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41 Abstract

42 Objectives: Interpretations of the primate and human fossil record often rely on the 

43 estimation of somatic dimensions from bony measures. Both somatic and skeletal 

44 variation have been used to assess how primates respond to environmental change. 

45 However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, 

46 we empirically test the relationship between tissues by comparing somatic and skeletal 

47 measures using paired measures of pre- and post-mortem rhesus macaques from Cayo 

48 Santiago, Puerto Rico.

49 Materials and Methods: Somatic measurements were matched with skeletal dimensions 

50 from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., 

51 coefficients of variation, sexual dimorphism) and bivariate codependence (reduced 

52 major axis regression) in measures of: 1) limb length; 2) joint breadth; and 3) limb 

53 circumference. Predictive models for the estimation of soft tissue dimensions from 

54 skeletons were built from Ordinary Least Squares regressions.

55 Results: Somatic and skeletal measurements showed statistically equivalent coefficients 

56 of variation and sexual dimorphism as well as high epiphyses-present OLS correlations 

57 in limb lengths (R2>0.78, 0.82), joint breadths (R2>0.74, 0.83) and, to a lesser extent, 

58 limb circumference (R2>0.53, 0.68).

59 Conclusion:  Skeletal measurements are good substitutions for somatic values based 

60 on population signals of variation. OLS regressions indicate that skeletal correlates are 

61 highly predictive of somatic dimensions. The protocols and regression equations 

62 established here provide a basis for reliable reconstruction of somatic dimension from 
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63 catarrhine fossils and validate our ability to compare or combine results of studies 

64 based on population data of either hard or soft tissue proxies.

65  

66 Key Words: Musculoskeletal, soft tissue reconstruction, catarrhine, body 

67 proportions, morphometrics
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80

81 1. Introduction

82 Interpretation of the human and primate fossil record is challenged by the lack of soft 

83 tissue information. Nevertheless, understanding soft tissue variation remains the 

84 ultimate goal of many bioarchaeological  (Havelková, Villotte, Velemínský, Poláček, & 

85 Dobisíková, 2011; Hawkey & Merbs, 1995; Karakostis, Wallace, Konow, & Harvati, 
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86 2019; Molnar, Ahlstrom, & Leden, 2011; Villotte et al., 2010) and paleoanthropological 

87 (e.g., Bryant & Seymour, 1990; Eliot & Jungers, 2000) studies, particularly for soft tissue 

88 features that relate to individual evolutionary fitness. Size (e.g., Smith and Jungers, 

89 1997; Zihlman and McFarland, 2000; Turcotte et al., 2022a), body proportions (e.g., 

90 Shapiro and Raichlen, 2006; Druelle et al. 2018; Ruff et al., in press), and body 

91 composition [such as degree of body fat, and muscular development] (e.g., Kuzawa, 

92 1998; Steegmann et al., 2002; Fietz et al. 2003; Muroyama et al., 2006; Dittus, 2013; 

93 Zihlman and Bolter, 2015) are all important variables for understanding individual and 

94 population life history strategies. Given the importance of such soft tissue parameters to 

95 understanding ecological niche and behaviors, numerous studies have used skeletal 

96 measures to try to reconstruct body mass (e.g., Demes and Jungers, 1993; Aiello & 

97 Wood, 1994; Grabowski, Hatala, Jungers, & Richmond, 2015; Jungers, Grabowski, 

98 Hatala, & Richmond, 2016; McHenry, 1992; Ruff et al., 2012; Perry et al. 2018) and the 

99 architecture and size of specific muscles from bone (e.g., Antón, 1996; Antón, 1999; 

100 Antón 2000; Schlecht, 2012; Rabey et al., 2015; Turcotte et al., 2019; Wallace et al., 

101 2017, Turcotte et al. 2022b). However, the precise relationship between soft tissue 

102 characters of interest and skeletal metrics remains poorly understood in part because 

103 few datasets include both soft and hard tissue variables from the same individuals.

104 Additionally, despite the interest of many investigators in understanding the 

105 relationship between physical outcomes for individuals and their environmental 

106 contexts, skeletal and somatic data collection protocols are not usually developed with 

107 the primary aim of comparison across subject types (i.e., skeletal vs soft tissue).  For 

108 example, primatological studies interested in assessing the influence of diet on growth 
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109 (e.g., Turnquist and Kessler, 1989; Turner et al. 1997; Anapol et al., 2005) often collect 

110 somatic data from trapped and released animals. However, the ways in which somatic 

111 measures are taken are not easily translatable into skeletal measures because the 

112 dimensions taken in living animals or humans routinely cross joints, include multiple 

113 bones, and/or lack reference to a bony landmark (but see Antón & Snodgrass, 2009; 

114 Turner et al., 2018). As a result, although studies of skeletons, human volunteers, and 

115 trapped and released nonhuman primates often have similar goals and employ broadly 

116 similar measures to estimate frame size and proportions, it is unclear how well these 

117 different kinds of measures (skeletal vs. soft tissue) map onto one another.  Even those 

118 protocols that are developed with an eye to comparability across subject type (skeleton 

119 vs. fully body; e.g., Antón & Snodgrass, 2009; Turner et al., 2018) have seen little 

120 testing or ‘ground-truthing’ of the relationship between paired variables of the same 

121 individual (but see Fernández-Duque, 2011) or assessment of whether signals from 

122 these matched proxies provide similar interpretations of a population (see Antón et al., 

123 2016).  That is, we know neither the extent to which population variation in a somatic 

124 variable (such as limb length) matches population variation of its paired skeletal 

125 measure nor how well the matched-variables (skeletal and fleshed) predict one another 

126 in the same individual. While there is good reason to believe that the two should be 

127 strongly related, we do not have any direct evidence quantifying this relationship.

128 As a result, comparing or combining data between studies that use living animals 

129 such as those acquired during trap/release interventions (e.g., Turner et al. 1997; 

130 Anapol et al., 2005) and those that use skeletal specimens remains a speculative 

131 process (see Antón et al., 2016). Primatologists and osteologists frequently aim to 
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132 address the same kinds of questions regarding how populations respond to marginal vs 

133 plentiful environments, changes in climate, predation, resources and more, but rarely 

134 combine soft and hard tissue datasets.  Despite the advantages that could accrue by 

135 being able to combine somatic data acquired from living animals during trap/release 

136 interventions in which a wealth of contextual data are known but temporal and 

137 geographic spread are limited, with skeletal data acquired from museum collections that 

138 sample geographically, temporally, and numerically more abundant individuals, datasets 

139 are rarely combined at least in part because we have little information as to how the two 

140 datasets perform relative to one another in known individuals.  Our ultimate aim is to 

141 provide a firmer foundation for the combination of such datasets in order to more 

142 robustly approach questions of the physical relationship between outcomes and 

143 environments.  The data analyzed here are uniquely suited to answering these core 

144 questions about tissue variation because we measured the somatic anatomy of living 

145 animals and then with the bony anatomy measured after the same individuals have 

146 died.

147 Limb lengths, breadths and joint dimensions are popular metrics for the 

148 estimation of frame size and dimorphism in skeletal, human biological and 

149 primatological studies alike. While body proportions and mass can be directly measured 

150 in living humans and non-human primates, skeletal studies rely on bone proxies of the 

151 same.  For example, paleoanthropological studies use skeletal length and joint 

152 dimensions to estimate body size (e.g., Grabowski et al., 2015; Hartwig‐Scherer & 

153 Martin, 1992; McHenry, 1992; Pontzer, 2012; Ruff, Trinkaus, & Holliday, 1997; Ruff and 

154 Niskanen 2018; Holliday et al. 2018; Cunningham et al. 2018), whereas human 
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155 biologists and primatologists use limb length, circumference and knee breadth for the 

156 same purpose (e.g., Jungers 1984, 1985; Pomeroy et al., 2012; Turner et al., 2016; 

157 Anapol, 2005). Aspects of behavior have also been estimated through long bone 

158 circumference or cross-sectional properties under the premise that bone adapts 

159 structurally to load throughout one’s lifetime both on a cellular level and in terms of 

160 gross morphology by increasing or redistributing cortical bone tissue, trabeculae or 

161 bone mineral density (Burr, Robling, & Turner, 2002; Chamay & Tschantz, 1972; Enlow, 

162 1962; Judex & Zernicke, 2000; Pearson & Lieberman, 2004; Pontzer et al., 2006; Rabey 

163 et al., 2015; C. Ruff, Holt, & Trinkaus, 2006; Ryan & Shaw, 2015). And it is the case that 

164 there exists a general relationship between bone shape and use (e.g., Shaw, 2011), as 

165 well as interspecific trends for tissue types such as muscle volume (Muchlinski, 

166 Snodgrass, & Terranova, 2012). Given the importance of these types of data, it is 

167 essential to understand the relationship between measures of soft tissues and bones 

168 particularly for the long bones, which are more frequently preserved in the fossil record. 

169 Here we address some of these questions by using a data protocol specifically 

170 designed to closely match somatic and skeletal measures and then compare these 

171 measures within the same individual. This design allows us to ‘ground-truth’ the 

172 relationship of soft-tissue morphology and bone correlates. To do so we use a unique 

173 sample of individuals from a free-ranging rhesus macaque population of Cayo Santiago, 

174 Puerto Rico. This project has two aims, to assess: i) the comparability of paired somatic 

175 and skeletal measures, and ii) the prediction of soft tissue states from skeletal 

176 measures. We specifically address the relationship between skeletal length and somatic 

177 limb length, skeletal joint breadths and living joint breadths, and long bone 

Page 16 of 47

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



178 circumference and somatic limb circumference. The relationship between these 

179 measures and body mass is explored elsewhere (Turcotte et al., in review). The metrics 

180 assessed here represent an array of features of interest to the paleoanthropology and 

181 bioarchaeology communities, with varying degrees of relatedness to soft tissue 

182 condition. Because somatic limb circumference includes muscle, skin and fat volume we 

183 anticipate that their correlation with skeletal morphology will be weaker than for other 

184 somatic variables. Quantifying the relationships between skeletal and somatic 

185 dimensions will inform our ability to infer soft tissue states from primate bone, which can 

186 then be used for reference in future bioarchaeological or paleoanthropological studies.  

187

188 2. Materials and Methods

189 2.1 Samples and Measurement Protocols

190 We compare skeletal dimensions with soft tissue measures from the same individual 

191 using a model primate. The specimens included in this study are individually identifiable 

192 Macaca mulatta of known age and sex from the free-ranging colony on the island of 

193 Cayo Santiago, Puerto Rico, managed by the Caribbean Primate Research Center 

194 (CPRC) of the University of Puerto Rico. These animals are provisioned by the CPRC 

195 with fresh water and monkey chow, but also forage on naturally occurring vegetation.

196 While these do not precisely mimic circumstances of wild macaques, the animals have 

197 been shown to follow broadly similar patterns of behavioral and somatic development as 

198 wild populations. The rhesus macaques of Cayo Santiago are only partially provisioned 

199 and therefore still need to search for food (Widdig et al. 2016), though they do not 

200 experience risk from predators (Maestripieri and Hoffman, 2012). Further, the Cayo 
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201 Santiago macaques exhibit physical similarities to their wild counterparts, in terms of 

202 lifespan (Maestripieri and Hoffman, 2012) as well as body weight and size dimorphism 

203 (Turcotte et al., 2022). This colony represents an unprecedented opportunity for 

204 collection of both somatic and skeletal data from the same time in the individual’s life. 

205 This population is likely the best, large scale sample that we can expect from a non-

206 captive source as efforts such as these for wild animals offer important insights but are 

207 likely to be limited in the number of individuals available and to somatic and skeletal 

208 metrics taken at different points during an animal’s life (see Fernández-Duque, 2011 for 

209 an example of comparisons of skeletal and lifetime measures in owl monkeys). As such, 

210 the Cayo Santiago rhesus macaques represent an important middle ground between 

211 much rarer wild specimens and more accessible captive animals, which are less 

212 physically representative of primates in naturalistic settings due to more substantive 

213 differences in diet and physical activity.

214 Our sample consists of 105 individuals from a single social group (HH), which 

215 was removed from the island in 2016 as part of a CPRC program of population 

216 management (Hernandez-Pacheco 2016). This number excludes one monkey whose 

217 pathological conditions had resulted in emaciation. The HH sample includes both sexes 

218 and all ages except 2-year-olds, who were integrated into the CPRC’s Specific 

219 Pathogen Free colony, as per CPRC’s protocols. 

220 A large suite of somatometric measurements were taken on each HH animal as 

221 part of the Cayo Biobank Research Unit (CBRU). Soft tissue data collection was 

222 undertaken on sedated animals immediately prior to euthanasia. Following euthanasia 

223 by perfusion each animal was necropsied by CPRC staff and cadavers were macerated 
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224 using a passive, warm-water method. The skeletal remains were measured and are 

225 housed at the NYU-CPRC Cayo Santiago Skeletal Collection, at New York University.  

226 In an effort to reconstruct living morphology from bone, three groups of soft 

227 tissue measurements are compared here with paired skeletal correlates. These 

228 measurement groups include: 1) limb lengths; 2) joint breadths; and 3) limb 

229 circumferences. Antemortem somatic limb lengths and circumferences were taken via 

230 measuring tape, while joint breadths were measured with digital calipers. Skeletal long 

231 bone lengths were collected using a standard osteometric board. Joint breadths were 

232 measured with calipers, and circumference measurements were quantified via 

233 measuring tape. Importantly, the definitions of these soft tissue measurements aim to 

234 reflect those commonly used across subdisciplines of human biology and primatology 

235 adapted in order to relate to standard osteometry.  Our protocol builds from and adapts 

236 that begun by the Bones and Behavior Working Group (Antón & Snodgrass, 2009). Our 

237 full data protocol is presented in Table 1. The somatometric protocol was approved by 

238 the Institutional Animal Care and Use Committee of New York University and of the 

239 University of Puerto Rico Medical Sciences Campus.

240 Because the monkeys range in age from very young individuals early in their 

241 growth to full adults, some skeletal variables were measured differently in younger and 

242 older individuals and these groups were therefore treated separately in 

243 analysis.  Animals below 2 years of age (pooled: n=22; males: n=10; females: n=12) 

244 were categorized as "Epiphyses-Absent" (EA) due to the lack of epiphyseal fusion in 

245 these specimens, coupled with the substantial amount of soft tissue present in life 

246 between the epiphyses and metaphyses in these individuals, the relatively uniform 
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247 shape of these epiphyses at young ages that sometimes rendered their assignation to 

248 limb element uncertain, and the small size of the epiphyses which sometimes led to 

249 their loss during skeletal maceration. The remaining (pooled: n=83; males: n=31; 

250 females: n=52) animals above 2 years of age were categorized as “Epiphyses-Present” 

251 (EP) because, although some individuals had not achieved epiphyseal fusion, 

252 epiphyses were typically well developed and preserved. As a result, these epiphyses 

253 could be refit onto the relevant skeletal element and would have been separated from 

254 the shaft by relatively little soft tissue in life. 

255 We measured limb length in the EA animals as the maximum length of the 

256 skeletal shaft. Lengths in EP animals were measured with epiphyses attached. For 

257 similar reasons, skeletal joint breadths were taken only for the EP animals. EA and EP 

258 groups were considered separately for the construction of RMA and OLS regressions.

259  

260 3. Analyses

261 3.1 The comparability of paired somatic and skeletal measures

262 Descriptive statistics (mean ± SD) for limb lengths, joint breadths, and limb 

263 circumferences are provided in Table 2, subdivided by age and sex. Statistical analyses 

264 in this study were conducted in R version 4.2.2 (R Core Team, 2021) using the 

265 packages lmodel2 (Legendre, 2018) and cvequality (Marwick and Krishnamoorthy, 

266 2019); figures were produced using R package ggplot2 (Wickham, 2016).

267 Coefficients of variation (CV) were calculated for both somatic and skeletal 

268 variables to evaluate the extent to which somatic and skeletal measures produce similar 

269 estimates of variation. The CV is a powerful tool for the direct comparison of variation 
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270 between samples that may have different means (Feltz and Miller, 1996; 

271 Krishnamoorthy and Lee, 2014). Because our comparisons had equal sample sizes, we 

272 used the Feltz and Miller (1996) asymptotic test for the equality of CV, using the R 

273 package cvequality (Marwick and Krishnamoorthy, 2019).

274 Sexual dimorphism was calculated as the ratio of the male mean over the female 

275 mean. Differences in sexual dimorphism ratio between the paired soft and hard 

276 measures was assessed using tests for the equality of ratios developed by Relethford 

277 and Hodges (1985).

278 Reduced Major Axis (RMA) regressions were used to investigate the biological 

279 codependence of variables (i.e., somatic and skeletal measures). In contrast to least 

280 squares regression, RMA allows for a greater degree of uncertainty in both X and Y 

281 variables, and may therefore more realistically model error distributions in biological 

282 comparisons (Smith, 2009; Forstmeier, 2011; Legendre and Legendre, 2012; Sokal and 

283 Rohlf, 1981). In this case, RMA was selected in order to understand the non-directional 

284 relationship between X and Y, where variable identity (i.e., either the soft or hard tissue 

285 metric) is immaterial (Smith, 2009; Sjøvold, 1990). 

286  

287 3.2 The prediction of soft tissue states from skeletal measures

288 Ordinary Least Squares (OLS) regressions were used to compare each somatic 

289 characteristic (limb length, joint breadth, limb circumference) with its bony correlate, and 

290 to produce predictive equations from which the living morphology could be 

291 reconstructed from the skeletal element. In this analysis, OLS regression was selected 

292 in order to understand the directional relationship of the dependent variable Y (soft 
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293 tissue) as a consequence of X (bony correlate) (Smith, 2009). Further, tests for the 

294 equality of slopes (see Relethford and Hodges, 1985) were used to compare 

295 regressions in the male and female subgroups to assess whether there were 

296 differences in sex-specific scaling relationships. We report the coefficient of 

297 determination (R2) of each OLS regression as a measure of the strength of the 

298 relationship between each paired measure.

299  

300 Results

301 4.1 The comparability of paired somatic and skeletal measures

302 Descriptive statistics (mean ± SD) of paired measures presented by age and sex (Table 

303 2) show that, as expected, the soft tissue measurements were either larger than their 

304 paired skeletal measurements or nearly equivalent. The magnitude of difference 

305 between each paired measure was greatest in comparisons of the Epiphyses-Present 

306 (EP) age group, specifically in terms of limb circumference.

307 Males exhibited a greater CV for each measure than  females in every 

308 comparison, except somatic upper arm circumference (Male CV: 9.69; Female CV: 

309 10.68) (Table 3). Directional patterns by age were dependent on measurement type. 

310 Observed length measures indicated greater CVs in the pooled Epiphyses-Absent (EA) 

311 group rather than the EP group (e.g., Upper Arm Length, somatic – EA: 10.98, EP: 

312 10.15; skeletal – EA: 11.64, EP: 9.24). The inverse was true of the circumference 

313 measures (e.g., Upper Arm Circumference, somatic – EA: 10.77, EP: 14.51; skeletal – 

314 EA: 8.66, EP: 12.64). No EA results are reported for joint breadth. Within each paired 
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315 set of somatic and skeletal measures, CVs did not significantly differ in any comparison 

316 (Table 3).

317 The ratio of sexual dimorphism was low for each measurement (Table 

318 4).  Femoral knee joint breadth exhibited the lowest dimorphism (somatic: 0.965; 

319 skeletal: 0.965) and upper arm circumference exhibited the highest (somatic: 1.153; 

320 skeletal: 1.088). Additionally, t-tests for the equality of ratios indicated no significant 

321 differences in dimorphism between any soft tissue measure and their skeletal 

322 correlates.

323 RMA slopes for the pooled comparisons describe an approximately isometric 

324 relationship between somatic and skeletal measures in both the EA and EP samples, 

325 with more variability in the former. EA slopes ranged from m=0.83 (Femur/Upper Leg 

326 Length) to m=1.48 (Femur/Upper Leg Circumference) (Table 5). EP slopes ranged from 

327 m=0.92 (Elbow Breadth) to m=1.23 (Femur/Upper Leg Circumference) (Table 6).

328  

329 4.2 Prediction of soft tissue states from skeletal measures

330 Ordinary least squares (OLS) regression equations for reconstructing soft tissue 

331 dimensions from bony correlates are presented in Figure 1 and Tables 5 (EA) and 6 

332 (EP). 

333 Skeletal and somatic variables were well correlated with one another for all limb 

334 lengths in the EP group. OLS fits demonstrate a coefficient of determination above 

335 R2=0.78 for all EP comparisons, and an R2=0.71 for all EA somatic-skeletal length 

336 comparisons (Fig. 1; Table 5, 6). Measures of joint breadth also exhibited relatively tight 

337 correlations in the EP group (Elbow: R2=0.79; Knee (F): R2=0.74; Knee (T): R2=0.83) 
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338 (Table 6). Correlations among limb circumference measures were less strong. In the EA 

339 group, the pooled sex OLS regressions were very low (Upper Arm: R2=0.37; Upper Leg: 

340 R2=0.41). In both the EA and EP groups, regressions built from male data exhibited 

341 higher coefficients of determination than those built from female data. The only 

342 exception to this observation was the Upper Leg Circumference in the EP group, where 

343 they were nearly equivalent (Male: R2=0.50; Female: R2=0.51) (Table 4).

344 Additionally, tests for the equality of slopes performed between the EP male and 

345 female datasets showed that the scaling relationship between soft and hard tissues 

346 among sexes was equivalent except in the cases of 1) upper leg length and 2) tibial 

347 knee breadth (Table 7). In the former example, the difference in slope between somatic 

348 dimension and skeletal proxy was greater in males than in females (Male: m=1.14; 

349 Female: m=0.91). In the latter, the slope difference was greater in females (Male: 

350 m=0.69; Female: m=0.95).

351  

352 Discussion

353 Paired somatic and skeletal measurements exhibit similar population level signals. As a 

354 result, skeletal measures can be confidently used to make predictions about soft tissue 

355 dimensions in fossil remains. We found high confidence of fit in all pooled comparisons 

356 of somatic dimension with bony correlates in limb length and limb circumference, and 

357 moderate fits for joint breadth. Each somatic measure exhibited a similar range of 

358 variability (CV) relative to its paired skeletal measure, and no differences in sexual 

359 dimorphism. The hypothesis that measures of limb circumference would exhibit a 

360 weaker codependent relationship, as the somatic measure involves a comparatively 
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361 greater proportion of soft tissue, was supported in the EP group. Coefficients of 

362 variation for the limb circumference measures, both somatic and skeletal, approximated 

363 those of the length measures. In both the length and circumference measures, the 

364 somatic data exhibits higher coefficients of variation than the skeletal correlates.

365         In contrast, the correlation percentages for circumference are lower than those 

366 for limb length and joint breadth. The circumference measures are characterized by a 

367 greater degree of soft tissue dimension relative to limb lengths and joint breadths, which 

368 may be the cause of the reduced coefficients of determination. In the same way, 

369 regressions built from female data were found to exhibit weaker correlations relative to 

370 regressions built from male data. This dichotomy is possibly the result of body 

371 composition, where females tend to have a greater proportion of fat tissue which has a 

372 more tenuous association with bone than the muscle tissue typical of males.

373         Rhesus macaques exhibit a moderate degree of sexual body size dimorphism 

374 among primates (O’Higgins & Collard, 2002; Plavcan, 2004; Turnquist & Kessler, 1989), 

375 even though other closely related species within Papionini, such as mandrills and some 

376 species of baboons, are extremely dimorphic (Elton & Dunn, 2020; Plavcan, 2004; 

377 Setchell, Lee, Wickings, & Dixson, 2001). Additionally, as in primates generally, sexual 

378 dimorphism in rhesus macaque body composition usually translates to a greater 

379 proportion of fat in females and lean body mass in males (Hudson, Baum, Frye, 

380 Roecker, & Kemnitz, 2013; McFarland, 1997). Because of the global and tissue-specific 

381 sex differences in size, we expected that considering the sexes separately would 

382 improve the predictive value of the regressions. Indeed, doing so may improve the 

383 accuracy of each prediction if the unknown specimen is of known sex. In each skeletal ~ 
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384 somatic comparison, CVs were smaller in the female-only dataset but larger in the 

385 male-only dataset compared to the pooled dataset, possibly due to a greater degree of 

386 soft tissue in males. Regressions of separate sexes yielded fits similar to the pooled 

387 value. Only humerus epicondylar breadth differed substantively, where the pooled value 

388 and individual male value were significantly stronger than the female OLS fit.  

389         Soft tissue quantity and proportion is variable both over an individual’s lifetime 

390 and across species (Kiliaridis et al., 1988; Muchlinski et al., 2012; Saito et al., 2002; 

391 Taylor et al., 2006). Previous studies have shown that soft tissue reconstruction 

392 equations, as for example those for body mass (Grabowski et al., 2015), must use a 

393 source population similar in composition to the target species. By similar logic, the 

394 equations from this dataset are most directly relevant to fossil macaques (Alba et al., 

395 2016; Delson, 1996; Rook & O’Higgins, 2005; Shearer & Delson, 2012) and to fossils 

396 both within Papionini (Harris, Leakey, & Cerling, 2003; Jablonski & Frost, 2010) and 

397 perhaps even more generally among cercopithecoids (Miller et al., 2009; Rossie, 

398 Gilbert, & Hill, 2013; Suwa et al., 2015) depending on absolute body size and body size 

399 dimorphism.  More sexually dimorphic groups such as baboons and mandrills may also 

400 differ in key components of development or allometry, all of which may influence how 

401 the specimen’s somatic condition is reconstructed. While the rhesus macaque may not 

402 be an appropriate model for mandrill body composition, this sample may approximate 

403 the tissue proportions found in species like the Kinda baboon – the smallest and least 

404 sexually dimorphic of the baboons (Petersdorf et al., 2019; Singleton et al., 2017).  

405 Further, other species of primates exhibit significant soft tissue deposits that 

406 could weaken the correlation between hard and soft tissue measures, such as the facial 
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407 flanges of male orangutans (Zihlman et al., 2011; Zwick et al., 2018) or nasal stripe of 

408 mandrills (Wickings and Dixson, 1992). These structures complicate reconstructions of 

409 extinct animals where such deposits may have occurred. As new fossils are unearthed, 

410 it has become even more important to establish soft-hard tissue relationships in extant 

411 species in order to better understand the somatic condition of these fossil specimens.

412         Of more global interest, using this population we demonstrate the strong 

413 correlation between living somatic morphologies and their skeletal correlates when the 

414 two are constructed with an aim of comparing across data types. These are measures 

415 of substantive interest to biological anthropologists interested in primate biology and soft 

416 tissue reconstruction. Several of the measures assessed in this study are those 

417 predicted to have a strong correlation between skeletal and soft tissue dimension, 

418 where there is typically little soft tissue added in that dimension (e.g., length). That said, 

419 because long bones are often the most numerous skeletal elements found at fossil 

420 sites, understanding variation in these elements is particularly crucial.

421 Our results provide information on the relationships between skeletal and 

422 somatic measures and provide the basis for reliably reconstructing important soft tissue 

423 states from cercopithecoid fossil material. Additionally, the comparability of population 

424 level signals (CV; dimorphism) generated from skeletal and somatic proxies provides 

425 greater assurance that the comparison of population data from living individuals with 

426 those of skeletal samples is valid.  It further suggests that population signals generated 

427 by both types of data could be combined in analyses that are concerned with 

428 understanding adaptation to the environment, potentially expanding the power of our 

429 analyses. The paired somatic and skeletal measurements used here represent a unique 
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430 and important feature of the Cayo Biobank Research Unit (CBRU), which allows for 

431 direct comparison of skeletal features and the living morphology that 

432 paleoanthropologists seek to reconstruct.

433
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Table 1: Descriptions of somatic and skeletal measurement showing alterations made from 
established protocols. 

Table 2: Descriptive statistics showing mean ± SD for paired soft and hard tissue measures of 
limb length, joint breadth and limb circumference in rhesus macaques.

Table 3: Coefficients of variation (CV) are reported for each somatic (S) and hard tissue (H) 
variable in male (M), female (F) and pooled sex (Pooled) rhesus macaques. Pairwise tests for 
the equality of CVs between soft and hard tissue measures demonstrate that each somatic-
skeletal pair exhibits similar amounts of variation.

Table 4: Sexual dimorphism ratios (male mean/female mean) are reported for each somatic (S) 
and hard tissue (H) variable in rhesus macaques. Pairwise t-tests of ratios between soft and 
hard tissue measures demonstrate that each somatic-skeletal pair exhibits similar degrees of 
dimorphism.

Table 5: Epiphyses-Absent (EA) bivariate comparisons between each somatic measurement 
and its skeletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA 
regression equations are presented.

Table 6: Epiphyses-Present (EP) bivariate comparisons between each somatic measurement 
and its skeletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA 
regression equations are presented.

Table 7: Tests for the equality of slopes performed on male and female rhesus macaque OLS 
regression results demonstrate that the scaling relationship between sexes is equivalent, except 
in the case of upper leg length and knee breadth - tibia. Significant tests are marked in bold.

Supplementary Table 1: Raw data reported for each somatic and skeletal variable in each 
individual. Monkey IDs are coded to a specific individual.

Fig. 1: Pooled group bivariate comparisons between each somatic measurement and its skeletal 
correlate for limb lengths [A-D], limb circumference [E, F], and joint breadth [G-I] in rhesus 
macaques. Solid lines represent the Ordinary Least Squares (OLS) regression with 95% 
confidence intervals (shaded). A) Upper arm length, B) Forearm length, C) Upper leg length, D) 
Lower leg length, E) Arm circumference, F) Leg Circumference, G) Elbow breadth, H) Knee 
breadth - femur, I) Knee breadth - tibia.
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Fig. 1: Pooled group bivariate comparisons between each somatic measurement and its skeletal correlate for 
limb lengths [A-D], limb circumference [E, F], and joint breadth [G-I] in rhesus macaques. Solid lines 

represent the Ordinary Least Squares (OLS) regression with 95% confidence intervals (shaded). A) Upper 
arm length, B) Forearm length, C) Upper leg length, D) Lower leg length, E) Arm circumference, F) Leg 

Circumference, G) Elbow breadth, H) Knee breadth - femur, I) Knee breadth - tibia. 
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