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Abstract. Many machine learning algorithms require the use of good
quality experimental designs to maximise the information available to
the model. Various methods to create experimental designs exist, but
the solutions can be sub-optimal or computationally inefficient. Multi-
objective evolutionary algorithms (MOEAs), with their advantages of
being able to solve a variety of problems, are a good method of creating
designs. However, with such a variety of MOEAs available, it is impor-
tant to know which MOEA performs best at optimising experimental
designs. In this paper, we formulate experimental design creation as a
multi-objective optimisation problem. We compare the performance of
different MOEAs on a variety of experimental design optimisation prob-
lems, including a real-world case study. Our results show that NSGA-II
can often perform better than NSGA-III in many-objective optimisation
problems; RVEA performs very well; results suggest that using more ob-
jectives can create better quality designs. This knowledge allows us to
make more informed decisions about how to use MOEAs when creating
metamodels.

Keywords: Pareto optimality · Metamodelling · Evolutionary Compu-
tation

1 Introduction

Computer simulations are widely used in many scientific fields to understand
systems that are complex or difficult to measure in the real world. Problems
arise when simulations become computationally expensive. If one wants to un-
derstand the landscape, a small set of samples can be used to construct a meta-
model. A metamodel is a regression model representative of a simulator. This
allows the prediction of unsimulated areas of the landscape without expensive
simulator runs. The problem of metamodeling and experimental designs is to
determine what values to run the true simulator so that the metamodel regres-
sion is as accurate as possible [8]. Intuitively, it is best to uniformly spread the
sample points across the domain, to maximise the information available for the
regression metamodel. Uniform spread, or space filling, is the main concern of
creating experimental designs; how do we position the sample points used for
the metamodel across the domain space?
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There are various ways to create experimental designs, the most simple
method is random sampling/Monte Carlo sampling. This is very limited in its
use for metamodeling, as many samples are required to fill space effectively [8].
Latin hypercube sampling (LHS) improves on random sampling by considering
a one-dimensional projection property for all sample points. LHS, when com-
bined with space filling criteria, can create effective space filling designs; how-
ever, maintaining the one-dimensional projection property is difficult, as it is
a strict constraint. Methods to obtain optimised LHS are computationally ex-
pensive and for some design parameters become infeasible [15]. Single objective
methods return single solutions; no alternatives are given.

By employing multi-objective optimisation (MOO) in the creation of design
of experiments (DOE), we can overcome these issues and give the decision maker
(DM) greater control over the optimisation process. Multiple desirable proper-
ties of experimental designs can be chosen by the DM and constraints upon
solutions can be applied [6]. For example, we could set a constraint that requires
solutions to be Latin hypercubes/maintain single-dimensional projection. Alter-
natively, the single dimension projection ability of a design can be measured as
an objective that is optimised in conjunction with other objectives; this may not
give exact LHSs, but it can produce families of designs close to pure LHSs in a
fraction of the time.

In addition to speed and customisability, MOO facilitates the creation of a
set of optimal solutions, which provides many alternatives with different evalu-
ation values [6]; the DM can select a design that fits his/her requirements. For
experimental designs specifically, the presence of alternatives is especially pow-
erful due to the multi-modality of the problem. MOO of DoE is a multi-modal
multi-objective optimisation problem (MMOP). As such, experimental designs
with similar evaluation values can have vastly different sample point locations.
This gives the DM an even greater choice [18]. If, for example, a chosen design
produces a substandard metamodel, the decision maker has not to change his
requirements; s(he) can select another experimental design that is similar within
the objective space and distant in the solution space [18]. This new design still
meets the decision makers requirements however may produce a far better meta-
model.

With the advantages of customisability and easy access to alternatives, the
use of MOO for the creation of experimental designs is considered appropriate
and should be explored. MOO is frequently done with the use of multi-objective
evolutionary algorithms (MOEAs); these algorithms have various strengths and
weaknesses. MOEAs can solve many types of problems; they can solve non-
convex problems and without derivatives [6]. They are a good choice for solving
the problem of design of experiments; however, they must be prepared to over-
come the unique problems presented by multi-objective design of experiments.
These problems include:

1. Large Gene Count: Due to the encoding methods, each potential solution in
a modest DOE optimisation problem can contain hundreds of genes. As the
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number of genes becomes very large the search space increases and algorithm
performance deteriorates [19].

2. Multi-Modality: Although multi-modality can be advantageous, it comes
with some drawbacks. For multi-modal problems, diversity management sub-
routines in MOEAs can inadvertently reduce diversity in the population and
therefore the solution set [18].

3. Many-Objectives: A multi-objective problem with more than three objec-
tives is called a many-objective problem. When the number of objectives
increases, the effect of evolutionary operators on the population deteriorates
and algorithms can struggle to converge on the optimum [12]. In our experi-
ments, we are executing multi and many objective problems; the algorithms
must be equipped to handle both.

To understand how to best use MOO for the creation of experimental de-
signs, we will evaluate the performance of different MOEAs in their creation.
By comparing performance, we can in the future select the correct algorithms to
overcome the challenges of MOO of DOE, and fully reap its benefits. Further-
more, research into how the number of objectives affects design quality has not
been explored. By performing experiments on different numbers of objectives,
we can understand how adding more objectives affects the quality of the designs.

The rest of the article is structured as follows. In Section 2, we provide
a background of MOO and DOE. In Section 3, we formulate the DOE as a
multi-objective optimisation problem. In Sections 4 and 5, we provide results for
several benchmark and real-world problems by using different MOEAs. Finally,
we conclude and mention the future research directions in Section 6.

2 Background

Criteria for space filling are widely researched in the experimental design field.
They can be defined via distance based criteria, for example, minimax, max-
imin [13], potential energy [2]; or uniformity based criteria, where deviation
from a uniform distribution is measured. More obscure criteria include corre-
lation based and collapsibility criteria. Often, a single criterion is selected to
optimise the sample points in an experimental design. We can remove this con-
sideration and consider multiple objectives to create designs via multi-objective
optimisation. We consider MOPs of the following form :

minimize f = {f1(x), . . . , fk(x)} subject to x ∈ S, (1)

with k (≥ 2) objective functions and the feasible set S is a subset of the decision
space ℜD. A solution x1 dominates another solution x2 if fi(x

1) ≤ fi(x
2) for all

i = 1, . . . , k and fi(x
1) < fi(x

2) for at least one i = 1, . . . , k. If a solution is not
dominated by any of the possible solutions, it is called non-dominated. The set
of such solutions is called the Pareto set. The aim of solving MOP is to find an
approximated set of Pareto optimal solutions.

There are various methods of multi-objective optimisation: weighted sum,
lexicographic ordering, and multi-objective evolutionary algorithms. All have
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been used to optimise experimental designs with promising results. In [14], multi-
objective designs were created by combining the maximin and linear correlation
criteria. Their designs were good, however, their use of weighted sums makes
their results weaker, as weighted sum requires strong consideration of user pref-
erence and leaves results open to human error. Moreover, the weighted sum
approach is not suitable for non-convex problems [16]. Abdellatif et al. [1] use
lexicographical ordering to create hybrid Latin hypercube designs that optimise
both the maximin criterion and the orthogonality criterion. Although they con-
sidered the proper order of optimisation, lexicographical ordering has weaknesses
concerning the limitation of the search space. Gunpinar [9] used a multi-objective
approach to create a genetic algorithm selection technique for computer-assisted
design. Li et al. [15] created designs using the potential energy and maximin
criteria to optimise designs via a modified NSGA-III. They did not consider the
use of other algorithms. We will build upon their work by investigating which
MOEAs are best for optimising experimental designs.

MOEAs attempt to find a evenly distributed approximation of the Pareto-
optimal set of solutions. They use evolutionary operators like crossover, muta-
tion, and selection to converge on a global optimum. In lower dimensional spaces
where the Pareto set is one or two dimensions finding the optimal set is simple.
Algorithms like NSGA-II [6] can perform very well at these tasks; however, as
the number of objectives increases, selection pressure falls and convergence upon
the optimum is weakened [12].

Work has been done to combine decomposition with Pareto-based approaches.
NSGA-III uses predefined reference points. Reference points help select solu-
tions from the non-dominated set, maintain diversity, and enhance convergence.
These reference points must be chosen by the user although typically are uni-
formly distributed. NSGA-III selects members that are non-dominated and close
to the given reference points. Proposed by Deb and Jain [7], they showed that
NSGA-III produces good results for problems of up to fifteen objectives.

RVEA [4] also uses reference points to guide selection. Like NSGA-III, RVEA
partitions the objective space, and selection is performed individually inside each
partition. This helps balance diversity and convergence. The authors of RVEA
showed that RVEA is a competitive algorithm when compared to NSGA-III; in
some test problems it outperformed.

Indicator-based approaches, like Indicator Based EA (IBEA) [20], don’t use
dominance as selection measure but a user specified indicator. Indicators in-
clude hypervolume or eta indicators. Therefore, indicator-based approaches do
not suffer the issues of dominance-based evolutionary algorithms. They can be
prohibitively expensive when the number of objectives is too large [4]. NSGA-
II, NSGA-III, RVEA, and IBEA are the algorithms that we shall use for the
construction of designs. These algorithms have been chosen because they are
commonly used and cover various paradigms of algorithm design.
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3 Multi-objective Design of Experiments

In this section, we define the objective functions and formulate the design of
experiment as a multi-objective optimisation problem.

3.1 Objective functions

We have chosen four criteria that are appropriate for a design. All four are to
be minimised. Having a selection of four different criteria allows evaluation of
performance for different numbers of objectives. We can test the performance of
each algorithm by constructing designs via two, three, and four objectives.

Potential Energy (AE) A popular space filling criterion, the Audze-Eiglais
criterion [2] (also known as the potential energy criterion) fills space by treating
each design point as a charged particle that repels all other particles. The total
potential energy between the particles is used to evaluate their space filling.
A design with low potential energy suggests the particles are spread uniformly
across the domain. We chose this criterion for its excellent space filling properties.
The potential energy criterion, for a design XN , where N is the total number of
samples, is denoted as:

PE(XN ) =

N−1∑
n=1

N∑
j=n+1

1

dis(xn,xj)
,

where dis(xn,xj) is the Euclidean distance between xn and xj .

L2 Derived by Hickernell [10], the centred L2 discrepancy criterion assesses
space filling by quantifying the distance between the continuous distribution
of the design points and a discrete uniform distribution. We chose this criterion
because it is also an effective space filling criterion that optimises from a different
perspective to potential energy. For designXD

N ; where N is the number of sample
points, D is the number of dimensions, and xn

d is the nth sample in dimension
d, the metric can be denoted as:

L2(X
D
N ) =

(
13

12

)D

− 2

N

N∑
n=1

D∏
d=1

(
1 +

1

2
|xn

d − 0.5| − 1

2
|xn

d − 0.5|2
)

+
1

N2

N∑
j,n=1,j ̸=n

D∏
d=1

(
1 +

1

2
|xn

d − 0.5|+ 1

2

∣∣∣xj
d − 0.5

∣∣∣− 1

2

∣∣∣xn
d − xj

d

∣∣∣)

Collapsibility (Coll) The non-collapsibility of a Latin hypercube is advan-
tageous for an experimental design. When two points do not have a mutual
coordinate they are said to be non-collapsible. A design is non-collapsible when
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no two points lie along the same one-dimensional slice; no two points share the
same coordinate. Having non-collapsible points can save resources and provide
more information per simulation run. Suppose that two points are collapsible
along a single coordinate/variable; that is, they have the same or very similar
value. If another variable/coordinate value has very little impact on the output
of the simulator, those two design points will give similar outputs with no fur-
ther information gained. Therefore, minimising the collapsibility of a design is
important for its effectiveness; we have chosen to use a collapsibility criterion
for the optimisation.

Collapsibility does not guarantee an effective space filling design; using this
criterion in conjunction with other space filling criteria will allow its advantages
to be fully utilised. Using the formula below can only be done using a multi-
objective technique; by itself it is useless for space filling. Bates et al [3] discussed
this penalisation method that allows me to assess collapsibility.

We can assess collapsibility by evaluating each one dimensional projection of
the sample points. If we take the dth-coordinate of all sample points in a design
and sort them from smallest to largest we get the set Md = {md1,md2...mdn}.
We can then create a set of equally spaced intervals that each point in Md should
lie appropriately within, L = {l1...lx}; where x = N + 1, l1 is minimum of the
sample space, and lx is the maximum of the sample space. For a design to be a
true Latin hypercube, each mdn should lie within the interval ln ≤ mdn ≤ ln+1.
We check this equality across every mdn, if any conflicts occur, we penalise the
design. For a design, we sum the number of conflicts across all dimensions. A
design with no conflicts is a Latin hypercube and the function would return zero.
The function treats collapsibility as a minimisation problem. For a design XD

N

we can write the function as:

Coll(XD
N ) =

D∑
d=1

N∑
n=1

A(Mdn), A(M) =

{
0, if ln ≤ M ≤ ln+1

1, otherwise

Correlation (Corr) A design that has a strong correlation between its points
will have areas of the domain space unexplored, which is undesirable. However,
a design that has a low correlation is not guaranteed to be space filling. Using
the correlation criterion in conjunction with space filling criteria ensures that
the design is non-correlated and also space filling. By including this criterion the
quality of the designs should increase. In our work we shall be using the Pearson
coefficient; we try to minimise the largest pairwise correlation found across the
design points. If RX is the Pearson correlation matrix of each point in design
X and I is an identity matrix of the same size, we can evaluate correlation in a
single value denoted as:

Corr(X) = max |RX − I|

3.2 Encoding

For evolutionary algorithms encoding must be considered. If we consider an
experimental design to be a system of N coordinates in an D dimensional hy-
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percube we can represent a design as a N by D array. Most MOEAs do not
support manipulating multi-dimensional arrays within their evolutionary opera-
tors; therefore, conversion is required. When we perform evolutionary operations
upon each individual we flatten the multidimensional array into a single one di-
mensional array. When we evaluate the performance of each solution/design we
reshape the one dimensional array into its true N by D array.

Each solution is represented as an array of length ND, where every compo-
nent of each coordinate is a gene that can be operated against. Each gene is a
real number between 0 and 1; this is done for ease of optimisation. For example,
selecting 10 samples for a 5 dimensional simulator will grant me 50 genes per
potential solution. The magnitude of samples can increase quite dramatically,
for 200 samples in 5 dimensions the number of genes is 1000 per solution.

Bates et al [3] compared our encoding solution to an alternative, where each
sample point is represented as a single node number in the design space. The
design contains a finite number of nodes each represented by an integer. A design
can be represented by a sequence of integers each representing the nodes at which
each sample is placed. We will not be using this encoding system as Bates et al
explains; the coordinates based encoding system requires less bits and therefore
has a lower risk of encountering numerical errors.

4 Numerical Experiments

In this section, we compare different MOEAs with different combinations of
objectives defined in the previous section.

4.1 Problem Specifications and mumerical settings

To test the limits of the MOEAs, several experiments with different parameters
shall be executed - each building on the previous. The table below describes the
specifications of each problem.

Experiment Samples Dimensions Genes Objectives
DOE 5.2 25 5 125 AE, Coll
DOE 5.3 25 5 125 AE, Coll, L2
DOE 5.4 25 5 125 AE, Coll, L2, Corr
DOE 10.2 50 10 500 AE, Coll
DOE 10.3 50 10 500 AE, Coll, L2
DOE 10.4 50 10 500 AE, Coll, L2, Corr
DOE 25.2 40 25 1000 AE, Coll
DOE 25.3 40 25 1000 AE, Coll, L2
DOE 25.4 40 25 1000 AE, Coll, L2, Corr

The experiment names are based on the parameters; a suffix of “5.2” refers to a
5 dimensional design optimised by 2 objectives.
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Hypervolume shall be used as a performance measure upon the algorithms
NSGA-II, NSGA-III, IBEA, RVEA. The reference point is constant across prob-
lems with a mutual number of objectives; for two objectives it is 1500, 1000; for
three objectives it is 1500, 1000, 100; for four objectives it is 1500, 1000, 100, 2.
RVEA parameters include an adaptation frequency of 0.2 and a rate of change
of penalty of 2. IBEA used a kappa value of 0.05. Simulated binary crossover
and polynomial mutation were used, both with a distribution index of 20 and a
probability of 1. Initial population size of 200; the initial population is identical
across problems with mutual levels of dimensionality. Termination occurs after
100,000 function evaluations.

Fig. 1: PlatEMO hyper-volume performance across all nine DoE problems. The
legend is the same for all subplots.

4.2 Results and discussion

The results for hypervolume convergence can be seen in Figure 1. NSGA-III is
designed for many objective problems therefore it is expected to perform bet-
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ter than NSGA-II in 4 objectives [7], however the results suggest otherwise.
Ishibuchi et al. [11] showed research that suggests that the choice of problem
has a larger effect on performance comparisons than the number of objectives.
In their algorithm evaluation of a 500 item knapsack problem they showed that
NSGA-II performs consistently better up to 10 objectives. DOE problems and
knapsack problems are similar in that each individual is represented by a large
number of genes. The performance of NSGA-II over NSGA-III remains constant
across all hypervolume convergence graphs in figure 1; the large number of genes
in DoE problems could be a factor in explaining the results. Ishibushi et al. also
showed that NSGA-II performs better than NSGA-III when the Pareto front is
very large compared to the spread of the initial solutions. For these problems,
strong diversification is needed [11]. Figure 2 shows the initial population and
the final population for NSGA-II and NSGA-III, we can see that the difference
in spread between the final and initial populations is large and that NSGA-II
produces a more diverse final population. NSGA-II’s crowding distance diver-
sity measure seems to perform better on this class of problem, as it does with
knapsack problems.

Fig. 2: DOE 25.4: NSGA-II and, NSGA-III final and initial population

As both algorithms had the same initial population, it would be worth con-
firming performance comparisons by re-running the experiment with a different
initial population. Different methods of initial population generation should be
considered also; in these experiments initial populations were random. Perhaps
an initial population of Latin hypercubes would produce better results as the
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collapsibility criterion is attempting to achieve Latin hypercube qualities. A non-
optimal Latin hypercube initial population would help the MOEAs produce good
designs with less work.

RVEA performed better than other algorithms for problems with more than
two objectives. Cheng et al. compared RVEA with other popular MOEAs and
showed their performance was better than other many-objective evolutionary
algorithms. RVEA’s strengths in benchmark problems have been replicated in
MOO of DoE. This high performance is likely due to the unique scalarisation
approach employed by RVEA. IBEA has consistently good performance across
all test problems, this suggests it is good as a general use algorithm for MOO of
DoE.

Cheng et al. [5] showed that in many objective problems with high gene
count, IBEA and RVEA performed better in approximating the Pareto front
than NSGA-III. DoE MOO’s high gene count has replicated these results as both
IBEA and RVEA perform better than NSGA-III across all problems. However,
in Cheng et al.’s work neither IBEA nor RVEA perform best overall, which is
also confirmed by our hypervolume results.

Design of experiments MOO is a multi-modal multi-objective optimisation
problem, two solutions that may be distant in the decision space may be close
or overlapping within the objective space. A consequence of multi-modality is
that conventional MOEAs struggle to maintain diversity within the decision
space. MOEAs will remove solutions that are crowded in the objective space
when they may be distant in the decision space. Removal of distant individuals
reduces diversity in the decision space. This process - along with genetic drift
and the consequence of crossover and mutation not producing diverse offspring
effectively - reduces diversity in the objective space as the population’s decision
variables are somewhat homogeneous [18]. Consequences of multi-modality may
explain the irregular, disconnected final populations found by IBEA, NSGA-II,
and NSGA-III; the objective space can be seen in figure 3. Multi-modality has
reduced diversity in the decision space and, therefore, reduced diversity in the
objective space that can be seen as disconnected, unexplored regions.

Disconnection is not seen in RVEA; RVEA’s unique angle penalised distance
(APD) scalarisation function gives it the ability to maintain uniformity across
the population. Cheng [4] et al. showed that RVEA produces better quality
Pareto front approximations than NSGA-III in multi-modal MOO problems, as
it does in our results.

5 Case Study

The ultimate goal of experimental design is to create effective metamodels; there-
fore, the quality of metamodels should be verified as a means of determining
optimisation success. We used our designs to explore the landscape of the ratio
between time and molecular weight produced in the batch creation of branched
polymers. Parameters for this simulation include Time, the duration of each
batch production, M , monomer concentration, I, initiator, and T the tempera-
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Fig. 3: Final populations for each algorithm, PlatEMO, two objective problems

ture of the batch production vessel. For more details about the problem, see [17].
Bounds for each parameter can be seen in Table 1.

Parameter Range Unit

Time 30 to 10,000 seconds

Monomer concentration 10 to 14 Meters cubed per second

Initiator 3E-5 to 1.5E-4 Meters cubed per second

Temperature 60 to 80 degrees centigrade

Table 1: Branched polymer input specifications.

5.1 Multi-criteria Decision making

Once optimisation is complete the DM can select a representative from the ap-
proximated Pareto set. In order to validate the success of the optimisation we
select a design from the final population to use as an experimental design in the
polymerisation problem. We used decomposition to select a choice. The weights
for the four objectives are [0.1, 0.1, 0.7, 0.1] (potential, discrepancy, collapsibility,
correlation). For three objectives, [0.3, 0.1, 0.6] (potential, discrepancy, collapsi-
bility). In two objectives, [0.4, 0.6] (potential and collapsibility). We considered
collapsibility to be a very important property when exploring the landscape
therefore a high weight was given. The weights suffer the disadvantage of human
error, we cannot see all possibilities and must make assumptions. Investigations
with other weights are not within the scope of this paper.
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5.2 Results

The experiment was carried out with varying numbers of objectives on the four
different algorithms. A Gaussian process (GP) was chosen to explore the outputs
of the function because it is non-parameterised and the confidence intervals
provide a good performance measure. A GP was fitted according to the various
sizes of experimental design. Samples were then taken from these GPs and their
predictions were compared with the true function value. All GPs were built using
a matern32 kernel. The design’s dimensions were scaled to fit the bounds of the
input variables.

After the GPs have been created, we evaluate their performance using the
averages of the confidence intervals across the entire landscape. We created a
Cartesian product across the landscape; four evenly spaced intervals for four
variables produce a Cartesian product of 256 members/points in a grid across the
domain space. If the experimental design has accurately mapped the landscape,
then the confidence intervals of these GPs should be small and uniform.

Samples used in GP construction
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Fig. 4: Confidence intervals for the Cartesian evaluation, PlatEMO

Figure 4 shows box-plots of the confidence intervals using the data from
PlatEMO. No algorithm stands out as superior; however, the interquartile ranges
(IQR) generally fall as the number of samples increases. In four objectives, many
of the IQRs are low and thin. This suggests that the inclusion of more objec-
tives produces more desirable qualities; treating DOE optimisation as a many-
objective optimisation problem will produce better metamodels. In four objec-
tives a correlation criterion is included, despite it not conflicting with other
objectives the quality of the designs seems to improve. Suggesting that adding
objectives that define good qualities, but from a different perspective, can add
to the overall quality of the design. Three objectives has noticeably wider IQRs
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than two and four objectives. Work should be done to investigate whether it is
the choice of criterions or the number of them that most effects performance;
this result gives merit to both theories.

6 Conclusions

In this paper, we have explored the use of MOO as a tool for design of exper-
iments. We successfully formulated the problem of DOE into a MOO problem.
Designs have been successfully optimised and used to investigate a real-world
problem where their success was verified. Various objective functions were cho-
sen, potential energy, discrepancy, collapsibility, and correlation; these cover var-
ious desirable qualities. We have successfully investigated the performance of
different MOEAs when optimising experimental designs. We chose four different
algorithms to compare performance. Dominance-based approaches (NSGA-II),
reference-based algorithms (RVEA and NSGA-III), and indicator-based algo-
rithms (IBEA) were used. The high gene count and distance between initial
and final population lead NSGA-II to converge better than NSGA-III in higher
objectives. RVEA’s unique scalarisation approach led it to perform well with
high gene counts; IBEA performed well as a general use algorithm. We were
successful in using optimised designs in the construction of metamodels. In the
branch polymer metamodels, two and four objectives had low and narrow IQRs.
Suggesting there is an optimal choice of criteria.

To further improve the knowledge of how best to utilise MOO in experimental
design, further experiments should be conducted. Algorithms designed to tackle
problems with large gene counts should be explored. Exploration of the use
of more objectives/different objectives is needed to confirm how the choice of
objectives effects the performance. More study into the performance of these
designs in real life problems should be done. Ishibuchi et al [12] discussed how
for many-objective problems the number of solutions needed to best approximate
the Pareto set becomes exponentially large; a bigger population is needed. We
chose 200 individuals for our work however exploration of optimisations with
higher population could be explored. Working on using different reproduction
operators is also one of the future works. It is important to consider decision-
maker’s preferences before or after the optimisation process. This work finds a
set of nondominated solutions and does not utilise preferences. Therefore, getting
one solution based on the preferences (e.g., weights, desirable objective function
values) will be in our future research.
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