

AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY

The Official Journal of the American Association of Biological Anthropologists

Quantifying the relationship between bone and soft tissue measures within the rhesus macaques of Cayo Santiago

Journal:	American Journal of Biological Anthropology
Manuscript ID	AJPA-2023-00174.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Turcotte, Cassandra; New York University, Center for the Study of Human Origins, Department of Anthropology; New York Consortium in Evolutionary Primatology; New York Institute of Technology College of Osteopathic Medicine, Anatomy Choi, Audrey; New York University, Anthropology; New York Consortium in Evolutionary Primatology Spear, Jeffrey; New York University, Anthropology Mann, Eva; Rutgers University, Anthropology Taboada, Hannah; New York University, Anthropology Stock, Michala; Metropolitan State University of Denver, Department of Sociology & Anthropology Villamil, Catalina; Universidad Central Del Caribe, School of Chiropractic Bauman Surratt, Samuel; University of Puerto Rico, Caribbean Primate Research Center None, Cayo Biobank Research Unit; University of Pennsylvania, Neuroscience Martinez, Melween; University of Puerto Rico, Caribbean Primate Research Center Brent, Lauren; University of Exeter Snyder-Mackler, Noah; Arizona State University, School of Life Sciences; Arizona State University, Center for Evolution and Social Change; Arizona State University of Pennsylvania, Neuroscience Platt, Michael; University of Pennsylvania, Neuroscience Platt, Michael; University of Pennsylvania, Neuroscience Williams, Scott; New York University, Anthropology; New York Consortium in Evolutionary Primatology Higham, James; New York University, Anthropology; New York Consortium in Evolutionary Primatology
Key Words:	Musculoskeletal, soft tissue reconstruction, catarrhine, body proportions, morphometrics
Subfield: Please select 2 subfields. Select the main subject first.:	Primate biology [behavior, ecology, physiology, anatomy], Bioarchaeology [including forensics]

Title: Quantifying the relationship between bone and soft tissue measures within the rhesus macaques of Cayo Santiago Authors: Cassandra M. Turcotte^{1,2,3}, Audrey M. Choi^{1,2}, Jeffrey K. Spear^{1,2}, Eva Hernandez Janer⁴, Hannah G. Taboada², Michala K. Stock⁵, Catalina I. Villamil⁶, Samuel E. Bauman⁷, Cayo Biobank Research Unit, Melween I. Martinez, Lauren J. N. Brent, Noah Snyder-Mackler^{10,11,12}, Michael J. Montague⁸, Michael L. Platt⁸, Scott A. Williams¹², James P. Higham^{1,2}, Susan C. Antón^{1,2} Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York, USA ²New York Consortium in Evolutionary Primatology, New York, New York, USA Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA Department of Evolutionary Anthropology, Rutgers University, Department of Sociology and Anthropology, Metropolitan State University of Denver, Colorado, USA Doctor of Chiropractic Program, School of Health Sciences and Technologies. Universidad Central del Caribe, Bayamón, Puerto Rico, USA ⁷Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico USA Department of Neuroscience, University of Pennsylvania, Philadelphia, PA USA Department of Psychology, University of Exeter, Exeter, UK "School of Life Sciences, Arizona State University, Tempe, Arizona, USA "School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA ¹²Center for Evolution and Medicine, Arizona State University, Tempe, Arizona

2 3	41	Abstract
5 6	42	Objectives: Interpretations of the primate and human fossil record often rely on the
7 8	43	estimation of somatic dimensions from bony measures. Both somatic and skeletal
9 10 11	44	variation have been used to assess how primates respond to environmental change.
12 13	45	However, it is unclear how well skeletal variation matches and predicts soft tissue. Here,
14 15	46	we empirically test the relationship between tissues by comparing somatic and skeletal
16 17 18	47	measures using paired measures of pre- and post-mortem rhesus macaques from Cayo
19 20	48	Santiago, Puerto Rico.
21 22	49	Materials and Methods: Somatic measurements were matched with skeletal dimensions
23 24 25	50	from 105 rhesus macaque individuals to investigate paired signals of variation (i.e.,
25 26 27	51	coefficients of variation, sexual dimorphism) and bivariate codependence (reduced
28 29 30 31 32 33 34 35 36 37 38 39 40 41	52	major axis regression) in measures of: 1) limb length; 2) joint breadth; and 3) limb
	53	circumference. Predictive models for the estimation of soft tissue dimensions from
	54	skeletons were built from Ordinary Least Squares regressions.
	55	Results: Somatic and skeletal measurements showed statistically equivalent coefficients
	56	of variation and sexual dimorphism as well as high epiphyses-present OLS correlations
	57	in limb lengths (R ² >0.78, 0.82), joint breadths (R ² >0.74, 0.83) and, to a lesser extent,
42 43	58	limb circumference (R ² >0.53, 0.68).
44 45	59	Conclusion: Skeletal measurements are good substitutions for somatic values based
46 47 48	60	on population signals of variation. OLS regressions indicate that skeletal correlates are
49 50	61	highly predictive of somatic dimensions. The protocols and regression equations
51 52	62	established here provide a basis for reliable reconstruction of somatic dimension from
53 54 55		
56 57		
58 59		John Wiley & Sons Inc
00		

2		
3 4	63	catarrhine fossils and validate our ability to compare or combine results of studies
5 6	64	based on population data of either hard or soft tissue proxies.
7 8 9	65	
10 11	66	Key Words: Musculoskeletal, soft tissue reconstruction, catarrhine, body
12 13	67	proportions, morphometrics
14 15	68	
16 17 18	69	Conflict of Interest
19 20	70	The authors declare that there is no conflict of interest regarding this publication.
21 22	71	
23 24 25	72	Funding Information
26 27	73	Primary funding was from National Science Foundation BCS-1754024 (to Higham,
28 29	74	Antón, and Williams), NSF BCS-1648676 (to Antón, Higham and Williams), NSF BCS-
30 31 32	75	1800558 (to Higham and Antón), and the L.S.B. Leakey Foundation (to Higham, Antón,
32 33 34	76	and Williams). Cassandra Turcotte was also supported by a supplement to R01-
35 36	77	AG060931 (to Snyder-Mackler, Brent, and Higham). Funding to the Cayo Santiago
37 38	78	Primate Research Center was provided by the University of Puerto Rico and the NIH
39 40 41	79	Office of Research Infrastructure Programs #P40-OD012217.
42 43	80	
44 45	81	1. Introduction
46 47 48	82	Interpretation of the human and primate fossil record is challenged by the lack of soft
49 50	83	tissue information. Nevertheless, understanding soft tissue variation remains the
51 52	84	ultimate goal of many bioarchaeological (Havelková, Villotte, Velemínský, Poláček, &
53 54	85	Dobisíková, 2011; Hawkey & Merbs, 1995; Karakostis, Wallace, Konow, & Harvati,
55 56 57		
58 59		

2	
3	86
4 5	
6	87
7	00
8 9	88
10	89
11	00
12 13	90
14	
15	91
16 17	02
18	92
19	93
20 21	
22	94
23	05
24 25	95
26	96
27	50
28 29	97
30	
31	98
32 33	00
34	99
35	100
36 37	
38	101
39	
40 41	102
42	103
43	105
44 45	104
46	
47	105
40 49	100
50	100
51 52	107
52 53	
54	108
55 56	
57	
58	
59 60	
00	

2019; Molnar, Ahlstrom, & Leden, 2011; Villotte et al., 2010) and paleoanthropological 86 (e.g., Bryant & Seymour, 1990; Eliot & Jungers, 2000) studies, particularly for soft tissue 87 features that relate to individual evolutionary fitness. Size (e.g., Smith and Jungers, 88 1997; Zihlman and McFarland, 2000; Turcotte et al., 2022a), body proportions (e.g., 89 Shapiro and Raichlen, 2006; Druelle et al. 2018; Ruff et al., in press), and body 90 91 composition [such as degree of body fat, and muscular development] (e.g., Kuzawa, 1998; Steegmann et al., 2002; Fietz et al. 2003; Muroyama et al., 2006; Dittus, 2013; 92 Zihlman and Bolter, 2015) are all important variables for understanding individual and 93 population life history strategies. Given the importance of such soft tissue parameters to 94 understanding ecological niche and behaviors, numerous studies have used skeletal 95 measures to try to reconstruct body mass (e.g., Demes and Jungers, 1993; Aiello & 96 Wood, 1994; Grabowski, Hatala, Jungers, & Richmond, 2015; Jungers, Grabowski, 97 Hatala, & Richmond, 2016; McHenry, 1992; Ruff et al., 2012; Perry et al. 2018) and the 98 architecture and size of specific muscles from bone (e.g., Antón, 1996; Antón, 1999; 99 Antón 2000; Schlecht, 2012; Rabey et al., 2015; Turcotte et al., 2019; Wallace et al., 100 2017, Turcotte et al. 2022b). However, the precise relationship between soft tissue 101 102 characters of interest and skeletal metrics remains poorly understood in part because few datasets include both soft and hard tissue variables from the same individuals. 103 104 Additionally, despite the interest of many investigators in understanding the 105 relationship between physical outcomes for individuals and their environmental contexts, skeletal and somatic data collection protocols are not usually developed with 106

108 example, primatological studies interested in assessing the influence of diet on growth

the primary aim of comparison across subject types (i.e., skeletal vs soft tissue). For

(e.g., Turnquist and Kessler, 1989; Turner et al. 1997; Anapol et al., 2005) often collect somatic data from trapped and released animals. However, the ways in which somatic measures are taken are not easily translatable into skeletal measures because the dimensions taken in living animals or humans routinely cross joints, include multiple bones, and/or lack reference to a bony landmark (but see Antón & Snodgrass, 2009; Turner et al., 2018). As a result, although studies of skeletons, human volunteers, and trapped and released nonhuman primates often have similar goals and employ broadly similar measures to estimate frame size and proportions, it is unclear how well these different kinds of measures (skeletal vs. soft tissue) map onto one another. Even those protocols that are developed with an eye to comparability across subject type (skeleton vs. fully body; e.g., Antón & Snodgrass, 2009; Turner et al., 2018) have seen little testing or 'ground-truthing' of the relationship between paired variables of the same individual (but see Fernández-Duque, 2011) or assessment of whether signals from these matched proxies provide similar interpretations of a population (see Antón et al., 2016). That is, we know neither the extent to which population variation in a somatic variable (such as limb length) matches population variation of its paired skeletal measure nor how well the matched-variables (skeletal and fleshed) predict one another in the same individual. While there is good reason to believe that the two should be strongly related, we do not have any direct evidence quantifying this relationship. As a result, comparing or combining data between studies that use living animals such as those acquired during trap/release interventions (e.g., Turner et al. 1997; Anapol et al., 2005) and those that use skeletal specimens remains a speculative process (see Antón et al., 2016). Primatologists and osteologists frequently aim to

1 2		
3 4	132	address the same kinds of questions regarding how populations respond to marginal vs
5 6	133	plentiful environments, changes in climate, predation, resources and more, but rarely
/ 8 9	134	combine soft and hard tissue datasets. Despite the advantages that could accrue by
10 11	135	being able to combine somatic data acquired from living animals during trap/release
12 13	136	interventions in which a wealth of contextual data are known but temporal and
14 15	137	geographic spread are limited, with skeletal data acquired from museum collections that
16 17 18	138	sample geographically, temporally, and numerically more abundant individuals, datasets
19 20	139	are rarely combined at least in part because we have little information as to how the two
21 22	140	datasets perform relative to one another in known individuals. Our ultimate aim is to
23 24 25	141	provide a firmer foundation for the combination of such datasets in order to more
26 27	142	robustly approach questions of the physical relationship between outcomes and
28 29	143	environments. The data analyzed here are uniquely suited to answering these core
30 31	144	questions about tissue variation because we measured the somatic anatomy of living
32 33 34	145	animals and then with the bony anatomy measured after the same individuals have
35 36	146	died.
37 38	147	Limb lengths, breadths and joint dimensions are popular metrics for the
39 40 41	148	estimation of frame size and dimorphism in skeletal, human biological and
42 43	149	primatological studies alike. While body proportions and mass can be directly measured
44 45	150	in living humans and non-human primates, skeletal studies rely on bone proxies of the
46 47	151	same. For example, paleoanthropological studies use skeletal length and joint
48 49 50	152	dimensions to estimate body size (e.g., Grabowski et al., 2015; Hartwig-Scherer &
51 52	153	Martin, 1992; McHenry, 1992; Pontzer, 2012; Ruff, Trinkaus, & Holliday, 1997; Ruff and
53 54	154	Niskanen 2018; Holliday et al. 2018; Cunningham et al. 2018), whereas human
55 56 57		
57 58 59		
60		John Wiley & Sons, Inc.

biologists and primatologists use limb length, circumference and knee breadth for the same purpose (e.g., Jungers 1984, 1985; Pomeroy et al., 2012; Turner et al., 2016; Anapol, 2005). Aspects of behavior have also been estimated through long bone circumference or cross-sectional properties under the premise that bone adapts structurally to load throughout one's lifetime both on a cellular level and in terms of gross morphology by increasing or redistributing cortical bone tissue, trabeculae or bone mineral density (Burr, Robling, & Turner, 2002; Chamay & Tschantz, 1972; Enlow, 1962; Judex & Zernicke, 2000; Pearson & Lieberman, 2004; Pontzer et al., 2006; Rabey et al., 2015; C. Ruff, Holt, & Trinkaus, 2006; Ryan & Shaw, 2015). And it is the case that there exists a general relationship between bone shape and use (e.g., Shaw, 2011), as well as interspecific trends for tissue types such as muscle volume (Muchlinski, Snodgrass, & Terranova, 2012). Given the importance of these types of data, it is essential to understand the relationship between measures of soft tissues and bones particularly for the long bones, which are more frequently preserved in the fossil record. Here we address some of these questions by using a data protocol specifically designed to closely match somatic and skeletal measures and then compare these measures within the same individual. This design allows us to 'ground-truth' the relationship of soft-tissue morphology and bone correlates. To do so we use a unique sample of individuals from a free-ranging rhesus macaque population of Cayo Santiago, Puerto Rico. This project has two aims, to assess: i) the comparability of paired somatic and skeletal measures, and ii) the prediction of soft tissue states from skeletal measures. We specifically address the relationship between skeletal length and somatic limb length, skeletal joint breadths and living joint breadths, and long bone

3 4	178	circumference and somatic limb circumference. The relationship between these
5 6	179	measures and body mass is explored elsewhere (Turcotte et al., <i>in review</i>). The metrics
/ 8 9	180	assessed here represent an array of features of interest to the paleoanthropology and
) 10 11	181	bioarchaeology communities, with varying degrees of relatedness to soft tissue
12 13	182	condition. Because somatic limb circumference includes muscle, skin and fat volume we
14 15	183	anticipate that their correlation with skeletal morphology will be weaker than for other
16 17 18	184	somatic variables. Quantifying the relationships between skeletal and somatic
19 20	185	dimensions will inform our ability to infer soft tissue states from primate bone, which can
21 22	186	then be used for reference in future bioarchaeological or paleoanthropological studies.
23 24 25	187	
26 27	188	2. Materials and Methods
28 29	189	2.1 Samples and Measurement Protocols
30 31 22	190	We compare skeletal dimensions with soft tissue measures from the same individual
32 33 34	191	using a model primate. The specimens included in this study are individually identifiable
35 36	192	Macaca mulatta of known age and sex from the free-ranging colony on the island of
37 38 20	193	Cayo Santiago, Puerto Rico, managed by the Caribbean Primate Research Center
39 40 41	194	(CPRC) of the University of Puerto Rico. These animals are provisioned by the CPRC
42 43	195	with fresh water and monkey chow, but also forage on naturally occurring vegetation.
44 45	196	While these do not precisely mimic circumstances of wild macaques, the animals have
46 47 48	197	been shown to follow broadly similar patterns of behavioral and somatic development as
49 50	198	wild populations. The rhesus macaques of Cayo Santiago are only partially provisioned
51 52	199	and therefore still need to search for food (Widdig et al. 2016), though they do not
53 54	200	experience risk from predators (Maestripieri and Hoffman, 2012). Further, the Cayo
55 56 57		
58 59		
60		John Wiley & Sons, Inc.

Santiago macagues exhibit physical similarities to their wild counterparts, in terms of lifespan (Maestripieri and Hoffman, 2012) as well as body weight and size dimorphism (Turcotte et al., 2022). This colony represents an unprecedented opportunity for collection of both somatic and skeletal data from the same time in the individual's life. This population is likely the best, large scale sample that we can expect from a non-captive source as efforts such as these for wild animals offer important insights but are likely to be limited in the number of individuals available and to somatic and skeletal metrics taken at different points during an animal's life (see Fernández-Duque, 2011 for an example of comparisons of skeletal and lifetime measures in owl monkeys). As such, the Cayo Santiago rhesus macaques represent an important middle ground between much rarer wild specimens and more accessible captive animals, which are less physically representative of primates in naturalistic settings due to more substantive differences in diet and physical activity. Our sample consists of 105 individuals from a single social group (HH), which was removed from the island in 2016 as part of a CPRC program of population management (Hernandez-Pacheco 2016). This number excludes one monkey whose pathological conditions had resulted in emaciation. The HH sample includes both sexes and all ages except 2-year-olds, who were integrated into the CPRC's Specific Pathogen Free colony, as per CPRC's protocols. A large suite of somatometric measurements were taken on each HH animal as part of the Cayo Biobank Research Unit (CBRU). Soft tissue data collection was undertaken on sedated animals immediately prior to euthanasia. Following euthanasia by perfusion each animal was necropsied by CPRC staff and cadavers were macerated

Page 19 of 47

1 2

59

224	using a passive, warm-water method. The skeletal remains were measured and are
225	housed at the NYU-CPRC Cayo Santiago Skeletal Collection, at New York University.
226	In an effort to reconstruct living morphology from bone, three groups of soft
227	tissue measurements are compared here with paired skeletal correlates. These
228	measurement groups include: 1) limb lengths; 2) joint breadths; and 3) limb
229	circumferences. Antemortem somatic limb lengths and circumferences were taken via
230	measuring tape, while joint breadths were measured with digital calipers. Skeletal long
231	bone lengths were collected using a standard osteometric board. Joint breadths were
232	measured with calipers, and circumference measurements were quantified via
233	measuring tape. Importantly, the definitions of these soft tissue measurements aim to
234	reflect those commonly used across subdisciplines of human biology and primatology
235	adapted in order to relate to standard osteometry. Our protocol builds from and adapts
236	that begun by the Bones and Behavior Working Group (Antón & Snodgrass, 2009). Our
237	full data protocol is presented in Table 1. The somatometric protocol was approved by
238	the Institutional Animal Care and Use Committee of New York University and of the
239	University of Puerto Rico Medical Sciences Campus.
240	Because the monkeys range in age from very young individuals early in their
241	growth to full adults, some skeletal variables were measured differently in younger and
242	older individuals and these groups were therefore treated separately in
243	analysis. Animals below 2 years of age (pooled: <i>n</i> =22; males: <i>n</i> =10; females: <i>n</i> =12)
244	were categorized as "Epiphyses-Absent" (EA) due to the lack of epiphyseal fusion in
245	these specimens, coupled with the substantial amount of soft tissue present in life
246	between the epiphyses and metaphyses in these individuals, the relatively uniform
	224 225 226 227 228 230 231 232 233 234 235 236 237 236 237 238 239 240 241 242 243 241 242 243 244 245 246

3 4	247
5 6	248
7 8	249
9 10 11	250
12 13	25:
14 15	252
16 17	253
18 19 20	254
20 21 22	25
23 24	256
25 26	25
27 28	25
29 30	250
31 32 33	25:
34 35	260
36 37	263
38 39	262
40 41	263
42 43	264
44 45 46	26
47 48	260
49 50	267
51 52	268
55 55	269
56 57	
58 59	
60	

247	shape of these epiphyses at young ages that sometimes rendered their assignation to
248	limb element uncertain, and the small size of the epiphyses which sometimes led to
249	their loss during skeletal maceration. The remaining (pooled: <i>n</i> =83; males: <i>n</i> =31;
250	females: <i>n</i> =52) animals above 2 years of age were categorized as "Epiphyses-Present"
251	(EP) because, although some individuals had not achieved epiphyseal fusion,
252	epiphyses were typically well developed and preserved. As a result, these epiphyses
253	could be refit onto the relevant skeletal element and would have been separated from
254	the shaft by relatively little soft tissue in life.
255	We measured limb length in the EA animals as the maximum length of the
256	skeletal shaft. Lengths in EP animals were measured with epiphyses attached. For
257	similar reasons, skeletal joint breadths were taken only for the EP animals. <mark>EA and EP</mark>
258	groups were considered separately for the construction of RMA and OLS regressions.
259	
260	3. Analyses
261	3.1 The comparability of paired somatic and skeletal measures
262	Descriptive statistics (mean \pm SD) for limb lengths, joint breadths, and limb
263	circumferences are provided in Table 2, subdivided by age and sex. Statistical analyses
264	in this study were conducted in R <mark>version 4.2.2 (</mark> R Core Team, 2021) <mark>using the</mark>
265	neekenne kennelel? (Lenendre, 2049) end evenuelity (Menuiek end Kriebererseethy)
266	packages imodel2 (Legendre, 2018) and cvequality (Marwick and Krishnamoorthy,
	2019); figures were produced using R package ggplot2 (Wickham, 2016).
267	2019); figures were produced using R package ggplot2 (Wickham, 2016). Coefficients of variation (CV) were calculated for both somatic and skeletal
267 268	 2019); figures were produced using R package ggplot2 (Wickham, 2016). Coefficients of variation (CV) were calculated for both somatic and skeletal variables to evaluate the extent to which somatic and skeletal measures produce similar
267 268 269	 packages imodel2 (Legendre, 2018) and cvequality (Marwick and Kristnamoorthy, 2019); figures were produced using R package ggplot2 (Wickham, 2016). Coefficients of variation (CV) were calculated for both somatic and skeletal variables to evaluate the extent to which somatic and skeletal measures produce similar estimates of variation. The CV is a powerful tool for the direct comparison of variation
267 268 269	 2019); figures were produced using R package ggplot2 (Wickham, 2016). Coefficients of variation (CV) were calculated for both somatic and skeletal variables to evaluate the extent to which somatic and skeletal measures produce similar estimates of variation. The CV is a powerful tool for the direct comparison of variation

Page 21 of 47

2 3	270	between samples that may have different means (Feltz and Miller, 1996;
4 5 6	271	Krishnamoorthy and Lee, 2014). Because our comparisons had equal sample sizes, we
7 8	272	used the Feltz and Miller (1996) asymptotic test for the equality of CV, using the R
9 10	273	package cvequality (Marwick and Krishnamoorthy, 2019).
11 12	274	Sexual dimorphism was calculated as the ratio of the male mean over the female
13 14 15	275	mean. Differences in sexual dimorphism ratio between the paired soft and hard
16 17	276	measures was assessed using tests for the equality of ratios developed by Relethford
18 19	270	and Hodges (1985)
20 21	277	Reduced Major Avis (RMA) regressions were used to investigate the biological
22 23	278	Reduced Major Axis (RMA) regressions were used to investigate the biological
24 25	279	codependence of variables (i.e., somatic and skeletal measures). In contrast to least
26 27	280	squares regression, RMA allows for a greater degree of uncertainty in both X and Y
28 29	281	variables, and may therefore more realistically model error distributions in biological
30 31 22	282	comparisons (Smith, 2009; Forstmeier, 2011; Legendre and Legendre, 2012; Sokal and
32 33 34	283	Rohlf, 1981). In this case, RMA was selected in order to understand the non-directional
35 36	284	relationship between X and Y, where variable identity (i.e., either the soft or hard tissue
37 38	285	metric) is immaterial (Smith, 2009; Sjøvold, 1990).
39 40 41	286	
41 42 43	287	3.2 The prediction of soft tissue states from skeletal measures
44 45	288	Ordinary Least Squares (OLS) regressions were used to compare each somatic
46 47	289	characteristic (limb length, joint breadth, limb circumference) with its bony correlate, and
48 49 50	290	to produce predictive equations from which the living morphology could be
51 52	291	reconstructed from the skeletal element. In this analysis, OLS regression was selected
53 54	292	in order to understand the directional relationship of the dependent variable Y (soft
55 56		
57 58		
59 60		John Wiley & Sons, Inc.

293	tissue) as a consequence of X (bony correlate) (Smith, 2009). Further, tests for the
294	equality of slopes (see Relethford and Hodges, 1985) were used to compare
295	regressions in the male and female subgroups to assess whether there were
296	differences in sex-specific scaling relationships. We report the coefficient of
297	determination (R ²) of each OLS regression as a measure of the strength of the
298	relationship between each paired measure.
299	
300	Results
301	4.1 The comparability of paired somatic and skeletal measures
302	Descriptive statistics (mean \pm <i>SD</i>) of paired measures presented by age and sex (Table
303	2) show that, as expected, the soft tissue measurements were either larger than their
304	paired skeletal measurements or nearly equivalent. The magnitude of difference
305	between each paired measure was greatest in comparisons of the Epiphyses-Present
306	(EP) age group, specifically in terms of limb circumference.
307	Males exhibited a greater CV for each measure than females in every
308	comparison, except somatic upper arm circumference (Male CV: 9.69; Female CV:
309	10.68) (Table 3). Directional patterns by age were dependent on measurement type.
310	Observed length measures indicated greater CVs in the pooled Epiphyses-Absent (EA)
311	group rather than the EP group (e.g., Upper Arm Length, somatic – EA: 10.98, EP:
312	10.15; skeletal – EA: 11.64, EP: 9.24). The inverse was true of the circumference
313	measures (e.g., Upper Arm Circumference, somatic – EA: 10.77, EP: 14.51; skeletal –
314	EA: 8.66, EP: 12.64). No EA results are reported for joint breadth. Within each paired
	 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

1 2		
3 4	315	set of somatic and skeletal measures, CVs did not significantly differ in any comparison
5 6	316	(Table 3).
7 8 0	317	The ratio of sexual dimorphism was low for each measurement (Table
10 11	318	4). Femoral knee joint breadth exhibited the lowest dimorphism (somatic: 0.965;
12 13	319	skeletal: 0.965) and upper arm circumference exhibited the highest (somatic: 1.153;
14 15	320	skeletal: 1.088). Additionally, <i>t</i> -tests for the equality of ratios indicated no significant
16 17 18	321	differences in dimorphism between any soft tissue measure and their skeletal
19 20	322	correlates.
21 22	323	RMA slopes for the pooled comparisons describe an approximately isometric
23 24 25 26 27	324	relationship between somatic and skeletal measures in both the EA and EP samples,
	325	with more variability in the former. <mark>EA slopes ranged from m=0.83 (Femur/Upper Leg</mark>
28 29	326	Length) to m=1.48 (Femur/Upper Leg Circumference) (Table 5). EP slopes ranged from
 30 31 32 33 34 35 36 37 38 39 40 41 	327	m=0.92 (Elbow Breadth) to m=1.23 (Femur/Upper Leg Circumference) (Table 6).
	328	
	329	4.2 Prediction of soft tissue states from skeletal measures
	330	Ordinary least squares (OLS) regression equations for reconstructing soft tissue
	331	dimensions from bony correlates are presented in Figure 1 and Tables 5 (EA) and 6
42 43	332	(EP).
44 45	333	Skeletal and somatic variables were well correlated with one another for all limb
46 47 48	334	lengths in the EP group. OLS fits demonstrate a coefficient of determination above
49 50	335	R ² =0.78 for all EP comparisons, and an R ² =0.71 for all EA somatic-skeletal length
51 52	336	comparisons (Fig. 1; Table 5, 6). Measures of joint breadth also exhibited relatively tight
53 54 55	337	correlations in the EP group (Elbow: R ² =0.79; Knee (F): R ² =0.74; Knee (T): R ² =0.83)
56 57		
58 59		
60		Jonn Wiley & Sons, Inc.

1 2		
3 4	338	(Table 6). Correlations among limb circumference measures were less strong. In the EA
5 6	339	group, the pooled sex OLS regressions were very low (Upper Arm: R ² =0.37; Upper Leg:
7 8 9	340	R ² =0.41). In both the EA and EP groups, regressions built from male data exhibited
10 11	341	higher coefficients of determination than those built from female data. The only
12 13	342	exception to this observation was the Upper Leg Circumference in the EP group, where
14 15 16	343	they were nearly equivalent (Male: R ² =0.50; Female: R ² =0.51) (Table 4).
16 17 18	344	Additionally, tests for the equality of slopes performed between the EP male and
19 20	345	female datasets showed that the scaling relationship between soft and hard tissues
21 22	346	among sexes was equivalent except in the cases of 1) upper leg length and 2) tibial
23 24 25	347	knee breadth (Table 7). In the former example, the difference in slope between somatic
26 27	348	dimension and skeletal proxy was greater in males than in females (Male: m=1.14;
28 29	349	Female: m=0.91). In the latter, the slope difference was greater in females (Male:
30 31 32	350	m=0.69; Female: m=0.95).
33 34	351	
35 36	352	Discussion
37 38	353	Paired somatic and skeletal measurements exhibit similar population level signals. As a
39 40 41	354	result, skeletal measures can be confidently used to make predictions about soft tissue
42 43	355	dimensions in fossil remains. We found high confidence of fit in all pooled comparisons
44 45	356	of somatic dimension with bony correlates in limb length and limb circumference, and
46 47 48	357	moderate fits for joint breadth. Each somatic measure exhibited a similar range of
49 50	358	variability (CV) relative to its paired skeletal measure, and no differences in sexual
51 52	359	dimorphism. The hypothesis that measures of limb circumference would exhibit a
53 54 55 56 57	360	weaker codependent relationship, as the somatic measure involves a comparatively
58		

2 3 4	361	greater proportion of soft tissue, was supported in the EP group. Coefficients of
5 6	362	variation for the limb circumference measures, both somatic and skeletal, approximated
7 8 9	363	those of the length measures. In both the length and circumference measures, the
10 11	364	somatic data exhibits higher coefficients of variation than the skeletal correlates.
12 13	365	In contrast, the correlation percentages for circumference are lower than those
14 15 16	366	for limb length and joint breadth. The circumference measures are characterized by a
17 18	367	greater degree of soft tissue dimension relative to limb lengths and joint breadths, which
19 20	368	may be the cause of the reduced coefficients of determination. In the same way,
21 22 23	369	regressions built from female data were found to exhibit weaker correlations relative to
23 24 25	370	regressions built from male data. This dichotomy is possibly the result of body
26 27	371	composition, where females tend to have a greater proportion of fat tissue which has a
28 29 20	372	more tenuous association with bone than the muscle tissue typical of males.
30 31 32	373	Rhesus macaques exhibit a moderate degree of sexual body size dimorphism
33 34	374	among primates (O'Higgins & Collard, 2002; Plavcan, 2004; Turnquist & Kessler, 1989),
35 36	375	even though other closely related species within Papionini, such as mandrills and some
37 38 39	376	species of baboons, are extremely dimorphic (Elton & Dunn, 2020; Plavcan, 2004;
40 41	377	Setchell, Lee, Wickings, & Dixson, 2001). Additionally, as in primates generally, sexual
42 43	378	dimorphism in rhesus macaque body composition usually translates to a greater
44 45 46	379	proportion of fat in females and lean body mass in males (Hudson, Baum, Frye,
40 47 48	380	Roecker, & Kemnitz, 2013; McFarland, 1997). Because of the global and tissue-specific
49 50	381	sex differences in size, we expected that considering the sexes separately would
51 52	382	improve the predictive value of the regressions. Indeed, doing so may improve the
53 54 55	383	accuracy of each prediction if the unknown specimen is of known sex. In each skeletal \sim
56 57 58		
59 60		John Wiley & Sons, Inc.

Page 26 of 47

somatic comparison, CVs were smaller in the female-only dataset but larger in the male-only dataset compared to the pooled dataset, possibly due to a greater degree of soft tissue in males. Regressions of separate sexes yielded fits similar to the pooled value. Only humerus epicondylar breadth differed substantively, where the pooled value and individual male value were significantly stronger than the female OLS fit. Soft tissue quantity and proportion is variable both over an individual's lifetime and across species (Kiliaridis et al., 1988; Muchlinski et al., 2012; Saito et al., 2002; Taylor et al., 2006). Previous studies have shown that soft tissue reconstruction equations, as for example those for body mass (Grabowski et al., 2015), must use a source population similar in composition to the target species. By similar logic, the equations from this dataset are most directly relevant to fossil macaques (Alba et al., 2016; Delson, 1996; Rook & O'Higgins, 2005; Shearer & Delson, 2012) and to fossils both within Papionini (Harris, Leakey, & Cerling, 2003; Jablonski & Frost, 2010) and perhaps even more generally among cercopithecoids (Miller et al., 2009; Rossie, Gilbert, & Hill, 2013; Suwa et al., 2015) depending on absolute body size and body size dimorphism. More sexually dimorphic groups such as baboons and mandrills may also differ in key components of development or allometry, all of which may influence how the specimen's somatic condition is reconstructed. While the rhesus macaque may not be an appropriate model for mandrill body composition, this sample may approximate the tissue proportions found in species like the Kinda baboon – the smallest and least sexually dimorphic of the baboons (Petersdorf et al., 2019; Singleton et al., 2017). Further, other species of primates exhibit significant soft tissue deposits that could weaken the correlation between hard and soft tissue measures, such as the facial

Page 27 of 47

1 2

59

3 4	407	flanges of male orangutans (Zihlman et al., 2011; Zwick et al., 2018) or nasal stripe of
5 6	408	mandrills (Wickings and Dixson, 1992). These structures complicate reconstructions of
7 8	409	extinct animals where such deposits may have occurred. As new fossils are unearthed,
9 10 11	410	it has become even more important to establish soft-hard tissue relationships in extant
12 13	411	species in order to better understand the somatic condition of these fossil specimens.
14 15	412	Of more global interest, using this population we demonstrate the strong
16 17 18	413	correlation between living somatic morphologies and their skeletal correlates when the
19 20	414	two are constructed with an aim of comparing across data types. These are measures
21 22	415	of substantive interest to biological anthropologists interested in primate biology and soft
23 24 25	416	tissue reconstruction. Several of the measures assessed in this study are those
26 27	417	predicted to have a strong correlation between skeletal and soft tissue dimension,
28 29	418	where there is typically little soft tissue added in that dimension (e.g., length). That said,
30 31 32	419	because long bones are often the most numerous skeletal elements found at fossil
32 33 34	420	sites, understanding variation in these elements is particularly crucial.
35 36	421	Our results provide information on the relationships between skeletal and
37 38 30	422	somatic measures and provide the basis for reliably reconstructing important soft tissue
39 40 41	423	states from cercopithecoid fossil material. Additionally, the comparability of population
42 43	424	level signals (CV; dimorphism) generated from skeletal and somatic proxies provides
44 45	425	greater assurance that the comparison of population data from living individuals with
46 47 48	426	those of skeletal samples is valid. It further suggests that population signals generated
49 50	427	by both types of data could be combined in analyses that are concerned with
51 52	428	understanding adaptation to the environment, potentially expanding the power of our
53 54 55 56 57 58	429	analyses. The paired somatic and skeletal measurements used here represent a unique

2		
4	430	and important feature of the Cayo Biobank Research Unit (CBRU), which allows for
5 6 7	431	direct comparison of skeletal features and the living morphology that
7 8 9	432	paleoanthropologists seek to reconstruct.
10 11	433	
12 13	434	References
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Aisello, 436 437 Aisa, I 439 440 441 Addita 443 444 Addita 443 444 Addita 446 447 Addita 449 Adition 451 Astion 453 Astion 455 Astion 455 Astion	L. C., & Wood, B. A. (1994). Cranial variables as predictors of hominine body mass. <i>American Journal of Physical Anthropology</i> , <i>95</i> (4), 409–426. https://doi.org/10.1002/ajpa.1330950405 D., Madurell Malapeira, J., Vinuesa Vinuesa, V., Susanna, I., Espigares, M., Ros- Montoya, S., & Martínez-Navarro, B. (2016). First record of macaques from the Early Pleistocene of Incarcal (NE Iberian Peninsula). <i>Journal of Human Evolution, In press.</i> https://doi.org/10.1016/j.jhevol.2016.05.005 nn, S. A. (1962). A field study of the sociology of rhesus monkeys, Macaca mulatta. <i>Annals of the New York Academy of Sciences, 102</i> (2), 338–435. https://doi.org/10.1111/j.1749-6632.1962.tb13650.x of F., Turner T. R., Mott C. S., Jolly C. J. (2005) Comparative postcranial body shape and locomotion in Chlorocebus aethiops and Cercopithecus mitis. Am J Phys Anthropol 127.2: 231-9. S. C. (1996) Tendon-associated bone features of the masticatory system in Neanderthals. J Hum Evol 31.1: 391-408. S. C. (1999) Macaque masseter muscle: Internal architecture, fiber length, and cross- sectional area. Int J Primatol 20.1: 441-462. S. C. (2000) Macaque pterygoid muscles: Internal architecture, fiber length, and cross- sectional area. Int J Primatol 21.1: 131-156. , S. C. (2012). Early Homo: Who, When, and Where. <i>Current Anthropology, 53</i> (S6), S278–S298. https://doi.org/10.1086/667695 S. C., Potts, R., & Aiello, L. C. (2014). Evolution of early Homo: An integrated biological perspective. <i>Science, 345</i> (6192). https://doi.org/10.1126/science.1236828
42 43 44 45 46 47 48 49 50 51 52 53 54	459 460 B6y ani 462 463 B6 #r, [465 Q8 6am 467 468 Q6 9nni	and behavioral research in human and non-human primates. Retrieved from website: Bones and Behavior Measurement Protocol, < <u>https://wp.nyu.edu/csho/resources/>.</u> t, H. N., & Seymour, K. L. (1990). Observations and comments on the reliability of muscle reconstruction in fossil vertebrates. <i>Journal of Morphology</i> , <i>206</i> (1), 109–117. https://doi.org/10.1002/jmor.1052060111 D. B., Robling, A. G., & Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. <i>Bone</i> , <i>30</i> (5), 781–786. https://doi.org/10.1016/S8756-3282(02)00707-X ay, A., & Tschantz, P. (1972). Mechanical influences in bone remodeling. Experimental research on Wolff's law. <i>Journal of Biomechanics</i> , <i>5</i> (2), 173–180. <u>https://doi.org/10.1016/0021-9290(72)90053-X</u> ngham DL, Graves RR, Wescott DJ, McCarthy (2018) The effect of ontogeny on
55 56 57 58 59	470	estimates of KNM-W1 15000's adult body size. J Hum Evol 121: 119-127.

1 2	
3 4 5	Delson, E. (1996). <i>The oldest monkeys in Asia</i> . Abstract presented at the International symposium: evolution of Asian primates, Freude and Kyoto University Primate
6 7	 473 Research Institute, Inuyama, Aichi, Japan. Drames B., Jungers W. L. (1993) Long bone cross-sectional dimensions, locomotor adaptations
8 9	475 and body size in prosimian primates. J Hum Evol 25.1: 57-74.
10	477 sinica) and the evolution of adiposity in primates. <i>American Journal of Physical</i>
11 12	478 Anthropology, 152(3), 333–344. https://doi.org/10.1002/ajpa.22351
12	Drgelle F., Schoonaert K., Aerts P., Nauwelaerts S., Stevens J. M. G., D'Août K. (2018)
14 15	 480 Segmental morphometrics of bonobos (Pan paniscus): are they really different from 481 chimpanzees (Pan troglodytes)? J Anat 233.1: 843-853.
16 17	 Exiot, D. J., & Jungers, W. L. (2000). Fifth metatarsal morphology does not predict presence or absence of fibularis tertius muscle in hominids. <i>Journal of Human Evolution</i>, 38(2), 333–
18 19	484 342. https://doi.org/10.1006/jhev.1999.0337
20 21	486 and paleoecological perspectives. <i>Journal of Human Evolution</i> , 145, 102799.
22 23	Endow , D. H. (1962). A Study of the Post-Natal Growth and Remodeling of Bone. <i>American</i>
24	489 <i>Journal of Anatomy</i> , <i>110</i> (2), 79–101. https://doi.org/10.1002/aja.1001100202
25 26	Feonandez-Duque E. (2011) Rensch's Rule, Bergmann's Effect and adult sexual dimorphism in
20 27	491 wild monogamous owl monkeys (<i>Aotus azarai</i>) of Argentina. Am J Phys Anthropol
28	492 140.1.30-40.
29 30	494 the free-ranging fat-tailed dwarf lemur (Cheirogaleus medius), a tropical hibernator. J
31	495 Comp Physiol B 173.1: 1-10.
32	@mabowski, M., Hatala, K. G., Jungers, W. L., & Richmond, B. G. (2015). Body mass estimates
33 34	497 of hominin fossils and the evolution of human body size. <i>Journal of Human Evolution</i> ,
35	498 55, 75–55. https://doi.org/10.1010/j.jnevol.2015.05.005 #ppris. J., Leakey, M., & Cerling, T. (2003). Early Pliocene Tetrapod remains from Kanapoi.
36 37	500 Lake Turkana Basin, Kenya. <i>Contributions in Science</i> , 498(1), 39–113.
38	Bartwig-Scherer, S., & Martin, R. D. (1992). Allometry and prediction in Hominoids: A solution
39	to the problem of intervening variables. <i>American Journal of Physical Anthropology</i> ,
40 41	503 88(1), 37–57. https://doi.org/10.1002/ajpa.1330880105
42	505 Enthesonathies and activity patterns in the Early Medieval Great Moravian population:
43	506 Evidence of division of labour. International Journal of Osteoarchaeology, 21(4), 487–
44 45	507 504. https://doi.org/10.1002/oa.1164
46	blaswkey, D., & Merbs, C. (1995). Activity-induced musculoskeletal stress markers (MSM) and
47 48	509 subsistence strategy changes among Hudson Bay Eskimos. <i>International Journal of</i>
49	510 Osteoarchaeology, 5(4), 324–338. Hernandez-Pacheco R. Delgado D. J. Rawlins R. G. Kessler M. J. Ruiz-Lambides A. V.
50	512 Maldonado E., & Sabat A. M. (2016) Managing the Cavo Santiago Rhesus Macague
51 52	513 Population: The role of density. Am J Primatol 78.1: 167-181.
53	blodliday TW, Churchill SE, Carlson KJ, DeSilva JM, Schmid P, Walker CS, Berger LR (2018)
54	515 Body size and proportions of Australopithecus sediba. Paleoanthropology: 406-422.
55 56	
57	
58 59	
60	John Wiley & Sons, Inc.

3	budson, J., Baum, S., Frve, D., Roecker, E., & Kemnitz, J. (2013). Age and sex differences in
4	517 body size and composition during rhesus monkey adulthood <i>Aging and Clinical</i>
5	517 Sealy 6126 and composition during models memory additional rights and common
6	tablanaki N. & Freet C. (2010). Careenitheesidee. In Careenia Marguela of Africa. Darkelayu
7	Sagionski, N., & Frost, S. (2010). Cercopitnecoidea. In Cenozoic Mammais of Africa. Berkeley:
8	520 University of California Press.
9	studex, S., & Zernicke, R. F. (2000). High-impact exercise and growing bone: relation between
10	522 high strain rates and enhanced bone formation. <i>Journal of Applied Physiology</i> , 88(6),
11	523 2183–2191 https://doi.org/10.1152/jappl.2000.88.6.2183
12	tangers WI Susman RI (1984) Body size and skeletal allometry in African anes in The
13	Democratic and sketchar allothery in Amean apes in the
14	525 Pygmy Chimpanzee. Springer, Boston, MA. 131-177.
15	526 gers WL (1985) Body size and scaling of limb proportions in primates in Size and Scaling in
16	527 Primate Biology. Springer, Boston, MA: 345-381.
17	\$08gers, W. L., Grabowski, M., Hatala, K. G., & Richmond, B. G. (2016). The evolution of body
18	529 size and shape in the human career. <i>Philosophical Transactions of the Royal Society B</i> :
19	530 <i>Biological Sciences</i> 371(1698) 20150247 https://doi.org/10.1098/rstb.2015.0247
20	Karakostic E A Wallaco I I Konow N & Harvati K (2010) Experimental ovidence that
21	balakosus, F. A., Wallace, I. J., Konow, N., & Harvall, K. (2019). Experimental evidence that
22	532 physical activity affects the multivariate associations among muscle attachments
23	533 (entheses). Journal of Experimental Biology, 222(23).
24	534 https://doi.org/10.1242/jeb.213058
25	Kälsaridis, S., Engström, C., & Thilander, B. (1988). Histochemical analysis of masticatory
26	536 muscle in the growing rat after prolonged alteration in the consistency of the diet.
27	537 Archives of Oral Biology 33(3) 187–193 https://doi.org/10.1016/0003-9969(88)90044-
28	= 1
29	230 I
30	Buezawa C. W. (1998) Adipose lissue in human infancy and childhood. an evolutionary
31	540 perspective. Yearbook Phys Anthropol 41.1: 177-209.
32	5egendre, P. (2018) Imodel2: Model II Regression. R Package Version 1.7-3.
33	542 ">https://CRAN.R-project.org/package=Imodel2>
34	
51	Maestripieri D. Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on
35	Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on 544 Cavo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri
35 36	Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri
35 36 37	 Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262.
35 36 37 38	 Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Magrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of
35 36 37 38 39	 Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Magrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from
35 36 37 38 39 40	 Kasestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Kasrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021.
35 36 37 38 39 40 41	 Kazestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Kasrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MgFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A
35 36 37 38 39 40 41 42	 Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Magrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MagFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.). <i>The evolving female</i>. Princeton: Princeton University Press.
35 36 37 38 39 40 41 42 43	 Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Magrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MagFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. MagHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of</i>
35 36 37 38 39 40 41 42 43 44	 Magestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Magrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MagFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. MagHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of</i> <i>Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/aipa.1330870404
35 36 37 38 39 40 41 42 43 44 45	 Kagestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Kagrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Mc Farland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Kto Henry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of</i> <i>Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404
 35 36 37 38 39 40 41 42 43 44 45 46 	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Marwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Maranan, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Mathemy, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Mathemy, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A.
 35 36 37 38 39 40 41 42 43 44 45 46 47 	 Kazestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Kasrwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. SM®Farland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. KatHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Kitler, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. Stat. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World
35 36 37 38 39 40 41 42 43 44 45 46 47 48	 Kabestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Kaberwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Kaberarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Kaberarland, R. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Kibler, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. Sie N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	 Kraestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Krasmick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Krashand, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. KraHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of</i> <i>Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Kribler, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	 Kræsstripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Kræsnick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. KræsFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. KræHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of</i> <i>Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Kriller, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Krølnar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	 Kraestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Krasmick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Krashand, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Krashenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of</i> <i>Physical Anthropology</i>, <i>87</i>(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Krister, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, <i>57</i>(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Krolnar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation. Musculoskeletal Stress Markers (MSM) and age in two
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	 Kraestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Krashnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Krashnamo, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Krashenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Krisher, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Krolnar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter-gatherer populations from Gotland, Sweden, <i>International Journal of</i>
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	 Krazestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Krazewick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. Krazerand, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. KraHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Kriller, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Krolnar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of</i> Octoaerphacelogy 24(2), 292. 201. https://doi.org/10.1002/aja.1320
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Maerwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MaeFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Mathenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Miter, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. Staller, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. Staller, P., Ahlstrom, T. P., & Leden, 1. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of Osteoarchaeology</i>, 21(3), 283–291. https://doi.org/10.1002/aj.131
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Maervick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MaeFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Mathemry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Mather, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. S. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, <i>57</i>(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Monar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of Osteoarchaeology</i>, <i>21</i>(3), 283–291. https://doi.org/10.1002/oa.1131
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Maervick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MaeFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Mathemry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Mitler, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. S. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Monar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of Osteoarchaeology</i>, 21(3), 283–291. https://doi.org/10.1002/oa.1131
35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55 56 57 58	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Marwick B., Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality. on 01/20/2021. McFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. McHenry, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Miller, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Mconar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of Osteoarchaeology</i>, <i>21</i>(3), 283–291. https://doi.org/10.1002/oa.1131
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Maestripieri D, Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20201. MaeFarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Mathery, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Mailer, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Monar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of Osteoarchaeology</i>, 21(3), 283–291. https://doi.org/10.1002/oa.1131
35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60	 Maestripieri D, Hoffman C. L. (2012) Behavior and social dynamics of rhesus macaques on Cayo Santiago <i>in</i> Bones, genetics and behavior of rhesus macaques. Ed. Maestripieri D. Springer, New York: 247-262. Maestripieri D, Krishnamoorthy K. (2019) cvequality: Tests for the equality of coefficients of variation from multiple groups. R software package version 0.1.3. Retrieved from https://github.com/benmarwick/cvequality, on 01/20/2021. MaesTarland, R. (1997). Female primates: fit or fat? In M. Morbeck, A. Galloway, & Zihlmann A (Eds.), <i>The evolving female</i>. Princeton: Princeton University Press. Mathemy, H. M. (1992). Body size and proportions in early hominids. <i>American Journal of Physical Anthropology</i>, 87(4), 407–431. https://doi.org/10.1002/ajpa.1330870404 Matier, E. R., Benefit, B. R., McCrossin, M. L., Plavcan, J. M., Leakey, M. G., El-Barkooky, A. N., Simons, E. L. (2009). Systematics of early and middle Miocene Old World monkeys. <i>Journal of Human Evolution</i>, 57(3), 195–211. https://doi.org/10.1016/j.jhevol.2009.06.006 Mationar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—an analysis of the relationship between eburnation, Musculoskeletal Stress Markers (MSM) and age in two Neolithic hunter–gatherer populations from Gotland, Sweden. <i>International Journal of Osteoarchaeology</i>, 21(3), 283–291. https://doi.org/10.1002/oa.1131

1	
2	
3	Matchlinski, M. N., Snodgrass, J. J., & Terranova, C. J. (2012). Muscle Mass Scaling in
4	562 Primates: An Energetic and Ecological Perspective. <i>American Journal of Primatology</i> ,
6	563 74(5), 395–407. https://doi.org/10.1002/ajp.21990
7	Maroyama Y., Kanamori H., Kitahara E (2006) Seasonal variation and sex differences in the
8	565 nutritional status in two local populations of wild Japanese macaques. Primates 47.1:
9	566 355-364
10	66 Biggins P & Collard M (2002) Sexual dimorphism and facial growth in papionin monkeys
11	1000000000000000000000000000000000000
12	Person \cap M & Lieberman D E (2004) The aging of Wolff's "law": Ontogeny and
13	bearson, O. M., & Eleberman, D. E. (2004). The aging of words have ontogeny and
14	570 Tesponses to mechanical loading in contrar bone. American Journal of Physical
15	5/1 Antiniopology, 725(559), 05–99. https://doi.org/10.1002/ajpa.20155
16	Brezry J. M. G., Cooke S. B., Connour J. A., Burgess M. L., Run C. B. (2018) Anticular scaling
1/ 10	and body mass estimation in platyrrhines and catarrhines: Modern variation and
10 10	application to fossil anthropoids. J Hum Evol 115.1: 20-35.
20	Bretersdorf, M., Weyher, A. H., Kamilar, J. M., Dubuc, C., & Higham, J. P. (2019). Sexual
21	selection in the Kinda baboon. <i>Journal of Human Evolution</i> , 135, 102635.
22	577 https://doi.org/10.1016/j.jhevol.2019.06.006
23	Bhavcan, J. (2004). Sexual selection, measures of sexual seletion, and sexual dimorphism in
24	579 primates. In P. Kappeler & C. van Schaik (Eds.), <i>Sexual selection in primates: New and</i>
25	580 comparative perspectives. New York: Cambridge University Press.
26	Bourneroy E., Stock J. T., Stanojevic S., Miranda J. J., Cole T. J., Wells J. C. (2012). Trade-offs
27	582 in relative limb length among Peruvian children: extending the thrifty phenotype
20	583 hypothesis to limb proportions. PLoS One 7.12: e51795.
30	Boontzer, H., Lieberman, D. E., Momin, E., Devlin, M. J., Polk, J. D., Hallgrímsson, B., &
31	585 Cooper, D. M. L. (2006). Trabecular bone in the bird knee responds with high sensitivity
32	to changes in load orientation. Journal of Experimental Biology, 209(1), 57–65.
33	587 https://doi.org/10.1242/jeb.01971
34	Bostzer, Herman. (2012). Ecological Energetics in Early Homo. Current Anthropology, 53(S6),
35	589 S346–S358. https://doi.org/10.1086/667402
30 27	Borbey, K. N., Green, D. J., Tavlor, A. B., Begun, D. R., Richmond, B. G., & McFarlin, S. C.
38	(2015). Locomotor activity influences muscle architecture and bone growth but not
39	592 muscle attachment site morphology. <i>Journal of Human Evolution</i> , 78, 91–102.
40	593 https://doi.org/10.1016/i.ihevol.2014.10.010
41	R ^g awlins R & Kessler M (Eds.) (1986) The Cavo Santiago macaques: History behavior and
42	595 <i>biology</i> New York: SUNY Press
43	Redethford J H & Hodges D C (1985) A statistical test for differences in sexual dimorphism
44	597 between populations Am J Phys Anthropol 66 1: 55-61
45 46	Regolar L & O'Higgins P (2005) A Comparative Study of Adult Facial Morphology and Its
40 47	500 Ontogeny in the Fossil Macaque Macaca majori from Cano Figari Sardinia. Italy, Folia
48	Primetologice 76(3) 151-171 https://doi.org/10.1150/0008/378
49	Print a cologica, 70(5), 151-171. Intps://doi.org/10.1159/000004570
50	Builds Reproduced and the National Academy of Sciences 110(15) 5819 5822
51	$\frac{1000}{1000} = \frac{1000}{1000} = \frac{1000}{1000$
52	603 IIIIps.//doi.org/10.10/3/pilds.1213091110
53	(2012) Stature and body mass satimation from skeletel remains in the European
54 55	(2012). Stature and body mass estimation nom skeletal remains in the European
56	
57	
58	
FO	

Holocene. American Journal of Physical Anthropology, 148(4), 601–617. https://doi.org/10.1002/ajpa.22087 Bosf, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387(6629), 173–176. https://doi.org/10.1038/387173a0 Ruff, C., Holt, B., & Trinkaus, E. (2006). Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation - Ruff - 2006 - American Journal of Physical Anthropology -Wiley Online Library. American Journal of Physical Anthropology, 129(4), 484–498. Buff CB, Niskanen M (2018) Introduction to special issue: Body mass estimation -Methodological issues and fossil applications. J Hum Evol 115: 1-7. Buff C. B., Junno J. A., Loring Burgess M., Canington S. L., Harper C., Mudakikwa A., McFarlin S. C. (in press) Body proportions and environmental adaptation in gorillas. Am J Biol Anthropol. Ruan, T., & Shaw, C. (2015). Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. Proceedings of the National Academy of Sciences, 112(2), 372–377. Szito, T., Ohnuki, Y., Yamane, A., & Saeki, Y. (2002). Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development. Archives of Oral Biology, 47(2), 109-115. https://doi.org/10.1016/S0003-9969(01)00094-2 Setchell, J. M., Lee, P. C., Wickings, E. J., & Dixson, A. F. (2001). Growth and ontogeny of sexual size dimorphism in the mandrill (Mandrillus sphinx). American Journal of Physical Anthropology, 115(4), 349-360. https://doi.org/10.1002/ajpa.1091 Szshlecht S. H. (2012) Understanding entheses: bridging the gap between clinical and anthropological perspectives. Anat Rec 295.8: 1239-1251. Strapiro L. J., Raichlen D. A. (2006) Limb proportions and the ontogeny of guadrupedal walking in infant olive baboons (Papio cynocephalus). J Zool 269.1: 191-203. Straw, C. N. (2011). The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers. American Journal of Physical Anthropology, 144(1), 22-29. Strearer, B., & Delson, E. (2012). Fossil macaque from Middle Pleistocene of Gajtan Cave, Albania, aligns with Macaca sylvanus via geometric morphometric analysis, American Journal of Physical Anthropology, 147(1), 268–269. Singleton, M., Seitelman, B. C., Krecioch, J. R., & Frost, S. R. (2017). Cranial sexual dimorphism in the Kinda baboon (Papio hamadryas kindae). American Journal of Physical Anthropology, 164(4), 665–678. https://doi.org/10.1002/ajpa.23304 **Sen**ith, R. J. (2009). Use and misuse of the reduced major axis for line-fitting. *American Journal* of Physical Anthropology, 140(3), 476–486. https://doi.org/10.1002/ajpa.21090 **6**⁴2ith R. J., Jungers W. L. (1997) Body mass in comparative primatology. J Hum Evol 32.6: 523-559. 64eegman Jr A. T., Cerny F. J., Holliday T. W. (2002) Neandertal cold adaptation: physiological and energetic factors. Am J Hum Biol 14.5: 566-583. Susva, G., Beyene, Y., Nakaya, H., Bernor, R., Boisserie, J., Bibi, F., ... Asfaw, B. (2015). Newly discovered cercopithecid, equid and other mammalian fossils from the Chorora Formation, Ethiopia. Anthropological Science, 123(1), 19–39. Tagylor, A. B., Jones, K. E., Kunwar, R., & Ravosa, M. J. (2006). Dietary consistency and plasticity of masseter fiber architecture in postweaning rabbits. The Anatomical Record

1	
2	
3	651 Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A(10), 1105–
4 5	652 1111. https://doi.org/10.1002/ar.a.20382
6	6533 cotte, C., Green, D., Kupczik, K., McFarlin, S., & Schulz-Kornas, E. (2019). Elevated
7	654 activity levels do not influence extrinsic fiber attachment morphology on the surface of
8	655 muscle-attachment sites. Journal of Anatomy.
9	T 56cotte C. M., Rabey K. N., Green D. J., McFarlin S. C. (2022b) Muscle attachment sites and
10	657 behavioral reconstruction: an experimental test of muscle-bone structural response to
11	658 habitual activity. Am J Biol Anthropol 177.1: 63-82.
12	Toppeotte C M Mann F H Stock M K Villamil C I Montague M J Dickinson F Cavo
13	660 Biobank Research Unit Surratt S B Martinez M Williams S A Antón S C
14 15	661 Higham J. P. (2022a) The ontogeny of sexual dimorphism in free-ranging rhesus
16	662 macaques Am J Phys Anthropol 177 2: 314-327
17	Termer T R Anapol F Jolly C J (1997) Growth development and sexual dimorphism in
18	664 veryet monkeys (Cerconithecus aethions) at four sites in Kenya Am I Phys Anthropol
19	
20	Tourner T. P. Cremer I. D. Nichett A. Grey I. P. (2016) A comparison of adult body size
21	boomer T. N., Gramer J. D., Nisbell A., Gray J. F. (2010) A comparison of adult body size
22	island of St. Kitta, Drimatos 57.2: 211.220
23	Tempor T. P. Schmitt C. A. Cramor J. D. Loronz J. Crobler J. P. Jolly C. J. Eroimor N. P.
24 25	(2019) Morphological variation in the genus Chlorosophus: Ecogoographic and
26	670 (2016) MOIPHOIOGICAL VARIATION IN the genus Chiorocebus. Ecogeographic and
27	6/1 anthropogenically mediated variation in body mass, postcramal morphology, and
28	6/2 growth. American Journal of Physical Anthropology 166.3: 682-707.
29	6/dsnquist, J. E., & Kessier, M. J. (1989). Free-ranging Cayo Santiago mesus monkeys
30	6/4 (Macaca mulatta): I. Body size, proportion, and allometry. American Journal of
31	675 Primatology, 19(1), 1–13. https://doi.org/10.1002/ajp.1350190102
32 22	Whotte, S., Castex, D., Couallier, V., Dutour, O., Knusel, C. J., & Henry-Gambler, D. (2010).
33 34	677 Enthesopathies as occupational stress markers: Evidence from the upper limb.
35	678 American Journal of Physical Anthropology, 142(2), 224–234.
36	679 https://doi.org/10.1002/ajpa.21217
37	680 Ilace, I. J., Winchester, J. M., Su, A., Boyer, D. M., & Konow, N. (2017). Physical activity
38	alters limb bone structure but not entheseal morphology. <i>Journal of Human Evolution</i> ,
39	682 107, 14–18. https://doi.org/10.1016/j.jhevol.2017.02.001
40	Addang Q., Turnquist J. E., Kessler M. J. (2016) Free-ranging Cayo Santiago rhesus monkeys
41 42	684 (<i>Macaca mulatta</i>): III. Dental eruption patterns and dental pathology. Am J Primatology
42 43	685 78.1: 127-142.
44	Weickings E. J., Dixon A. F. (1992) Development from birth to sexual maturity in a semi-free-
45	ranging colony of mandrills (Mandrillus sphinx) in Gabon. Reproduction 95.1: 129-138.
46	kkickham, H. (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
47	Weigldig A., Kessler M. J., Bercovitch F. B., Berard J. D., Duggleby C., Nürnberg P., Rawlins R.
48	690 G., Sauermann U., Wang Q., Krawczak M., Schmidtke J. (2016) Genetic studies on the
49 50	691 Cayo Santiago rhesus macaques: a review of 40 years of research. Am J Phys
50 51	692 Anthropol 78.1: 44-62.
52	Zigsiman A. L., McFarland, R. K. (2000) Body mass in lowland gorillas: a quantitative analysis.
53	694 Am J Phys Anthropol 113.1: 61-78.
54	
55	
56	
5/	
20	

2		
3	Zisman A. L., McFarland R. K., Underwood C. E. (2011) Functional anatomy and adaptation	
4	696 of male gorillas (Gorilla gorilla) with comparison to male orangutans (Pongo	
5	607 pygmaeus) Apat Dec 204 11: 1842 1855	
6	Zielman A. Baltar D. D. (2015) Body composition in Dan paniagua compared with Home	
7	Againan A, Boiler D. R. (2015) Body composition in Part pariscus compared with Homo	
8	sapiens has implications for changes during human evolution. PNAS 112.24: 7466-	
9	700 7471.	
10	Zowick R. K., Guerrero-Juarez C. F., Horsley V., Plikus M. V. (2018) Anatomical, physiological,	
11	and functional diversity of adipose tissue. Cell Metabolism 27.1: 68-83.	
12	703	
13		
14	704	
15	704	
16		
1/		
10		
19		
20		
27		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41 42		
42		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59	John Wiley & Sons Inc	
60		

Table 1: Descriptions of somatic and skeletal measurement showing alterations made from established protocols.

Table 2: Descriptive statistics showing mean \pm SD for paired soft and hard tissue measures of limb length, joint breadth and limb circumference in rhesus macaques.

Table 3: Coefficients of variation (CV) are reported for each somatic (S) and hard tissue (H) variable in male (M), female (F) and pooled sex (Pooled) rhesus macaques. Pairwise tests for the equality of CVs between soft and hard tissue measures demonstrate that each somatic-skeletal pair exhibits similar amounts of variation.

Table 4: Sexual dimorphism ratios (male mean/female mean) are reported for each somatic (S) and hard tissue (H) variable in rhesus macaques. Pairwise t-tests of ratios between soft and hard tissue measures demonstrate that each somatic-skeletal pair exhibits similar degrees of dimorphism.

Table 5: Epiphyses-Absent (EA) bivariate comparisons between each somatic measurement and its skeletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA regression equations are presented.

Table 6: Epiphyses-Present (EP) bivariate comparisons between each somatic measurement and its skeletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA regression equations are presented.

Table 7: Tests for the equality of slopes performed on male and female rhesus macaque OLS regression results demonstrate that the scaling relationship between sexes is equivalent, except in the case of upper leg length and knee breadth - tibia. Significant tests are marked in bold.

Supplementary Table 1: Raw data reported for each somatic and skeletal variable in each individual. Monkey IDs are coded to a specific individual.

Fig. 1: Pooled group bivariate comparisons between each somatic measurement and its skeletal correlate for limb lengths [A-D], limb circumference [E, F], and joint breadth [G-I] in rhesus macaques. Solid lines represent the Ordinary Least Squares (OLS) regression with 95% confidence intervals (shaded). A) Upper arm length, B) Forearm length, C) Upper leg length, D) Lower leg length, E) Arm circumference, F) Leg Circumference, G) Elbow breadth, H) Knee breadth - femur, I) Knee breadth - tibia.

Somatoskeletal	Somatic Measurement Description	Device	Source
Comparison			
Upper arm length	Measured with tape with the arm extended at the elbow from the top (round) part of the shoulder (provimal humeral head) to the center-point of	Tape	Antón et al. (2009) *Differs from
	the most lateral bony protuberance on the elbow.		Schultz (1929) and
			Turner et al. (1999)
Lower arm	Measured with tape with the arm flexed at the elbow from the most	Tape	Antón et al. (2009)
	proximal bony point on the elbow (olecranon) to the most distal bony		*Differs from
	protrusion above the wrist on the side of the 5^{th} ray (styloid process of ulna).		Schultz (1929) and
-	• • • • • • • • • • • • • • • • • • •	ŀ	Turner et al. (1999)
Upper leg	Measured with tape with the lower limb flexed at the hip and knee from the	Tape	Antón et al. (2009)
	lateral-most bony point at the hip joint (trochanterion summum, p6) along		*Differs from
	the lateral side of the limb to the lateral-most extension of the knee		Schultz (1929) and
	(femorale, p10, lateral condyle of the femur), which should be approximately		Turner et al. (1999)
	the mid-point of the patella when the leg is extended.		
Lower leg lateral	Measured with tape from the medial tibial condyle to the medial bulge at the	Tape	Antón et al. (2009)
)	ankle (medial malleolus).	-	
Upper arm	Measured with tape held tightly to minimize the contribution of fur at the	Tape	Turner et al. (1997)
circumference	midpoint of the upper arm (halfway between the acromion process of the		*In contrast to
hard	scapula and the olecranon process of the ulna).		Turner et al.
Thigh	Measured with tape held tightly to minimize the contribution of fur at the	Tape	Turner et al. (1997)
circumference	maximum circumference of the thigh.		*In contrast to
hard			Turner et al.
Knee breadth	Measured with sliding calipers with the knee flexed between the most	Sliding	Antón et al. (2009)
femoral	medial and lateral points of the femoral condyles, which are located at	Calipers	
	approximately the middle of the patella when the knee is flexed. Taken from		
	the front. Monomed with digital collinger with the base flowed hetween the most lateral		
Knee breadth	Measured with digital calipers with the knee nexed between the most lateral and most modial book protencions of the bree below the mid-level of the	Sliding	Antón et al. (2009)
tibial	batella (do not measure at mid-patella, but below mid-patella to avoid	Calipers	
	measuring the femur). Taken from the front.		
Elbow breadth	Measured with digital calipers with the forearm flexed at the elbow between	Sliding	Antón et al. (2009)
	the most lateral and most medial bony protrusions of the elbow.	Calipers	

Table 1: Descriptions of somatic and skeletal measurement showing alterations made from established protocols.

\sim
5
2,
0
_
0
0
~
Ų.
=
<u> </u>
÷
~
-
_
σ
0
2
\sim
_
f PI
of Pl
l of Pl
al of Pl
al of Pl
rnal of Pl
urnal of Pl
urnal of Pl
ournal of Pl
Journal of Pl
Journal of Pl
n Journal of Pl
an Journal of Pl
can Journal of Pl
ican Journal of Pl
erican Journal of Pl
erican Journal of Pl
nerican Journal of Pl
merican Journal of Pl
American Journal of Pl

4
Ģ
38
e B
Paç

Skeletal Measurement Description	Device 9	source
Measured from the most proximal point on the head of the humerus to the most distal portion of the trochlea.	OM Board F	Ruff (2003)
Measured from the center of the most proximal portion of the olecranon process to the distal edge of the styloid proces	ss. OM Board F	łuff (2003)
Measured from the most proximal point of the head of the femur to the inferior border of the condyles.	OM Board * (* Differs from Ruff 2003)
Measured as the average position between the medial and lateral plateaus to the distal projection of the medial malleolus.	OM Board F	łuff (2003)
Measured with tape held tightly to the midshaft of the humerus. Measured with tape held tightly to the midshaft of the femur.	l ape Tape	
Measured as the intercondylar breadth on the distal femur.	Sliding F Calipers	łuff (2003)
Measured as the distance between the medial and lateral-most extent of the tibial plateau.	Sliding F Calipers	łuff (2003)
Measured as the mediolateral breadth of the condyles of the distal humerus.	Sliding F Calipers	łuff (2003)
John Wiley & Sons, Inc.		

		Η	Epiphyses-Absen	t		Epiphyses-Present	
Region	Location	Μ	Ч	Pooled	Μ	Ч	Pooled
		N = 10	N = 12	N = 22	N = 31	N = 52*	N = 83
Upper Arm Length	Somatic	68.5 ± 9.29	68.67 ± 6.14	68.59 ± 7.53	150.78 ± 18.66	142.44 ± 10.93	145.55 ± 14.77
(mm)	Humerus	60.54 ± 9.27	57.53 ± 3.87	58.90 ± 6.86	144.31 ± 16.10	134.79 ± 8.71	138.34 ± 12.78
Econorm I anoth (mm)	Somatic	81.70 ± 12.18	80.00 ± 6.12	80.77	180.84 ± 19.97	164.35 ± 10.13	170.51 ± 16.56
roreann Lengun (mm)	Ulna	65.4 ± 8.89	62.71 ± 5.33	63.93 ± 7.12	161.06 ± 17.08	147.81 ± 8.71	152.76 ± 13.98
Upper Leg Length	Somatic	73.20 ± 9.68	71.92 ± 4.93	72.50 ± 7.30	173.39 ± 23.97	156.31 ± 9.78	162.69 ± 18.40
(mm)	Femur	67.16 ± 11.43	64.03 ± 4.93	65.45 ± 8.44	169.60 ± 19.43	156.54 ± 8.89	161.42 ± 15.09
Lower Leg Length	Somatic	70.7 ± 9.01	68.00 ± 6.09	69.23 ± 7.49	160.84 ± 18.88	146.27 ± 10.55	151.71 ± 15.81
(mm)	Tibia	64.18 ± 10.95	61.32 ± 4.61	62.62 ± 8.04	161.39 ± 16.69	149.38 ± 8.31	153.86 ± 13.38
Elham Drondth (mm)	Somatic				32.94 ± 2.95	29.24 ± 1.79	30.62 ± 2.90
EIDOW DICAULI (IIIIII)	Humerus				28.69 ± 3.25	25.97 ± 1.70	27.00 ± 2.73
Vaca Droadth (E) (mm)	Somatic				32.69 ± 3.13	29.81 ± 2.05	30.88 ± 2.86
NIEC DICAULI (L) (IIIIII)	Femur				28.86 ± 2.57	26.29 ± 1.59	27.25 ± 2.36
Knee Breadth (T)	Somatic				32.83 ± 2.73	29.60 ± 2.29	30.81 ± 2.91
(mm)	Tibia				27.85 ± 2.97	25.57 ± 1.86	26.42 ± 2.57
Upper Arm	Somatic	63.50 ± 6.15	64.83 ± 6.93	64.23 ± 6.47	154.48 ± 23.94	134.02 ± 13.51	141.66 ± 20.55
Circumference (mm)	Humerus	16.40 ± 1.71	16.00 ± 1.13	16.18 ± 1.40	35.26 ± 5.27	32.42 ± 3.07	33.48 ± 4.23
Upper Leg	Somatic	80.70 ± 9.86	81.58 ± 8.87	81.18 ± 9.11	211.90 ± 30.11	194.69 ± 18.40	201.12 ± 24.75
Circumference (mm)	Femur	17.90 ± 1.73	18.00 ± 1.23	17.95 ± 1.40	40.38 ± 4.72	38.00 ± 3.04	38.89 ± 3.91

Table 2: Descriptive statistics showing mean ± SD for paired soft and hard tissue measures of limb length, joint breadth and limb circumference in rhesus macaques.

Page 40 of 47

American Journal of Physical Anthropology

			Epiphyses-Abse	nt	म	piphyses-Presen	t
		Μ	F	Pooled	Μ	Ч	Pooled
Region		SH	SH	S H	S H	S H	SH
IInner Arm I en ath	CV	13.56 15.31	8.94 6.72	10.98 11.64	12.37 11.15	7.67 6.46	10.15 9.24
Upper Aun Lengu	t-statistic	0.13	0.87	0.70	0.31	1.49	0.70
	p-value	0.720	0.350	0.790	0.575	0.223	0.384
	CV	14.91 13.59	7.65 8.50	11.35 11.13	11.04 10.61	6.17 5.89	9.71 9.15
Forearm Length (mm)	t-statistic	0.07	0.12	0.01	0.50	0.10	0.28
	p-value	0.785	0.729	0.930	0.827	0.748	0.596
I Tanna I an I	CV	13.23 17.02	6.85 7.69	10.07 12.90	13.82 11.46	6.26 5.67	11.31 9.35
Upper Leg Lengu	t-statistic	0.54	0.15	1.24	1.02	0.47	2.91
(IIIIII)	p-value	0.461	0.702	0.265	0.313	0.491	0.088
I amount and Landth	CV	12.74 17.06	8.96 7.51	10.81 12.84	11.74 10.33	7.21 5.56	10.42 8.69
rower reg rengu	t-statistic	0.73	0.33	0.60	0.47	3.38	2.62
	p-value	0.394	0.564	0.440	0.493	0.660	0.105
	CV				8.97 11.32	6.06 6.55	9.48 10.11
Elbow Breadth (mm)	t-statistic				1.58	0.33	0.33
	p-value				0.209	0.566	0.566
	CV				9.57 8.91	6.88 6.06	9.25 8.66
Knee Breadth (F) (mm)) t-statistic				0.15	1.16	0.34
	p-value				0.700	0.281	0.558
V to Droudth (T)	CV				8.33 10.68	7.74 7.28	9.45 9.74
(T) Incontraction (T)	t-statistic				1.80	0.19	0.07
	p-value				0.180	0.662	0.786
IImor Arm	CV	9.69 10.44	10.68 7.05	10.77 8.66	15.50 14.94	10.08 9.47	14.51 12.64
Circumference (mm)	t-statistic	0.05	1.82	0.46	0.04	0.19	1.50
	p-value	0.823	0.178	0.496	0.843	0.659	0.221
I Innar I ad	CV	12.21 9.66	10.86 6.27	11.22 7.78	14.21 11.70	9.45 8.01	12.31 10.05
Circumfarance (mm)	t-statistic	0.48	3.13	2.71	1.09	1.38	3.27
	p-value	0.489	0.080	0.100	0.295	0.240	0.071
Table 3: Coefficients o	f variation (CV)	are reported for eached	ach somatic (S) a	Ind hard tissue (H)) variable in male ((M), female (F) ar	Id pooled sex
	aques. Fallwise	iesis iui irie equa. skeletal pai	ir exhibits similar	amounts of variati	on.		

\sim
5
2,
0
_
Q
0
5
2
=
ᆂ
7
5
\triangleleft
—
13
.≃
S
>
~
2
<u>ц</u>
÷
0
-
Ē
2
5
1
_
0
-
_
Ē
an.
can.
ican.
erican .
ierican .
nerican .
merican.
American .

	Sexua	I Dimorphism	Ratio		Test of	f Ratios				
	Epiphyse	s-Absent	Epiphyse	s-Present	Щ	piphyses-Abse	nt	E	piphyses-Prese	nt
Region	S	Η	S	Η	df	t	d	df	t	d
Upper Arm Length (mm)	1.00	1.05	1.06	1.07	40	-0.72	0.238	162	-0.28	0.390
Forearm Length (mm)	1.02	1.04	1.10	1.09	40	-0.20	0.423	162	0.74	0.771
Upper Leg Length (mm)	1.02	1.05	1.11	1.08	40	-0.36	0.361	162	2.88	866.0
Lower Leg Length	1.04	1.05	1.10	1.08	40	-0.07	0.474	162	2.73	0.997
Elbow Breadth (mm)			1.13	0.96	40			161	1.30	0.902
Knee Breadth (F) (mm)			0.97	0.96	40			162	0.43	0.664
Knee Breadth (T) (mm)			0.96	0.97	40			162	1.23	0.890
Upper Arm Circumference (mm)	0.98	1.03	1.15	1.09	40	-0.60	0.276	162	4.19	666.0
Upper Leg Circumference (mm)	0.99	0.99	1.09	1.06	40	-0.19	0.424	162	2.75	0.997
Table 4: Sexual dimorph	ism ratios (mai and	le mean/female 1 1 hard tissue mea	mean) are report asures demonstra	ed for each som ate that each son	atic (S) and har natic-skeletal p	d tissue (H) vari air exhibits simil	able in rhesus m ar degrees of dir	acaques. Pairwi norphism.	se t-tests of ratio	s between soft

Page 42 of 47

		Male		
Region	R^2	OLS	RMA	R^2
Upper Arm Length (mm)	0.8	y = 0.84x + 0.78	y = 0.94x + 0.38	0.78
Forearm Length (mm)	0.81	y = 0.95x + 0.44	y = 1.06x - 0.01	0.8
Upper Leg Length (mm)	0.88	y = 0.77x + 1.06	y = 0.82x + 0.85	0.62
Lower Leg Length (mm)	0.81	y = 0.85x + 0.77	y = 0.95x + 0.38	0.51
Upper Arm Circumference (mm)	0.63	y = 0.75x + 2.07	y = 0.94x + 1.53	0.25
Upper Leg Circumference (mm)	0.72	y = 1.11x + 1.19	y = 1.31x + 0.61	0.15

 Table 5: Epiphyses-Absent (EA) bivariate comparisons between each somatic measurement and its skeet

 equations are provide the equation of the

Female			Pooled	
OLS	RMA	R^2	OLS	RMA
y = 1.18x - 0.56	y = 1.33x - 1.18	0.73	y = 0.87x +0.69	y = 1.06x - 0.09
y = 0.81x + 1.03	y = 0.91x + 0.63	0.79	y = 0.89x + 0.71	y = 1.01x + 0.19
y = 0.70x + 1.35	y = 0.89x + 0.57	0.81	y = 0.74x + 1.18	y = 0.83x + 0.83
y = 0.89x + 0.62	y = 1.25x - 0. 87	0.71	y = 0.86x + 0.75	y = 1.02x + 0.10
y = 0.76x + 2.06	y = 1.51x - 0.02	0.37	y = 0.72x + 2.15	y = 1.18x + 0.88
y = 0.68x + 2.43	y = 1.74x - 0.63	0.41	y = 0.95 + 1.64	y = 1.48x + 0.12

eletal correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA regression presented.

1					
2			Male		
3	Region	\mathbb{R}^2	OLS	RMA	\mathbb{R}^2
4 5 6	Upper Arm Length (mm)	0.87	y = 1.04x - 0.13	y = 1.11x - 0.49	0.70
7 8	Forearm Length (mm)	0.81	y = 0.91x + 0.59	y = 1.01x + 0.08	0.58
9 10 11	Upper Leg Length (mm)	0.90	y = 1.14x - 0.72	y = 1.20x - 1.03	0.66
12 13	Lower Leg Length (mm)	0.83	y = 0.98x + 0.15	y = 1.08x - 0.32	0.71
14 15 16	Elbow Breadth (mm)	0.83	y = 0.71x + 1.12	y = 0.78x + 0.88	0.59
17 18	Knee Breadth (F) (mm)	0.63	y = 0.86x + 0.59	y = 1.09x - 0.17	0.72
19 20	Knee Breadth (T) (mm)	0.83	y = 0.69x + 1.20	y = 0.76x + 0.98	0.82
21 22 23	Upper Arm Circumference (mm)	0.71	y = 0.88x + 1.89	y = 1.05x + 1.31	0.56
24 25 26	Upper Leg Circumference (mm)	0.50	y = 0.90x + 2.02	y = 1.27x + 0.64	0.51
20					

 Table 6: Epiphyses-Present (EP) bivariate comparisons between each somatic measurement and its skeletal are prese

Female			Pooled	
OLS	RMA	\mathbb{R}^2	OLS	RMA
y = 0.97x + 0.21	y = 1.16x - 0.73	0.82	y = 0.99x + 0.10	y = 1.10x - 0.42
y = 0.79x + 1.18	y = 1.03x - 0.04	0.78	y = 0.92x + 0.52	y = 1.04x - 0.08
y = 0.91x + 0.47	y = 1.11 - 0.58	0.86	y = 1.11x - 0.55	y = 1.20x - 1.00
y = 1.08x - 0.39	y = 1.29x - 1.41	0.82	y = 1.04x - 0.19	y = 1.15 - 0.75
y = 0.70x + 1.09	y = 0.91x + 0.42	0.79	y = 0.82x + 0.74	y = 0.92x + 0.39
y = 0.97x + 0.24	y = 1.14x - 0.33	0.74	y = 0.93x + 0.37	y = 1.07x - 0.12
y = 0.95x + 0.32	y = 1.04x + 0.01	0.83	y = 0.88x + 0.56	y = 0.96x + 0.29
y = 0.78x + 2.18	y = 1.04x + 1.26	0.68	y = 0.92x + 1.71	y = 1.12x + 1.01
y = 0.84x + 2.23	y = 1.18x + 1.00	0.53	y = 0.90 + 2.00	y = 1.23x + 0.79

l correlate for limb lengths, limb circumference, and joint breadth. OLS and RMA regression equations inted.

1 2	Region	Std Error t	df	p-v	alue
3 4 5	Upper Arm Length (mm)	< 0.001	-0.574	80	0.568
6 7	Forearm Length (mm)	< 0.001	-0.967	80	0.336
8 9	Upper Leg Length (mm)	< 0.001	-2.049	80	0.044
10 11 12	Lower Leg Length (mm)	< 0.001	0.827	80	0.411
13 14	Elbow Breadth (mm)	0.004	-0.06	79	0.952
15 16 17	Knee Breadth (F) (mm)	0.005	0.726	80	0.470
18 19	Knee Breadth (T) (mm)	0.003	3.041	80	0.003
20 21	pper Arm Circumference (mr	0.004	-0.739	80	0.462
22 23 24	pper Leg Circumference (mn	0.005	-0.316	79	0.753

Table 7: Tests for the equality of slopes performed on male and female rhesus macaque OLS regression results demonstrate that the scaling relationship between sexes is equivalent, except in the case of upper leg length and knee breadth - tibia. Significant tests are marked in bold.

Fig. 1: Pooled group bivariate comparisons between each somatic measurement and its skeletal correlate for limb lengths [A-D], limb circumference [E, F], and joint breadth [G-I] in rhesus macaques. Solid lines represent the Ordinary Least Squares (OLS) regression with 95% confidence intervals (shaded). A) Upper arm length, B) Forearm length, C) Upper leg length, D) Lower leg length, E) Arm circumference, F) Leg Circumference, G) Elbow breadth, H) Knee breadth - femur, I) Knee breadth - tibia.

542x372mm (300 x 300 DPI)