
management (Hernandez-Pacheco 2016). This number excludes one monkey whose
pathological conditions had resulted in emaciation. The HH sample includes both sexes
and all ages except 2-year-olds, who were integrated into the CPRC’s Specific
Pathogen Free colony, as per CPRC’s protocols.

A large suite of somatometric measurements were taken on each HH animal as
part of the Cayo Biobank Research Unit (CBRU). Soft tissue data collection was
undertaken on sedated animals immediately prior to euthanasia. Following euthanasia

by perfusion each animal was necropsied by CPRC staff and cadavers were macerated

John Wiley & Sons, Inc.
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1
2

i 224  using a passive, warm-water method. The skeletal remains were measured and are

Z 225 housed at the NYU-CPRC Cayo Santiago Skeletal Collection, at New York University.
7

8 226 In an effort to reconstruct living morphology from bone, three groups of soft

9

10 227 tissue measurements are compared here with paired skeletal correlates. These

228 measurement groups include: 1) limb lengths; 2) joint breadths; and 3) limb

15 229  circumferences. Antemortem somatic limb lengths and circumferences were taken via
17 230 measuring tape, while joint breadths were measured with digital calipers. Skeletal long
231  bone lengths were collected using a standard osteometric board. Joint breadths were
52 232 measured with calipers, and circumference measurements were quantified via

24 233 measuring tape. Importantly, the definitions of these soft tissue measurements aim to
26 734 reflect those commonly used across subdisciplines of human biology and primatology
29 235 adapted in order to relate to standard osteometry. Our protocol builds from and adapts
31 236 that begun by the Bones and Behavior Working Group (Anton & Snodgrass, 2009). Our
33 237 full data protocol is presented in Table 1. The somatometric protocol was approved by
238 the Institutional Animal Care and Use Committee of New York University and of the

38 239 University of Puerto Rico Medical Sciences Campus.

40 240 Because the monkeys range in age from very young individuals early in their
241  growth to full adults, some skeletal variables were measured differently in younger and
45 242 olderindividuals and these groups were therefore treated separately in

47 243 analysis. Animals below 2 years of age (pooled: n=22; males: n=10; females: n=12)

49 244  were categorized as "Epiphyses-Absent" (EA) due to the lack of epiphyseal fusion in

5 245  these specimens, coupled with the substantial amount of soft tissue present in life

54 246 between the epiphyses and metaphyses in these individuals, the relatively uniform

60 John Wiley & Sons, Inc.
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shape of these epiphyses at young ages that sometimes rendered their assignation to
limb element uncertain, and the small size of the epiphyses which sometimes led to
their loss during skeletal maceration. The remaining (pooled: n=83; males: n=31;
females: n=52) animals above 2 years of age were categorized as “Epiphyses-Present”
(EP) because, although some individuals had not achieved epiphyseal fusion,
epiphyses were typically well developed and preserved. As a result, these epiphyses
could be refit onto the relevant skeletal element and would have been separated from
the shaft by relatively little soft tissue in life.

We measured limb length in the EA animals as the maximum length of the
skeletal shaft. Lengths in EP animals were measured with epiphyses attached. For
similar reasons, skeletal joint breadths were taken only for the EP animals. EA and EP

groups were considered separately for the construction of RMA and OLS regressions.

3. Analyses
3.1 The comparability of paired somatic and skeletal measures
Descriptive statistics (mean = SD) for limb lengths, joint breadths, and limb
circumferences are provided in Table 2, subdivided by age and sex. Statistical analyses
in this study were conducted in R version 4.2.2 (R Core Team, 2021) using the
packages Imodel2 (Legendre, 2018) and cvequality (Marwick and Krishnamoorthy,
2019); figures were produced using R package ggplot2 (Wickham, 2016).

Coefficients of variation (CV) were calculated for both somatic and skeletal
variables to evaluate the extent to which somatic and skeletal measures produce similar

estimates of variation. The CV is a powerful tool for the direct comparison of variation

John Wiley & Sons, Inc.
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1
2

i 270  between samples that may have different means (Feltz and Miller, 1996;

Z 271 Krishnamoorthy and Lee, 2014). Because our comparisons had equal sample sizes, we
7

8 272  used the Feltz and Miller (1996) asymptotic test for the equality of CV, using the R

9

10 273 package cvequality (Marwick and Krishnamoorthy, 2019).
274 Sexual dimorphism was calculated as the ratio of the male mean over the female
15 275 mean. Differences in sexual dimorphism ratio between the paired soft and hard

17 276 measures was assessed using tests for the equality of ratios developed by Relethford

;g 277 and Hodges (1985).

21

5 278 Reduced Major Axis (RMA) regressions were used to investigate the biological
23

24 279 codependence of variables (i.e., somatic and skeletal measures). In contrast to least

26 280 squares regression, RMA allows for a greater degree of uncertainty in both X and Y

29 281  variables, and may therefore more realistically model error distributions in biological

31 282  comparisons (Smith, 2009; Forstmeier, 2011; Legendre and Legendre, 2012; Sokal and
33 283 Rohlf, 1981). In this case, RMA was selected in order to understand the non-directional

284  relationship between X and Y, where variable identity (i.e., either the soft or hard tissue

38 285 metric) is immaterial (Smith, 2009; Sjgvold, 1990).

40 286

287 3.2 The prediction of soft tissue states from skeletal measures

45 288 Ordinary Least Squares (OLS) regressions were used to compare each somatic

47 289 characteristic (limb length, joint breadth, limb circumference) with its bony correlate, and
49 290 to produce predictive equations from which the living morphology could be

s; 291 reconstructed from the skeletal element. In this analysis, OLS regression was selected

54 292 in order to understand the directional relationship of the dependent variable Y (soft

60 John Wiley & Sons, Inc.
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tissue) as a consequence of X (bony correlate) (Smith, 2009). Further, tests for the
equality of slopes (see Relethford and Hodges, 1985) were used to compare
regressions in the male and female subgroups to assess whether there were
differences in sex-specific scaling relationships. We report the coefficient of
determination (R?) of each OLS regression as a measure of the strength of the

relationship between each paired measure.

Results

4.1 The comparability of paired somatic and skeletal measures

Descriptive statistics (mean £ SD) of paired measures presented by age and sex (Table
2) show that, as expected, the soft tissue measurements were either larger than their
paired skeletal measurements or nearly equivalent. The magnitude of difference
between each paired measure was greatest in comparisons of the Epiphyses-Present
(EP) age group, specifically in terms of limb circumference.

Males exhibited a greater CV for each measure than females in every
comparison, except somatic upper arm circumference (Male CV: 9.69; Female CV:
10.68) (Table 3). Directional patterns by age were dependent on measurement type.
Observed length measures indicated greater CVs in the pooled Epiphyses-Absent (EA)
group rather than the EP group (e.g., Upper Arm Length, somatic — EA: 10.98, EP:
10.15; skeletal — EA: 11.64, EP: 9.24). The inverse was true of the circumference
measures (e.g., Upper Arm Circumference, somatic — EA: 10.77, EP: 14.51; skeletal —

EA: 8.66, EP: 12.64). No EA results are reported for joint breadth. Within each paired

John Wiley & Sons, Inc.
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1
2

i 315 set of somatic and skeletal measures, CVs did not significantly differ in any comparison
5

6 316 (Table 3).

7

8 317 The ratio of sexual dimorphism was low for each measurement (Table

9

10 318 4). Femoral knee joint breadth exhibited the lowest dimorphism (somatic: 0.965;
319  skeletal: 0.965) and upper arm circumference exhibited the highest (somatic: 1.153;
15 320 skeletal: 1.088). Additionally, t-tests for the equality of ratios indicated no significant

17 321 differences in dimorphism between any soft tissue measure and their skeletal

19

o 322 correlates.

21 . : : .
5 323 RMA slopes for the pooled comparisons describe an approximately isometric
23

24 324 relationship between somatic and skeletal measures in both the EA and EP samples,
26 335  with more variability in the former. EA slopes ranged from m=0.83 (Femur/Upper Leg
29 326  Length) to m=1.48 (Femur/Upper Leg Circumference) (Table 5). EP slopes ranged from

31 327 m=0.92 (Elbow Breadth) to m=1.23 (Femur/Upper Leg Circumference) (Table 6).

33 328

34

gg 329 4.2 Prediction of soft tissue states from skeletal measures
37

38 330 Ordinary least squares (OLS) regression equations for reconstructing soft tissue

40 331 dimensions from bony correlates are presented in Figure 1 and Tables 5 (EA) and 6

42 33 (EP).

45 333 Skeletal and somatic variables were well correlated with one another for all limb
47 334 lengths in the EP group. OLS fits demonstrate a coefficient of determination above

49 335 R2=0.78 for all EP comparisons, and an R2=0.71 for all EA somatic-skeletal length

s 336 comparisons (Fig. 1; Table 5, 6). Measures of joint breadth also exhibited relatively tight

54 337 correlations in the EP group (Elbow: R?=0.79; Knee (F): R?=0.74; Knee (T): R2=0.83)

60 John Wiley & Sons, Inc.
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(Table 6). Correlations among limb circumference measures were less strong. In the EA
group, the pooled sex OLS regressions were very low (Upper Arm: R2=0.37; Upper Leg:
R2=0.41). In both the EA and EP groups, regressions built from male data exhibited
higher coefficients of determination than those built from female data. The only
exception to this observation was the Upper Leg Circumference in the EP group, where
they were nearly equivalent (Male: R2=0.50; Female: R2=0.51) (Table 4).

Additionally, tests for the equality of slopes performed between the EP male and
female datasets showed that the scaling relationship between soft and hard tissues
among sexes was equivalent except in the cases of 1) upper leg length and 2) tibial
knee breadth (Table 7). In the former example, the difference in slope between somatic
dimension and skeletal proxy was greater in males than in females (Male: m=1.14;
Female: m=0.91). In the latter, the slope difference was greater in females (Male:

m=0.69; Female: m=0.95).

Discussion

Paired somatic and skeletal measurements exhibit similar population level signals. As a
result, skeletal measures can be confidently used to make predictions about soft tissue
dimensions in fossil remains. We found high confidence of fit in all pooled comparisons
of somatic dimension with bony correlates in limb length and limb circumference, and
moderate fits for joint breadth. Each somatic measure exhibited a similar range of
variability (CV) relative to its paired skeletal measure, and no differences in sexual
dimorphism. The hypothesis that measures of limb circumference would exhibit a

weaker codependent relationship, as the somatic measure involves a comparatively
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greater proportion of soft tissue, was supported in the EP group. Coefficients of
variation for the limb circumference measures, both somatic and skeletal, approximated
those of the length measures. In both the length and circumference measures, the
somatic data exhibits higher coefficients of variation than the skeletal correlates.

In contrast, the correlation percentages for circumference are lower than those
for limb length and joint breadth. The circumference measures are characterized by a
greater degree of soft tissue dimension relative to limb lengths and joint breadths, which
may be the cause of the reduced coefficients of determination. In the same way,
regressions built from female data were found to exhibit weaker correlations relative to
regressions built from male data. This dichotomy is possibly the result of body
composition, where females tend to have a greater proportion of fat tissue which has a
more tenuous association with bone than the muscle tissue typical of males.

Rhesus macaques exhibit a moderate degree of sexual body size dimorphism
among primates (O’Higgins & Collard, 2002; Plavcan, 2004; Turnquist & Kessler, 1989),
even though other closely related species within Papionini, such as mandrills and some
species of baboons, are extremely dimorphic (Elton & Dunn, 2020; Plavcan, 2004;
Setchell, Lee, Wickings, & Dixson, 2001). Additionally, as in primates generally, sexual
dimorphism in rhesus macaque body composition usually translates to a greater
proportion of fat in females and lean body mass in males (Hudson, Baum, Frye,
Roecker, & Kemnitz, 2013; McFarland, 1997). Because of the global and tissue-specific
sex differences in size, we expected that considering the sexes separately would
improve the predictive value of the regressions. Indeed, doing so may improve the

accuracy of each prediction if the unknown specimen is of known sex. In each skeletal ~
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somatic comparison, CVs were smaller in the female-only dataset but larger in the
male-only dataset compared to the pooled dataset, possibly due to a greater degree of
soft tissue in males. Regressions of separate sexes yielded fits similar to the pooled
value. Only humerus epicondylar breadth differed substantively, where the pooled value
and individual male value were significantly stronger than the female OLS fit.

Soft tissue quantity and proportion is variable both over an individual’s lifetime
and across species (Kiliaridis et al., 1988; Muchlinski et al., 2012; Saito et al., 2002;
Taylor et al., 2006). Previous studies have shown that soft tissue reconstruction
equations, as for example those for body mass (Grabowski et al., 2015), must use a
source population similar in composition to the target species. By similar logic, the
equations from this dataset are most directly relevant to fossil macaques (Alba et al.,
2016; Delson, 1996; Rook & O’Higgins, 2005; Shearer & Delson, 2012) and to fossils
both within Papionini (Harris, Leakey, & Cerling, 2003; Jablonski & Frost, 2010) and
perhaps even more generally among cercopithecoids (Miller et al., 2009; Rossie,
Gilbert, & Hill, 2013; Suwa et al., 2015) depending on absolute body size and body size
dimorphism. More sexually dimorphic groups such as baboons and mandrills may also
differ in key components of development or allometry, all of which may influence how
the specimen’s somatic condition is reconstructed. While the rhesus macaque may not
be an appropriate model for mandrill body composition, this sample may approximate
the tissue proportions found in species like the Kinda baboon — the smallest and least
sexually dimorphic of the baboons (Petersdorf et al., 2019; Singleton et al., 2017).

Further, other species of primates exhibit significant soft tissue deposits that

could weaken the correlation between hard and soft tissue measures, such as the facial

John Wiley & Sons, Inc.



Page 27 of 47

oNOYTULT B WN =

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

American Journal of Physical Anthropology

flanges of male orangutans (Zihiman et al., 2011; Zwick et al., 2018) or nasal stripe of
mandrills (Wickings and Dixson, 1992). These structures complicate reconstructions of
extinct animals where such deposits may have occurred. As new fossils are unearthed,
it has become even more important to establish soft-hard tissue relationships in extant
species in order to better understand the somatic condition of these fossil specimens.

Of more global interest, using this population we demonstrate the strong
correlation between living somatic morphologies and their skeletal correlates when the
two are constructed with an aim of comparing across data types. These are measures
of substantive interest to biological anthropologists interested in primate biology and soft
tissue reconstruction. Several of the measures assessed in this study are those
predicted to have a strong correlation between skeletal and soft tissue dimension,
where there is typically little soft tissue added in that dimension (e.g., length). That said,
because long bones are often the most numerous skeletal elements found at fossil
sites, understanding variation in these elements is particularly crucial.

Our results provide information on the relationships between skeletal and
somatic measures and provide the basis for reliably reconstructing important soft tissue
states from cercopithecoid fossil material. Additionally, the comparability of population
level signals (CV; dimorphism) generated from skeletal and somatic proxies provides
greater assurance that the comparison of population data from living individuals with
those of skeletal samples is valid. It further suggests that population signals generated
by both types of data could be combined in analyses that are concerned with
understanding adaptation to the environment, potentially expanding the power of our

analyses. The paired somatic and skeletal measurements used here represent a unique
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430 and important feature of the Cayo Biobank Research Unit (CBRU), which allows for
431  direct comparison of skeletal features and the living morphology that

432  paleoanthropologists seek to reconstruct.

433
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Table 1: Descriptions of somatic and skeletal measurement showing alterations made from
established protocols.

Table 2: Descriptive statistics showing mean + SD for paired soft and hard tissue measures of
limb length, joint breadth and limb circumference in rhesus macaques.

Table 3: Coefficients of variation (CV) are reported for each somatic (S) and hard tissue (H)
variable in male (M), female (F) and pooled sex (Pooled) rhesus macaques. Pairwise tests for
the equality of CVs between soft and hard tissue measures demonstrate that each somatic-
skeletal pair exhibits similar amounts of variation.

Table 4: Sexual dimorphism ratios (male mean/female mean) are reported for each somatic (S)
and hard tissue (H) variable in rhesus macaques. Pairwise t-tests of ratios between soft and
hard tissue measures demonstrate that each somatic-skeletal pair exhibits similar degrees of
dimorphism.

Table 5: Epiphyses-Absent (EA) bivariate comparisons between each somatic measurement
and its skeletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA
regression equations are presented.

Table 6: Epiphyses-Present (EP) bivariate comparisons between each somatic measurement
and its skeletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA
regression equations are presented.

Table 7: Tests for the equality of slopes performed on male and female rhesus macaque OLS
regression results demonstrate that the scaling relationship between sexes is equivalent, except
in the case of upper leg length and knee breadth - tibia. Significant tests are marked in bold.

Supplementary Table 1: Raw data reported for each somatic and skeletal variable in each
individual. Monkey IDs are coded to a specific individual.

Fig. 1: Pooled group bivariate comparisons between each somatic measurement and its skeletal
correlate for limb lengths [A-D], limb circumference [E, F], and joint breadth [G-I] in rhesus
macaques. Solid lines represent the Ordinary Least Squares (OLS) regression with 95%
confidence intervals (shaded). A) Upper arm length, B) Forearm length, C) Upper leg length, D)
Lower leg length, E) Arm circumference, F) Leg Circumference, G) Elbow breadth, H) Knee
breadth - femur, 1) Knee breadth - tibia.
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coNOTULT D WN =

Male
Region R? OLS RMA R?

Upper Arm Length (mm) 0.8 y=0.84x+0.78 y=0.94x+0.38 0.78
Forearm Length (mm) 0.81 y=0095x+0.44 y=1.06x-0.01 0.8
Upper Leg Length (mm) 0.88 y=0.77x+1.06 y=0.82x+0.85 0.62

Lower Leg Length (mm) 0.81 y=0.85x+0.77 y=0.95x+0.38 0.51

Upper Arm Circumference
(mm)

Upper Leg Circumference
(mm)

0.63 y=0.75x+2.07 y=094x+153 0.25

0.72  y=111x+1.19 y=131x+0.61 0.15

Table 5: Epiphyses-Absent (EA) bivariate comparisons between each somatic measurement and its sk
equations are |

John Wiley & Sons, Inc.



coOoNOTULT D WN =

Female
OLS

y=1.18x-0.56
y=0.81x+1.03
y=0.70x + 1.35
y=0.89x + 0.62
y =0.76x + 2.06

y = 0.68x +2.43

presented.

American Journal of Physical Anthropology

RMA
y=1.33x-1.18
y=0.91x + 0.63
y =0.89x +0.57
y=1.25x-0. 87
y=151x-0.02
y=1.74x - 0.63

R2
0.73
0.79
0.81
0.71
0.37

0.41

Pooled
OLS RMA

y=0.87x +0.69 y=1.06x - 0.09
y=0.89x +0.71 y=1.01x +0.19
y=0.74x + 1.18 y=0.83x +0.83
y=0.86x+0.75 y=1.02x +0.10
y=0.72x +2.15 y=1.18x +0.88

y=0.95+1.64 y=148x+0.12

celetal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA regression

John Wiley & Sons, Inc.
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Male
Region R? OLS RMA R?

Upper Arm Length (mm) 0.87 y=1.04x-0.13 y=1.11x-0.49 0.70

Forearm Length (mm) 0.81 y=091x+0.59 y=1.01x+0.08 0.58

coNOTULT D WN =

10 Upper Leg Length (mm) 0.90 y=1.14x-0.72 y=1.20x-1.03 0.66
Lower Leg Length (mm) 0.83 y=098x+0.15 y=1.08x-0.32 0.71
15 Elbow Breadth (mm) 0.83 y=0.71x+1.12 y=0.78x + 0.88 0.59
17 Knee Breadth (F) (mm) 0.63 y=086x+059 y=1.09x-0.17 0.72

20 Knee Breadth (T) (mm) 0.83 y=0.69x+1.20 y=0.76x+ 0.98 0.82

Upper Arm Circumference
23 (mm)
24 Upper Leg Circumference
25 (mm)

071 y=0.88x+189 y=1.05x+131 056

050 y=090x+202 y=1.27x+0.64 0.51

28 Table 6: Epiphyses-Present (EP) bivariate comparisons between each somatic measurement and its skeleta
29 are prese

John Wiley & Sons, Inc.
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Female
OLS

y=0.97x +0.21
y=0.79x + 1.18
y=0.91x +0.47
y=1.08x - 0.39
y=0.70x + 1.09
y=0.97x +0.24
y=0.95x +0.32
y=0.78x +2.18

y=0.84x +2.23

1 correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA regression equations

:nted.

American Journal of Physical Anthropology

RMA
y=1.16x - 0.73

y=1.03x - 0.04
y=1.11-0.58
y=1.29x-1.41
y=091x+0.42
y=1.14x - 0.33
y =1.04x + 0.01
y=1.04x + 1.26

y=1.18x+ 1.00

R2
0.82
0.78
0.86
0.82
0.79
0.74
0.83
0.68

0.53

Pooled
OLS

y=0.99x + 0.10
y=0.92x + 0.52
y=1.11x - 0.55
y=1.04x-0.19
y=0.82x +0.74
y=0.93x +0.37
y=0.88x + 0.56
y=0.92x + 1.71

y =0.90 +2.00

John Wiley & Sons, Inc.

RMA
y=1.10x - 0.42

y=1.04x - 0.08
y=1.20x-1.00
y=1.15-0.75
y=0.92x +0.39
y=1.07x-0.12
y=10.96x + 0.29
y=1.12x+1.01

y=1.23x+0.79
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Region
Upper Arm Length (mm)

Forearm Length (mm)
Upper Leg Length (mm)
Lower Leg Length (mm)

Elbow Breadth (mm)
Knee Breadth (F) (mm)
Knee Breadth (T) (mm)

pper Arm Circumference (mn

Ipper Leg Circumference (mmn

Std Error

<0.001

<0.001

<0.001

<0.001

0.004

0.005

0.003

0.004

0.005

t df

-0.574

-0.967

-2.049

0.827

-0.06

0.726

3.041

-0.739

-0.316

80

80

80

80

79

80

80

80

79

American Journal of Physical Anthropology

p-value

0.568

0.336

0.044

0.411

0.952

0.470

0.003

0.462

0.753

Table 7: Tests for the equality of slopes performed on male and female
rhesus macaque OLS regression results demonstrate that the scaling
relationship between sexes is equivalent, except in the case of upper leg
length and knee breadth - tibia. Significant tests are marked in bold.
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Upper Arm Length (Logimm])

Humerus Length (Log(mmil

Lower Leg Length (Logimm))

Forearm Length (Logimmi}

Ulna Length (Logimmi)

Elbow Breadth (Logimm))

UpperLeg Length (Logimm))

Knee Breadth (F) (Logimm)

Femur Length (Log{mm))

Tibia Length {Log(mm))

Knee Breadth (T) (Logimmi]

Upper Arm Circumference {Log{mm))

Tibial Plateau Breadth (Logimmil

Fig. 1: Pooled group bivariate comparisons between each somatic measurement and its skeletal correlate for
limb lengths [A-D], limb circumference [E, F], and joint breadth [G-I] in rhesus macaques. Solid lines
represent the Ordinary Least Squares (OLS) regression with 95% confidence intervals (shaded). A) Upper
arm length, B) Forearm length, C) Upper leg length, D) Lower leg length, E) Arm circumference, F) Leg

Humerus Midshaft Circumference (Log{mmi)

Femur Bicondylar Breadth (Log(mm})

UpperLeg Circumference (Logimm))

" )
Femur Midshaft Circumference (Log(mmi)

Circumference, G) Elbow breadth, H) Knee breadth - femur, I) Knee breadth - tibia.
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