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Abstract 

Birthweight is of major interest because of its associations with the baby’s 

survival rate in the first year of life, childhood development and the onset of 

diseases in later adult life. Maternal characteristics are important in determining 

a baby’s birthweight, and the fetal genotype is a crucial determinant of offspring 

birthweight. However, the contribution of genetics on top of other determinants 

of birthweight has not been explored before. The first part of this PhD 

investigated the contributions of genetics in explaining variation in offspring 

birthweight on top of routinely available clinical features.  

 

An important feature associated with a baby’s survival rate and its adult health, 

birthweight, varies across ethnic groups. It has been found that South Asian 

babies are on average of lesser weight than European babies despite a higher 

maternal fasting glucose level, a higher parity, and a lower rate of smoking in 

the mothers. Genetic associations with birthweight within South Asians and 

Europeans have been compared before but comparison between the 

contributions of genetics on top of other clinical features in the two ethnic 

groups has not been done before and this is what the second part of this thesis 

aimed at investigating. 

 

Finally, to cater for antenatal and postnatal care, it is important to be able to 

predict a baby’s birthweight. Current clinical practice uses the mother’s fasting 

glucose level as a means of assessing the risk of a baby being born large-for-

gestational age (LGA), but this determinant of birthweight has not been used in 

a prediction of LGA before in healthy pregnancies. The final part of this PhD 

aims at building a clinical prediction model, using maternal fasting glucose and 

other routinely available clinical features for estimating the risk of LGA in babies 

in a European and South Asian population. In conclusion, this thesis has 

investigated the associations of genetics with birthweight, on top of other 

routinely available clinical features in European and South Asian babies as well 

as the prediction of risk of delivering a baby with LGA in these two ethnicities.  
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Health  
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NHS      National Health Service 
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SDS       Standard Deviation Score  

SE       Standard Error  

SGA      Small-for-gestational age 

T1D      Type 1 Diabetes 

T2D       Type 2 Diabetes 
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1.1 Why is it important to study birthweight? 

Birthweight is a key factor in epidemiological studies as this phenotype is freely 

and widely available, low birthweight has a strong relationship with infant 

mortality (Wilcox, 2001) and both low and high birthweight are associated with 

poor perinatal outcomes and poorer later-life health outcomes.  

According to a study (Biks et al., 2021), birthweight data is easily and freely 

available and is mostly collected from household surveys. In the UK, neonatal 

data is stored on electronic patient records (EPR), on a web-based platform, 

BadgerNet and managed by an approved NHS (National Health Service) 

supplier, Clevermed Ltd (Battersby et al., 2018) and overall, birthweight data is 

easily accessible.  

The strong relationship between low birthweight and a baby’s survival rate can 

predict a baby’s risk of mortality. Low birth weight is associated with poor 

perinatal outcomes (for example, stillbirth, pre-term birth and SGA) (Dutton et 

al., 2012) and poorer later-life health outcomes such as diabetes, 

cardiovascular diseases, cancers and other problems. High birthweight is 

associated with type 2 diabetes (T2D) and cardiometabolic risks in the long 

term. Thus, by studying birthweight, it makes it easier to understand the causes 

of these adverse health outcomes and work towards prevention.  

Complications with birthweight can occur due to both a lower and higher birth 

weight than average and expand to health problems in childhood and 

adulthood. Common complications at birth with both low and high birthweight 

include shoulder dystocia, risk of c-section for the mother, still birth and 

eventually, there is the risk of developing type 2 diabetes, cardiometabolic 

diseases, and other diseases such as musculoskeletal traits and cancers. 

Overall, using birthweight which is freely available to study the associated risks 

of diseases and health complications and use those findings for prevention is 

what makes this phenotype so important. 

The following section addresses the complications associated with variations in 

birthweight. 
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Small-for-gestational age (SGA) 

A baby is termed as small-for-gestational age (SGA) if its birthweight is less 

than or equal to the 10th centile in a group of other babies of the same 

gestational age(Saenger et al., 2007). An alternative way of defining SGA is 

birthweight being less than or equal to the 5th centile in a group of babies of the 

same gestational age(Saenger et al., 2007). Babies can be termed 

“constitutionally normal” infants who are SGA or those who are SGA because of 

growth restrictions (Osuchukwu and Reed, 2023). Constitutionally SGA infants 

are smaller than the 10th centile because of fundamental factors such as 

mother’s height, weight, ethnicity, and parity, whereas infants with SGA due to 

growth restriction are smaller because of placental factors, infections (such as 

HIV) or medical conditions (such as hypertension)(Osuchukwu and Reed, 

2023). There are several complications related to SGA which include stillbirth, 

neonatal asphyxia, hypoglycemia at birth and the risk of developing type 2 

diabetes in adulthood (Osuchukwu and Reed, 2023). 

 

Large-for-gestational age (LGA) 

A baby is termed as large-for-gestational age (LGA) if its birthweight is greater 

than or equal to the 90th centile in a group of other babies of the same 

gestational age(Monari et al., 2021). There is another way of defining LGA 

such as birthweight being greater than or equal to the 95th centile in a group of 

babies of the same gestational age (Plasencia et al., 2011). This is to focus on 

the group with the highest risk. Similarly, to SGA, there are associated 

complications with infants born LGA, for example, higher risk of shoulder 

dystocia and associated brachial plexus injury, perinatal asphyxia, meconium 

aspiration, hypoglycemia and fetal death(Weissmann-Brenner et al., 2012). 

Later in life, babies born with LGA are at higher risk of becoming obese or 

developing type 2 diabetes(Scifres, 2021). For the mother, the associated risks 

include prolonged labor, caesarean delivery, and coronary heart disease (Boyd 

et al., 1983). 
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Cardiovascular risks in later life 

There are increased cardiovascular risks in later life, associated with being born 

either SGA or LGA. Cardiovascular diseases are a group of common and often 

preventable diseases which affect the cardiovascular system, that is, the heart 

and circulation of blood and therefore, metabolic health. While SGA is more 

related to cardiovascular risk later in life, the risk with LGA is not entirely defined 

(Dong et al., 2018), (Renom Espineira et al., 2011). SGA infants have more 

catching up to do while LGA infants have catching down to do in terms of 

growth in the early phase of life. The intensity of this offsetting growth can 

cause negative health outcomes as early growth patterns highly influence 

cardiovascular health(Nordman et al., 2020). The “rapid catch-up” growth 

hypothesis states that SGA born infants who experience rapid catch-up growth 

develop higher risk of cardiovascular diseases later in life (Cauzzo et al., 2023). 

Another study investigated the predictors of catch-up growth (Ong et al., 2000) 

and showed that infants who showed catch-up growth were smaller and thinner 

at birth and became heavier than other children at five years of age. The study 

concluded that factors affecting catch-up growth could, therefore, be related to 

the underlying mechanisms of the fetal origin’s hypothesis. This hypothesis 

builds on the fact that undernutrition in the womb results in improper fetal 

growth and this makes the baby more susceptible to certain diseases (for 

example, cardiovascular diseases) in adulthood(Morley, 2006). This, therefore, 

shows a causal relationship between birthweight and the development of 

cardiovascular diseases. Another study showed that insufficient “catch-down” 

growth leads to higher chances of being overweight and consequently this 

increases chances of cardiometabolic problems in both childhood and 

adulthood(Renom Espineira et al., 2011).  Babies born SGA and LGA are at 

higher risk of being overweight and obese throughout childhood and adulthood, 

having alterations in glucose metabolism, developing dyslipidemia, 

hypertension, and low-grade inflammation which all negatively affect 

cardiometabolic health(Belbasis et al., 2016).  
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Type 2 Diabetes 

Previous research showed that there is an association between low birth weight 

and an increased risk of type 2 diabetes (T2D)(Barker and Osmond, 1986). The 

same study has shown a similar association between high birth weight and an 

increased risk in T2D (Wei et al., 2003). Initially, the “small baby syndrome 

hypothesis” suggested an inverse linear relationship between birthweight and 

type 2 diabetes (Harder et al., 2007). Conducted meta-analyses then showed a 

U-shaped relationship between the risk of developing T2D and birthweight, 

which implies that it is at higher risk of developing T2D with both low and high 

birthweight and less likely to develop it within what is assumed to be a normal 

range for birthweight (2,500–4,000 g)(Pettitt and Jovanovic, 2001). Finally, it 

was found that the relationship is actually inverse J-Shaped (Mi et al., 2017).  

Current research is still trying to pin down the underlying mechanisms between 

birthweight and the risk of T2D. Theories of malnutrition in the perinatal period 

have explained neonatal overfeeding for low offspring birthweight which could 

lead to neonatal weight gain which then, in turn relates to adult overweight and 

diabetogenic disturbances throughout life (Mi et al., 2017). 

In terms of lower birthweight, this could also relate to the fetal insulin 

hypothesis. The hypothesis states that the relationship between low birthweight 

and adult insulin resistance is genetically mediated, that is, low birthweight and 

the onset of adult- T2D are two phenotypes from the same genotype (Hattersley 

and Tooke, 1999). This then leads to low insulin mediated fetal growth in the 

utero and insulin resistance in both childhood and adulthood, which causes low 

birthweight. Insulin resistance refers to the fact that the human pancreas tends 

to produce more insulin to help the uptake of glucose into the cells when the 

cells are not able to absorb glucose on their own. Hence, glucose intolerance 

and diabetes are results of the same insulin-resistant genotype. The decreased 

ability to secrete and respond to insulin then results in higher risk of adult-onset 

T2D. Recent genetic and epidemiological studies have found evidence to 

support this hypothesis: heterozygous mutation in the glucokinase gene (GCK) 

causing MODY has been able to explore how the fetal genotype determines 

insulin-mediated growth in the utero, single genes (for example, INS, INSR) 
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have been found to affect insulin secretion (Garin et al., 2010) (Krook et al., 

1993) and loci that are associated with risk of T2D are also associated with 

lower birthweight and some of the loci that showed very strong associations (for 

example, ADCY5 and CDKAL1) also affect pancreatic beta cell function 

(Mahajan et al., 2018). 

 

 

Figure 1: Principles of the fetal insulin hypothesis compared with the thrifty 

phenotype hypothesis  

 

 

Another interesting hypothesis is that of the “thrifty genotype hypothesis” (see 

Figure 1(Hughes et al., 2021)), now termed as Developmental Origins of 

Health and Disease (DOHaD), which states that poor maternal nutrition results 

in the decrease in supply of nutrients, leading to a decrease in fetal growth. 

Poor maternal nutrition also contributes to intrauterine programming of a 

decreased metabolism. The baby is then susceptible to higher risk of T2D. The 

evidence for this hypothesis has been backed by a study of monozygotic twins 

in Denmark where the diabetic twin had a lower birthweight compared to the 

normoglycemic co-twin and assuming the twins are genetically identical, the 

difference in birthweight is explained then by the maternal intrauterine 

environment (Martin-Gronert and Ozanne, 2010). Another study compared 

individuals born before a period of famine in the Netherlands to those born after 

the famine (who were in utero during the famine) and it showed that poor 

maternal nutrition during the famine resulted in those born after to have higher 

glucose levels and became obese in adulthood, supporting the statement that 
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poor maternal nutrition results in the baby being susceptible to T2D or obesity in 

adulthood(Martin-Gronert and Ozanne, 2010). 

Research has also shown that a high birthweight is strongly associated with risk 

of developing T2D. This association could be due to perinatal 

“malprogramming” and the presence of maternal hyperglycemia (which leads to 

an increase in fetal insulin levels) and fetal hyperinsulinism which are both 

causes of fetal macrosomia (Harder et al., 2007). Maternal hyperglycemia is 

caused by the mother not being able to produce enough insulin due to 

impairments in β-cell function in producing insulin(Brown and Walker, 2016). 

Since the offspring and mother share the same genotype, the baby is also then 

unable to produce enough insulin which results in the development of T2D in 

adulthood. The associations of birthweight with risk of T2D are various and 

another reason for studying birthweight is to further investigate this relationship 

and treating T2D.  

 

Other health issues 

Other than SGA, LGA and cardiometabolic diseases, there are other health 

issues that are associated with the baby’s birthweight. The maternal intrauterine 

environment is related to diseases in early life and disease traits in later adult 

life. The relationship between birthweight and several diseases have been 

extensively studied: anthropometry and metabolic diseases, cancers, 

respiratory diseases, perinatal outcomes, and musculoskeletal traits. A 

comprehensive assessment of 78 associations between birthweight and diverse 

health outcomes (Belbasis et al., 2016) has shown that there exists convincing 

evidence between associations of low birthweight and increased risk for all-

cause mortality, per 1 kg increase in birthweight.  

 

1.3 What influences birth weight? 

Birthweight is influenced by a lot of factors including maternal intrauterine 

environment, environmental factors, genetics, parity, ethnicity, and race (Wilcox, 

2001).  
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Maternal intrauterine environment and maternal glucose 

The maternal intrauterine environment can be seen as a site where the 

maternal signals and that of the growing fetus converge. This site plays a 

significant role in maintaining healthy fetal growth as this is where the fetus gets 

its nutrition from (Masiakwala et al., 2023). To ensure appropriate fetal growth 

trajectory, the placenta adapts itself to normal or modified intrauterine 

environments (Hughes et al., 2023, Cetin et al., 2013). The maternal nutritional 

status influences fetal growth primarily by the transmission of glucose and 

nutrients to the fetus via the placenta. Although insulin does not cross the 

placenta, maternal glucose is directly transmitted via the placenta and in cases 

where the mother is diabetic or has gestational diabetes, a high glucose level 

incites insulin secretion from the pancreas of the fetus to regulate its blood 

glucose levels. A recent monogenic study has shown that insulin-mediated fetal 

growth accounts for half of offspring birthweight at term(Hughes et al., 2023). 

The intrauterine environment is also important in terms of complications 

associated with birthweight such as intrauterine growth restrictions. In such 

cases, the inhibition of pancreatic β-cell replication results in reduced fetal 

insulin production and affects fetal growth. Although this has not been properly 

defined before but debates about adverse intrauterine environments causally 

increasing the risk of future cardiometabolic diseases have also been raised 

(Masiakwala et al., 2023, Hughes et al., 2023, Cetin et al., 2013). 

 

Environmental factors 

Environmental influences have been found to contribute to explaining about 

25% of offspring birthweight (Johnston et al., 2002). There are also several 

environmental factors that can cause adverse pregnancy outcomes; exposure 

to air pollution, general as well as physical stress. Socioeconomic and 

demographic factors influence the environment a person is surrounded with, 

and this is also a risk factor for birthweight (Cramer, 1995). While video display 

terminals, metals and aesthetic gases are associated with the risk of congenital 

defects, childhood cancer, spontaneous abortion, and infertility, respectively, 

the most influential environmental factor has been found to be the mother’s 

smoking status during pregnancy (Triche and Hossain, 2007). Previous studies 
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(Kataoka et al., 2018) have shown an increasing risk of low birthweight with 

smoking during pregnancy, the possibility of intrauterine growth restriction, 

delivery of preterm infants, the need for instantaneous abortion and problems 

with the placenta. Smoking during pregnancy affects placental function and 

affects fetal development by crossing the placenta to act as neuroteratogen. 

Genetics 

Genetics plays a crucial role in determining a child’s birthweight. A baby inherits 

half of its genes from its mother and the other half from its father to build its own 

genetic makeup. To identify associations between a trait and variants, genome 

wide association studies (GWAS) have been devised. Recent GWAS of own 

birthweight and offspring birthweight have identified 243 links existing between 

the human genetic code and birthweight (Warrington et al., 2019) where the 

fetal genotype has a direct effect on a child’s birthweight and the maternal 

genotype affects a baby’s birthweight via the maternal intrauterine environment.  

 

Genome Wide Association Studies (GWAS)  

A genome-wide association study (GWAS) aims at identifying associations 

between a trait and specific loci on the genome (Uffelmann et al., 2023); it is a 

way of finding how genetics is linked to specific phenotypes. A meta-analysis of 

a multi-ancestry GWAS for birthweight, identified 60 fetal genotype loci related 

to birthweight (P < 5 × 10−8 ). The threshold for genome-wide significance was 

determined as P < 5 × 10−8   previously but more recent studies use P< 6.6 x10-9 

as a new threshold(Warrington et al., 2019). The study comprised of the 

following ancestries from UK Biobank: European, African American, Chinese, 

Filipino, Surinamese, Turkish and Moroccan from six studies. The study also 

found that there is a genetic association between fetal growth and later-life 

diseases which influences variation on both the maternal and fetal genomes. 

The study found these birthweight related loci to be associated with SBP, 

cardiometabolic traits and T2D (Juliusdottir et al., 2021). 
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Maternal genetics 

The maternal genome contributes to half a baby’s birthweight via the maternal 

intrauterine environment and the rest is passed on directly to the fetus. A study 

has found that approximately 7.6% of offspring birthweight variation can be 

explained by tagged maternal genetic variation (Warrington et al., 2019). 

Previous research has shown that there is a strong, significant association 

between the maternal genetic variant and offspring birthweight (after taking the 

fetal genotype into consideration)(Juliusdottir et al., 2021) and this adds to the 

proof that maternal exposure is causally related to birthweight. Mendelian 

randomization analyses also show that indirect maternal effects of height-

raising genotypes contribute to higher offspring birthweight (Warrington et al., 

2019). Also, the maternal genome positively adds to birthweight through 

variants related to glycemic traits such as T2D, HbA1C and glucose (Juliusdottir 

et al., 2021, Haulder et al., 2022). In conclusion, maternal genetics has a 

significant contribution to birthweight. 

 

Fetal genetics 

Direct effects from the fetal genome have a substantial contribution to 

birthweight; height-raising alleles contribute to higher offspring birthweight and 

blood-pressure raising alleles contribute to lowering birthweight through the fetal 

genome (Warrington et al., 2019). Fetal genetics has also been found to explain 

variation in birthweight on top of clinical features and about 146 direct links have 

been established (Warrington et al., 2019) between the fetal genome and 

offspring birthweight in a study. Other direct links exist between the fetal 

genome and birthweight, for example in rare fetal mutations which cause 

neonatal diabetes (Rubio-Cabezas and Ellard, 2013).  A study estimating SNP 

heritability called maternal-genome wide complex trait analysis (M-GCTA) and 

divides SNP heritability distinctively into maternal and fetal components has 

estimated that about 28.5 % of the variance in birthweight can be explained by 

tagged fetal genetic variation(Warrington et al., 2019). 
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Fetal Insulin 

Another particularly important determinant of birthweight remains fetal insulin. 

The fetal insulin hypothesis was put forward in 1999 (Hattersley and Tooke, 

1999) and it stated that lower birthweight and adult-onset type 2 diabetes are 

two phenotypes of the same genotype. Research following this hypothesis has 

now shown that there are several genes affecting insulin secretion that induce 

insulin-mediated growth (Hattersley et al., 1998, Flanagan et al., 2007, Garin et 

al., 2010).  This is important because the production of fetal insulin regulates 

the uptake of maternal glucose from the placenta by the fetus in the maternal 

intrauterine environment. Variants of certain genes such as glucokinase gene 

(GCK-MODY) and HNF4A-MODY result in impaired pancreatic beta cell 

function causing either reduced insulin secretion which in turn leads to lower 

birthweight or increased insulin secretion which results in increased birthweight 

(neonatal hyperinsulinism and macrosomia) (Hughes et al., 2021). Results have 

shown that GCK mutations in beta-cells could alter insulin response to glucose 

and thus, influence intrauterine growth as well as glucose metabolism after 

birth(Terauchi et al., 2000). In the case of individuals with the HNF4A-MODY, a 

higher inherited birthweight suggests the greater capacity of the individual to 

secrete insulin. Overall, fetal insulin plays a crucial role in fetal growth in the 

maternal intrauterine environment and therefore primarily influences birthweight. 

 

Parity 

In the UK, parity refers to the number of times a mother has previously given 

birth to a fetus with a gestational age of 24 weeks or more, regardless of 

whether the child was born alive or stillborn (Opara and Zaidi, 2007)and 

nulliparity refers to the condition in which a mother has never given birth before 

(Miranda et al., 2011). Birthweight and parity are inversely related with 

nulliparous women delivering babies of lower birthweight and birthweight 

increasing in subsequent pregnancies with multiparous women. A study (Hinkle 

et al., 2014) has assessed the relationship between parity and birthweight 

reporting selection bias as an explanation for low birthweight in nulliparous 

women who do not have any other children. There is also the possible 

explanation in physiological conditions associated with the body where the first 
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pregnancy prepares the body for any subsequent ones and hence, the mother’s 

body adapts itself for successive pregnancies and birthweight changes or first 

offspring have an immune intrauterine environment which restricted growth, and 

this changed with subsequent pregnancies and consistent paternity (Hinkle et 

al., 2014).  

 

Ethnicity and race 

There is no defined pattern between birthweight and ethnicity, but this trait 

varies across various ethnicities where the lowest birthweights were recorded in 

Africa, India and the Far East and the highest birthweights were recorded 

across Europeans and White Americans (Barron, 1983). In the UK, birthweights 

vary across the different ethnicities: South Asian and Black mothers deliver 

babies whose birthweights are on average 300g less than those of White 

mothers. These differences in birthweights could firstly be explained by the 

differences in maternal characteristics such as height, weight, and parity 

between mothers of different ancestries. South Asian and Black women are on 

average shorter and of lower weight as compared to women of White ancestry. 

As such, the maternal intrauterine environment in the South Asian and Black 

ethnicity is adapted to reproduce babies that are smaller than those from a 

White ancestry. A study found that differences in birthweight in the ethnic 

groups of Black Caribbean, Black African, Bangladeshi, and Pakistani infants 

could be explained by socioeconomic differences and in Indian and 

Bangladeshi groups, maternal and infant characteristics were more prevalent 

(Kelly et al., 2009). Ethnic groups such as Black Carribean, Black African, 

Bangladeshi, and Pakistani are often subjected to socioeconomic disparities 

such as lower income. Since income is directly relevant to determining nutrition 

and prenatal care, it then has a significant influence on birthweight (Cramer, 

1995). 

 

1.4 Why do we want to predict birthweight? 

Epidemiological research has established birthweight as an important 

phenotype and in current clinical practice, fetal growth is monitored by 

ultrasound scans, which while providing valuable information, does not give us 
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the most accurate estimate of birthweight due to the lack of accuracy in 

calculating certain variables such as the estimated fetal weight (EFW)(Milner 

and Arezina, 2018). Thus, to get a more precise estimate of a baby’s 

birthweight, we want to predict it and thus cater for antenatal and postnatal 

care.  

 

1.5 What do we know about clinical prediction models for birthweight and 

LGA? 

Several clinical prediction models have been developed to predict LGA 

(Meertens et al.). The use of a clinical prediction model ensures that a 

combination of predictors is used together to model risk of LGA or birthweight. If 

used on their own, the amount of information provided by the birthweight 

predictors would provide limited information or not account for correlations 

among the predictors. In previous research, clinical prediction models for LGA 

have used maternal characteristics (maternal height, weight, age and smoking 

status) as their main predictors and in addition to these, other predictors such 

as medical history, biomarkers, ultrasound predictors and ethnicity have been 

used. While a lot of these models are useful in providing estimates of the risk of 

a baby being born LGA, none of these models are currently used in clinical 

practice to predict the risk of LGA(Meertens et al., 2019).  

 

1.6 What are the individual predictors of birthweight and LGA? 

There are many predictors of birthweight, the main ones being maternal 

characteristics such as maternal pre-pregnancy BMI and maternal BMI, 

maternal weight, height, age, ethnicity, parity and smoking status during the 

pregnancy. Other external factors include father’s height (Zhang et al., 2015), 

for example. Maternal fasting glucose is also a main factor in predicting 

birthweight (Mi et al. 2023). There are several causes of LGA including weight 

gain during pregnancy, maternal diabetes, race and ethnicity. In addition, other 

markers such as parity, biomarkers (PAPP-A and β-hCG), fetal biometry (Amark 

et al., 2019) and maternal and paternal height(Takagi et al., 2019) are all 



25 
 

predictors of LGA. 

 

Mother’s height and Father’s height 

Maternal height is directly related to offspring birthweight where an increase in 

maternal height results in an increase in birthweight(Zhang et al., 2015). The 

underlying mechanisms that relate maternal height to birthweight are defined by 

fetal genetics. Data that includes paternal height is very limited and it has been 

found that paternal height is a significant and independent predictor of low 

birthweight in offspring (Magnus et al., 2001). 

 

Mother’s weight (pre-pregnancy weight and weight at 28 week’s gestation)  

Pre-pregnancy weight is defined as the mother’s weight before conception. 

Mother’s pre-pregnancy weight and weight at 28 weeks’ gestation are both 

strongly associated with birthweight (Metgud et al., 2012). 

 

Mother’s BMI (pre-pregnancy and at 28 weeks’ gestation) 

BMI (Body Mass Index) is a metric that is based on a person’s height and 

weight and is used to measure body fat (Rothman, 2008). Similarly, to mother’s 

weight and pre-pregnancy weight, mother’s BMI and pre-pregnancy BMI are 

strongly and positively associated with baby’s birthweight. (Gul et al., 2020, 

Bahrami Taghanaki et al., 2016) 

Fetal Sex 

Fetal sex is an important component in pregnancy that influences intrauterine 

growth, placentation and perinatal outcomes. Studies have reported a 

difference in birthweight based on fetal sex with average birthweight in males 

being 124 g (95% CI 122‐126) higher than in females (3525 vs 3401 g; P < 

0.001) (Voskamp et al., 2020). Fetal sex effects, for example, maternal glucose 

metabolism and insulin sensitivity as well as differential placentation probably 

due to imprinting of placental genes during pregnancy may be a factor in the 

observed differences in birthweight (Poyrazoglu et al., 2017, Hattersley and 

Tooke, 1999, Hughes et al., 2021, Terauchi et al., 2000). 
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What is missing from current clinical prediction models? 

Clinical prediction models have used maternal characteristics, ultrasound 

scans, medical history and biomarkers as predictors of birthweight(Meertens et 

al., 2019). Maternal fasting glucose has not been used before as a predictor for 

LGA, when modeling healthy pregnant women but it has been used as a 

predictor in women with gestational diabetes (GDM)(Wang et al., 2023, Cooray 

et al., 2022). Maternal fasting glucose is an important factor that contributes to 

offspring birthweight and implementing this predictor in future models would 

help reproduce models of better quality.   

Also, while it has been established that, genetics plays a crucial role in 

explaining offspring birthweight, the variance explained by genetics in addition 

to clinical risk factors has not been investigated. With GWAS’ becoming easily 

available and hence, the creation of genetic scores becoming easy to 

implement, genetics and more accurately genetic scores can also be added to 

multivariable models explaining variation in birth weight -- to assess their 

potential for future use in clinical prediction. Prediction models for LGA have 

been built in all three trimesters with different predictors (Frick et al., 2016, 

Monari et al., 2021, Wang et al., 2023). In terms of a model for predicting LGA, 

it would be preferable to have a model that can predict LGA earlier rather than 

later. If a baby is estimated to be born with LGA, altering the maternal fasting 

glucose (Tennant et al., 2022)can help reduce the risk of LGA.  

 

1.8 What are the aims of this PhD? 

a. To compare the performance of multivariable prediction models for 

birthweight that include genetic scores from mother and child alongside easily 

available clinical features with those models that contain only easily available 

clinical features in a European cohort. 

b. To compare the performance of multivariable prediction models for 

birthweight that include genetic scores from mother and child alongside easily 

available clinical features with those models that contain only easily available 

clinical features between South Asians and Europeans. 
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c. To develop a risk prediction tool for large-for-gestational age (LGA) babies in 

healthy pregnancies in a European cohort with readily available clinical 

features, including glucose in the normal range and to externally validate this 

model in a South Asian cohort.  
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2 Methodology 

We needed to build statistical models based on data from mothers and their 

babies at birth and hence, determine the utility of clinical features and genetics 

for predicting birthweight. In this chapter, I describe the datasets we use, the 

methods for developing the genetic scores for birthweight, and the statistical 

approaches we used to develop the prediction models. 

 

Datasets 

Exeter Family Study of Childhood Health (EFSOCH) 

The Exeter Family Study of Childhood Health (EFSOCH) was used as a primary 

dataset for building multivariable linear regression models for birthweight 

(Chapter 3) and then multivariable logistic regression models for prediction of 

LGA (Chapter 5). This dataset is a cohort of 1017 families in Exeter with 

homogeneous, non-diabetic participants of White European ancestry. The 

participants were from central Exeter. The dataset comprised of detailed 

anthropometric measurements for both parents and children at birth, 12 weeks, 

1 year and 2 years of age. Insulin and other biochemical analysis were 

measured in fasting parental samples at 28 weeks' gestation and an umbilical 

cord blood sample was taken at delivery (Knight et al., 2006). The phenotypes 

to be measured were identified prior to the commencement of the study and 

protocols were written in terms of how to best collect data. Three part-time 

midwives were responsible for data collection and repeat measures were taken 

for the phenotypes to ensure reproducibility. Some of the key phenotypes 

available in the original dataset that we used in this research project were 

parental heights, which were measured three times, and an average value was 

then computed for use in analysis.  Similarly, other phenotypes were measured 

thrice and an average was computed: mother’s weight was measured to the 

nearest 100g, offspring birthweight was measured to the nearest 10g, and 

parental birthweights were self-reported. Mother’s fasting glucose was recorded 

from fasting blood samples taken at 28 weeks’ gestation, early morning, at the 

parent’s house. Parity (recorded as first pregnancy vs not first pregnancy), 

mother’s age, and smoking status (recorded as mother smoked during 

pregnancy or did not smoke during pregnancy) were also self-reported. 
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Gestational age was calculated based on the mother’s last menstrual period 

and the date of birth. The difference between the two dates gave an accurate 

measurement of the gestational period(Knight et al., 2006). 

 

Collection and cleaning of additional data from medical records 

We wanted to explore the contributions of blood pressure and fetal biometry to 

LGA (Chapter 5), and at the start of this PhD, the raw data was only available in 

EFSOCH medical records. To collect the data, I worked with a team of other 

researchers to manually extract the systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) measurements including timings when these were 

recorded, from patient notes for EFSOCH and stored in an online database 

created in Access. Data was collected for 931 unique mothers with an average 

of 20 readings per observation. 

 

The blood pressure measurements had been noted at different time points 

when the mother visited the clinic during her pregnancy (Minium 5 observations 

and Maximum 20 observations). Missing blood pressure values were removed if 

not eligible (any measurements higher than 120 for the upper limit and any 

measurements less than 50 for the lower limit). Wrongly written EFSOCH IDs, 

which are the main identifiers in this database, were corrected. These were IDs 

with a missing digit. Similarly, wrongly written dates were also corrected by 

referring to the original patient notes and noting them again. These were 

identified by a negative gestational age or a gestational age that would be 

realistically too long. The data was also checked for outliers by plotting two 

phenotypes against each other and then removing any extreme values. Other 

checks included generation of box plots to identify outliers.  

Scan data from maternity records for EFSOCH were recorded for biparietal 

diameter (BPD), Femur Length (FL), Crown Rump Length (CRL), Head 

Circumference (HC), Abdominal Circumference (AC) and Estimated Fetal 

Weight (EFW). The scan measure for EFW was at 20 weeks’ gestation and the 

rest were at 12 weeks’ gestation.  Similar to blood pressure measurements, 

wrongly written dates and EFSOCH IDs were corrected for the observations 
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that had a missing or additional digit and the data was checked for outliers and 

those were then removed.  

 

 

BiB (Born in Bradford) 

The Born in Bradford (BiB) dataset is a deprived multi-ethnic cohort study 

comprising of White Europeans and South Asians based in Bradford in the UK. 

This dataset was used to make comparisons between birthweights, other 

phenotypes, and genetic scores between the two different ancestries (Chapter 

4) and in the external validation of the prediction model for LGA (Chapter 5). 

The dataset consists of 13776 pregnancies which were followed up after these 

were recruited when they were between 26- and 28-weeks’ gestation. The 

maternal fasting glucose was recorded at 26-28 weeks' gestation after an OGTT 

test and mother’s height, and weight were measured after their interview which 

was offered alongside the OGTT test.  Other anthropometric measurements 

such as mother’s arm circumference and triceps skinfold were also taken from 

the mother by a trained project worker at recruitment. Anthropometric 

measurements such as head, arm and abdominal circumference measured, 

along with subscapular and triceps skinfold thickness were taken from infants at 

birth and followed up to 2 years of age. To ensure reliability of the 

measurements, the same phenotype was measured twice by the same trained 

worker or two separate measurements were taken for the same phenotype by 

two different trained workers and an average computed.  About 20% of the 

population of parents in Bradford are of South Asian ancestry (Wright et al., 

2013). Birthweight was measured at birth in g and ethnicity, smoking status as 

well as parity were all self-reported measures (West et al., 2013). 

 

 

 

Growth charts 

In this section, we want to address how the centiles were used to create the 

LGA variable in Chapter 5. A growth chart is built on the idea that assessing a 
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child’s height or weight against the distribution of heights or weights of a 

reference sample provides evidence of the normality or otherwise of the 

process of growth (Cameron and Hawley, 2010). 

In the UK, the most used growth charts are the UK 1990’s and the UKWHOterm 

and these were used in this thesis. Initially, the UK1990’s growth chart was 

used to create the LGA variable in the EFSOCH dataset and the UKWHOterm 

growth chart was used to create the LGA variable in the BiB dataset.  

However, because the baseline risk was different when these two growth charts 

were being used, external validation was not giving us a good mean predictive 

probability close to the actual observed mean probability. Thus, we decided to 

use the UKWHOterm growth chart uniformly. This growth chart was then used 

to create the LGA variable in both EFSOCH and BiB. The package “zanthro” 

was used to generate the z-scores for birthweight by using the UKWHOterm 

growth charts in EFSOCH and LGA was defined as that group with birthweight 

>90th centile(Vidmar et al., 2013). 

The UKWHOterm growth chart is constructed on WHO Child Growth Standards 

which is based on the breastfed infant. One of the disadvantages of using this 

growth standard to define LGA is the assumption that all assessed infants have 

been breastfed, which is not always the case, especially in UK-born infants. 

Also, defining LGA by a single international standard can result in inaccuracies 

as what is considered as LGA in one ethnicity, for example in South Asians, is 

not necessarily LGA in another ethnicity, for example in Europeans. Also, by 

defining LGA based on a specific growth chart, it should be taken into 

consideration that several changes could have occurred from the year the 

growth chart was construed to when it is being used. The UK 1990’s growth 

chart was devised in 1990 and people’s eating habits have considerably 

changed since then. Hence, defining LGA based on a similar growth standard 

for a cohort of babies born outside this time period might not accurately reflect 

the real percentage of LGA for that cohort. 

 

Creating genetic scores 
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An important part of this research investigates the contribution of genetics in 

explaining variation to birthweight. To include genetics in multivariable linear 

regression models or multivariable logistic regression models, genetic scores 

were created for both the mother and the child. 

Genetic Scores (GS) were created using a weighted formula which averages all 

the SNP’s that have crossed the threshold for genome wide significance 

(P<6.6x10-9)(Warrington et al., 2019) (Fadista et al., 2016)over a weighted 

average. This can be represented by the following formula (Collister et al., 

2022): 

    

GS=∑iwigi 

 

where GS is the genetic score, wi is the weight for SNP i and gi is the genotype 

dosage at SNP i. The weights in this case were the effect estimates for each 

SNP from the GWAS.  

There were two sets of data from which genetic scores were created and these 

were the genetic data from EFSOCH and BiB. In EFSOCH, genotyping had 

been carried out using the Illumina HumanCoreExome array. This is a tool for 

assessing the genotypes of approximately 500,000 variants across the genome 

from a single DNA sample. Samples with low call rate, kinship errors, sex 

mismatches, or ancestry outliers were removed. The included samples were of 

European ancestry assessed using flashPCA. flashPCA (Abraham and Inouye, 

2014)is a tool used to conduct principal component analysis (PCA) for 

identification of genome-wide single-nucleotide polymorphism (SNP) data for 

detecting population structure and potential outliers. Genotype call rates 

were > 98% and phenotypic sex and kinship were validated using genotype data 

(Hughes et al., 2018) assessed by KING (Manichaikul et al., 2010)software.  

The included genotyped SNPs had call rates > 95%, Hardy-Weinberg p 

> 1 × 10− 6, and minor allele frequency (MAF) > 1%. The Haplotype Reference 

Consortium (HRC) version r1.1 reference panel (Michigan Imputation Server) 

was used to impute additional genotypes in all samples. We extracted 

genotypes for a total of 209 SNPs (Warrington et al., 2019)from the genome-

wide genotype data to construct genetic scores for our analyses. A total of 98% 
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of the SNPs included in the scores had an imputation quality > 0.4 and a Minor 

Allele Frequency > 0.001. 

In BiB, two separate microarrays, the Illumina HumanCoreExome array and the 

Infinium Global Screening array (GSA), were used to obtain maternal and fetal 

genomic data. Genotype data was imputed against the Haplotype Reference 

Consortium panel, version r1.1 using Minimac4, after quality control (minor 

allele frequency > 1% and Hardy-Weinberg Equilibrium P 

value > 1 × 10−6).(Fadista et al., 2016). 

 

Prediction Models 

Prediction models are extremely useful for estimating the probability of an 

outcome by using a set of predictor variables. In clinical practice, prediction 

models are used to assess the risk of an outcome (in this case, occurrence of a 

disease) given a set of patient characteristics (in this case, the predictors). 

These are an easy and affordable way of assessing risk and hence, inform 

diagnosis or prognosis in healthcare (Steyerberg, 2010). Common clinical 

prediction models include models for predicting SGA (Kalafat et al., 2019), 

LGA(Monari et al., 2021), the Framingham risk functions for cardiovascular 

disease (Menotti et al., 2000), spontaneous pregnancy chances(Smeenk et al., 

2007), probability of renal artery stenosis (Lee et al., 2014) or deep venous 

thrombosis. Prediction models have also been developed for the risk of breast 

cancer and to inform surgical decision-making such as replacement of risky 

heart valves (Ambler et al., 2005). There are more uses of prediction models, 

including in public health (to target preventive interventions) and in research 

(such as development of RCTs). A project carried out for part of this thesis will 

focus on clinical prediction model for predicting risk of LGA.  

 

 

Model Building 

There are several steps in building a clinical prediction model and these are: 

consideration of the research question and initial data inspection, coding of 

predictors, model specification, model estimation, evaluation of model 
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performance, internal validation and external validation. Finally, to report clinical 

prediction models, TRIPOD (Transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis) reporting guidelines are used 

(Collins et al., 2015). 

 

Consideration of the research question and initial data inspection 

The research question is devised by considering what message we want to put 

across, and then the predictors are coded if these are not continuous. Smoking 

was a binary variable not a past/present; primiparity was first pregnancy vs not 

first baby.  

 

Model Specification 

Model specification includes choosing the type of model to be used. In this 

thesis, we used two main types of regression analyses to build our prediction 

models: linear regression and logistic regression. Other methods that are also 

used to build clinical prediction models are ordinal regression analysis (that is, 

the outcome variable consists of an ordinal response variable), survival 

analysis, (that is, the modelling of time to event data) (Harrell et al., 1984) and 

machine learning approaches(Sun et al., 2022). Regression analysis is used to 

assess the relationship between variables. This statistical tool can be used as a 

simple regression model or a multivariable regression model. In linear 

regression, the outcome variable is a continuous variable, for example, 

birthweight and in logistic regression, the outcome variable is binary, for 

example, baby is LGA or not LGA. In a simple linear regression model, the 

effect of one covariate is being assessed on the continuous outcome variable 

and in a multivariable regression model, the combined effects of all the 

covariates are being assessed on the outcome variable(Sykes, 1993). The 

model returns the intercept and coefficients representing the weightings for the 

slope of a linear association. For a logistic regression model, because the 

outcome is binary the coefficients are for predicting the log odds ratio of the 

outcome instead (because the association with log odds can be linear). The 

next steps in model building are variable selection, checking of assumptions, 

developing the model, internal and external validation. 
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Variable selection 

This is an important part of building a clinical prediction model as it assesses 

which variables to include, and which ones are irrelevant so that a set of 

variables is chosen to build the model with the best fit. Some of the main 

methods include backward elimination, forward selection, and stepwise 

selection. In this case, we used backward selection to select the optimal set of 

variables. This implies adding all the variables in a model and then removing 

the one with the highest p-value (that is, the variable which is not contributing to 

the model). This is repeated until the model includes all the significant variables 

(Chowdhury and Turin, 2020). 

 

Checking of assumptions 

There are several model assumptions that need to be verified depending on the 

type of outcome variable and the model type. In linear regression as well as 

logistic regression, there should be no multicollinearity between the variables, 

and this is ensured by checking that the correlation coefficients between 

individual predictors are of low magnitude. In linear regression, the QQ plot of 

residuals can be used to check the normality assumption. If most of the points 

fall on the reference line, normality can be assumed. Also, to check for 

homoscedasticity, the residuals can be plotted. If no linear pattern is observed, 

we conclude that there is no heteroscedasticity. The sample size (Riley et al., 

2020) should meet a certain number depending on several factors in the model 

and this is verified by using the “psampsize” function in R, for example, by 

specifying the prevalence of the outcome, the number of predictors to be used 

in the model and a predicted minimum c-statistic.  Additionally, we want to 

ensure that the observations are independent of one another, and this is 

achieved by removing duplicate observations and any observations from 

matched data. Finally, to meet the assumption of the outcome variable being 

binary, we denote it as baby being LGA (1) or not (0).  

 

Assessing model performance 
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Once the variables have been selected and the model has been built, it is also 

important to assess how well the model performs. Measures of model 

performance include model fit, discrimination and calibration (Labarere et al., 

2014). Model fit statistics include R-squared and adjusted R-squared statistics, 

or the Brier score. Usually, the model that explains the most variance will be 

chosen as the best one (that is, the model with the highest adjusted R-squared 

statistic). The adjusted R-squared statistic is an estimate built on the natural 

logarithm likelihood scale and the higher the value, the better is the fit. The Brier 

score quantifies the average squared difference between the observed outcome 

and observed probability and the closer the value is to zero, the better the 

model fit is. Other useful statistics are the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). These are log-likelihood based criteria that 

include a penalty for additional predictors (BIC uses a bigger penalty) and are 

used to check for overfitting. Therefore, AIC and BIC can be used to compare 

nested models to find the best model with the smallest predictor set. The lower 

the value of AIC or BIC, the better the model fit.  

Discrimination is the model’s ability to categorize individuals with and without 

the outcome of interest. The c-statistic is a good measure of discrimination and 

is identical to the area under the receiver operating characteristic (ROC) curve. 

A value of 0.5 indicates that the model is as good as a random prediction but 

the closer the value of the c-statistic is to 1, the better is the discrimination 

between individuals with and without the outcome.  

Calibration refers to how close the actual observed probability for the outcome 

of interest is to the predicted mean probability. This can be assessed by the 

visual representation of observed probability versus predicted probability 

(calibration plots).  Assessment of calibration includes the assessment of a 

modelling regression line with intercept (alpha) and slope (beta). For well 

calibrated models, the intercept is usually zero or close to zero and the slope is 

1 or close to 1. The Hosmer-Lemeshow test, while a goodness of fit test, might 

not be statistically strong enough to assess good calibration (Labarere et al., 

2014). 

 

Internal Validation 
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Internal validation is used to validate the model that has been built in the same 

data set it was constructed in. Measures of internal validation include split-

sample, cross-validation and bootstrapping. In this thesis, we have explored 

bootstrapping as a measure of internal validation as it has been found to be the 

best measure of internal validation (Steyerberg et al., 2001). Bootstrapping is a 

method where new samples are drawn from the main sample, with 

replacement. In each of these resampled cohorts, the model performance is 

tested, and these results are pooled to determine internal validation 

performance(Singh and Xie, 2008).  Some statistics such as Emax or the 

Somer’s Dxy can be used to assess optimism due to overfitting. Low levels of 

optimism indicate good model fit. Overfitting refers to the fact that predictions for 

new observations might not be valid which then causes optimism about the 

model’s performance. Optimism can, therefore, be described as true 

performance minus apparent performance, where true performance is the 

actual population and apparent performance is the estimated performance in 

the sample(Steyerberg, 2019). 

 

External Validation 

External validation is an important step in model building in terms of validating a 

model in an external data set for generalizability. The ROC curve and 

calibration curve are the measures of external validation for assessing model 

performance in an external dataset. Compared to internal validation which 

assesses the model performance in a similar setting in which the model was 

built, external validation considers analysis in a completely independent dataset 

which could include patients having one or more different characteristics for 

generalizability. For example, patients may be from a different geographical 

location, from a different type of care setting or have a different underlying 

disease (Ramspek et al., 2021).  

The ROC curve assesses sensitivity versus specificity, that is, true positive rate 

versus true negative rate. A value close to 1 for area under the curve of an ROC 

curve shows that the model is performing well in terms of differentiating true 

positives from false positives (Hajian-Tilaki, 2013). The calibration curve 

assesses how well the mean probability of the outcome occurring within specific 



39 
 

groups matches the actual observed probability occurring within those specific 

groups.   

The next section of this thesis will expand more into the individual chapters: 

assessing whether genetic scores explain extra variation in birthweight, when 

added to clinical and anthropometric measures, the contributions of genetic 

scores, maternal glycemia, and other maternal characteristics to variation in 

birth weight in South Asian compared with European babies and developing 

and validating a multivariable clinical prediction model for babies born LGA in 

European and South Asian cohorts. 
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Abstract 

Background: Human birthweight is a complex, multifactorial trait. Maternal 

characteristics contribute to birthweight variation by influencing the intrauterine 

environment. Variation explained by genetic effects is also important, but their 

contributions have not been assessed alongside other key determinants. We 

aimed to investigate variance in birthweight explained by genetic scores in 

addition to easily measurable clinical and anthropometric variables. 
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Methods: We analysed 549 European-ancestry parent-offspring trios from a UK 

community-based birth cohort. We investigated variance explained in 

birthweight (adjusted for sex and gestational age) in multivariable linear 

regression models including genetic scores, routinely measured maternal 

characteristics, and parental anthropometric variables. We used R-Squared (R2) 

to estimate variance explained, adjusted R-squared (Adj-R2) to assess 

improvement in model fit from added predictors, and F-tests to compare nested 

models. 

 

Results: Maternal and fetal genetic scores together explained 6.0% variance in 

birthweight. A model containing maternal age, weight, smoking, parity, and 28-

week fasting glucose explained 21.7% variance. Maternal genetic score 

explained additional variance when added to maternal characteristics (Adj-R2 = 

0.233 vs Adj-R2 = 0.210, p < 0.001). Fetal genetic score improved variance 

explained (Adj-R2 = 0.264 vs 0.248, p < 0.001) when added to maternal 

characteristics and parental heights. 

 

Conclusions: Genetic scores account for variance explained in birthweight in 

addition to easily measurable clinical variables. Parental heights partially 

capture fetal genotype and its contribution to birthweight, but genetic scores 

explain additional variance. While the genetic contribution is modest, it is 

comparable to that of individual clinical characteristics such as parity, which 

suggests that genetics could be included in tools aiming to predict risk of high or 

low birthweights. 
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Introduction  

Birthweight is a complex trait with considerable variability. It is important to 

understand what contributes to this variability because babies born large for 

gestational age (LGA) or small for gestational age (SGA) are at a higher risk for 

adverse pregnancy and perinatal outcomes (Kc et al., 2015). There are also 

well replicated associations between variation in birthweight and risks of later 

life cardio-metabolic disease (Barker, 1995, Barker et al., 1993, Knop et al., 

2018) . 

Previous research has shown that factors associated with the maternal 

intrauterine environment, for example, maternal glycaemia, age, parity, weight 

and smoking, account for some variation in birthweight, once fetal sex and 

gestational duration have been accounted for (Catalano et al., 1995). Maternal 

smoking during pregnancy is associated with lower birthweight (Kataoka et al., 

2018). Parity is also associated with birthweight (Seidman et al., 1988, Shah 

and births, 2010), with babies of later birth order having higher birthweight, on 

average. A low pre-pregnancy BMI increases the risk of SGA and a high pre-

pregnancy BMI has been found to increase the risk of LGA (Yu et al., 2013). 

There is a positive continuous association between maternal fasting glucose 

and birthweight(Breschi et al., 1993). However, each of these variables 

contributes only modestly to birthweight variation. For example, maternal fasting 

glucose levels have been reported to explain only a small fraction (10%) of 

variation in birthweight(Breschi et al., 1993), and most LGA babies are not born 

to mothers with glucose levels that are high enough to be classified as 

diabetes(Sacks et al., 2006).  



47 
 

Fetal genetic variation contributes to variation in birthweight independently of 

the intrauterine environment and is therefore important to consider. Some of the 

fetal genetic contribution to birthweight can be captured by measuring paternal 

or maternal height. Height is a highly heritable trait, and the correlation between 

birthweight and paternal height in particular, via fetal skeletal growth (Knight et 

al., 2005)occurs due to genetic inheritance.  

A recent genome-wide-association study (GWAS) identified 190 regions of the 

genome where common single nucleotide polymorphisms (SNPs) are 

associated with birthweight variation (Warrington et al., 2019). The associated 

genetic variants at three-quarters of the 190 identified loci exert their effects 

directly from the fetal genotype, with a small proportion of those showing 

additional maternal effects. Associated variants at the other quarter of identified 

loci originated from the mother’s genome and showed indirect effects, via the 

maternal environment. A fetal genetic score consisting of 58 variants was 

shown to make a significant contribution to birthweight independently of 

maternal glucose levels (Hughes et al., 2018), suggesting measurements of 

fetal genetics could add to the variance in birthweight explained by other 

factors. However, the contribution of genetic variation to birthweight has not 

been assessed directly alongside other clinical variables. We therefore aimed to 

assess the contributions of genetic scores to variation in offspring birthweight, in 

addition to easily obtained clinical and anthropometric variables, in a UK 

community-based study of mothers, fathers and children.  

 

Methods  

All methods were carried out in accordance with relevant guidelines and 

regulations. 

 

Study population 

We used data from the Exeter Family Study of Childhood Health (EFSOCH) 

(Knight et al., 2006). EFSOCH is a study based on children born between 2000 

and 2004 in postcodes EX1-4 in central Exeter, UK.  
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Inclusion criteria for the current analyses consisted of only those parent-

offspring trios where the offspring was born at term (≥37 and <42 weeks 

gestation (Knight et al., 2006)) and complete clinical, anthropometric and 

maternal, paternal and fetal genetic data were available. Most trios had 

complete phenotype data, but following genotype quality control, and owing 

mainly to lower availability of fetal DNA from cord blood compared with parental 

DNA, complete genotype data was available for both parents and offspring in 

60% of the trios. The final dataset consisted of 549 parent-offspring trios. The 

selection of variables is illustrated by the flowchart in Figure 1. To check for any 

differences between excluded and included participants, we used t-tests to 

compare means of continuous variables of the excluded with the included 

(maternal height, maternal weight, gestational duration, birthweight and 

maternal age), and chi-square tests to compare the excluded categorical 

variables with the included categorical variables (maternal smoking status, 

parity and sex of the baby). 
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Fig 1: Flowchart illustrating how the data was prepared for analysis 

 

 

 

 

 

 

EFSOCH dataset = 947 
European-ancestry parent-
offspring trios with term, 
singleton births and no 

parental diabetes 
 

n = 913 trios 

n = 549 trios with 

complete genetic data for 

both parents and offspring 

Missing data for mother’s fasting 

glucose level, weight, age, smoking 

status, parity or offspring birthweight 

(n=34) 

 

 40% had genetic data missing for at 

least one of the trio (n=362) 

Missing data for mother’s height or 

father’s height (n=2) 

n = 911 trios 
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Characteristics of participants 

Full details of data collection are found in the EFSOCH study protocol (Knight et 

al., 2006). Briefly, detailed anthropometric measurements and biochemistry from 

the parents were taken at 28 weeks’ gestation. All measurements were taken three 

times and an average value was calculated. Maternal and paternal heights were 

measured to the nearest 0.1 cm. Maternal weight was measured to the nearest 

100 g. Birthweights of the parents were self-reported. Offspring birthweight was 

measured at birth, to the nearest 10 g and adjusted for sex and gestational age, 

centred around 40 weeks, according to the UK 1990 birthweight standards (Cole et 

al., 1998). 

Maternal glucose was measured in fasting maternal samples (fasting for at least 

10h prior to sampling), early morning at the parents’ home. Pregnancy details such 

as parity were obtained from medical records. Information about the mother’s 

smoking status was obtained via a questionnaire completed by the mother at 

recruitment.  

 

Genotyping 

Parental and offspring DNA were extracted to allow molecular genetic analysis of 

variants implicated in fetal growth. At birth, a sample of cord blood was taken at 

delivery. DNA was extracted from the spun white cells. The EFSOCH sample 

(consisting of 2,768 samples: mothers (n=969), fathers (n=937) and offspring 

(n=862)) genotyping was carried out using the Illumina HumanCoreExome array. A 

total of 106 samples were excluded due to low call rate, kinship errors, sex 

mismatches or ancestry outliers. The 2662 included samples were of European 

ancestry (assessed using flashPCA (Abraham and Inouye, 2014) with genotype 

call rates >98% and phenotypic sex and kinship were validated using genotype 

data assessed by KING software(Manichaikul et al., 2010)). The included 

genotyped SNPs had call rates >95%, Hardy-Weinberg p > 1 × 10−6, and minor 

allele frequency (MAF) >1%.  The Haplotype Reference Consortium (HRC) version 

r1.1 reference panel (Michigan Imputation Server) was used to impute the 

genotypes in all samples. A total of 98% of the SNPs included in the scores had an 
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imputation quality > 0.4 and a Minor Allele Frequency > 0.001 in EFSOCH (see 

Table S1; Supplementary Info). 

 

Statistical Analyses 

Genetic scores 

We created independent maternal and fetal genetic scores for birthweight, and also 

a paternal genetic score for father’s own birthweight (analogous to a fetal genetic 

score). We calculated the genetic scores (GS) according to Equation 1, where 

NSNP is the total number of SNPs, wi is the weight for SNP i and gi is the genotype 

dosage at SNP i.  

                                                      𝑮𝑺 = ∑ 𝒘𝒊𝒈𝒊𝒊                                         (1)  

 

A total of 209 SNPs, identified at 190 loci   in the most recent GWAS of birthweight 

(Warrington et al., 2019), were used to calculate the maternal, paternal and fetal 

genetic scores (see Table S1; Supplementary Info).Effect estimates for each 

SNP were used as weights, and for the maternal score, these had been adjusted to 

represent the maternal effects independent of fetal genotype effects using a 

structural equation model (Warrington et al., 2019). For the fetal score, fetal effect 

estimates independent of maternal genotype effects were used as weights, and for 

the paternal score for father’s own birthweight, the fetal GWAS weights were 

unadjusted so as to capture maximum information. Each genetic score variable 

was then standardized to a mean of 0 and SD of 1. To validate the genetic scores, 

we tested the associations between each standardized genetic score and its 

respective phenotype using simple linear regression models.  
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Linear regression models to estimate variance in adjusted birthweight by 

genetic and other factors 

We used multivariable linear regression models to model the variance in 

birthweight explained by several clinical, anthropometric and genetic factors. We 

ensured that the regression model assumptions were met and the model 

assumptions were checked using diagnostic plots of residuals and fitted values. To 

determine the additional variability explained by genetics, we examined the 

following models, with birthweight (adjusted for sex and gestational age) as the 

outcome variable:  

Model 1: Genetic scores model: maternal and fetal genetic scores were included 

as predictors to investigate their contribution to birthweight.   

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 + 𝐹𝑒𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 

 

Model 2: Maternal clinical features (intrauterine environment) model: maternal 

fasting glucose, age, weight, parity and the mother’s smoking status were used in 

this model.  

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑔𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦

+ 𝑀𝑜𝑡ℎ𝑒𝑟′𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠  

 

Model 3: Maternal genetic score + maternal clinical (intrauterine 

environment) features:  The maternal genetic score was added to Model 2 to 

investigate the additional contribution of maternal genetics to variance explained in 

birthweight. 

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑔𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦

+ 𝑀𝑜𝑡ℎ𝑒𝑟′𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠  

                               + 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒   

 

Model 4: Maternal clinical features + Parental anthropometric traits (genetics) 

model: Maternal and paternal height are variables that capture the effects of fetal 
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genetics and are easily measurable; these were added as predictors to Model 2 to 

create Model 4.  

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑔𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦

+ 𝑀𝑜𝑡ℎ𝑒𝑟′𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 

 

Model 5: Fetal genetic score + maternal clinical features + parental 

anthropometric (genetic) traits: The fetal genetic score was added to Model 4 to 

further investigate the contributions of the fetal genetic score in addition to parental 

heights and clinical features.  

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑔𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦

+ 𝑀𝑜𝑡ℎ𝑒𝑟′𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝐹𝑒𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 

 

Model 6: Parental genetic scores + maternal clinical features + parental 

anthropometric (genetic) traits: Given that the fetal genetic score for birthweight 

is not available prior to delivery, we analysed the contribution of the maternal 

genetic score for offspring birthweight and the paternal genetic score for father’s 

own birthweight in Model 6 in addition to clinical features and parental heights. 

𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑔𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦

+ 𝑀𝑜𝑡ℎ𝑒𝑟′𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 + 𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 

 

Model 7: Fetal genetic score + maternal genetic score + maternal clinical 

features + parental anthropometric (genetic) traits:  

The maternal genetic score was added to Model 5 to further investigate the 

contributions of the maternal genetic score in addition to parental heights and 

clinical features. 
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𝐵𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ~ 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑠𝑡𝑖𝑛𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑔𝑒 + 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦

+ 𝑀𝑜𝑡ℎ𝑒𝑟′𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡

+ 𝐹𝑒𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 + 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 

 

Additional models:  Parents’ own birthweights: We additionally investigated the 

contribution of maternal and paternal self-reported birthweights because these may 

also capture information about fetal genetics. These were available in a smaller 

sample (n=425 trios).  

 

We used the Adj-R2 statistic to assess improvement in model fit based on any 

added predictors. An F-test was used to compare nested models and check for any 

improvements in the explanation of variance in birthweight. The R2 statistic and its 

95% confidence intervals were used to assess the overall explanation of variance 

in birthweight by the predictors in the model. Confidence intervals were calculated 

by bootstrapping. Multicollinearity between predictor variables in the models was 

checked by using the Variance Inflation Factor (VIF). 

As a sensitivity analysis to check for any potential impact of poor-quality SNP 

genotype data, we repeated models containing genetic scores with only those 

SNPs that had minor allele frequency > 0.1% and imputation quality r2 > 0.4.  We 

used the statistical software R (version 3.5.2) to develop the multiple linear 

regression models and to calculate the F-tests between nested models. 
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Results 

Descriptive characteristics for the 549 parent-offspring trios are shown in Table 1. 

There was no strong evidence that individuals excluded from the analysis differed 

in their basic characteristics from those included (see Table S2) 

n = 549 trios 

Phenotype  Mean or % (SD) 

Maternal Height (cm) 165.0 (6.4) 

Maternal Weight (kg) 76.3 (12.6) 

Gestational Duration (weeks) 40.1 (1.2) 

Birthweight (g) 3570 (444) 

Maternal Age (years) 30 (5) 

Maternal smoking status (%Yes) 14.6 

Parity (%1st pregnancy) 44.8 

Sex of the baby (% Male) 52.2 

         Maternal Fasting Glucose(mmol/L) 4.4(0.4) 

                 Father’s Height (cm) 178(5.1) 

Table 1: Key characteristics of study population 

 

The genetic scores all showed strong associations with their respective 

phenotypes (Table S3). 
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Maternal and fetal genetic scores contribute additively to offspring 

birthweight variation  

 

Table 2: Model 1- Results of a multivariable linear regression model testing the 

association between birthweight (adjusted for sex and gestational age), maternal 

genetic score and fetal genetic score (n=549 parent-offspring trios).  

R2 = 0.060; Adj-R2=0.053 

 

A multivariable linear regression model (Model 1; Table 2) showed that maternal 

and fetal genetic scores have additive contributions to variance in offspring 

birthweight. On its own, the fetal genetic score explained 2% of variation in 

adjusted birthweight (R2 = 0.020) and the maternal genetic score explained 3% of 

variance in birthweight (R2 = 0.030). For comparison, the variables parity, mother’s 

smoking status and paternal height each explained 3 % of variation. 

 

Maternal genetic score for birthweight explained additional variance in 

birthweight when added to easily measurable clinical variables 

A multivariable linear regression model (Model 2; Table 3) including variables that 

are readily available in the clinical setting (maternal fasting glucose, maternal age, 

maternal weight, parity and the mother’s smoking status), showed that each 

variable contributed to variance explained in birthweight. The total variation in 

birthweight explained by these maternal characteristics (R2 = 0.217) was higher 

than that explained by genetic scores alone (R2 = 0.06; Model 1). 

 
 

 
Variable 

Change in 
birthweight 
(g) per 1 SD 
change in 

independent 
variable 

 
 

95% 
Confidence 

Interval 

 
 
 

t value 

 
 
 

p-value 

Intercept 3672 3530,3813 50.9 <0.001 

Maternal genetic score for offspring 
birthweight (adjusted for fetal effects) 

 
81 

 
45,116 

 
4.4 

 
<0.001 

Fetal genetic score for offspring 
birthweight (adjusted for maternal effects) 

 
69 

 
33,105 

 
3.7 

 
<0.001 
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* indicates a binary variable 

Table 3: Results of multivariable linear regression models testing the association between 

birthweight (adjusted for sex and gestational age) and maternal clinical characteristics, 

with and without the maternal genetic score 

 

The addition of the maternal genetic score for offspring birthweight to Model 2 as a 

predictor (Model 3; Table 3) made little change to the coefficients of the maternal 

clinical variables, which were very similar to Model 2, but there was an 

improvement in the Adj-R2 statistic when comparing the nested models (Adj-R2 

=0.233 vs 0.210, p<0.001), indicating that the maternal genetic score captured 

additional variance in birthweight.  

 

 

 

 
 
 

Variable 

Change in 
birthweight (g) 

per 1 SD 
change in 

independent 
variable 

 
 

95% 
Confidence 

Interval 

 
 
 

t value 

 
 
 

p-value 

Model 2:  maternal clinical characteristics (n=549 parent-offspring trios). R2 = 0.217; Adj-
R2=0.210 

Intercept 3691 3643, 3740 149.1 <2e-16 

Maternal age -38 -73, -3 -2.1 0.04 

Maternal weight 125 89, 161 6.8 2.09 e-11 

Mother’s smoking status* -280 -377, -182 -5.6 3.03 e-08 

Parity* -187 -255, -118 -5.3 1.55e-07 

Mother’s fasting glucose at 28 weeks’ 
gestation 

 
87 

 
51, 123 

 
4.7 

 
2.83e-06 

Model 3:  maternal clinical characteristics and maternal genetics (n=549 parent-offspring trios). 
R2 = 0.244; Adj-R2=0.233 

Intercept 3790 3655, 3925 55.3 <2e-16 

Maternal age -42 -77, -8 -2.4 0.026 

Maternal weight 121 85, 156 6.7 1.18e-10 

Mother’s smoking status -273 -369, -176 -5.6 8.45e-08 

Parity -194 -262, -126 -5.6 3.45e-08 

Mother’s fasting glucose at 28 weeks’ 
gestation 

85 49, 120 4.1 8.93e-07 

Maternal genetic score for offspring 
birthweight (adjusted for fetal 

effects) 

 
68 

 
36, 101 

 
4.7 

 
0.00023 
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Maternal and paternal height explained additional variance in birthweight 

when added to maternal clinical variables 

The addition of maternal and paternal height variables, that can capture the effects 

of fetal genetics, to Model 2 (routinely available clinical features only) showed that 

the additional variables can further explain variance in birthweight (adjusted for sex 

and gestational age) (Model 4; Table 4) with Adj-R2 increasing from 0.210 to 0.248 

(p<0.001). 

Table 4: Results of multivariable linear regression models testing the association between 

birthweight (adjusted for sex and gestational age), maternal clinical characteristics and 

parental heights, with and without the fetal genetic score (n=549 parent-offspring trios). 

In a subsample of n=425 available trios, we found that mother’s and father’s own 

self-reported birthweights explained additional variance in offspring birthweight 

 
 
 

Variable 

 
Change in 

birthweight (g) 
per 1 SD 

change in  
independent  

variable 

 
95% 

Confidence 
Interval 

 
 
 

t value 

 
 
 

p-value 

Model 4: maternal clinical characteristics and parental heights (n=549 parent-offspring trios). R2 
= 0.258; Adj-R2=0.248 

Intercept 3697 3650, 3744 152.7 <2e-16 

Maternal age -49 -84, -15 -2.8 0.00547 

Maternal weight 101 64, 139 5.3 1.47e-07 

Mother’s smoking status -251 -348, -155 -5.1 3.85e-07 

Parity -210 -278, -142 -6.1 2.47e-09 

Mother’s fasting glucose at 28 weeks’ 
gestation 

104 68,  140 5.7 2.03e-08 

Maternal height 52 16, 87 2.9 0.00431 

Paternal height 69  35, 102 4.0 6.88e-05 

Model 5: maternal clinical characteristics (n=549 parent-offspring trios), parental heights, and 
fetal genetic score. R2 = 0.277; Adj-R2=0.264 

Intercept 3799 3667, 3931 56.5 <2e-16 

Maternal age -50 -84, -16 -2.9 0.00427 

Maternal weight 97 60, 134 5.2 3.64e-07 

Mother’s smoking status -241 -336, -146 -5.0 8.65e-07 

Parity -216 -284, -149 -6.3 6.43e-10 

Mother’s fasting glucose at 28 weeks’ 
gestation 

 
106 

 
71,  142 

 
5.9 

 
7.42e-09 

Maternal height 49 14, 84 2.7 0.00681 

Paternal height 66  33, 99 3.9 0.000121 

Fetal genetic score for offspring 
birthweight (adjusted for maternal 

effects) 

 
56 

 
23, 88 

 
3.4 

 
0.000746 
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when added to a model that included parental heights (Table S4, Adj-R2=0.302 vs 

0.258 without parent birthweights, p<0.001). 

 

Fetal genetic score for birthweight explained additional variance in 

birthweight when added to easily-measured anthropometric variables that 

capture fetal genotype  

With the addition of the fetal genetic score for offspring birthweight to Model 4 as a 

predictor (Model 5; Table 4), there was little change in the coefficients of the 

maternal clinical variables, or of the maternal and paternal heights, which were 

very similar to Model 4, but there was an improvement in the Adj-R2 statistic when 

comparing the nested models (Adj-R2 =0.264 vs. 0.248, p<0.001), indicating that 

the fetal genetic score captured additional variance in birthweight. The fetal genetic 

score also improved variance explained in the model containing parental 

birthweights in a subsample of 425 trios (Table S5; P=0.09 comparing Adj-

R2=0.302 for the model with no fetal genetic score with Adj-R2= 0.310 for the model 

with the fetal genetic score). 

 

 

Maternal and paternal genetic scores further improved variance explained in 

birthweight when added to clinical and anthropometric variables 

When we added the maternal and paternal genetic scores to Model 4, (Model 6; 

Table 5), both parental genetic scores explained variation in birthweight on top of 

the basic clinical and anthropometric variables (Adj-R2=0.271 vs Adj-R2=0.248, 

p<0.001).  
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Variable 

Change in 

birthweight (g) 

per 1 SD 

change in 

independent 

variable 

 

 

95% 

Confidence 

Interval 

 

 

 

t value 

 

 

 

p-value 

Model 2: maternal clinical characteristics (n=549 parent-offspring trios). R2 = 0.217; Adj-

R2=0.210 

Intercept 3691 3643, 3740 149.1 <2e-16 

Maternal age -38 -73, -3 -2.1 0.04 

Maternal weight 125 89, 161 6.8 2.09 e-

11 

Mother’s smoking status* -280 -377, -182 -5.6 3.03 e-

08 

Parity* -187 -255, -118 -5.3 1.55e-07 

Mother’s fasting glucose at 28 

weeks’ gestation 

 

87 

 

51, 123 

 

4.7 

 

2.83e-06 

Model 3: maternal clinical characteristics and maternal genetics (n=549 parent-offspring trios). 

R2 = 0.244; Adj-R2=0.233 

Intercept 3790 3655, 3925 55.3 <2e-16 

Maternal age -42 -77, -8 -2.4 0.026 

Maternal weight 121 85, 156 6.7 1.18e-10 

Mother’s smoking status -273 -369, -176 -5.6 8.45e-08 

Parity -194 -262, -126 -5.6 3.45e-08 

Mother’s fasting glucose at 28 

weeks’ gestation 

85 49, 120 4.1 8.93e-07 

Maternal genetic score for 

offspring birthweight (adjusted for 

fetal effects) 

 

68 

 

36, 101 

 

4.7 

 

0.00023 

* indicates a binary variable 

Table 3: Results of multivariable linear regression models testing the association between 

birthweight (adjusted for sex and gestational age) and maternal clinical characteristics, 

with and without the maternal genetic score 

 

The addition of the maternal genetic score for offspring birthweight to Model 2 as a 

predictor (Model 3; Table 3) made little change to the coefficients of the maternal 

clinical variables, which were very similar to Model 2, but there was an 

improvement in the Adj-R2 statistic when comparing the nested models (Adj-R2 

=0.233 vs 0.210, p<0.001), indicating that the maternal genetic score captured 

additional variance in birthweight.  
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Maternal and paternal height explained additional variance in birthweight 

when added to maternal clinical variables 

Table 4: Results of multivariable linear regression models testing the association between 

birthweight (adjusted for sex and gestational age), maternal clinical characteristics and 

parental heights, with and without the fetal genetic score (n=549 parent-offspring trios). 

 

 

 

 
 
 

Variable 

 
Change in 

birthweight (g) 
per 1 SD 

change in  
independent  

variable 

 
95% 

Confidence 
Interval 

 
 
 
t 

value 

 
 
 

p-value 

Model 4: maternal clinical characteristics and parental heights (n=549 parent-offspring trios). 
R2 = 0.258; Adj-R2=0.248 

 

Intercept 3697 3650, 3744 152.7 <2e-16 

Maternal age -49 -84, -15 -2.8 0.00547 

Maternal weight 101 64, 139 5.3 1.47e-07 

Mother’s smoking status -251 -348, -155 -5.1 3.85e-07 

Parity -210 -278, -142 -6.1 2.47e-09 

Mother’s fasting glucose at 28 weeks’ 
gestation 

104 68,  140 5.7 2.03e-08 

Maternal height 52 16, 87 2.9 0.00431 

Paternal height 69  35, 102 4.0 6.88e-05 

Model 5: maternal clinical characteristics (n=549 parent-offspring trios), parental heights, and 
fetal genetic score. R2 = 0.277; Adj-R2=0.264 

 

Intercept 3799 3667, 3931 56.5 <2e-16 

Maternal age -50 -84, -16 -2.9 0.00427 

Maternal weight 97 60, 134 5.2 3.64e-07 

Mother’s smoking status -241 -336, -146 -5.0 8.65e-07 

Parity -216 -284, -149 -6.3 6.43e-10 

Mother’s fasting glucose at 28 weeks’ 
gestation 

 
106 

 
71,  142 

 
5.9 

 
7.42e-09 

Maternal height 49 14, 84 2.7 0.00681 

Paternal height 66  33, 99 3.9 0.000121 

Fetal genetic score for offspring 
birthweight (adjusted for maternal 

effects) 

 
56 

 
23, 88 

 
3.4 

 
0.000746 
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The addition of maternal and paternal height variables, that can capture the effects 

of fetal genetics, to Model 2 (routinely available clinical features only) showed that 

the additional variables can further explain variance in birthweight (adjusted for sex 

and gestational age) (Model 4; Table 4) with Adj-R2 increasing from 0.210 to 0.248 

(p<0.001).  

In a subsample of n=425 available trios, we found that mother’s and father’s own 

self-reported birthweights explained additional variance in offspring birthweight 

when added to a model that included parental heights (Table S4, Adj-R2=0.302 vs 

0.258 without parent birthweights, p<0.001). 

 

Fetal genetic score for birthweight explained additional variance in 

birthweight when added to easily measured anthropometric variables that 

capture fetal genotype  

With the addition of the fetal genetic score for offspring birthweight to Model 4 as a 

predictor (Model 5; Table 4), there was little change in the coefficients of the 

maternal clinical variables, or of the maternal and paternal heights, which were 

very similar to Model 4, but there was an improvement in the Adj-R2 statistic when 

comparing the nested models (Adj-R2 =0.264 vs. 0.248, p<0.001), indicating that 

the fetal genetic score captured additional variance in birthweight. The fetal genetic 

score also improved variance explained in the model containing parental 

birthweights in a subsample of 425 trios (Table S5; P=0.09 comparing Adj-

R2=0.302 for the model with no fetal genetic score with Adj-R2= 0.310 for the model 

with the fetal genetic score). 
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Maternal and paternal genetic scores further improved variance explained in 

birthweight when added to clinical and anthropometric variables 

When we added the maternal and paternal genetic scores to Model 4, (Model 6; 

Table 5), both parental genetic scores explained variation in birthweight on top of 

the basic clinical and anthropometric variables (Adj-R2=0.271 vs Adj-R2=0.248, 

p<0.001).  

 

 

 

Variable 

Change in 

birthweight (g) 

per 1 SD 

change in  

independent 

variable 

 

 

95% 

Confidenc

e Interval 

 

 

 

 

t-value 

 

 

 

 

p-value 

Intercept 3796 3665, 3927 56.7 <2e-16 

Maternal age -54 -88, -20 -3.1 0.00215 

Maternal weight 97 60, 134 5.1 3.78e-07 

Mother’s smoking status -241 -335, -146 -5.0 8.45e-07 

Parity -211 --278, -144 -6.2 1.25e-09 

Mother’s fasting glucose at 28 weeks’ 

gestation 

 

104 

 

69, 140 

 

5.8 

 

1.50e-08 

Maternal height 44 9, 80 2.5 0.0138 

Paternal height 61 28, 95 3.6 0.000349 

Maternal genetic score for 

offspring birthweight (adjusted for 

fetal effects) 

 

57 

 

25, 90 

 

3.5 

 

0.000567 

Paternal genetic score for father’s 

own birthweight 

 

39 

 

6, 71 

 

2.3 

 

0.0192 

Table 5: Model 6-Results of a multivariable linear regression model testing the association 

between birthweight (adjusted for sex and gestational age), maternal clinical 

characteristics (n=549 parent-offspring trios), and parental heights and genetic scores. R2 

= 0.285; Adj-R2=0.271 

 

 



64 
 

Maternal genetic score further improved variance explained in birthweight 

when added to fetal genetic score 

When the maternal genetic score and the fetal genetic scores were added on top 

of clinical variables (Model 7; Table 6), in Model 4 there was additional 

improvement in explanation of variance in birthweight (Adj-R2=0.280 vs Adj-

R2=0.248, p<0.001). 

 

 

 

Variable 

Change in 

birthweight (g) 

per 1 SD 

change in 

independent 

variable 

 

95% 

Confidence 

Interval 

 

 

 

t-value 

 

 

 

p-value 

Intercept 3799 3669, 3929 57.1 <2e-16 

Maternal age -53 -87, -19 -3.1 0.00231 

Maternal weight 98 62, 135 5.3 2.11e-07 

Mother’s smoking status -241 -335, -147 -5.0 6.98e-07 

Parity -217 -283, -150 -6.4 3.94e-10 

Mother’s fasting glucose at 28 weeks’ 

gestation 

 

101 

 

66, 136 

 

5.7 

 

2.59e-08 

Maternal height 39 4, 74 2.2 0.0288 

Paternal height 64 31, 96 3.7 0.000178 

Maternal genetic score for 

offspring birthweight (adjusted for 

fetal effects) 

 

60 

 

27, 92 

 

3.6 

 

0.000314 

Fetal genetic score for offspring 

birthweight(adjusted for maternal 

effects) 

 

57 

 

25, 89 

 

3.5 

 

0.000449 

Table 6: Model 7-Results of a multivariable linear regression model testing the association 

between birthweight (adjusted for sex and gestational age), maternal clinical 

characteristics (n=549 parent-offspring trios), parental heights, and maternal and fetal 

genetic scores. R2 = 0.294; Adj-R2=0.280 
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A summary of the R2 values across all the main models is shown in Figure 2. This 

indicates the improvement in R2 with added successive variables.  

There was a negligible difference between the models that contained genetic 

scores with only those SNPs that had minor allele frequency > 0.1% and 

imputation quality r2 > 0.4 and the models that contained genetic scores with 98% 

of the SNPs having minor allele frequency > 0.001 and imputation quality > 0.4. 

 

Discussion 

We have shown that maternal, paternal and fetal genetic scores contribute to 

variation in sex- and gestational age-adjusted birthweight, in addition to variables 

easily obtained in a clinical setting. We also showed that maternal and paternal 

heights, which are easily measured and capture some of the genetic contribution to 

fetal growth, explain variance in birthweight independently of routinely measured 

maternal clinical variables. However, the maternal and fetal (or paternal) genetic 

scores made additional, independent contributions to birthweight variance. GWAS 

have established that fetal and maternal genetic variants are associated with 

birthweight (Warrington et al., 2019), but as many of the underlying causal genes 

are likely associated with clinical or anthropometric traits, such as height, weight, 

and glucose, it has been important to quantify the added value. 

Maternal and fetal genetics are known to be important determinants of fetal growth 

but the contribution of genetic scores to variance explained in birthweight has not 

been investigated previously using multivariable regression models containing 

other clinical and parental anthropometric characteristics.  We showed, consistent 

with other epidemiological studies (Nahum et al., 1999, Makgoba et al., 2012), that 

clinical variables, both routinely measured (glucose, weight, smoking), but also 

parental height, can explain approximately 26% variation in birthweight that has 

already been adjusted for sex and gestational age. The addition of the fetal genetic 

score to the models explained a further 2% of variation in birthweight. For 

comparison, the variables parity, mother’s smoking status and paternal height each 

explained 3 % of variation individually, in sex-and gestational age-adjusted 
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birthweight. The precise mechanisms through which most of the genetic variants in 

the fetal score influence growth are not known, but evidence to date suggests they 

are likely to capture variation in growth factors such as fetal insulin, as well as 

variation in placental growth and function (Warrington et al., 2019).  

Fetal genetic scores are not available before birth, so they are not informative for 

predicting birthweight at present. However, we showed that maternal and paternal 

genetic scores can also explain variation in birthweight. The parental genetic 

effects are mediated both through direct effects of genes inherited by the fetus and 

indirect maternal genetic effects on the intra-uterine environment. Some of these 

effects will have been captured by clinical features. Previous research has shown 

that associations between maternal height and offspring birthweight is 

predominantly defined by fetal genetics (Zhang et al., 2015). Paternal height has 

also been shown to influence offspring birthweight through fetal genetics (Knight et 

al., 2006). We have shown that the parental heights explain further variation in 

birthweight and that parental genetic scores for birthweight are contributing to 

variation in birthweight independently of parental heights. The independent and 

additive associations of the parental genetic scores with birthweight show that 

these scores are offering additional predictive value. The fetal genetic score also 

added information on top of self-reported parent birthweights. 

 It was unexpected that the R2 value for the maternal GS was larger than that of 

the fetal GS because previous work (Warrington et al., 2019) has shown that fetal 

genetic variants explain more birthweight variation than maternal genetic variants. 

However, further investigation showed that the R2 values for maternal and fetal 

genetic scores were not precise enough in this relatively small sample to be able to 

infer confidently whether one was bigger than the other (as reflected in the 95% 

confidence intervals), and point estimate values of R2 fluctuated so that the fetal 

estimate appeared larger than the maternal estimate when the models were re-run 

in wider samples that did not require all family members to be genotyped (see 

Table S6).  

This study has benefited from the use of a well-phenotyped and genotyped sample 

of parents and children. However, there are some limitations. Firstly, in the 
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EFSOCH dataset, some clinical features known to contribute to variance explained 

in birthweight in other studies (e.g. blood pressure (Catalano et al., 1995)) were not 

available, so studies in additional samples would be needed to enable assessment 

of the contribution of genetic scores in relation to those variables. In addition, 

although we aimed to assess the contribution of parents’ own birthweights as 

anthropometric variables in addition to parental heights, the parental birthweights 

were self-reported and were not available in the full sample (they were available in 

only 425 complete trios). However, when we created models using the dataset 

containing 425 trios (Tables S4-5), the coefficients of the explanatory variables 

were similar to those in the models created with the larger dataset of 549 

observations, so the limited availability of self-reported birthweights did not impact 

materially on the results.   

Another limitation of this study is that we conducted the analyses in a UK-based, 

northern European-ancestry population and it is likely that the associations 

between birthweight and both genetics and parental clinical features will differ in 

samples of other ancestries and in other settings. Further studies will be necessary 

to investigate the contribution of genetic scores and other variables to birthweight 

in other populations.  

Since the EFSOCH study was part of the maternal GWAS study that identified 

SNPs associated with birthweight (Warrington et al., 2019), there is a small risk of 

overfitting in our models. However, we expect the risk of this to be minimal 

because EFSOCH only made up 0.4% of the maternal GWAS meta-analysis 

sample and was not included in the fetal GWAS. 

We have shown that maternal and fetal genetic scores explain variation in 

birthweight in healthy pregnancies, in addition to clinical and anthropometric 

variables that are routinely or easily collected. While the individual contribution of 

each genetic score is not large (e.g. 2% for fetal genetic score), it is comparable to 

the individual contributions of variables such as parity or maternal smoking status. 

This raises the possibility that genetic scores might be useful alongside clinical 

characteristics in prediction models, for example, those aiming to predict risk of 

LGA in pregnancies affected by gestational diabetes. Further work is needed to 
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determine whether genetic information could improve a full clinical prediction model 

over and above what is currently done routinely in clinical practice.  

Fig 2: Plot showing R-squared values for each model with 95% confidence 

intervals. 
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Supplementary tables 

 
 

Phenotype 

 
Analysed Sample 

(n=549 trios) 

 
Excluded Sample  

(n=398 trios) 

 
 

p-value 

Maternal Height (cm) 165.0 (6.4) 165.1 (6.2) 0.776 

Maternal Weight (kg) 76.3 (12.6) 75.0 (15.1) 0.169 

Gestational Duration 
(weeks) 

40.1 (1.2) 40.1 (1.2) 0.793 

Birthweight (g) 3570 (444) 3537 (436) 0.228 

Maternal Age (years) 30.3 (5.3) 30.6 (5.1) 0.509 

Maternal smoking status 
(%Yes)* 

14.6 10.8 0.133 

Parity (%1st pregnancy)* 44.8 46.6 0.507 

Sex of the baby (% Male)* 52.2 51.1 0.932 

Table S2: Key characteristics of excluded participants and results of t-tests and chi-square 

tests for comparison between the analysed sample and the excluded sample. 

 * indicates the p-value is for a Chi Square test 
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Outcome 
Variable 

 
 

Genetic score 

Change 
in trait 
per 1 
SD 

higher 
genetic 
score 

 
 

95% CI 

 
Pearson’s 
Correlation 
coefficient, 

r 

 
 

p-value 

 
 

n 

Offspring 
birthweight 
adjusted 

for sex and 
gestational 

age 

Maternal 
genetic score 
for offspring 

birthweight (g), 
with weights 
adjusted for 

fetal genotype 
effects 

 
 

80.4g 

 
 

43.7,117.1 

 
 

0.18 

 
 

2.03e-05 

 
 

549 

Offspring 
birthweight 
adjusted 

for sex and 
gestational 

age 

Fetal genetic 
score for 

birthweight (g), 
with weights 
adjusted for 

maternal 
genotype 

effects 

 
 

68.0 g 

 
 

31.3,104.9 

 
 

0.15 

 
 

0.000303 

 
 

549 

 
Father’s 
own self-
reported 

birthweight 

Paternal 
genetic score 

for father’s 
own 

birthweight 
(generated 

with 
unadjusted 

weights) 

 
 

59.2g 

 
 

27.8, 90.7 

 
 

0.17 

 
 

0.00024 

 
 

504 

Table S3: Associations of maternal, fetal and paternal genetic scores with birthweight 
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Table S4: Results of a multivariable linear regression model testing the association 

between birthweight (adjusted for sex and gestational age), maternal clinical 

characteristics (n=425 parent-offspring trios), and additional parental anthropometric 

features that capture fetal genetics. R2=0.317; Adj-R2=0.302 

 

Table S5: Results of a multivariable linear regression model testing the association 

between birthweight (adjusted for sex and gestational age), maternal clinical 

characteristics (n=425 parent-offspring trios), additional features that capture fetal 

genetics, and fetal genetic score. R2 = 0.329; Adj-R2=0.310, (p=0.06 when compared to 

Model in table S4) 

 
 
 

Variable 

 
Change in 
birthweight 
(g) per 1 SD 
change in X 

variable 

 
95% 

Confidence 
Interval 

 
 
 

t value 

 
 
 

p-value 

Intercept 3727 3654, 3778 142.9 <0.001 

Maternal age -44 -81, -7 -2.3 0.02 

Maternal weight 82 41, 122 4.0 <0.001 

Mother’s smoking status -237 -350, -123 -4.1 <0.001 

Parity -219 -291, -147 -6.0 <0.001 

Mother’s fasting glucose at 28 weeks’ 
gestation 

105 67, 144 5.3 <0.001 

Mother’s own birthweight 103 66, 140 5.5 <0.001 

Father’s own birthweight 47 10, 83 2.5 0.01 

Maternal height 23 -16, 62 1.2 0.25 

Paternal height 60  23, 98 3.2 0.002 

 
 
 

Variable 

Change in 
birthweight (g) 

per 1 SD 
change in X 

variable 

 
 

95% 
Confidence 

Interval 

 
 
 
t 

value 

 
 
 

p-value 

Intercept 3870 3724, 4016 51.9 <0.001 

Maternal age -43 -80, -6 -2.3 0.02 

Maternal weight 81 41, 122 4.0 <0.001 

Mother’s smoking status -230 -343, -117 -4.0 <0.001 

Parity -226 -298, -154 -6.1 <0.001 

Mother’s fasting glucose at 28 weeks’ 
gestation 

105 66,  143 5.3 <0.001 

Mother’s own birthweight 94 57, 132 4.9 <0.001 

Father ’s own birthweight 46 9, 82 2.5 0.01 

Maternal height 23 -16, 61 1.1 0.25 

Paternal height 60  23, 97 3.2 0.002 

Fetal genetic score for offspring 
birthweight (adjusted for maternal 

effects) 

 
32 

 
-4, 67 

 
1.8 

 
0.080 
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Table S6: Summary of models describing the contribution of the genetic scores to 

variation in offspring birthweight in different sample sizes. 

 
Included sample 

(of those with 
birthweight and 

complete 
phenotype data 

available) 

 
 
 

Total N 

 
 
 

Description of model 

Change in 
BW  in g 
per 1 SD 
higher X 
variable 
(95%CI) 

 
 
 

R2 (95%CI)  

 
 

Max sample with 
maternal genetic 

score 

 
 

820 

 
Outcome: birthweight 
(adjusted for sex and 

gestational age) 
X variable: maternal genetic 

score 

 
 

66 (32-
100) 

 
0.02432 

(0.00513, 

0.0502) 

 
Max sample with 

fetal genetic score 

 
646 

 
Outcome: birthweight 
(adjusted for sex and 

gestational age) 
X variable: fetal genetic 

score 

 
84 (50-

117) 

 
0.03634  
(0.0131, 
0.0710) 

 
Max sample with 

maternal and fetal 
genetic scores 

 
 

595 

 
Outcome: birthweight 
(adjusted for sex and 

gestational age) 
X variable: maternal genetic 

score 

 
73 (38-

108) 

 
0.02935 

 (0.00733, 
0.0595) 

Max sample with 
maternal and fetal 

genetic scores 

 
595 

 
Outcome: birthweight 
(adjusted for sex and 

gestational age) 
X variable: fetal genetic 

score 

 
78(43-113) 

 
0.03307 

(0.00941, 
0.0654) 

 
Max sample with 

maternal, fetal and 
paternal genetic 

scores 

 
 

549 

 
Outcome: birthweight 
(adjusted for sex and 

gestational age) 
X variable: maternal genetic 

score 

 
80 

(44-117) 

 
0.036 

(0.00966, 
0.0697) 

 
Max sample with 

maternal, fetal and 
paternal genetic 

scores 

 
 

549 

 
Outcome: birthweight 
(adjusted for sex and 

gestational age) 
X variable: fetal genetic 

score 

 
          68 

(31-105) 

 
0.0269 

(0.00497, 
0.0557) 
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Abstract 

Aim: Babies of South Asian (SA) ancestry have lower birth weights compared with 

those of European ancestry, despite higher mean maternal glucose levels. We 

aimed to compare the associations with birthweight of fetal (fetal_GS) and 

maternal (maternal_GS) genetic scores (GS) and routinely available clinical 

features between these two populations, as well as the contributions of the 

different predictors to birthweight variance explained. 

 

Methods: We analysed mother-child pairs of SA (n=1177) and European (n=1259) 

ancestry from the Born in Bradford study, excluding type1 and type2 diabetes, 

preterm and multiple births. We compared multivariable linear regression models to 

explain variance in birthweight adjusted for sex and gestational age: Model1 

(maternal 28-week fasting plasma glucose [FPG], age, weight, smoking, parity, 

Systolic Blood Pressure [SBP], Diastolic Blood Pressure [DBP], height); Model2 

(Model1+maternal_GS+fetal_GS). We used the R-squared statistic to assess the 

contributions of different predictors in the two samples. 

Results: Mean (SD) birthweight was lower in SAs compared with Europeans (3193 

(445) g vs. 3475 (483) g; p<0.001), while mean FPG was higher (4.6 (0.5) vs. 4.4 

(0.4) mmol/L, p<0.001). Associations between maternal FPG and adjusted 

birthweight were similar in both populations (62g [95%CI: 35, 88] higher birthweight 

per 1 SD higher FPG in SA vs. 81g [40, 123] higher birthweight per 1 SD higher 

FPG in European; variance explained 2.2% v 3.3%, respectively). Other 
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characteristics showed similar associations with birthweight in both populations, 

though the distributions of smoking and parity were quite different. GS contributed 

additional information in both populations, but the full model explained less overall 

variation in birthweight in SA pregnancies compared with European (Adj-R2 = 

0.175 vs 0.223).  

 

Conclusions: Genetic scores and maternal characteristics show similar 

associations with birthweight in babies of SA and European ancestry. Further work 

is needed to understand what contributes to birthweight differences between SA 

and Europeans as this may ultimately inform antenatal care. 
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Introduction 

Birth weight varies across different ethnicities; African, Indian and East Asian 

populations note a lower birthweight on average compared to white Americans and 

Europeans (Barron, 1983). In the UK, healthy babies of White ethnicity weigh 

about 3500 g on average and those of Indian, Pakistani and Bangladeshi ethnicity 

weigh between 280-350g lighter, those of Black Caribbean ancestry are 150 g 

lighter and those of Black African ancestry are 70 g lighter (Kelly et al., 2009). 

 

A previous study (West et al., 2013) has shown that babies of South Asian (SA) 

ancestry have lower birth weight than babies of European (Eur) ancestry. It has 

been shown that some of this difference in birth weight can be explained by the 

mother’s height and weight as South Asian women are shorter and weigh lighter on 

average. When further comparisons were made between the two ethnicities, fewer 

South Asian mothers smoked, their fasting glucose level was higher on average, 

and there was a higher proportion of SA women who had delivered multiple babies.  

 

These differences did not fully account for the difference in birth weight between 

these two groups. To further investigate the differences in birthweight between 

these two ethnicities, birthweight, skinfold thickness and cord leptin (West et al., 

2013) were compared. Results showed that similar skinfold thickness was 

observed in both groups but SA babies had greater total fat mass. While maternal 

height, BMI and gestational age were able to explain some of the differences, 

glucose, parity, smoking and living with a partner masked the difference in a way 

that the overall effect on birth weight was negligible (West et al.). 

 

Genetic variation from both mother and fetus contributes to variation in birth 

weight. Genome-wide association studies have now identified more than 240 

regions of the genome where common variants are robustly associated with birth 

weight(Juliusdottir et al., 2021). The vast majority of the data contributing to GWAS 

of birth weight to date has been from people of European ancestry. However, a 

recent large meta-analysis of individuals of Indian and Bangladeshi ancestry from 

both the UK and Indian subcontinent showed that a fetal genetic score was 
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strongly associated with birth weight with a similar effect to that in Europeans, 

despite large differences in mean maternal BMI and mean birth weight. In that 

study, there was, however, a weaker effect of a maternal genetic score on birth 

weight in the South Asian studies compared with European, which may indicate 

different intrauterine exposures (Nongmaithem et al., 2022). 

 

Our previous work has demonstrated that both maternal and fetal genetic scores 

explained further variation in offspring birth weight on top of clinical variables 

(Haulder et al.) in a UK study of participants with European ancestry. Since genetic 

scores identified in Europeans show similar associations with birth weight in 

samples of European and South Asian ancestry, we would not expect them to 

explain the significant differences in birth weight that are seen between these two 

groups. However, it is not known whether these genetic scores explain a similar 

amount of variation in birth weight when added to maternal characteristics in South 

Asians, as they do in Europeans.  

In this paper, we explored the associations with offspring birthweight and clinical 

features in two groups of different ethnicities and further explored variables that 

have not been investigated previously. We used the Born in Bradford (BiB) study 

(Wright et al., 2013) which comprises of two different ethnic groups living in the 

same area: White Europeans and South Asians (Bangladeshis and Pakistanis) 

based in the city of Bradford in the UK, with data collected at the same time. This 

was a replication of our first study in a different European cohort and, in addition 

this time, to a South Asian group. We then included a maternal and fetal genetic 

score on top of clinical features to investigate the contributions of genetics in 

explaining variability in birthweight in the two groups.  
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Methods  

Study population  

We used data from the Born in Bradford Study (BiB). The Born in Bradford cohort 

represents the obstetric population in Bradford, which is a city in North of England 

and contains data collected from 12453 women (with 13776 pregnancies) between 

2007 and 2010. About 20% of the current generation of parents is of South Asian 

origin (90% are from Mirpur in Pakistan)(Wright et al., 2013). 

 

Inclusion criteria for the current analyses consisted of only those mother-child pairs 

where complete clinical, anthropometric, and maternal and fetal genetic data were 

available. Most pairs had complete phenotype data, but following genotype quality 

control, and owing to lower availability of fetal DNA from cord blood compared with 

parental DNA, complete genotype data was available for mothers and offspring in 

50% of the pairs in both ancestries.  We excluded participants with preterm and 

multiple births as well as pre-existing type 1 or type 2 diabetes.  

 

We created two separate datasets for the Europeans (UK) ancestry and the South 

Asians (Pakistani) ancestry. The final datasets consisted of 1259 mother-child 

pairs for the Europeans and 1177 mother-child pairs for the South Asians, 

respectively. The selection of variables is illustrated by the flowchart in Figure 1 

and Figure 2. To check for any differences between excluded and included 

participants, we used unpaired t-tests to compare means of continuous variables 

(maternal height, maternal weight, gestational duration, birth weight and maternal 

age), and Chi-square tests to compare categorical variables (maternal smoking 

status, parity, and sex of the baby).   
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Fig 1: Flowchart illustrating how the European data was prepared for analysis 

 

 

n = 3077 pairs 

BiB dataset = 3301 
European-ancestry mother-

offspring pairs. 
 

n = 1259 pairs with 

complete genetic data for 

both mother and offspring 

Excluding data for preterm pregnancies 

(n=196) and twins (n=28) 

 

 50% had genetic data missing for at 

least one of the pair (n=1549) 

Excluding data for T1D and T2D (n=4) 

n = 3073 pairs 

n = 1524 pairs 

Excluding data for related mothers and 

children based on kinship analysis of 

genotype data. (n=173) 

n = 1351 pairs 

Missing data for mother’s fasting glucose 

level, weight, age, smoking status, parity 

or offspring birthweight (n=92) 
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Fig 2: Flowchart illustrating how the Pakistani data was prepared for analysis 

 

BiB dataset = 3318 Pakistani-
ancestry mother-offspring 

pairs. 
 

n = 3101 pairs 

n = 1177 pairs with 

complete genetic data for 

both mother and offspring 

Excluding data for preterm pregnancies 

(n=189) and twins (n=28) 

 

 50% had genetic data missing for at 

least one of the pairs (n=1359) 

Excluding data for T1D and T2D (n=2) 

n = 3099 pairs 

n = 1740 pairs 

Excluding data for related mothers and 

children based on kinship analysis of 

genotype data (n=440). 

n = 1300 pairs 

Missing data for mother’s fasting glucose 

level, weight, age, smoking status, parity 

or offspring birthweight (n=123) 
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Characteristics of participants 

Full details of data collection are found in the BiB study protocol(Wright et al., 

2013).  Participants were recruited at their oral glucose tolerance test (OGTT) 

appointment between 26 to 28 weeks’ gestation. Briefly, detailed anthropometric 

measurements and biochemistry from the mothers were taken at recruitment. 

Maternal height was measured to the nearest 0.1 cm. Maternal weight was 

measured to the nearest 100g. Offspring birth weight was measured at birth, to the 

nearest 10g. For the current analyses, birth weight was adjusted for sex and 

gestational age by saving residuals on a regression model of birthweight against 

sex and gestational age.  

Maternal glucose was measured in fasting maternal samples offered at the OGTT 

appointment. Information about the mother’s smoking status and parity was self-

reported. The ethnicity of the parents was determined by genetic similarity for the 

analysis. The systolic blood pressure (SBP) and diastolic blood pressure (DBP) 

measurements were taken closest to 28 weeks’ gestation and if that measurement 

was not available, the median value between 27 and 29 weeks of gestation was 

recorded as the blood pressure measurement. 

 

Genotyping 

Two separate microarrays, the Illumina HumanCoreExome array and the Infinium 

Global Screening array (GSA), were used to obtain maternal and fetal genomic 

data. Genotype data had been already imputed against the Haplotype Reference 

Consortium panel, version r1.1 using Minimac4, after quality control (minor allele 

frequency > 1% and Hardy-Weinberg Equilibrium P value > 1 × 10−6). 
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Statistical Analyses 

Genetic scores 

We created independent maternal and fetal genetic scores for birth weight. We 

calculated the genetic scores (GS) according to Equation 1, where wi is the weight 

for SNP i and gi is the genotype at SNP i.  

                                                                          𝑮𝑺 = ∑ 𝒘𝒊𝒈𝒊𝒊                                          

(1)  

 

A total of 209 SNPs, identified at 190 loci   in a recent GWAS of birth weight 

(Warrington et al., 2019), were used to calculate the maternal and fetal genetic 

scores (see Table S1). Effect estimates for each SNP were used as weights, and 

for the maternal score, these had been adjusted to represent the maternal effects 

adjusted for fetal genotype effects using a structural equation model (Warrington et 

al., 2019). For the fetal score, fetal effect estimates adjusted for maternal genotype 

effects were used as weights. Each genetic score variable was then standardized 

using its mean and standard deviation. To validate the genetic scores, we tested 

the associations between each standardized genetic score and its respective 

phenotype using simple linear regression models.  
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Linear regression models to estimate variance in corrected birth weight 

explained by clinical, anthropometric, and genetic factors 

To compare associations of birthweight with maternal characteristics and the 

genetic scores between the European and South Asian samples of mothers and 

babies from the Born in Bradford study, we examined the following multivariable 

linear regression models, with corrected birth weight (i.e., adjusted for sex and 

gestational age) as the outcome variable. 

 

Models 1a and 1b: Maternal clinical and anthropometric characteristics: 

maternal fasting glucose, age, weight, height, parity, SBP, DBP and the mother’s 

smoking status were used in the first model.  

 

Models 2a and 2b: Fetal genetic score + maternal genetic score + maternal 

clinical and anthropometric characteristics: the maternal and fetal genetic 

scores were added to Models 1a and 1b to further investigate the contributions of 

the genetic scores in addition to maternal height and clinical features. 

We used the adjusted R-squared statistic to assess improvement in model fit 

based on any added predictors. We used the R-squared statistic for assessing 

individual contributions of each variable to birthweight in univariate regression 

models. An F-test was used to compare nested models and check for any 

improvements in the explanation of variance in birth weight upon adding the 

genetic scores. The R-squared statistic and its 95% confidence intervals were used 

to assess the overall explanation of variance in birth weight by the predictors in the 

model. Multicollinearity between predictor variables in the models was checked by 

using the Variance Inflation Factor (VIF). 

 

Results 

Descriptive characteristics for the mother-child pairs in the European (UK) ancestry 

and South Asian (Pakistani) ancestry are shown in Table 1. There was no robust 

evidence that individuals excluded from the analysis differed in their basic 

characteristics from those included (see Table S2 and S3). 
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European 
(UK) 

n=1259 
mother-child 

pairs 

South Asian 
(Pakistani) 

n=1177 mother-
child pairs 

p-value 

Phenotype 
Mean or % 

(SD) 
Mean or % (SD)  

Birth weight (g) 3475(483) 3193(445) <0.001 

Maternal Height (cm) 164.6 (6.2) 159.5(5.6) <0.001 

Maternal Weight (kg) 79.0(16.4) 70.6(13.1) <0.001 

Gestational Duration (weeks) 39.6(1.2) 39.4(1.2) <0.001 

Maternal fasting glucose (mmol/L) 4.4(0.4) 4.6(0.5) <0.001 

Maternal Systolic BP(mmHg) 113.1(11.4) 107.1(11.1) <0.001 

Maternal Diastolic BP(mmHg) 66.6(8.6) 63.7(8.1) <0.001 

Maternal Age (years) 27.2(6.0) 28.0(5.1) <0.001 

Maternal smoking status (%Yes) 31.3 4.0 <0.001 

Parity (%1st pregnancy) 49.6 33.9 
<0.001 Parity (%2nd pregnancy) 32.5 24.9 

Parity (%More than two pregnancies) 17.9 41.2 

Sex of the baby (% Male) 51.9 52.4 0.837 

Table 1: Key characteristics of the study populations 

Most characteristics showed differences, on average, between the two samples. 

For example, in the South Asian group, maternal fasting glucose was higher (4.6 

mmol/L) as compared to the Europeans group (4.4 mmol/L). We also observed that 

in the South Asian group, fewer mothers smoked during the pregnancy (4%) when 

compared to the Europeans (31.3%). We observed that there were more women 

from the South Asian ancestry who had given birth more than once (41.2%) than in 

the European group (17.9%). The genetic scores showed strong associations with 

birthweight (Table 2). 
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Ethnicity 

 
 

Genetic score 

Change in offspring 
birth weight adjusted 

for sex and 
gestational age per 1 

SD higher genetic 
score (95% CI) 

 
Pearson’s 

Correlation 
coefficient, 

r 

 
 

p-
value 

 
 

European 
(n=1259) 

Maternal genetic 
score for offspring 

birthweight (g), 
with weights 
adjusted for 

fetal genotype 
effects 

 
 

36 
(9, 63) 

 
 

0.074 

 
 

0.008 

 Fetal genetic 
score for 

birthweight (g), 
with weights 
adjusted for 

maternal 
genotype effects 

 
 

96 
(69,122) 

 
 

0.20 

 
 

<0.001 

 
 

Pakistani 
(n=1177) 

Maternal genetic 
score for offspring 

birthweight (g), 
with weights 
adjusted for 

fetal genotype 
effects 

 
 

25 
(-1,51) 

 
 

0.069 

 
 

0.06 

 Fetal genetic 
score for 

birthweight (g), 
with weights 
adjusted for 

maternal 
genotype effects 

 
 

79 
(54,105) 

 
 

0.19 

 
 

<0.001 

Table 2: Associations of the genetic scores with offspring birthweight. 
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Similar associations were observed between maternal clinical characteristics 

and offspring birthweight in Europeans and South Asians 

 

Multivariable linear regression models (Model 1a & 1b; Table 3) including clinical 

and anthropometric variables (maternal fasting glucose, maternal age, maternal 

weight, parity, mother’s systolic blood pressure, mother’s diastolic blood pressure, 

mother’s height and the mother’s smoking status), showed that each variable 

except for SBP, DBP and maternal age, contributed significantly to variance 

explained in birthweight in the European and Pakistani samples. In the Pakistani 

sample, the mother’s smoking status was also found to not contribute to explaining 

variation in birthweight: there was no strong association between smoking status 

and birthweight. 

 

Similar associations were observed in both ancestries (the coefficient of one 

sample is within the 95% CI of the coefficient for the other sample) except for the 

maternal smoking status, which had less influence on birthweight in the South 

Asian group as compared with the Europeans. This can be explained by the fact 

that fewer mothers smoked in the South Asian group. The contributions to variation 

of birthweight by maternal fasting glucose is similar in both populations.  
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 Europeans (UK) South Asian (Pakistani) 

 
 

Variable 

Change in 
birthweight 
(g) per 1 SD 
change in 

independent 
continuous 

variable 95% CI 

Change in 
birthweight 
(g) per 1 SD 
change in 

independen
t 

continuous 
variable 95% CI 

Maternal age(years) -25 -53, 4 -21 -51, 9 

Maternal weight(kg) 106 76, 135 96 67, 124 

Mother’s smoking 
status*(smoker vs 

nonsmoker) -259 -314, -203 -23 -150, 105 

Parity(1st pregnancy vs 
3+ pregnancies)** -169 -242, -96 -173 -240, -106 

Parity(2nd pregnancy vs 
3+ pregnancies)** -23 -96, 50 -77 -141, -13 

Mother’s fasting glucose 
at 28 weeks’ gestation 

(mmol/L) 
 

62 35, 88 
 

81 40, 123 

Maternal Systolic Blood 
Pressure (mmHg) -7 -36, 22 12 -19, 43 

Maternal Diastolic Blood 
Pressure(mmHg) -15 -44, 13 -20 -52, 11 

Maternal height(cm) 56 30, 83 74 48, 100 

* indicates a binary variable 

**indicates a multilevel variable 

Table 3: Results of multivariable linear regression models testing the association 

between birthweight (adjusted for sex and gestational age), maternal 

characteristics Model 1a: Eur (n=1259 mother-child pairs) R2 = 0.1877; Adj-R2= 

0.1818 

Model 1b: SA (n=1177 mother-child pairs). R2 =0.1443; Adj-R2= 0.1374 
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Maternal genetic score and fetal genetic score further improved variance 

explained in birthweight when added to maternal clinical and anthropometric 

variables 

When the maternal genetic score and the fetal genetic scores were added on top 

of clinical variables and maternal height (Model 2a & 2b; Table 4), there were 

additional improvements in explanation of variance in birthweight in both ancestries 

(Eur: Adj-R2= 0.2233 vs 0.1818 p<0.001; SA: Adj-R2=0.1665 vs 0.1374, p<0.001 

Table 5) 
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 Europeans (UK) 
South Asian 
(Pakistani) 

 
 

Variable 

Change in 
birthweight 
(g) per 1 SD 
change in 

independent 
variable 

95% CI 

Change in 
birthweight 
(g) per 1 SD 
change in 

independen
t variable 

95% CI 

Maternal age(years) -25 -52, 3 -19 -49, 10 

Maternal weight(kg) 101 72, 130 92 64, 121 

Mother’s smoking 
status*(smoker vs 

nonsmoker) 
-254 

-308,-
200 

-25 
-150, 
101 

Parity(1st pregnancy vs 2+ 
pregnancies)** 

-164 -235, -93 -172 16, 141 

Parity(2nd  pregnancy vs 2+ 
pregnancies)** 

-6 -78, 65 -83 
-157, -

31 

Mother’s fasting glucose at 
28 weeks’ gestation(mmol/L) 

65 39, 91 103 50, 132 

Maternal height (cm) 56 31, 82 70 45, 96 

Maternal Systolic Blood 
Pressure(mmHg) 

-5 -33, 23 8 -23, 39 

Maternal Diastolic Blood 
Pressure(mmHg) 

-18 -46, 10 -20 -51, 11 

Fetal Genetic Score for 
Offspring birth weight (per 

unit GS) 
98 74, 122 75 51, 100 

Maternal Genetic Score for 
Offspring birth weight (per 

unit GS) 
30 6, 54 25 1, 49 

Table 4: Results of a multivariable linear regression model testing the association 

between birthweight (adjusted for sex and gestational age), maternal clinical 

characteristics, maternal height, and maternal and fetal genetic scores. 

Model 2a: Eur (n=1259 mother-child pairs) R2 = 0.2301; Adj-R2=0.2233 

Model 2b: SA (n=1177 mother-child pairs) R2 =0.1747; Adj-R2=0.1665 

 

 

The addition of a maternal genetic score and a fetal genetic score results in an 

increase in the R-Squared statistic in both the European (R-Squared: 0.2301 vs 

0.1877) and Pakistani (R-Squared: 0.1747 vs 0.1443) cohort. The associations of 

the genetic scores were similar in both groups (the coefficient of one sample is 

within the 95% CI of the coefficient for the other sample).  
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Note: The parity variable is Primiparity compared with delivering 2 or more babies** 

Error bars represent 95% CI 

 

Associations between most maternal characteristics and adjusted birthweight were 

similar in both samples, though smoking status and parity were less strongly 

associated in South Asians than in Europeans (Figure 2).  

 

 

 

Change in birthweight (g) per 1 SD higher continuous trait. For binary traits: change in birthweight 
(g) associated with smoking vs. non-smoking, or first birth vs. subsequent (parity). 

Figure 2: Forest plot illustrating the associations between maternal 

characteristics and adjusted birthweight in Eur vs SA 



94 
 

The genetic scores and maternal characteristics together explained less 

variation in birthweight in the SA pregnancies compared with the European 

pregnancies 

 

Clinical 
Features 
(Adj-R2) 

Clinical Features + 
Genetics 
(Adj-R2) p-value 

South Asian Ancestry 0.137 0.175 2 x 10-15 

European Ancestry 0.182 0.223 2 x 10-11 

Table 5: Summary of Adj-R2 for the models. 

 

The maternal and fetal genetic scores explained further variability in adjusted 

birthweight in addition to the clinical features. However, in the South Asian group, 

the genetic scores together with the maternal characteristics explained less 

variation than in the European group (Adj-R2 = 0.175 vs 0.223). A summary of the 

associations of maternal characteristics, maternal and fetal genetics with adjusted 

birthweight across the two populations is shown in Figure 2. 
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The R-Squared statistic for each variable was similar in Europeans and 

Pakistanis with the only notable difference being in the smoking status 

R-Squared European Pakistani 

Smoking Status 0.0667 9.24e-06 

Primiparity  0.0240 0.0297 

Maternal fasting glucose 0.0330 0.0223 

Maternal Weight 0.0904 0.0927 

Maternal Height 0.0361 0.0482 

Mother’s Systolic Blood 
Pressure 

0.0104 0.00897 

Mother’s Diastolic Blood 
Pressure 

0.00775 0.00399 

Mother’s genetic score 0.00546 0.00311 

Fetal genetic score 0.0391 0.0320 

Table 6: Summary of R-squared values from univariate linear regression for 

each variable. 

The results show that the R-Squared statistic for univariate analysis between 

birthweight (corrected for sex and gestational age) is similar for all the predictors 

used in the multivariable regression models. The smoking status notes a 

considerable difference in explaining variation in birthweight between the two 

groups with a higher contribution noted among Europeans. 
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Discussion 

We wanted to explore the contribution to offspring birthweight of routinely available 

maternal characteristics alongside the maternal and fetal genetic scores in these 

two groups despite the difference in mean birthweights. 

Although maternal FPG levels were, on average, higher in SA than in Europeans, 

the associations between maternal FPG and adjusted birthweight were similar in 

both populations (SA v European regression coefficient 81g [95%CI: 40, 123] per 1 

SD higher FPG vs. 62g [35, 88] per 1 SD higher FPG; variance explained 2.2% v 

3.3%). Most other characteristics showed similar associations with birthweight in 

both populations. We used the R-Squared statistic to assess the contribution of 

each predictor to birthweight and we observed that most variables had similar level 

of contribution in both ethnicities to variation in offspring birth weight, but the 

smoking status had little contribution in the South Asian group, due to its low 

prevalence (Table 5).  We also observed that the addition of a maternal genetic 

score and a fetal genetic score for offspring birth weight to routinely available 

clinical features explained additional variation in birth weight (SA: Adj-R2 = 0.137 vs 

0.167; Eur: Adj-R2 = 0.182 vs 0.223) in both groups. 

Our results are similar to those of our previous study on a European ancestry 

cohort in the southwest of the UK, a more affluent setting, where we showed that 

adding maternal and fetal genetic scores to readily available clinical features 

resulted in the improvement of explanation of variation in offspring birth 

weight(Haulder et al., 2022).  

Our current results show that findings are also consistent in a sample of SA 

ancestry based in the UK. Previously, the fetal genetic score for birth weight was 

shown to have similar associations to offspring birth weight in both SA and 

Europeans(Nongmaithem et al., 2022), but in that study, the maternal genetic 

score from a meta-analysis, was more weakly associated with birthweight in the 

South Asians when compared to the Europeans. The reason suggested for this 

was exposures to different intrauterine environments in the Europeans and SAs. 

Contrary to this study, we found similar associations between Europeans and 

South Asians for the maternal genetic score when it was considered in a model 



97 
 

along with other maternal characteristics in two groups found in the same 

environment. This result matches the point made before that when subjected to the 

same maternal intrauterine environment, maternal genetic score does in fact 

contribute to birthweight in SA to the same extent as in Europeans. The sample 

sizes in the SA groups for the meta-analyses were greater than in this study and 

therefore, had more power. The difference we observed could also be because the 

sample used in this study was in the UK and the others were sometimes non-UK. 

Previous research has shown that the difference in birthweight between these two 

populations is not explained by the variables that have different associations 

(mother’s smoking status, parity and maternal fasting glucose level) (West et al., 

2013). While the height and weight of SA mothers are less than those of European 

mothers, the study also showed that the difference in birthweight was not fully 

explained by the differences in height and weight either.  

We can observe that although the genetic scores were created using genetic 

information from GWAS of European ancestry, the contribution of the genetic 

scores to birth weight in the SA group was similarly informative as in the European 

group (mGS R-Squared: Eur vs SA; 0.00546 vs 0.00311; fGS R-Squared: Eur vs 

SA; 0.0391 vs 0.0320; Table 6).  

This is further supported by the fact that the genetic scores were similarly 

associated to birth weight in SA as in Europeans (Figure 2) and brings us to the 

conclusion that the underlying difference in birth weight between these two 

populations is not due to common variants associated with birth weight from 

GWAS.(Nongmaithem et al., 2022) 

Further work needs to be carried out to study the underlying mechanisms that 

cause birth weight in South Asians to be less than that in Europeans. For example, 

the contribution to birth weight of the genetic scores of favorable adiposity could be 

compared in both ethnicities by using multivariable regression models. Adiposity is 

defined as body fat, and it is more desirable for it to be stored under the skin than 

around organs such as the liver and the heart. A study showed that Indians tend to 

have central adiposity and higher body fat as compared to other ethnic groups and 

are also at high risk of insulin (Yajnik, 2001)resistance syndrome and more 
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susceptible to coronary diseases and diabetes Genes dictate where this fat is 

stored, and this can then be termed as having “favorable adiposity” or “unfavorable 

adiposity.” A previous study (Thompson et al., 2022)has shown that fetal alleles 

that have a positive influence on favorable adiposity are associated with higher 

birth weight.  

Previous studies (Thompson et al., 2021)have used two sample-MR with GWAS 

summary statistics to estimate the causal effects of maternal metabolically 

favorable adiposity on offspring birthweight and have found higher maternal 

adiposity to result in lower offspring birthweight if accompanied by a favorable 

metabolic profile. It has also been shown before(Nightingale et al., 2011) that 

adiposity patterns in South Asians differ from those in Europeans. This could be 

useful in exploring if adiposity is linked to the difference in birthweight between 

South Asians and Europeans. 

 

Conclusion 

The results of our study show that genetics help explain additional variability in 

offspring birth weight on top of clinical features in both Europeans and South 

Asians. This implies there is a possibility genetic scores could be added to 

prediction models. Further work needs to be done to investigate what are the 

underlying mechanisms that contribute to the discrepancy in offspring birth weight 

for these two groups.  
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Supplementary Information 

 
European (UK) 

mother-child pairs 
(n=2042) 

p-value 

Phenotype Mean or % (SD)  

Birth weight (g) 3276(606) <0.001 

Maternal Height (cm) 164.2(6.2) 0.04 

Maternal Weight (kg) 77.3(16.0) 0.003 

Gestational Duration (weeks) 39.0(2.1) <0.001 

Maternal fasting glucose (mmol/L) 4.4(0.4) 0.0556 

Maternal Systolic BP (mmHg) 112.8(11.5) 0.596 

Maternal Diastolic BP (mmHg) 66.8(8.3) 0.504 

Maternal Age (years) 26.5(6.0) 0.0009 

Maternal smoking status (%Yes) 34.3 0.061 

Parity (%1st pregnancy vs 2+ 
pregnancy) 

18.7 

0.094 Parity(%2nd pregnancy vs 2+ 
pregnancy) 

54.0 

Parity (2+ pregnancies) 27.3 

Sex of the baby (% Male) 50.6 0.565 

Table S2: Key characteristics of the excluded Europeans 
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South Asian (Pakistani) 

 mother-child pairs 
(n=2201) 

p-value 

Phenotype Mean or % (SD)  

Birth weight (g) 3082(570) <0.001 

Maternal Height (cm) 160.0(5.8) 0.0364 

Maternal Weight (kg) 71.8(14.1) 0.0124 

Gestational Duration (weeks) 38.9(2.0) <0.001 

Maternal fasting glucose (mmol/L) 4.6(0.7) <0.001 

Maternal Systolic BP (mmHg) 108.1(11.3) 0.0224 

Maternal Diastolic BP (mmHg) 64.6(8.5) 0.0858 

Maternal Age (years) 27.9(5.3) 0.3441 

Maternal smoking status (%Yes) 3.4  

Parity (%1st pregnancy vs 2+ 
pregnancy) 

36.7 

0.075 Parity(%2nd pregnancy vs 2+ 
pregnancy) 

25.1 

Parity (2+ pregnancies) 38.1 

Sex of the baby (% Male) 50.2 0.675 

Table S3: Key characteristics of the excluded Pakistani 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

References 

 

ABRAHAM, G. & INOUYE, M. 2014. Fast principal component analysis of large-
scale genome-wide data. PLoS One, 9, e93766. 

AHKTER, J., QURESHI, R., RAHIM, F., MOOSVI, S., REHMAN, A., JABBAR, A., 
ISLAM, N. & KHAN, M. A. 1996. Diabetes in pregnancy in Pakistani women: 
prevalence and complications in an indigenous south Asian community. 
Diabet Med, 13, 189-91. 

AMARK, H., WESTGREN, M. & PERSSON, M. 2019. Prediction of large-for-
gestational-age infants in pregnancies complicated by obesity: A population-
based cohort study. Acta Obstet Gynecol Scand, 98, 769-776. 

AMBLER, G., OMAR, R. Z., ROYSTON, P., KINSMAN, R., KEOGH, B. E. & 
TAYLOR, K. M. 2005. Generic, simple risk stratification model for heart 
valve surgery. Circulation, 112, 224-31. 

ANAND, S. S., GUPTA, M. K., SCHULZE, K. M., DESAI, D., ABDALLA, N., WAHI, 
G., WADE, C., SCHEUFLER, P., MCDONALD, S. D., MORRISON, K. M., 
VASUDEVAN, A., DWARAKANATH, P., SRINIVASAN, K., KURPAD, A., 
GERSTEIN, H. C. & TEO, K. K. 2016. What accounts for ethnic differences 
in newborn skinfold thickness comparing South Asians and White 
Caucasians? Findings from the START and FAMILY Birth Cohorts. Int J 
Obes (Lond), 40, 239-44. 

BARKER, D. J. & OSMOND, C. 1986. Infant mortality, childhood nutrition, and 
ischaemic heart disease in England and Wales. Lancet, 1, 1077-81. 

BARRON, S. L. 1983. Birthweight and ethnicity. Br J Obstet Gynaecol, 90, 289-90. 
BATTERSBY, C., STATNIKOV, Y., SANTHAKUMARAN, S., GRAY, D., MODI, N., 

COSTELOE, K., COLLABORATIVE, U. K. N. & MEDICINES FOR 
NEONATES INVESTIGATOR, G. 2018. The United Kingdom National 
Neonatal Research Database: A validation study. PLoS One, 13, e0201815. 

BEAUMONT, R. N., WARRINGTON, N. M., CAVADINO, A., TYRRELL, J., 
NODZENSKI, M., HORIKOSHI, M., GELLER, F., MYHRE, R., RICHMOND, 
R. C., PATERNOSTER, L., BRADFIELD, J. P., KREINER-MOLLER, E., 
HUIKARI, V., METRUSTRY, S., LUNETTA, K. L., PAINTER, J. N., 
HOTTENGA, J. J., ALLARD, C., BARTON, S. J., ESPINOSA, A., MARSH, 
J. A., POTTER, C., ZHANG, G., ANG, W., BERRY, D. J., BOUCHARD, L., 
DAS, S., EARLY GROWTH GENETICS, C., HAKONARSON, H., 
HEIKKINEN, J., HELGELAND, O., HOCHER, B., HOFMAN, A., INSKIP, H. 
M., JONES, S. E., KOGEVINAS, M., LIND, P. A., MARULLO, L., 
MEDLAND, S. E., MURRAY, A., MURRAY, J. C., NJOLSTAD, P. R., 
NOHR, E. A., REICHETZEDER, C., RING, S. M., RUTH, K. S., SANTA-
MARINA, L., SCHOLTENS, D. M., SEBERT, S., SENGPIEL, V., TUKE, M. 
A., VAUDEL, M., WEEDON, M. N., WILLEMSEN, G., WOOD, A. R., 
YAGHOOTKAR, H., MUGLIA, L. J., BARTELS, M., RELTON, C. L., 
PENNELL, C. E., CHATZI, L., ESTIVILL, X., HOLLOWAY, J. W., 
BOOMSMA, D. I., MONTGOMERY, G. W., MURABITO, J. M., SPECTOR, 
T. D., POWER, C., JARVELIN, M. R., BISGAARD, H., GRANT, S. F. A., 
SORENSEN, T. I. A., JADDOE, V. W., JACOBSSON, B., MELBYE, M., 
MCCARTHY, M. I., HATTERSLEY, A. T., HAYES, M. G., FRAYLING, T. M., 
HIVERT, M. F., FELIX, J. F., HYPPONEN, E., LOWE, W. L., JR., EVANS, 



102 
 

D. M., LAWLOR, D. A., FEENSTRA, B. & FREATHY, R. M. 2018. Genome-
wide association study of offspring birth weight in 86 577 women identifies 
five novel loci and highlights maternal genetic effects that are independent 
of fetal genetics. Hum Mol Genet, 27, 742-756. 

BELBASIS, L., SAVVIDOU, M. D., KANU, C., EVANGELOU, E. & TZOULAKI, I. 
2016. Birth weight in relation to health and disease in later life: an umbrella 
review of systematic reviews and meta-analyses. BMC Med, 14, 147. 

BIAU, D. J., KERNEIS, S. & PORCHER, R. 2008. Statistics in brief: the importance 
of sample size in the planning and interpretation of medical research. Clin 
Orthop Relat Res, 466, 2282-8. 

BIKS, G. A., BLENCOWE, H., HARDY, V. P., GEREMEW, B. M., ANGAW, D. A., 
WAGNEW, A., ABEBE, S. M., GUADU, T., MARTINS, J. S. D., FISKER, A. 
B., IMAM, M. A., NETTEY, O. E. A., KASASA, S., DI STEFANO, L., AKUZE, 
J., KWESIGA, D., LAWN, J. E. & EVERY NEWBORN, I. S. C. G. 2021. 
Birthweight data completeness and quality in population-based surveys: EN-
INDEPTH study. Popul Health Metr, 19, 17. 

BOYD, M. E., USHER, R. H. & MCLEAN, F. H. 1983. Fetal macrosomia: 
prediction, risks, proposed management. Obstet Gynecol, 61, 715-22. 

BROWN, A. E. & WALKER, M. 2016. Genetics of Insulin Resistance and the 
Metabolic Syndrome. Curr Cardiol Rep, 18, 75. 

CAUZZO, C., CHIAVAROLI, V., DI VALERIO, S. & CHIARELLI, F. 2023. Birth size, 
growth trajectory and later cardio-metabolic risk. Front Endocrinol 
(Lausanne), 14, 1187261. 

CETIN, I., MANDO, C. & CALABRESE, S. 2013. Maternal predictors of intrauterine 
growth restriction. Curr Opin Clin Nutr Metab Care, 16, 310-9. 

CHOWDHURY, M. Z. I. & TURIN, T. C. 2020. Variable selection strategies and its 
importance in clinical prediction modelling. Fam Med Community Health, 8, 
e000262. 

COGSWELL, M. E. & YIP, R. 1995. The influence of fetal and maternal factors on 
the distribution of birthweight. Semin Perinatol, 19, 222-40. 

COLLINS, G. S., REITSMA, J. B., ALTMAN, D. G. & MOONS, K. G. 2015. 
Transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 350, g7594. 

COLLISTER, J. A., LIU, X. & CLIFTON, L. 2022. Calculating Polygenic Risk 
Scores (PRS) in UK Biobank: A Practical Guide for Epidemiologists. Front 
Genet, 13, 818574. 

COORAY, S. D., BOYLE, J. A., SOLDATOS, G., ALLOTEY, J., WANG, H., 
FERNANDEZ-FELIX, B. M., ZAMORA, J., THANGARATINAM, S. & 
TEEDE, H. J. 2022. Development, validation and clinical utility of a risk 
prediction model for adverse pregnancy outcomes in women with 
gestational diabetes: The PeRSonal GDM model. EClinicalMedicine, 52, 
101637. 

COUSTAN, D. R., LOWE, L. P., METZGER, B. E., DYER, A. R., INTERNATIONAL 
ASSOCIATION OF, D. & PREGNANCY STUDY, G. 2010. The 
Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: paving the 
way for new diagnostic criteria for gestational diabetes mellitus. Am J Obstet 
Gynecol, 202, 654 e1-6. 



103 
 

CRAMER, J. C. 1995. Racial and ethnic differences in birthweight: the role of 
income and financial assistance. Demography, 32, 231-47. 

DE GRAAFF, E., SADLER, L., LAKHDHIR, H., SIMON-KUMAR, R., PEIRIS-
JOHN, R., BURGESS, W., OKESENE-GAFA, K., CRONIN, R., MCCOWAN, 
L. & ANDERSON, N. 2023. Grouping women of South Asian ethnicity for 
pregnancy research in New Zealand. Aust N Z J Obstet Gynaecol, 63, 499-
508. 

DHIMAN, P., MA, J., QI, C., BULLOCK, G., SERGEANT, J. C., RILEY, R. D. & 
COLLINS, G. S. 2023. Sample size requirements are not being considered 
in studies developing prediction models for binary outcomes: a systematic 
review. BMC Med Res Methodol, 23, 188. 

DONG, Y., LUO, Z. C., NUYT, A. M., AUDIBERT, F., WEI, S. Q., ABENHAIM, H. 
A., BUJOLD, E., JULIEN, P., HUANG, H., LEVY, E., FRASER, W. D. & 
GROUP, D. C. S. 2018. Large-for-Gestational-Age May Be Associated With 
Lower Fetal Insulin Sensitivity and beta-Cell Function Linked to Leptin. J 
Clin Endocrinol Metab, 103, 3837-3844. 

DUTTON, P. J., WARRANDER, L. K., ROBERTS, S. A., BERNATAVICIUS, G., 
BYRD, L. M., GAZE, D., KROLL, J., JONES, R. L., SIBLEY, C. P., FROEN, 
J. F. & HEAZELL, A. E. 2012. Predictors of poor perinatal outcome following 
maternal perception of reduced fetal movements--a prospective cohort 
study. PLoS One, 7, e39784. 

DWI PUTRA, S. E., REICHETZEDER, C., HASAN, A. A., SLOWINSKI, T., CHU, 
C., KRAMER, B. K., KLEUSER, B. & HOCHER, B. 2020. Being Born Large 
for Gestational Age is Associated with Increased Global Placental DNA 
Methylation. Sci Rep, 10, 927. 

EVERETT, T. R. & CHITTY, L. S. 2015. Cell-free fetal DNA: the new tool in fetal 
medicine. Ultrasound Obstet Gynecol, 45, 499-507. 

FADISTA, J., MANNING, A. K., FLOREZ, J. C. & GROOP, L. 2016. The (in)famous 
GWAS P-value threshold revisited and updated for low-frequency variants. 
Eur J Hum Genet, 24, 1202-5. 

FRAGOSO-BARGAS, N., OPSAHL, J. O., KIRYUSHCHENKO, N., BOTTCHER, 
Y., LEE-ODEGARD, S., QVIGSTAD, E., RICHARDSEN, K. R., WAAGE, C. 
W., SLETNER, L., JENUM, A. K., PRASAD, R. B., GROOP, L. C., MOEN, 
G. H., BIRKELAND, K. I. & SOMMER, C. 2021. Cohort profile: Epigenetics 
in Pregnancy (EPIPREG) - population-based sample of European and 
South Asian pregnant women with epigenome-wide DNA methylation (850k) 
in peripheral blood leukocytes. PLoS One, 16, e0256158. 

FRICK, A. P., SYNGELAKI, A., ZHENG, M., POON, L. C. & NICOLAIDES, K. H. 
2016. Prediction of large-for-gestational-age neonates: screening by 
maternal factors and biomarkers in the three trimesters of pregnancy. 
Ultrasound Obstet Gynecol, 47, 332-9. 

GARIN, I., EDGHILL, E. L., AKERMAN, I., RUBIO-CABEZAS, O., RICA, I., 
LOCKE, J. M., MAESTRO, M. A., ALSHAIKH, A., BUNDAK, R., DEL 
CASTILLO, G., DEEB, A., DEISS, D., FERNANDEZ, J. M., GODBOLE, K., 
HUSSAIN, K., O'CONNELL, M., KLUPA, T., KOLOUSKOVA, S., MOHSIN, 
F., PERLMAN, K., SUMNIK, Z., RIAL, J. M., UGARTE, E., VASANTHI, T., 
NEONATAL DIABETES INTERNATIONAL, G., JOHNSTONE, K., 
FLANAGAN, S. E., MARTINEZ, R., CASTANO, C., PATCH, A. M., 



104 
 

FERNANDEZ-REBOLLO, E., RAILE, K., MORGAN, N., HARRIES, L. W., 
CASTANO, L., ELLARD, S., FERRER, J., PEREZ DE NANCLARES, G. & 
HATTERSLEY, A. T. 2010. Recessive mutations in the INS gene result in 
neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci 
U S A, 107, 3105-10. 

GREENHALGH, T., CLINCH, M., AFSAR, N., CHOUDHURY, Y., SUDRA, R., 
CAMPBELL-RICHARDS, D., CLAYDON, A., HITMAN, G. A., HANSON, P. 
& FINER, S. 2015. Socio-cultural influences on the behaviour of South 
Asian women with diabetes in pregnancy: qualitative study using a multi-
level theoretical approach. BMC Med, 13, 120. 

GRIFFITHS, L. J., DEZATEUX, C. & COLE, T. J. 2007. Differential parental weight 
and height contributions to offspring birthweight and weight gain in infancy. 
Int J Epidemiol, 36, 104-7. 

GURURAJAN, P., GURUMURTHY, P., NAYAR, P., RAO, G. S., BABU, R. S., 
SARASABHARATI, A. & CHERIAN, K. M. 2012. Pregnancy associated 
plasma protein-A (PAPP-A) as an early marker for the diagnosis of acute 
coronary syndrome. Indian Heart J, 64, 141-5. 

HAJIAN-TILAKI, K. 2013. Receiver Operating Characteristic (ROC) Curve Analysis 
for Medical Diagnostic Test Evaluation. Caspian J Intern Med, 4, 627-35. 

HARDER, T., PLAGEMANN, A. & HARDER, A. 2008. Birth weight and subsequent 
risk of childhood primary brain tumors: a meta-analysis. Am J Epidemiol, 
168, 366-73. 

HARDER, T., RODEKAMP, E., SCHELLONG, K., DUDENHAUSEN, J. W. & 
PLAGEMANN, A. 2007. Birth weight and subsequent risk of type 2 diabetes: 
a meta-analysis. Am J Epidemiol, 165, 849-57. 

HARRELL, F. E., JR., LEE, K. L., CALIFF, R. M., PRYOR, D. B. & ROSATI, R. A. 
1984. Regression modelling strategies for improved prognostic prediction. 
Stat Med, 3, 143-52. 

HATTERSLEY, A. T. & TOOKE, J. E. 1999. The fetal insulin hypothesis: an 
alternative explanation of the association of low birthweight with diabetes 
and vascular disease. Lancet, 353, 1789-92. 

HAULDER, M., HUGHES, A. E., BEAUMONT, R. N., KNIGHT, B. A., 
HATTERSLEY, A. T., SHIELDS, B. M. & FREATHY, R. M. 2022. Assessing 
whether genetic scores explain extra variation in birthweight, when added to 
clinical and anthropometric measures. BMC Pediatr, 22, 504. 

HINKLE, S. N., ALBERT, P. S., MENDOLA, P., SJAARDA, L. A., YEUNG, E., 
BOGHOSSIAN, N. S. & LAUGHON, S. K. 2014. The association between 
parity and birthweight in a longitudinal consecutive pregnancy cohort. 
Paediatr Perinat Epidemiol, 28, 106-15. 

HOFFNER, L. & SURTI, U. 2012. The genetics of gestational trophoblastic 
disease: a rare complication of pregnancy. Cancer Genet, 205, 63-77. 

HONG, Y. H. & LEE, J. E. 2021. Large for Gestational Age and Obesity-Related 
Comorbidities. J Obes Metab Syndr, 30, 124-131. 

HUGHES, A. E., DE FRANCO, E., FREATHY, R. M., FETAL, I., GROWTH, C., 
FLANAGAN, S. E. & HATTERSLEY, A. T. 2023. Monogenic disease 
analysis establishes that fetal insulin accounts for half of human fetal 
growth. J Clin Invest, 133. 



105 
 

HUGHES, A. E., HATTERSLEY, A. T., FLANAGAN, S. E. & FREATHY, R. M. 
2021. Two decades since the fetal insulin hypothesis: what have we learned 
from genetics? Diabetologia, 64, 717-726. 

HUGHES, A. E., NODZENSKI, M., BEAUMONT, R. N., TALBOT, O., SHIELDS, B. 
M., SCHOLTENS, D. M., KNIGHT, B. A., LOWE, W. L., JR., HATTERSLEY, 
A. T. & FREATHY, R. M. 2018. Fetal Genotype and Maternal Glucose Have 
Independent and Additive Effects on Birth Weight. Diabetes, 67, 1024-1029. 

JOHNSTON, L. B., CLARK, A. J. & SAVAGE, M. O. 2002. Genetic factors 
contributing to birth weight. Arch Dis Child Fetal Neonatal Ed, 86, F2-3. 

JULIUSDOTTIR, T., STEINTHORSDOTTIR, V., STEFANSDOTTIR, L., 
SVEINBJORNSSON, G., IVARSDOTTIR, E. V., THOROLFSDOTTIR, R. B., 
SIGURDSSON, J. K., TRAGANTE, V., HJORLEIFSSON, K. E., 
HELGADOTTIR, A., FRIGGE, M. L., THORGEIRSSON, G., 
BENEDIKTSSON, R., SIGURDSSON, E. L., ARNAR, D. O., 
STEINGRIMSDOTTIR, T., JONSDOTTIR, I., HOLM, H., GUDBJARTSSON, 
D. F., THORLEIFSSON, G., THORSTEINSDOTTIR, U. & STEFANSSON, 
K. 2021. Distinction between the effects of parental and fetal genomes on 
fetal growth. Nat Genet, 53, 1135-1142. 

KALAFAT, E., MORALES-ROSELLO, J., THILAGANATHAN, B., DHOTHER, J. & 
KHALIL, A. 2019. Risk of neonatal care unit admission in small for 
gestational age fetuses at term: a prediction model and internal validation. J 
Matern Fetal Neonatal Med, 32, 2361-2368. 

KELLY, Y., PANICO, L., BARTLEY, M., MARMOT, M., NAZROO, J. & SACKER, 
A. 2009. Why does birthweight vary among ethnic groups in the UK? 
Findings from the Millennium Cohort Study. J Public Health (Oxf), 31, 131-7. 

KLEIN, R. J., ZEISS, C., CHEW, E. Y., TSAI, J. Y., SACKLER, R. S., HAYNES, C., 
HENNING, A. K., SANGIOVANNI, J. P., MANE, S. M., MAYNE, S. T., 
BRACKEN, M. B., FERRIS, F. L., OTT, J., BARNSTABLE, C. & HOH, J. 
2005. Complement factor H polymorphism in age-related macular 
degeneration. Science, 308, 385-9. 

KNIGHT, B., SHIELDS, B. M. & HATTERSLEY, A. T. 2006. The Exeter Family 
Study of Childhood Health (EFSOCH): study protocol and methodology. 
Paediatr Perinat Epidemiol, 20, 172-9. 

KNIGHT, B., SHIELDS, B. M., TURNER, M., POWELL, R. J., YAJNIK, C. S. & 
HATTERSLEY, A. T. 2005. Evidence of genetic regulation of fetal 
longitudinal growth. Early Hum Dev, 81, 823-31. 

KOUROU, K., EXARCHOS, T. P., EXARCHOS, K. P., KARAMOUZIS, M. V. & 
FOTIADIS, D. I. 2015. Machine learning applications in cancer prognosis 
and prediction. Comput Struct Biotechnol J, 13, 8-17. 

KROOK, A., BRUETON, L. & O'RAHILLY, S. 1993. Homozygous nonsense 
mutation in the insulin receptor gene in infant with leprechaunism. Lancet, 
342, 277-8. 

KUHLE, S., MAGUIRE, B., ZHANG, H., HAMILTON, D., ALLEN, A. C., JOSEPH, 
K. S. & ALLEN, V. M. 2018. Comparison of logistic regression with machine 
learning methods for the prediction of fetal growth abnormalities: a 
retrospective cohort study. BMC Pregnancy Childbirth, 18, 333. 



106 
 

KURPAD, A. V., VARADHARAJAN, K. S. & AEBERLI, I. 2011. The thin-fat 
phenotype and global metabolic disease risk. Curr Opin Clin Nutr Metab 
Care, 14, 542-7. 

LABARERE, J., RENAUD, B. & FINE, M. J. 2014. How to derive and validate 
clinical prediction models for use in intensive care medicine. Intensive Care 
Med, 40, 513-27. 

LANGE, S., PROBST, C., REHM, J. & POPOVA, S. 2018. National, regional, and 
global prevalence of smoking during pregnancy in the general population: a 
systematic review and meta-analysis. Lancet Glob Health, 6, e769-e776. 

LANGER, O., LEVY, J., BRUSTMAN, L., ANYAEGBUNAM, A., MERKATZ, R. & 
DIVON, M. 1989. Glycemic control in gestational diabetes mellitus--how 
tight is tight enough: small for gestational age versus large for gestational 
age? Am J Obstet Gynecol, 161, 646-53. 

LEE, Y., SHIN, J. H., PARK, H. C., KIM, S. G. & CHOI, S. I. 2014. A prediction 
model for renal artery stenosis using carotid ultrasonography measurements 
in patients undergoing coronary angiography. BMC Nephrol, 15, 60. 

MAGNUS, P., GJESSING, H. K., SKRONDAL, A. & SKJAERVEN, R. 2001. 
Paternal contribution to birth weight. J Epidemiol Community Health, 55, 
873-7. 

MAHAJAN, A., WESSEL, J., WILLEMS, S. M., ZHAO, W., ROBERTSON, N. R., 
CHU, A. Y., GAN, W., KITAJIMA, H., TALIUN, D., RAYNER, N. W., GUO, 
X., LU, Y., LI, M., JENSEN, R. A., HU, Y., HUO, S., LOHMAN, K. K., 
ZHANG, W., COOK, J. P., PRINS, B. P., FLANNICK, J., GRARUP, N., 
TRUBETSKOY, V. V., KRAVIC, J., KIM, Y. J., RYBIN, D. V., 
YAGHOOTKAR, H., MULLER-NURASYID, M., MEIDTNER, K., LI-GAO, R., 
VARGA, T. V., MARTEN, J., LI, J., SMITH, A. V., AN, P., LIGTHART, S., 
GUSTAFSSON, S., MALERBA, G., DEMIRKAN, A., TAJES, J. F., 
STEINTHORSDOTTIR, V., WUTTKE, M., LECOEUR, C., PREUSS, M., 
BIELAK, L. F., GRAFF, M., HIGHLAND, H. M., JUSTICE, A. E., LIU, D. J., 
MAROULI, E., PELOSO, G. M., WARREN, H. R., EXOME, B. P. C., 
CONSORTIUM, M., CONSORTIUM, G., AFAQ, S., AFZAL, S., AHLQVIST, 
E., ALMGREN, P., AMIN, N., BANG, L. B., BERTONI, A. G., BOMBIERI, C., 
BORK-JENSEN, J., BRANDSLUND, I., BRODY, J. A., BURTT, N. P., 
CANOUIL, M., CHEN, Y. I., CHO, Y. S., CHRISTENSEN, C., EASTWOOD, 
S. V., ECKARDT, K. U., FISCHER, K., GAMBARO, G., GIEDRAITIS, V., 
GROVE, M. L., DE HAAN, H. G., HACKINGER, S., HAI, Y., HAN, S., 
TYBJAERG-HANSEN, A., HIVERT, M. F., ISOMAA, B., JAGER, S., 
JORGENSEN, M. E., JORGENSEN, T., KARAJAMAKI, A., KIM, B. J., KIM, 
S. S., KOISTINEN, H. A., KOVACS, P., KRIEBEL, J., KRONENBERG, F., 
LALL, K., LANGE, L. A., LEE, J. J., LEHNE, B., LI, H., LIN, K. H., et al. 
2018. Refining the accuracy of validated target identification through coding 
variant fine-mapping in type 2 diabetes. Nat Genet, 50, 559-571. 

MANICHAIKUL, A., MYCHALECKYJ, J. C., RICH, S. S., DALY, K., SALE, M. & 
CHEN, W. M. 2010. Robust relationship inference in genome-wide 
association studies. Bioinformatics, 26, 2867-73. 

MARTIN-GRONERT, M. S. & OZANNE, S. E. 2010. Mechanisms linking 
suboptimal early nutrition and increased risk of type 2 diabetes and obesity. 
J Nutr, 140, 662-6. 



107 
 

MARTIN, S., CULE, M., BASTY, N., TYRRELL, J., BEAUMONT, R. N., WOOD, A. 
R., FRAYLING, T. M., SOROKIN, E., WHITCHER, B., LIU, Y., BELL, J. D., 
THOMAS, E. L. & YAGHOOTKAR, H. 2021. Genetic Evidence for Different 
Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and 
Risk of Cardiometabolic Disease. Diabetes, 70, 1843-1856. 

MASIAKWALA, E., NYATI, L. H. & NORRIS, S. A. 2023. The association of 
intrauterine and postnatal growth patterns and nutritional status with toddler 
body composition. BMC Pediatr, 23, 342. 

MEERTENS, L., SMITS, L., VAN KUIJK, S., AARDENBURG, R., VAN DOOREN, 
I., LANGENVELD, J., ZWAAN, I. M., SPAANDERMAN, M. & SCHEEPERS, 
H. 2019. External validation and clinical usefulness of first-trimester 
prediction models for small- and large-for-gestational-age infants: a 
prospective cohort study. BJOG, 126, 472-484. 

MENOTTI, A., PUDDU, P. E. & LANTI, M. 2000. Comparison of the Framingham 
risk function-based coronary chart with risk function from an Italian 
population study. Eur Heart J, 21, 365-70. 

METGUD, C. S., NAIK, V. A. & MALLAPUR, M. D. 2012. Factors affecting birth 
weight of a newborn--a community based study in rural Karnataka, India. 
PLoS One, 7, e40040. 

MI, D., FANG, H., ZHAO, Y. & ZHONG, L. 2017. Birth weight and type 2 diabetes: 
A meta-analysis. Exp Ther Med, 14, 5313-5320. 

MILNER, J. & AREZINA, J. 2018. The accuracy of ultrasound estimation of fetal 
weight in comparison to birth weight: A systematic review. Ultrasound, 26, 
32-41. 

MIRANDA, M. L., EDWARDS, S. E. & MYERS, E. R. 2011. Adverse birth 
outcomes among nulliparous vs. multiparous women. Public Health Rep, 
126, 797-805. 

MONARI, F., MENICHINI, D., SPANO' BASCIO, L., GRANDI, G., BANCHELLI, F., 
NERI, I., D'AMICO, R. & FACCHINETTI, F. 2021. A first trimester prediction 
model for large for gestational age infants: a preliminary study. BMC 
Pregnancy Childbirth, 21, 654. 

MORLEY, R. 2006. Fetal origins of adult disease. Semin Fetal Neonatal Med, 11, 
73-8. 

NIGHTINGALE, C. M., RUDNICKA, A. R., OWEN, C. G., COOK, D. G. & 
WHINCUP, P. H. 2011. Patterns of body size and adiposity among UK 
children of South Asian, black African-Caribbean and white European origin: 
Child Heart And health Study in England (CHASE Study). Int J Epidemiol, 
40, 33-44. 

NONGMAITHEM, S. S., BEAUMONT, R. N., DEDANIYA, A., WOOD, A. R., 
OGUNKOLADE, B. W., HASSAN, Z., KRISHNAVENI, G. V., KUMARAN, K., 
POTDAR, R. D., SAHARIAH, S. A., KRISHNA, M., DI GRAVIO, C., MALI, I. 
D., SANKARESWARAN, A., HUSSAIN, A., BHOWMIK, B. W., KHAN, A. K. 
A., KNIGHT, B. A., FRAYLING, T. M., FINER, S., FALL, C. H. D., YAJNIK, 
C. S., FREATHY, R. M., HITMAN, G. A. & CHANDAK, G. R. 2022. Babies 
of South Asian and European Ancestry Show Similar Associations With 
Genetic Risk Score for Birth Weight Despite the Smaller Size of South Asian 
Newborns. Diabetes, 71, 821-836. 



108 
 

NORDMAN, H., JAASKELAINEN, J. & VOUTILAINEN, R. 2020. Birth Size as a 
Determinant of Cardiometabolic Risk Factors in Children. Horm Res 
Paediatr, 93, 144-153. 

ONG, K. K., AHMED, M. L., EMMETT, P. M., PREECE, M. A. & DUNGER, D. B. 
2000. Association between postnatal catch-up growth and obesity in 
childhood: prospective cohort study. BMJ, 320, 967-71. 

OPARA, E. I. & ZAIDI, J. 2007. The interpretation and clinical application of the 
word 'parity': a survey. BJOG, 114, 1295-7. 

OSUCHUKWU, O. O. & REED, D. J. 2023. Small for Gestational Age. StatPearls. 
Treasure Island (FL). 

PAPASTEFANOU, I., SOUKA, A. P., PILALIS, A., ELEFTHERIADES, M., 
MICHALITSI, V. & KASSANOS, D. 2012. First trimester prediction of small- 
and large-for-gestation neonates by an integrated model incorporating 
ultrasound parameters, biochemical indices and maternal characteristics. 
Acta Obstet Gynecol Scand, 91, 104-111. 

PLASENCIA, W., AKOLEKAR, R., DAGKLIS, T., VEDUTA, A. & NICOLAIDES, K. 
H. 2011. Placental volume at 11-13 weeks' gestation in the prediction of 
birth weight percentile. Fetal Diagn Ther, 30, 23-8. 

PLASENCIA, W., GONZALEZ DAVILA, E., TETILLA, V., PADRON PEREZ, E., 
GARCIA HERNANDEZ, J. A. & GONZALEZ GONZALEZ, N. L. 2012. First-
trimester screening for large-for-gestational-age infants. Ultrasound Obstet 
Gynecol, 39, 389-95. 

POON, L. C., KARAGIANNIS, G., STRATIEVA, V., SYNGELAKI, A. & 
NICOLAIDES, K. H. 2011. First-trimester prediction of macrosomia. Fetal 
Diagn Ther, 29, 139-47. 

POYRAZOGLU, S., DARENDELILER, F., AHMED, S. F., HUGHES, I., BRYCE, J., 
JIANG, J., RODIE, M., HIORT, O., HANNEMA, S. E., BERTELLONI, S., 
LISA, L., GURAN, T., COOLS, M., DESLOOVERE, A., CLAAHSEN-VAN 
DER GRINTEN, H. L., NORDENSTROM, A., HOLTERHUS, P. M., 
KOHLER, B., NIEDZIELA, M. & KRONE, N. 2017. Birth Weight in Different 
Etiologies of Disorders of Sex Development. J Clin Endocrinol Metab, 102, 
1044-1050. 

RAMSPEK, C. L., JAGER, K. J., DEKKER, F. W., ZOCCALI, C. & VAN DIEPEN, 
M. 2021. External validation of prognostic models: what, why, how, when 
and where? Clin Kidney J, 14, 49-58. 

RANI, P. R. & BEGUM, J. 2016. Screening and Diagnosis of Gestational Diabetes 
Mellitus, Where Do We Stand. J Clin Diagn Res, 10, QE01-4. 

RENOM ESPINEIRA, A., FERNANDES-ROSA, F. L., BUENO, A. C., DE SOUZA, 
R. M., MOREIRA, A. C., DE CASTRO, M., BARBIERI, M. A., BETTIOL, H. & 
ANTONINI, S. R. 2011. Postnatal growth and cardiometabolic profile in 
young adults born large for gestational age. Clin Endocrinol (Oxf), 75, 335-
41. 

RILEY, R. D., ENSOR, J., SNELL, K. I. E., HARRELL, F. E., JR., MARTIN, G. P., 
REITSMA, J. B., MOONS, K. G. M., COLLINS, G. & VAN SMEDEN, M. 
2020. Calculating the sample size required for developing a clinical 
prediction model. BMJ, 368, m441. 



109 
 

RUBIO-CABEZAS, O. & ELLARD, S. 2013. Diabetes mellitus in neonates and 
infants: genetic heterogeneity, clinical approach to diagnosis, and 
therapeutic options. Horm Res Paediatr, 80, 137-46. 

SAENGER, P., CZERNICHOW, P., HUGHES, I. & REITER, E. O. 2007. Small for 
gestational age: short stature and beyond. Endocr Rev, 28, 219-51. 

SCHOLL, T. O., SOWERS, M., CHEN, X. & LENDERS, C. 2001. Maternal glucose 
concentration influences fetal growth, gestation, and pregnancy 
complications. Am J Epidemiol, 154, 514-20. 

SCIFRES, C. M. 2021. Short- and Long-Term Outcomes Associated with Large for 
Gestational Age Birth Weight. Obstet Gynecol Clin North Am, 48, 325-337. 

SHIPE, M. E., DEPPEN, S. A., FARJAH, F. & GROGAN, E. L. 2019. Developing 
prediction models for clinical use using logistic regression: an overview. J 
Thorac Dis, 11, S574-S584. 

SINGH, V., DWIVEDI, S. N. & DEO, S. V. S. 2020. Ordinal logistic regression 
model describing factors associated with extent of nodal involvement in oral 
cancer patients and its prospective validation. BMC Med Res Methodol, 20, 
95. 

SMEENK, J. M., BRAAT, D. D., STOLWIJK, A. M. & KREMER, J. A. 2007. 
Pregnancy is predictable: a large-scale prospective external validation of the 
prediction of spontaneous pregnancy in subfertile couples. Hum Reprod, 22, 
2344-5; author reply 2345-6. 

SPENCER, N. & LOGAN, S. 2002. Social influences on birth weight. J Epidemiol 
Community Health, 56, 326-7. 

SRIDHAR, S. B., FERRARA, A., EHRLICH, S. F., BROWN, S. D. & HEDDERSON, 
M. M. 2013. Risk of large-for-gestational-age newborns in women with 
gestational diabetes by race and ethnicity and body mass index categories. 
Obstet Gynecol, 121, 1255-1262. 

STEYERBERG, E. W. 2010. Clinical prediction models : a practical approach to 
development, validation and updating, New York, Springer. 

STEYERBERG, E. W., HARRELL, F. E., JR., BORSBOOM, G. J., EIJKEMANS, M. 
J., VERGOUWE, Y. & HABBEMA, J. D. 2001. Internal validation of 
predictive models: efficiency of some procedures for logistic regression 
analysis. J Clin Epidemiol, 54, 774-81. 

SUN, H., DEPRAETERE, K., MEESSEMAN, L., CABANILLAS SILVA, P., 
SZYMANOWSKY, R., FLIEGENSCHMIDT, J., HULDE, N., VON DOSSOW, 
V., VANBIERVLIET, M., DE BAERDEMAEKER, J., ROCCARO-
WALDMEYER, D. M., STIEG, J., DOMINGUEZ HIDALGO, M. & 
DAHLWEID, F. M. 2022. Machine Learning-Based Prediction Models for 
Different Clinical Risks in Different Hospitals: Evaluation of Live 
Performance. J Med Internet Res, 24, e34295. 

SURKAN, P. J., HSIEH, C. C., JOHANSSON, A. L., DICKMAN, P. W. & 
CNATTINGIUS, S. 2004. Reasons for increasing trends in large for 
gestational age births. Obstet Gynecol, 104, 720-6. 

TAKAGI, K., IWAMA, N., METOKI, H., UCHIKURA, Y., MATSUBARA, Y., 
MATSUBARA, K., NISHIGORI, H., SAITO, M., FUJIWARA, I., SAKURAI, K., 
KURIYAMA, S., ARIMA, T., NAKAI, K., YAEGASHI, N., SUGIYAMA, T., 
JAPAN, E. & CHILDREN'S STUDY, G. 2019. Paternal height has an impact 



110 
 

on birth weight of their offspring in a Japanese population: the Japan 
Environment and Children's Study. J Dev Orig Health Dis, 10, 542-554. 

TEKOLA-AYELE, F., WORKALEMAHU, T. & AMARE, A. T. 2018. High burden of 
birthweight-lowering genetic variants in Africans and Asians. BMC Med, 16, 
70. 

TERAUCHI, Y., KUBOTA, N., TAMEMOTO, H., SAKURA, H., NAGAI, R., 
AKANUMA, Y., KIMURA, S. & KADOWAKI, T. 2000. Insulin effect during 
embryogenesis determines fetal growth: a possible molecular link between 
birth weight and susceptibility to type 2 diabetes. Diabetes, 49, 82-6. 

THOMPSON, W. D., BEAUMONT, R. N., KUANG, A., WARRINGTON, N. M., JI, 
Y., TYRRELL, J., WOOD, A. R., SCHOLTENS, D. M., KNIGHT, B. A., 
EVANS, D. M., LOWE, W. L., JR., SANTORELLI, G., AZAD, R., MASON, 
D., HATTERSLEY, A. T., FRAYLING, T. M., YAGHOOTKAR, H., BORGES, 
M. C., LAWLOR, D. A. & FREATHY, R. M. 2021. Higher maternal adiposity 
reduces offspring birthweight if associated with a metabolically favourable 
profile. Diabetologia, 64, 2790-2802. 

THOMPSON, W. D., BEAUMONT, R. N., KUANG, A., WARRINGTON, N. M., JI, 
Y., TYRRELL, J., WOOD, A. R., SCHOLTENS, D. M., KNIGHT, B. A., 
EVANS, D. M., LOWE, W. L., JR., SANTORELLI, G., AZAD, R., MASON, 
D., HATTERSLEY, A. T., FRAYLING, T. M., YAGHOOTKAR, H., BORGES, 
M. C., LAWLOR, D. A. & FREATHY, R. M. 2022. Fetal alleles predisposing 
to metabolically favorable adiposity are associated with higher birth weight. 
Hum Mol Genet, 31, 1762-1775. 

TISE, C. G. & BYERS, H. M. 2021. Genetics of recurrent pregnancy loss: a review. 
Curr Opin Obstet Gynecol, 33, 106-111. 

TRICHE, E. W. & HOSSAIN, N. 2007. Environmental factors implicated in the 
causation of adverse pregnancy outcome. Semin Perinatol, 31, 240-2. 

TYRRELL, J., RICHMOND, R. C., PALMER, T. M., FEENSTRA, B., 
RANGARAJAN, J., METRUSTRY, S., CAVADINO, A., PATERNOSTER, L., 
ARMSTRONG, L. L., DE SILVA, N. M., WOOD, A. R., HORIKOSHI, M., 
GELLER, F., MYHRE, R., BRADFIELD, J. P., KREINER-MOLLER, E., 
HUIKARI, V., PAINTER, J. N., HOTTENGA, J. J., ALLARD, C., BERRY, D. 
J., BOUCHARD, L., DAS, S., EVANS, D. M., HAKONARSON, H., HAYES, 
M. G., HEIKKINEN, J., HOFMAN, A., KNIGHT, B., LIND, P. A., 
MCCARTHY, M. I., MCMAHON, G., MEDLAND, S. E., MELBYE, M., 
MORRIS, A. P., NODZENSKI, M., REICHETZEDER, C., RING, S. M., 
SEBERT, S., SENGPIEL, V., SORENSEN, T. I., WILLEMSEN, G., DE 
GEUS, E. J., MARTIN, N. G., SPECTOR, T. D., POWER, C., JARVELIN, M. 
R., BISGAARD, H., GRANT, S. F., NOHR, E. A., JADDOE, V. W., 
JACOBSSON, B., MURRAY, J. C., HOCHER, B., HATTERSLEY, A. T., 
SCHOLTENS, D. M., DAVEY SMITH, G., HIVERT, M. F., FELIX, J. F., 
HYPPONEN, E., LOWE, W. L., JR., FRAYLING, T. M., LAWLOR, D. A., 
FREATHY, R. M. & EARLY GROWTH GENETICS, C. 2016. Genetic 
Evidence for Causal Relationships Between Maternal Obesity-Related Traits 
and Birth Weight. JAMA, 315, 1129-40. 

UFFELMANN, E., POSTHUMA, D. & PEYROT, W. J. 2023. Genome-wide 
association studies of polygenic risk score-derived phenotypes may lead to 
inflated false positive rates. Sci Rep, 13, 4219. 



111 
 

VAN DIJK, M. & OUDEJANS, C. 2013. (Epi)genetics of pregnancy-associated 
diseases. Front Genet, 4, 180. 

VICKERS, A. J. & ELKIN, E. B. 2006. Decision curve analysis: a novel method for 
evaluating prediction models. Med Decis Making, 26, 565-74. 

VIEIRA, M. C., MCCOWAN, L. M. E., GILLETT, A., POSTON, L., FYFE, E., 
DEKKER, G. A., BAKER, P. N., WALKER, J. J., KENNY, L. C., 
PASUPATHY, D. & CONSORTIUM, S. 2017. Clinical, ultrasound and 
molecular biomarkers for early prediction of large for gestational age infants 
in nulliparous women: An international prospective cohort study. PLoS One, 
12, e0178484. 

VOSKAMP, B. J., PEELEN, M., RAVELLI, A. C. J., VAN DER LEE, R., MOL, B. W. 
J., PAJKRT, E., GANZEVOORT, W. & KAZEMIER, B. M. 2020. Association 
between fetal sex, birthweight percentile and adverse pregnancy outcome. 
Acta Obstet Gynecol Scand, 99, 48-58. 

WAHAB, R. J., JADDOE, V. W. V., VAN KLAVEREN, D., VERMEULEN, M. J., 
REISS, I. K. M., STEEGERS, E. A. P. & GAILLARD, R. 2022. 
Preconception and early-pregnancy risk prediction for birth complications: 
development of prediction models within a population-based prospective 
cohort. BMC Pregnancy Childbirth, 22, 165. 

WANG, J. W., LYU, Y. N., QIAO, B., LI, Y., ZHANG, Y., DHANYAMRAJU, P. K., 
BAMME, Y., YU, M. D., YANG, D. & TONG, Y. Q. 2021. Cell-free fetal DNA 
testing and its correlation with prenatal indications. BMC Pregnancy 
Childbirth, 21, 585. 

WANG, N., GUO, H., JING, Y., ZHANG, Y., SUN, B., PAN, X., CHEN, H., XU, J., 
WANG, M., CHEN, X., SONG, L. & CUI, W. 2023. Development and 
validation of risk prediction models for large for gestational age infants using 
logistic regression and two machine learning algorithms. J Diabetes, 15, 
338-348. 

WARRINGTON, N. M., BEAUMONT, R. N., HORIKOSHI, M., DAY, F. R., 
HELGELAND, O., LAURIN, C., BACELIS, J., PENG, S., HAO, K., 
FEENSTRA, B., WOOD, A. R., MAHAJAN, A., TYRRELL, J., ROBERTSON, 
N. R., RAYNER, N. W., QIAO, Z., MOEN, G. H., VAUDEL, M., MARSIT, C. 
J., CHEN, J., NODZENSKI, M., SCHNURR, T. M., ZAFARMAND, M. H., 
BRADFIELD, J. P., GRARUP, N., KOOIJMAN, M. N., LI-GAO, R., GELLER, 
F., AHLUWALIA, T. S., PATERNOSTER, L., RUEEDI, R., HUIKARI, V., 
HOTTENGA, J. J., LYYTIKAINEN, L. P., CAVADINO, A., METRUSTRY, S., 
COUSMINER, D. L., WU, Y., THIERING, E., WANG, C. A., HAVE, C. T., 
VILOR-TEJEDOR, N., JOSHI, P. K., PAINTER, J. N., NTALLA, I., MYHRE, 
R., PITKANEN, N., VAN LEEUWEN, E. M., JORO, R., LAGOU, V., 
RICHMOND, R. C., ESPINOSA, A., BARTON, S. J., INSKIP, H. M., 
HOLLOWAY, J. W., SANTA-MARINA, L., ESTIVILL, X., ANG, W., MARSH, 
J. A., REICHETZEDER, C., MARULLO, L., HOCHER, B., LUNETTA, K. L., 
MURABITO, J. M., RELTON, C. L., KOGEVINAS, M., CHATZI, L., ALLARD, 
C., BOUCHARD, L., HIVERT, M. F., ZHANG, G., MUGLIA, L. J., 
HEIKKINEN, J., CONSORTIUM, E. G. G., MORGEN, C. S., VAN KAMPEN, 
A. H. C., VAN SCHAIK, B. D. C., MENTCH, F. D., LANGENBERG, C., 
LUAN, J., SCOTT, R. A., ZHAO, J. H., HEMANI, G., RING, S. M., 
BENNETT, A. J., GAULTON, K. J., FERNANDEZ-TAJES, J., VAN 



112 
 

ZUYDAM, N. R., MEDINA-GOMEZ, C., DE HAAN, H. G., ROSENDAAL, F. 
R., KUTALIK, Z., MARQUES-VIDAL, P., DAS, S., WILLEMSEN, G., 
MBAREK, H., MULLER-NURASYID, M., STANDL, M., APPEL, E. V. R., 
FONVIG, C. E., et al. 2019. Maternal and fetal genetic effects on birth 
weight and their relevance to cardio-metabolic risk factors. Nat Genet, 51, 
804-814. 

WEEDON, M. N., CLARK, V. J., QIAN, Y., BEN-SHLOMO, Y., TIMPSON, N., 
EBRAHIM, S., LAWLOR, D. A., PEMBREY, M. E., RING, S., WILKIN, T. J., 
VOSS, L. D., JEFFERY, A. N., METCALF, B., FERRUCCI, L., CORSI, A. 
M., MURRAY, A., MELZER, D., KNIGHT, B., SHIELDS, B., SMITH, G. D., 
HATTERSLEY, A. T., DI RIENZO, A. & FRAYLING, T. M. 2006. A common 
haplotype of the glucokinase gene alters fasting glucose and birth weight: 
association in six studies and population-genetics analyses. Am J Hum 
Genet, 79, 991-1001. 

WEI, J. N., SUNG, F. C., LI, C. Y., CHANG, C. H., LIN, R. S., LIN, C. C., CHIANG, 
C. C. & CHUANG, L. M. 2003. Low birth weight and high birth weight infants 
are both at an increased risk to have type 2 diabetes among schoolchildren 
in taiwan. Diabetes Care, 26, 343-8. 

WEST, J., LAWLOR, D. A., FAIRLEY, L., BHOPAL, R., CAMERON, N., 
MCKINNEY, P. A., SATTAR, N. & WRIGHT, J. 2013. UK-born Pakistani-
origin infants are relatively more adipose than white British infants: findings 
from 8704 mother-offspring pairs in the Born-in-Bradford prospective birth 
cohort. J Epidemiol Community Health, 67, 544-51. 

WILCOX, A. J. 2001. On the importance--and the unimportance--of birthweight. Int 
J Epidemiol, 30, 1233-41. 

WOJCIK, M. H., REIMERS, R., POORVU, T. & AGRAWAL, P. B. 2020. Genetic 
diagnosis in the fetus. J Perinatol, 40, 997-1006. 

WRIGHT, C. M., WILLIAMS, A. F., ELLIMAN, D., BEDFORD, H., BIRKS, E., 
BUTLER, G., SACHS, M., MOY, R. J. & COLE, T. J. 2010. Using the new 
UK-WHO growth charts. BMJ, 340, c1140. 

WRIGHT, J., SMALL, N., RAYNOR, P., TUFFNELL, D., BHOPAL, R., CAMERON, 
N., FAIRLEY, L., LAWLOR, D. A., PARSLOW, R., PETHERICK, E. S., 
PICKETT, K. E., WAIBLINGER, D., WEST, J. & BORN IN BRADFORD 
SCIENTIFIC COLLABORATORS, G. 2013. Cohort Profile: the Born in 
Bradford multi-ethnic family cohort study. Int J Epidemiol, 42, 978-91. 

ZHANG, G., BACELIS, J., LENGYEL, C., TERAMO, K., HALLMAN, M., 
HELGELAND, O., JOHANSSON, S., MYHRE, R., SENGPIEL, V., 
NJOLSTAD, P. R., JACOBSSON, B. & MUGLIA, L. 2015. Assessing the 
Causal Relationship of Maternal Height on Birth Size and Gestational Age at 
Birth: A Mendelian Randomization Analysis. PLoS Med, 12, e1001865. 

 

 

 

 



113 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



114 
 

 

 

 

 

 

 

 

 

 

Chapter 5 

Developing and validating a 

multivariable clinical prediction model 

for babies born LGA in European and 

South Asian cohorts 

 

 

 

 

 

 

 

 



115 
 

Developing and validating a multivariable clinical prediction model for babies 

born LGA in European and South Asian cohorts 

 

Abstract 

Background 

In current clinical practice, an Oral fasting glucose tolerance test (OGTT) detects 

mothers at risk of gestational diabetes, and hence, at risk of delivering a baby 

large-for-gestational age (LGA), but not all LGA babies are delivered to mothers 

with gestational diabetes. In this case, a clinical prediction model is very useful in 

using routinely available data from clinic visits to predict the risk of LGA.  

 

Methods 

Multivariable logistic regression models were built with the outcome variable LGA 

or not LGA and the predictors as mother’s weight, height, fasting glucose, parity 

and smoking status during the pregnancy. The model was built in a UK cohort 

(n=906, EFSOCH), internally validated in the same cohort by bootstrapping and 

then externally validated in a separate UK cohort with both European and Pakistani 

mothers (n=1583, n=1115, BiB). Calibration curves and the ROC Curve were used 

to assess the model fit. External validation assessed the generalizability of the 

model.  

 

 

Results 

Higher weight and glucose and primiparity and not smoking were all associated 

with increased risk of LGA.  When combined in a prediction model, these features 

showed reasonable discriminatory power (ROC AUC=0.761). In external validation, 

the model calibrated well in Europeans, but overestimated in the Pakistani cohort, 



116 
 

where the proportion with LGA was lower (7.1% v 3.5% in BiB).  This improved 

with model recalibration. 

 

Conclusions 

We developed and validated a model for detection of LGA using multiple clinical 

features that can be used in everyone rather than just those at risk of gestational 

diabetes. 

 

Introduction 

Babies born large-for-gestational age (LGA) are at higher risk of adverse 

pregnancy outcomes, for example, shoulder dystocia which could result in 

prolonged labor and obstetric emergency, mother requiring a caesarian section or 

the baby developing type 2 diabetes in the long run(Mi et al., 2017, Wright et al., 

2010).  To cater for antenatal and postnatal care, it is important to determine which 

babies are at risk of developing this condition.  

Predicting which babies will be LGA is challenging. In the UK, it is common to use 

an oral glucose tolerance test (OGTT) in current clinical practice to detect mothers 

at risk of gestational diabetes. These women are also at risk of delivering a baby 

born LGA. However, not all LGA babies are delivered to mothers with gestational 

diabetes(Hughes et al., 2018). When only mothers at risk of developing gestational 

diabetes are followed up for LGA, the remaining proportion of those also at risk of 

delivering a baby born LGA for other reasons are being dismissed.  

LGA is usually a result of maternal factors, race and ethnicity, genetic factors, 

maternal diabetes, obesity, and excessive weight gain during pregnancy (Hong 

and Lee, 2021). Risk of a baby being born LGA has been found to be associated 

with several routinely available maternal characteristics such as mother’s age, 

weight, smoking status, maternal BMI, among others. In addition, other markers 

such as parity (Meertens et al., 2019), maternal and paternal height(Frick et al., 

2016), biomarkers (PAPP-A, fetal NT, free β-hCG and UtA-PI) (Plasencia et al., 
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2012) and fetal biometry (the abdominal circumference (AC), head circumference 

(HC), biparietal Diameter (BPD), fermur length (FL) and estimated fetal weight 

(EFW) are all predictors of LGA (Papastefanou et al., 2012).  In the UK, at least 

two ultrasound scans are given to expectant mothers at 10 to 14 weeks and 

between 18 and 21 weeks. Further scans can be allocated if required.  

Clinical prediction models make use of a combination of predictors that can predict 

LGA better than using features in isolation. These can be easily implemented in 

clinical practice to estimate risk of LGA based on a criterion of available predictors. 

A prediction model also enables everyone with the available required factors to be 

assessed rather than just those at risk of gestational diabetes. Clinical prediction 

models built previously have modeled prediction of LGA with maternal 

characteristics, and usually included maternal height, weight, parity and smoking 

status (Poon et al., 2011). Additional maternal characteristics used were mother’s 

age, ethnicity and interpregnancy interval(Frick et al., 2016). Models have used 

other types of predictors: biomarkers, medical history and fetal biometry to further 

improve prediction of LGA(Frick et al., 2016). A prediction model for assessing 

LGA based on maternal characteristics and medical history (Frick et al., 2016) 

determined that parous women with previous gestational diabetes mellitus (GDM), 

a history of type 1 diabetes mellitus, increased birthweight in previous pregnancy, 

increased birth weight z-score and decreased interpregnancy interval were at 

higher risk of delivering a baby born LGA. This risk also increased with height and 

weight. It was also observed that the combined screening by maternal factors and 

fetal biometry could predict a high proportion of pregnancies that would deliver 

LGA neonates. 

 

Prediction models that have used biomarkers before have all used Pregnancy-

associated plasma protein A (PAPP-A) as a common predictor. PAPP-A is defined 

as a promising biomarker for identification and risk stratification for patients with 

ACS (Gururajan et al., 2012). A first trimester model (Plasencia et al., 2012) 

investigated biomarkers; fetal NT, PAPP-A, free β-hCG and UtA-PI's contributions 

on top of the common maternal characteristics and maternal age and found that 
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these factors combined allowed the detection of about 34% of women who 

delivered LGA infants (AUCROC=0.72). In terms of fetal biometry, a first trimester, 

and a second trimester (Plasencia et al., 2012)showed that maternal 

characteristics alongside biomarkers were useful in predicting LGA and that fetal 

ultrasound measurements improved the prediction of this condition when added on 

top of maternal characteristics and biomarkers. A study carried out to investigate 

the prediction of LGA based on ultrasound measurements  such as EFW or fetal 

AC showed that the prediction of a LGA neonate by EFW > 90th percentile was 

modest(Plasencia et al., 2012). 

The aim of this study was to develop a model for LGA using data from the Exeter 

Family Study of Childhood Health (EFSOCH) ((Knight et al., 2006) and to validate 

the model in an external European as well as a South Asian cohort (Born in 

Bradford Study) ((Wright et al., 2013) for generalizability.  

 

Methods 

This study followed the Transparent Reporting of a Multivariable Prediction Model 

for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline for prognostic 

studies (see Appendix for checklist). 

 

Study population: development cohort(Knight et al., 2006, Wright et al., 2013) 

We used data from the Exeter Family Study of Childhood Health (EFSOCH) 

((Knight et al., 2006); a prospective White European cohort based on children born 

between 2000 and 2004 in postcodes EX1–4 in central Exeter, UK, for developing 

the prediction model.  

 

Figure 1 shows the inclusion criteria for this study. We included observations 

where the offspring was born at term (≥37 and < 42 weeks' gestation) and had 

complete clinical data for mother’s height, weight, fasting glucose level, smoking 

status, parity and offspring’s birth weight. We excluded observations with mother’s 

https://pubmed.ncbi.nlm.nih.gov/31236963/
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fasting glucose higher than 5.6mmol/L. We excluded participants with preterm and 

multiple births. 

 

Figure 1: Flowchart of data preparation for EFSOCH 

 

Study population: external validation cohort 

For validating the prediction model, we used the Born in Bradford (BiB) study. Most 

clinical prediction models have been built using data from European cohorts. The 

risk of LGA is different between European and South Asian ancestries and the 

model was developed so that it could be used in both a European and South Asian 

population.  

BiB consists of White British and Pakistani cohorts comprising of the obstetric 

population in Bradford; a city in North of England. The BiB study contains data 

collected from 12453 women (with 13776 pregnancies) between 2007 and 2010.  

The participants from the BiB study were mainly from a White European 

background and about 20% of the population was of South Asian origin (90% were 

from Mirpur in Pakistan). 

Model Outcome 
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A newborn is considered large-for-gestational age (LGA) if he/she weighs more 

than 90% of newborns of the same gestational age at birth (above the 90th 

centile). We calculated sex- and gestational-age specific birth weight centiles 

based on z-scores generated using the UKWHOterm growth charts (Wright et al., 

2010) with the outcome measure, LGA defined as >90th centile. 

 

Model Predictors  

Predictors used to build the model were those routinely available in clinics; 

mother’s height, weight, fasting glucose level, parity and smoking status. 

For the EFSOCH study, fasting blood samples were taken (fasting for at least 10 h 

prior to sampling) on both parents at 28 weeks’ pregnancy in the early morning, at 

the parents’ home. All measurements were taken three times on the same visits as 

the blood samples, and an average value calculated and used in analysis. Height 

was measured to the nearest 0.1 cm, using a Harpenden (Chasmors Ltd, London, 

UK) pocket stadiometer.  Weight was measured to the nearest 100 g, using Tanita 

digital electric scales (model number THD-305). Parity and smoking status were 

self-reported variables.  

For the BiB study, blood samples were taken for a fasting oral glucose tolerance 

test (OGTT) at 26 to 28 weeks' gestation. Anthropometric measures were recorded 

at the same time with height measured to the nearest 0.1 cm and weight measured 

to the nearest 10g by a trained project worker. Similarly, to EFSOCH, parity and 

smoking status were self-reported by the mothers. 

Sample size 

A minimum sample size of 381 is required for a prediction model with a c-statistic 

of 0.80, 5 parameters and an outcome prevalence of 0.10 (Riley et al., 2020). A 

sample size of 906 participants was obtained after adjusting for missing data and 

removing outliers (see Figure 1).  
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Missing data 

Analysis was conducted on a complete-case analysis basis. This means that any 

missing data were removed for mother’s height, weight, fasting glucose level, 

parity, and smoking status. No major differences were found between the included 

participants and the excluded ones (see Supplementary table 5). 

 

Statistical Analysis methods 

Selection of predictors 

Mother’s height, weight and fasting glucose were added to the model as 

continuous predictors and mother’s smoking status and parity were added as factor 

variables.  

We identified mother’s systolic blood pressure (SBP) and diastolic blood pressure 

(DBP) measures closest to 28 weeks’ gestation with a margin error of 2 weeks 

because this coincided with routine scan visits when most blood pressure 

measures are usually taken. 

In the same way as blood pressure measurements were analyzed, the Abdominal 

circumference (AC), Femur Length (FL) and Head circumference (HC) closest to 

20 weeks’ gestation were estimated with a margin error of 2 weeks.  

 

Checking of assumptions 

Prior to model building, model assumptions for a multivariable logistic regression 

model were checked. It was ensured that the minimum sample size was met. Data 

was checked for multicollinearity by ensuring the independent variables were not 

too highly correlated to each other.  Duplicate observations were dropped to 

remove those observations that come from repeated measurements or matched 

data. Linearity of observations were checked by plots of log odds of LGA against 

the independent variables (see supplementary figures 1-4).  The outcome 

variable was defined as LGA-whether the newborn has a weight considered as 
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large for gestational age (1) or not (0) to ensure the condition is met for binary 

logistic regression. 

Model Development 

Once the model assumptions were checked and the predictors (mother’s height, 

weight, fasting glucose, smoking status and parity) were chosen, logistic 

regression analysis was used to develop the prediction model with LGA as the 

outcome measure. Two models were built, one which used features available 

before the third trimester: mother’s height, pre-pregnancy weight, smoking status 

and parity and another one which used easily available features in the third 

trimester: height, weight at 28 weeks, fasting glucose level, smoking status and 

parity. We used the receiver operating characteristic (ROC) area and the 

calibration curve as the main indicators of model performance.  

Overfitting occurs when a model is too complex, and the statistical model then 

explains the random error in the model rather than the relationship between the 

variables. Hence, once the model had been developed, it was important to 

determine the degree of overfitting (optimism).  To do this, bootstrapping was used. 

Bootstrapping with 250 samples was used as a method of internal validation, with 

measures of optimism and calibration performance assessed including Emax and 

Dxy. Emax is the maximum absolute difference in predicted and calibrated 

probabilities over the entire interval, that is Emax (0,1). A value close to zero would 

indicate good model performance. Somer’s Dxy is a measure of unreliability where 

this statistic provides an estimate of rank correlation of observed binary response 

variable and the predicted probabilities. A value close to 1 would indicate good 

model performance. (Harrell et al., 1984) 

When the model was built in EFSOCH (Model 1), the coefficients of the model 

were firstly applied to the BiB European cohort and then to the BiB Pakistani cohort 

for external validation. Re-calibration was required for external validation in the BiB 

Pakistani cohort due to differences in the proportions in LGA between Europeans 

and South Asian ethnicities. This was done by setting the initial model (Model 1) as 

a new linear predictor (LP1) and then fitting it into a new model (New Model) with 
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LGA as outcome variable. The coefficients from this new model were then used to 

re-calibrate Model 1.  

 

Results 

Participants 

Table 1 summarizes the characteristics of the participants from EFSOCH (n=906). 

Babies in the EFSOCH study had a mean birthweight of 3508 g and 52% were 

males.  

  

Phenotype  

  

Mean or %  

Maternal Height (cm)  165.0 (6.3) 

Maternal weight(kg)  76.1 (12.8) 

Maternal pre-pregnancy 

weight (kg) 
65(11.5) 

Gestational Duration 

(weeks)  
40.1 (1.2) 

Birth weight (g)  3508 (475) 

Smoking Status (% Yes)  13  

Primiparity (%1st 

pregnancy) 
45 

Sex of the baby (% Male)  52 

Maternal fasting 

glucose(mmol/L) 
4.4(0.4) 

Table 1:  Characteristics of participants in EFSOCH 

Model development 

The model was built using data from the EFSOCH after data cleaning as shown in 

Figure 1. Out of 906 participants, 97 (10.7%) were LGA. 

 

Model specification 

The final model met the assumptions for a multivariable logistic regression model. 
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After data preparation and the model assumptions check, the variables; mother’s 

height, weight at 28 weeks’ gestation, fasting glucose at 28 weeks’ gestation were 

found to be associated with an increased risk of LGA whereas parity and smoking 

status were found to be associated with a decreased risk of LGA (Table 2). 

Mother's average SBP, average DBP (see supplementary table 6,7,8) and the 

scan measures of fetal head circumference (HC). Fetal abdominal circumference 

(AC) and fetal femur length (FL) were not found to be associated with LGA. (See 

supplementary table 9 and 10). 

The final prediction model for LGA was summarized by the following equation: 

Log (Odds of LGA) = - 19.55+(0.0398*mother’s weight) + (0.0630*mother’s 

height) + (0.9495*mother’s fasting glucose-(0.7013*primiparity) - (1.0712* 

mother’s smoking status)    

 

To use the model and find the log odds for LGA for a particular baby, the variables 

of mother’s height, weight, fasting glucose, parity and mother’s smoking status are 

inserted in the above equation, for that observation. Table 2 provides a summary of 

the full model.  Log odds can be converted to a probability using the equation 

below: 

Let the linear predictor, LP1  

 

LP1 = - 19.55+(0.0398*mother’s weight) + (0.0630*mother’s height) + 

(0.9495*mother’s fasting glucose-(0.7013*primiparity) - (1.0712* mother’s 

smoking status)       

Odds of LGA = exp (LP1) 

Probability of LGA = exp (LP1)/ (1+exp (LP1)) 
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Model description 

Clinical features  
 

Coefficient  

Standard 

Error 

Odds ratio 

 (95%CI) 

Wald 

Z  

 

Pr(>|z|)  

Intercept -15.72 3.08 
1.48e-07 

(3.54e-10,6.25e-05) 
-5.10 <0.0001 

Mother's height (cm) 0.068 0.019 1.07 (1.03, 1.11) 3.64 0.0003 

Mother's pre-

pregnancy 

 weight (kg) 

0.040  0.0082 1.04 (1.02, 1.06) 4.94 <0.0001 

Primiparity (1st 

Pregnancy vs. 

subsequent) 

-0.824 0.25 0.439(0.271,0.711) -3.34 0.0008  

Mother's smoking 

status 

 (Yes vs. no) 

-1.00 0.44 
0.367  

(0.154, 0.874) 
-2.26 0.0236 

Table 2: Summary of the multivariable logistic regression model, First Trimester 

Model 

The R2 statistic for this First trimester model (Table 2) was 0.137. The odds ratio 

for mother’s height and weight show that a unit increase in these features (by 1 cm 

and 1 kg, respectively), would result in an increase in odds of LGA by 1.07 and 

1.04, respectively. In terms of parity, the odds of LGA decrease by 56% for each 

subsequent offspring and if the mother smoked during the pregnancy, the odds of 

her delivering a baby born LGA decreased by a factor of 63%. 
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Clinical features  

 

Coefficie

nt 

Standar

d Error 

Odds ratio 

(95%CI) 
Wald Z  Pr(>|z|)  

Intercept -19.55 3.47 

3.24e-09  

(3.63e-12, 2.89e-

06) 

-5.64 <0.0001 

Mother's height (cm) 0.063  0.018 1.07 (1.03, 1.10) 4.61 0.0006  

Mother's weight (kg) 0.040  0.0086 1.04 (1.02,1.06) 3.43 <0.0001 

Mother's fasting 

glucose (mmol/L) 
0.950  0.33 2.58 (1.35, 4.95) 2.87 0.0042  

Primiparity (1st 

Pregnancy vs. 

subsequent) 

-0.701  0.24 
0.496 (0.309, 

0.795) 
-2.91 0.0036  

Mother's smoking 

status (Yes vs. no) 
-1.07  0.43 0.34 (0.146, 0.803) -2.47 0.0137 

Table 3: Summary of the multivariable logistic regression model, Model 1 

 

Table 3 shows the model with the routinely available clinical features in addition to 

maternal fasting glucose where glucose added significantly to the other routine 

clinical feature with each mmol/L of glucose leading to 2.6 times increase in the 

odds of LGA. The addition of glucose did not change the associations between the 

other variables and risk of LGA. The R2 statistic for this model was 0.160. 

 

Assessment of model performance 
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The area under the ROC curve for the model with glucose and clinical features was 

found to be 0.761. This is illustrated by Figure 2; where the ROC curve shows a 

plot of true positive rate (sensitivity) against true negative rate (specificity) and the 

calibration curve assessed how well the predicted probabilities agreed with the 

observed probabilities. The calibration curve illustrated that the predicted 

probabilities were closely fitted to the observed ones in Figure 3. 

 

                                          

Figure 2: ROC Curve for model              Figure 3: Calibration Curve for model  

in EFSOCH       in EFSOCH 

 

Internal validation for model performance 

The results of the bootstrap samples (sample size=250) indicated low levels of 

optimism due to little error because of overfitting; the apparent Somer’s Dxy was 

0.5219 and the bias-corrected Dxy was 0.5035. The maximum absolute error in 

predicted probability, Emax, was estimated to be 0.0242. (Harrell et al., 1984, 

Steyerberg et al., 2001) 

 

Discrimination and validation in a European cohort 

External validation was assessed by applying the final regression equation from 

EFSOCH into BiB cohort. Table 4 summarizes the characteristics of the 

participants from BiB (Europeans, n=1583 and Pakistanis, n=1115). On average, 
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babies of European ancestry weighed about 200g heavier than those of South 

Asian ancestry. 

 

 

 

 

Phenotype 

Europeans 

(n=1583) 

Mean or % (SD) 

Pakistanis (n=1115) 

Mean or % (SD) 

Maternal Height (cm) 164.5(6.3) 159.5(5.7) 

Maternal weight(kg) 78.4(16.1) 70.6(13.1) 

Gestational Duration (weeks) 39.7(1.2) 39.4(1.2) 

Birth weight (g) 3470(492) 3195(445) 

Smoking Status (% Yes) 31 4 

Primiparity (%1st pregnancy) 49 34 

Sex of the baby (% Male) 51 52 

Table 4: Characteristics of participants in BiB (Europeans and Pakistanis) 

 

 

In Europeans, the ROC area under the curve was 0.6745 (95% CI: 0.6351-0.7138). 

The model calibrated well overall with the mean predicted probability for LGA was 

found to be 0.110 which was similar to the actual percentage of LGA in the BiB 

European cohort (n=1583) which was 11.4%. The calibration was generally good, 

but the model overestimated slightly in the top decile.  Mothers in the highest decile 

in BiB were heavier but had lower rates of primiparity than mothers in EFSOCH 

(Table 11). This showed that the model was performing well in a different cohort of 

similar ethnicity, but caution may be needed at the highest probabilities. 
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Figure 4: ROC Curve for external                      Figure 5: Calibration curve for external 

validation in a European cohort           validation in a European cohort 

The model externally validated well in a South Asian cohort but required a re-

calibration to ensure the probabilities reflected the overall lower population 

risk of LGA in this cohort 

External validation was assessed by the ROC curve and the area under the curve 

was 0. 707 (95% CI: 0.637-0.7769). The mean predicted probability for LGA was 

found to be 0.071 which was higher than the actual percentage of LGA in the BiB 

Pakistani cohort (n=1115) which was 3.5%, suggesting the model was over-

estimating in this cohort with different ancestry. This is also further illustrated by the 

calibration curve (see Figure 7).    

 

 

Figure 6: ROC Curve for external validation in the SA cohort   

 

 

Re-calibration in the South Asian cohort 
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LP1  = - 19.55+(0.0398*mother’s weight) + (0.0630*mother’s height) + 

(0.9495*mother’s fasting glucose-(0.7013*primiparity) - (1.0712* mother’s 

smoking status)                                                                       [equation 1] 

 

LGA~0+LP1                                                                                        [equation 2] 

 

Ŷ    =   -1.3014 + 0.8746 (LP1)                    [equation 3] 

 

 

We applied recalibration, adjusting the intercept by –1.3014 and the slope by 

0.8746(see Methods; equations 1-3) and the model fitted better in the South Asian 

cohort (see Figure 8). The area under the curve was 0. 707 (95% CI: 0.637-

0.7769) and mean predicted probability for LGA was found to be 0.03498. 

 

                    

Figure 7: Calibration curve          Figure 8: Calibration curve with re-  

 without re-calibration     calibration 

 

Discussion  

We have developed a clinical prediction model for LGA that discriminates well and 

independently validates in an external European population, and, with recalibration, 

in a South Asian population. Detection of LGA in current clinical practice includes 

following up with additional ultrasound scans, expectant mothers that classified for 
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an oral glucose tolerance test (OGTT) for risk of developing gestational diabetes 

(Rani and Begum, 2016). However, not all women with gestational diabetes will 

give birth to babies born LGA and not all LGA babies are born to women with 

gestational diabetes. Hence, the idea of developing a clinical prediction model for 

LGA for all women was considered. The model was built using data from the 

Exeter Family Study of Childhood Health (EFSOCH), internally and externally 

validated in the BiB European and South Asian cohorts. 

 

This model was built to improve on prediction of LGA in current clinical practice, 

where although clinical prediction models have previously been built, no actual 

model is currently used to estimate LGA.  Easily and routinely available clinical 

features; mother’s height, mother’s weight, mother’s fasting glucose, parity and 

mother’s smoking status were used to build this model. The outcome variable was 

large-for-gestational age (LGA). Like most models for LGA, this model also used 

the common predictors of mother’s height, weight, parity and smoking status and in 

contrast to previous models, the model used maternal fasting glucose which had 

not been previously used in prediction models.  It achieved an area under the 

curve of 0.761, which indicated a better performance than previously built clinical 

prediction models(Meertens et al., 2019).  

 

The key idea was to have a model that is easy to use with the available information 

at hand in clinics. When a mother goes for a regular checkup at a clinic, it is easy 

to obtain information about her height, weight at 28 weeks’, whether she has given 

birth before or not (parity) and her smoking status during the pregnancy. Mother’s 

fasting glucose is also easily obtained at 28 weeks’ on a clinic visit. Hence, the 

availability of all these variables makes this model very easy to implement and 

predict LGA. Another main strength of this model is the robust modeling that it 

underwent before being built (data cleaning and checking of model assumptions). 

The sample size for both the first trimester model (n=821) and the final model 

(n=906) were very good with the requirement being only a minimum sample size of 

351 observations. A good prediction model is one that makes valid predictions for 
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new subjects in novel settings. and it was found that the model externally validated 

well in a different cohort of the same ancestry (European); if Model 1 was applied 

in a different population of similar ancestry, it would still perform well in estimating 

the odds of LGA (probability of estimated LGA was 0.114). The predicted 

probabilities were slightly overestimated for the top decile in BiB Europeans (about 

0.4) as compared to the observed probability (about 0.2) and it is unclear why as 

birthweights were lower on average in this decile in BiB, as maternal weights were 

higher and there were lower rates of primiparity compared to EFSOCH (see Table 

11). 

Furthermore, external validation in a cohort of different ancestry (South Asian), 

further improved on the generalizability of our prediction model. An initial try gave a 

good discrimination, but the model overestimated on average (probability of 

LGA=0.071) but this was easily resolved if a re-calibration was applied which then 

produced a mean predicted probability of LGA very close to the actual probability 

of LGA in a South Asian population (probability of LGA=0.035). In general, the 

predictive performance of a prediction model is often decreased in new patients 

because the outcome incidence is different in the validating cohort. Overall, this 

model can be summarized as easy to implement in both a European and South 

Asian cohort, with good predictive ability. 

 

While this was a good model, there are still limitations that need to be addressed. 

One of the limitations of this model is its use being limited to the third trimester, 

when the variables for fasting glucose and weight were available. A first trimester 

model that we developed (see Table 2) showed that while using mother’s pre-

pregnancy weight and excluding maternal fasting glucose could still give a good 

prediction for LGA (R2 =0.137, AUCROC=0.732), the addition of maternal fasting 

glucose to the model did significantly improve prediction of LGA (R2 =0.160; 

AUCROC=0.761). Also, the model was built in a European population and only 

tested in a South Asian population. LGA is a common problem affecting a lot of 

other ancestries which this model did not address. In terms of other risk groups, 

mothers with diagnosed gestational diabetes (Sridhar et al., 2013) and those who 
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could classify as being obese (Hong and Lee, 2021) who are high risk groups for 

LGA, were not considered. Finally, while the model was considered to have a good 

predictive ability with an area under the curve of 0.761, this could still be improved. 

 

While our model assessed the gap in literature in using maternal fasting glucose as 

a predictor for LGA in a clinical prediction model, there remain other areas to be 

explored. Other factors that interplay with fetal growth such as genetics, 

intrauterine environment, nutrition, and placental function need to be further 

assessed.  No other clinical prediction models have assessed the contribution of 

non-genetic and genetic factors in relation to LGA while being born LGA has been 

found to be associated with increased global placental function of DNA 

methylation(Dwi Putra et al., 2020, Haulder et al., 2022). Additionally, in order to 

implement this model in clinical practice, an online calculator could be developed. 

Finally, the model has considered only healthy mothers with no diabetes but in a 

realistic population, some mothers would have diabetes and it would be worth 

assessing how the model would work in a population with diabetic mothers. 

 

In summary, we have found that improving on current clinical practice for predicting 

LGA can be done using a clinical prediction model developed from routinely 

available clinical features. This model can be easily implemented in a European 

population. It can also be used to effectively predict LGA in a South Asian 

population, with the application of a simple re-calibration.  By building this model, 

we were also able to explore the significant contribution of maternal fasting glucose 

in a prediction model for LGA, which had not been assessed before. It was found 

that the use of simple, routinely available clinical features could be used in 

combination to predict LGA. The simple model also demonstrated that it was better 

to use a combination of a few predictors to accurately predict LGA than a complex 

model. Although the model had good predictive ability, it still contained several 

limitations and there was still room for further improvement by the addition of other 

factors such as genetics.  
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Supplementary information 

Linearity check in multivariable logistic regression model  

 

Figure 1: Plot of log odds of LGA against mother’s age 

The plot shows that the variable of mother’s age in EFSOCH is linearly associated 

with log odds of LGA. 

 

Figure 2: Plot of log odds of LGA against mother’s weight 

The plot shows that the variable of mother’s weight in EFSOCH is linearly 

associated with log odds of LGA. 
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                      Figure 3: Plot of log odds of LGA against mother’s age 

The plot shows that the variable of mother’s height in EFSOCH is linearly 

associated with log odds of LGA. 

 

Figure 4: Plot of log odds of LGA against mother’s fasting glucose 

 

The plot shows that the variable of mother’s fasting glucose in EFSOCH is linearly 

associated with log odds of LGA. 

 

 

 

Phenotype  

Included (n=906)  

Mean or %  

Excluded 

(n=116)  

Mean or %  

P-value 

Maternal Height (cm)  165.0 (6.3) 164.7 (6.1) 0.576 

Maternal weight(kg)  76.1 (12.8) 75.0(12.8) 0.443 

Gestational Duration (weeks)  40.1 (1.2) 37.5 (2.7) <0.001 

Maternal fasting glucose 4.3(0.4) 4.5(0.6) 0.003 
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Birth weight (g)  3508 (475) 2972(694) <0.001 

Smoking Status (% Yes)  13  17 0.354 

Primiparity (%1st pregnancy) 45 53 0.602 

Sex of the baby (% Male)  52 46 0.256 

Table 5: Comparison between the included participants and the excluded 

participants  

 

 

Blood pressure exploration 

Mother’s average SBP and DBP were computed and analyzed to determine their 

relationship with LGA. The following tables show the analyses with several models 

having been tested to determine the contribution of Mother’s SBP and DBP in 

predicting LGA.  

Phenotype Coefficient Wald Pr(>|z|)   

Intercept -18.6 -5.13 <0.0001 

Mother's height (cm) 0.043 4.55 <0.0001 

Mother's weight (kg) 0.056 2.90 0.037 

Mother's fasting glucose 

(mmol/L) 
0.804 2.27 0.024 

Parity (1st Pregnancy) 0.779 3.07 0.022 

Mother's smoking status (Yes) -1.00 -2.13 0.033 

Table 6: Multivariable logistic regression model with clinical features only 

(n=775) 

 

Phenotype Coefficient Wald Pr(>|z|)   

Intercept -15.8 -5.13 <0.0001 

Mother's height (cm) 0.052 4.55 <0.0001 

Mother's weight (kg) 0.049 2.90 0.037 

Mother's fasting glucose (mmol/L) 0.834 2.27 0.024 

Parity (1st Pregnancy) 0.783 3.07 0.022 

Mother's smoking status (Yes) -1.11 -2.13 0.033 
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Mother’s systolic blood pressure 

(Hg/mm) 
-0.0103 -0.96 0.336 

Table 7: Multivariable logistic regression model with clinical features and 

systolic blood pressure (n=775) 

 

 

 

 

 

 

Phenotype Coefficient  
Odds 

ratio 

Wald 

Z  
Pr(>|z|)  

Intercept -15.76(-23.2,-8.31) 1.43x10-7 -4.15 <0.0001 

Mother's height (cm) 0.049(-0.047,0.144) 1.05 5.08 0.0128 

Mother's weight (kg) 0.052(0.032,0.072) 1.05 2.49 <0.0001 

Mother's fasting glucose (mmol/L) 0.834(0.14,1.53) 2.30 2.34 0.0192 

Parity (subsequent pregnancy) 0.783(0.28,1.28) 2.19 3.07 0.0021 

Mother's smoking status (Yes) -1.11(-2.04,-0.18) 0.33 -2.33 0.0199 

Mother’s Diastolic BP 
-0.0381 

(-0.068,-0.0077) 
0.96 -2.45 0.0141 

Table 8: Multivariable logistic regression model with clinical features and 

diastolic blood pressure (n=775) 

Mother’s systolic blood pressure was not found to be a good predictor of LGA and 

was therefore, dropped from the final model. 
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Scan data exploration 

Abdominal circumference (AC) and head circumference (HC) were analyzed to 

investigate their relationship with LGA. The following tables show the analyses with 

several models having been tested to determine the contribution of AC and HC in 

predicting LGA. 

Phenotype Coefficient Wald Pr(>|z|)   

Intercept -18.6 -4.82 <0.0001 

Mother's height (cm) 0.043 4.41 <0.0001 

Mother's weight (kg) 0.060 3.03 0.0024 

Mother's fasting glucose (mmol/L) 0.944 2.57 0.0101 

Parity (1st Pregnancy) 0.811 3.09 0.002 

Mother's smoking status (Yes) -1.11 -2.18 0.029 

Abdominal Circumference (mm) -0.0096 -1.38 0.167 

Table 9: Multivariable logistic regression model with clinical features and abdominal 

circumference (n=750) 

 

 

Phenotype Coefficient Wald Pr(>|z|)   

Intercept -18.1 -4.67  <0.0001 

Mother's height (cm) 0.058 4.51 0.0038 

Mother's weight (kg) 0.044 2.89  <0.0001 

Mother's fasting glucose (mmol/L) 0.905 2.47 0.0135 

Parity (1st Pregnancy) 0.792 3.01 0.0026 
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Mother's smoking status (Yes) -0.927 -1.95 0.0507 

Head circumference (mm) -0.0077 -1.16 0.248 

Table 10: Multivariable logistic regression model with clinical features and head 

circumference (n=747) 

Analysis of the scan data from the EFSOCH study showed that the abdominal 

circumference (AC) and the head circumference (HC) were not good predictors of 

LGA, and they were therefore removed from the final model. 

 

Comparison between last deciles of EFOSCH and BiB 

Mean predicted probability range for last decile in EFSOCH (0.226,0.729] 

Mean predicted probability range for last decile in BiB Europeans 

(0.222,0.596] 

 

Phenotype  

EFSOCH(n=91) 

Mean or %  

BiB (n=159) 

Mean or %  

Maternal Height (cm)  171.0(6.1) 168.8(5.3) 

Maternal weight(kg)  96.3 (12.8) 105.8(14.8) 

Gestational Duration (weeks)  40.1 (1.2) 40.0(1.1) 

Maternal fasting glucose 4.7(0.3) 4.7(0.4) 

Birth weight (g)  3905 (479) 3793(502) 

Smoking Status (% Yes)  4  6 

Primiparity (%1st pregnancy) 85 77 

Sex of the baby (% Male)  57 57 

Table 11: Comparison of characteristics for the last decile between EFSOCH 

and BiB 
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Discussion 

There are several factors that influence a baby’s birthweight: the fetal genotype 

and the maternal genotype directly influence birthweight via transmission to the 

fetus and indirectly influence maternal characteristics such as glucose levels which 

may then affect birth weight. Several maternal characteristics and environmental 

factors influence birthweight via the maternal intrauterine environment. Conducted 

GWAS of own birthweight and offspring birthweight have identified 243 loci directly 

associated with birthweight, indicating the importance of genetics in relation to 

birthweight. Previous studies carried out have demonstrated that there are several 

other key factors that explain the variation in offspring birthweight: maternal 

characteristics, environmental factors, and social demographics. The third chapter 

of this thesis covers the gap between assessing the contribution of genetics to 

birthweight alongside other clinical features. Ethnicity is also an important predictor 

of birthweight and what constitutes a small baby in one ancestral link might not be 

a small baby in a different ancestry. While previous research has demonstrated 

similar contributions of genetics to offspring birthweight in White Europeans and 

South Asians, the fourth chapter of this thesis compares the contribution of 

genetics in these two ethnic groups alongside other clinical features. It is desirable 

to be able to predict a baby’s birthweight before its birth to cater for complications 

with delivery. Thus, it is possible to accommodate for any adverse pregnancy 

outcomes or postnatal care. Methods used in current clinical practice are not 

entirely effective in assessing small and large-for-gestational age babies. The fifth 

chapter expands on building a clinical prediction model for large-for-gestational age 

babies in European babies by using routinely available maternal characteristics in 

clinics and validating it in both European and SA mothers and babies. In summary, 

this thesis addresses some of the main questions in relation to contribution of 

genetics to birthweight alongside other predictors of birthweight, and it also 

investigates the implementation of a clinical prediction model which uses maternal 

fasting glucose as one of its main predictors in determining risk of LGA in 

Europeans and South Asian populations.  
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Chapter 3: Assessing whether genetic scores explain extra variation in 

birthweight, when added to clinical and anthropometric measures 

 

Summary 

This chapter addresses the contribution of genetics alongside other key maternal 

characteristics to offspring birthweight. Several maternal characteristics such as 

mother’s weight, BMI, height, fasting glucose, smoking status during pregnancy 

and parity have previously been found to influence birthweight through the 

maternal intrauterine environment (Cogswell and Yip, 1995). We also know that a 

baby’s birthweight is partly explained by its inherited set of genes. It has been 18 

years since the publication of the first Genome Wide Association Study (GWAS) in 

2005 (Klein et al., 2005) and this method of making genetic information easily 

accessible has enabled us to quantify genetic information and create genetic 

scores. Individually, maternal characteristics and genetics have been analyzed in 

terms of their effects on birthweight (Cogswell and Yip, 1995) but the genetic 

effects that contribute to birthweight alongside clinical features have not been 

assessed. To do this, we aimed to investigate variance in birthweight explained by 

genetic scores in addition to easily measurable clinical and anthropometric 

variables in a European group by using multivariable linear regression models. It 

was found that genetics explain additional variance on top of that explained by 

routinely available clinical features.  

 

Conclusions 

This study, which is now published (Haulder et al., 2022) found that a multivariable 

linear regression model containing maternal age, weight, smoking status, parity, 

and 28-week fasting glucose explained 21.7% of variation in birthweight in a 

European population. Maternal and fetal genetic scores together, just on their own, 

explained a 6.0% variance in birthweight. Also, the maternal genetic score 

explained additional variance in birthweight when added to maternal characteristics 

(Adj-R2 = 0.233 vs Adj-R2 = 0.210, p < 0.001) similarly to the fetal genetic score 
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which also improved explanation of variance in birthweight (Adj-R2 = 0.264 vs 

0.248, p < 0.001) when added to maternal characteristics and parental heights. 

Mother’s height and father’s height partially explain the fetus’ genetic contribution 

to birthweight but in general, the genetic scores explain additional variance. 

 

Implications of the findings 

The results clearly demonstrate how genetics play a key role in explaining the 

variation in birthweight independent of what is captured from routinely available 

clinical features. On their own, a small proportion of variation in birthweight is 

explained (6.0%) whereas in addition to other clinical features, the explanation in 

variation is much more (21.7%). This result highlights how clinical features play a 

significant role in explaining offspring birthweight and the contribution of genetics 

on their own is not as high. This is in line with other findings which state that 

offspring birthweight is a product of several factors such as environmental and 

genetic rather than just one set of predictors (Spencer and Logan, 2002). Also, 

while the contribution of genetics is not a lot (3% of variance explained for maternal 

genetics and 2% for fetal genetics), it is still comparable to other predictors such as 

parity (3% of variation explained) which makes it an important variable in 

explaining birthweight. The association between maternal height and fetal growth 

has been found to be mainly defined by fetal genetics (Zhang et al., 2015) and it is 

also important to note that some of the maternal height effect is independent of 

fetal genetics(Warrington et al., 2019). Paternal height has been found to 

independently (but not independently of fetal genetics) influence birth size (Knight 

et al., 2005). Our results show that parental heights with clinical features explained 

24.8% of variance in birthweight as compared to clinical features on their own 

which explained 21.7% of variance. However, when fetal genetics is added to a 

model with clinical features and parental heights, there was additional variance 

explained (27.7%) which suggests that parental heights capture features of fetal 

genetics only partially. Maternal genetics with paternal genetics on top of clinical 

features are only slightly better at explaining birthweight variation and the best 
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model uses clinical features, parental heights, maternal genetics and fetal genetics 

for the maximum explanation of variance in birthweight.  

We also found that in contrast with a previous study(Griffiths et al., 2007) where 

the parental heights made similar contributions to birthweight, father’s height 

makes a higher and significant contribution to birthweight when compared to 

mother’s height, that is a unit change in father’s height resulted in 60g (23, 98) 

increase in birthweight as compared to only 23g (13, 62) for a unit increase in 

mother’s height. Mother’s birthweight has a stronger association with birthweight 

compared to father’s birthweight where a unit increase in mother’s birthweight 

resulted in 103g (66, 140) increase in birthweight and a unit increase in father’s 

birthweight resulted in 47g (10, 83) increase in birthweight. The results for parental 

birthweights are not statistically significant as the confidence intervals for both 

maternal and paternal birthweights do not include the values of paternal birthweight 

and maternal birthweight, respectively. This could be due to the small sample size 

available for parental birthweights. In contrast, a previous study found that parental 

birthweights significantly influenced offspring birthweight (Little, 1987). 

 

Strengths and limitations of the work 

This study comprehensively assessed the contributions of maternal characteristics 

to birthweight alongside maternal and fetal genetics whereas previous studies have 

either assessed the contributions of clinical features on their own (Cogswell and 

Yip, 1995) or genetics on their own(Beaumont et al., 2018).  It gave insight on the 

contributions of maternal, paternal and fetal genetics to birthweight on top of 

routinely available clinical features.  

In addition to this, this study further investigated the contributions of paternal 

genetics as well as the father’s and mother’s height, father’s and mother’s 

birthweight to birthweight using multivariable linear regression models. Previously 

carried out studies related to birthweight focused more on the child and mother 

rather than the father as there is limited amount of paternal information available 

(Magnus et al., 2001).  
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The genetic scores used in this study were created using GWAS of European 

ancestry(Warrington et al., 2019) and if applied to other ancestries, the GS created 

for these other ethnic groups would not explain variation in birthweight as well as 

when GS are created for Europeans using GWAS of European ancestry because 

the underlying genetic associations might be different in every ethnic group 

(Uffelmann et al., 2021). 

The smoking status of the mother is the only environmental factor considered in 

this study while other factors such as social demographics, such as education 

level, have not been assessed. Previous studies (Cogswell and Yip, 1995) have 

shown that a parent’s education level is an important factor in determining variance 

in birthweight. This was not available in EFSOCH and therefore, was not included 

in modeling of birthweight.  

Also, the parental birthweights were self-reported which resulted in smaller sample 

sizes and less accurate models. It is important to have an accurate sample size 

because this minimizes the risk of a false-negative finding, that minimizes the risk 

of Type 2 error, or it helps estimate how precise the study is (Biau et al., 2008). 

 

Future work 

Other predictors of environmental factors and social demographics such as 

education level attainment could also be included in a multivariable linear 

regression model in future work to assess their contributions in explaining 

birthweight on top of clinical variables and genetics. Education level is an indication 

of the quality of life of the mother or the possible lifestyle she would be eligible for; 

for example, a higher education level would signal better access to healthcare 

facilities and better diet. This could then give us an indication of whether a specific 

lifestyle significantly influences variation in birthweight.  

 

Fetal genetics were included in the analyses in the form of fetal genetic scores, but 

the genetic information of the baby is usually not available before birth. Currently 

used in the screening of down syndrome, cell‐free fetal DNA (cffDNA), that is, fetal 
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DNA which freely circulates in the blood, can be the source of fetal genetic material 

for prenatal diagnosis (Everett and Chitty, 2015). In the future, this could be used 

for extracting fetal genetic information prior to birth and moving forward this would 

be a significant step in making genetic information available for use in pregnancy. 

At the moment, this is being done to test for Down Syndrome and other rare 

conditions. Also, currently, the availability of genetics in pregnancy is limited to 

studies that have investigated genetic disorders in the prenatal period (Wojcik et 

al., 2020) (Hoffner and Surti, 2012),the genetic conflicts of gene expression in 

pregnancy, genetic abnormalities that could cause pregnancy loss (Tise and Byers, 

2021)and the genetics and epigenetics of pregnancy-associated diseases such as 

pre-eclampsia(van Dijk and Oudejans, 2013). 

Limited studies have investigated common SNPs that influence both birthweight 

and another trait in the mother. The GCK gene has a common haplotype that 

influences both birthweight and maternal fasting glucose (Weedon et al., 2006) but 

there is still a lot to uncover in terms of the genetics and common SNPs that 

influence birthweight and other traits.  
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Chapter 4: The contributions of genetic scores, maternal glycemia, and other 

maternal characteristics to variation in birth weight in South Asian compared 

with European babies 

 

Summary 

Babies of South Asian ancestry weigh less than (about 200g difference) those of 

European ancestry even though South Asian (SA) mothers have higher maternal 

fasting glucose levels, higher parity, and lower smoking levels. The genetic 

associations alongside other maternal characteristics with birthweight were 

compared between the two groups. We have previously assessed the contributions 

of routinely available clinical features to birthweight in babies of European ancestry 

and the contributions of genetics on top of these features(Haulder et al., 2022). 

The contributions of maternal and fetal genetics to birthweight have been explored 

in the SA group (Nongmaithem et al., 2022) but the contributions of genetics on top 

of clinical features have not been assessed before nor compared to the European 

group.  The main aim of this project was to compare the associations with 

birthweight of mother’s age, height, parity, smoking status during the pregnancy, 

maternal genetics and fetal genetics between SA and European babies. Maternal 

and fetal genetics were represented by maternal and fetal genetic scores (GS), 

and these were derived from the same GWAS of birthweight of European ancestry 

for both groups. Multivariable linear regression models were then used to build 

separate models in the two ethnic groups and make comparisons. Overall, the 

associations were similar in both groups except for parity and smoking status. 

 

Conclusions 

In both ethnic groups, fetal and maternal genetic scores showed similar 

associations with birthweight. Birthweight, on average, was lower in SAs compared 

with Europeans (3193(445) g vs. 3475 (483) g; p<0.001), and Fasting Plasma 

Glucose (FPG) was higher (4.6(0.5) vs. 4.4(0.4) mmol/L, p<0.001). Except for 

smoking and parity, the other characteristics had similar associations with 
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birthweight in both groups. Maternal FPG and adjusted birthweight demonstrated 

similar contributions in both populations (SA v European regression coefficient 81g 

[95%CI: 39, 102] per 1 SD higher FPG vs. 62g [39, 91] per 1 SD higher FPG; 

variance explained 2.2% v 3.3%). GS explained additional information to variation 

in birthweight but the full model in SA explained less overall variation in birthweight 

compared to Europeans (Adj-R2 = 0.175 vs 0.223). Overall, we also found that the 

underlying difference between birthweights cannot be explained by genetics. 

 

Implications of the findings 

The characteristics all had similar associations to birthweight in SA and Europeans 

except for smoking and parity. This implies that birthweight is mostly explained to 

the same extent in both ethnic groups by the assessed characteristics. Smoking 

contributes less to birthweight variation in Europeans as compared to SA, likely 

due to the low prevalence of smoking in the SA group (add the amount). This is in 

line with previous findings that have found that only about 1·2% (0·7–1·7) SA 

mothers smoke during pregnancy (Lange et al., 2018). 

 

Despite a higher mean fasting glucose level in SAs, higher parity and lower rate of 

smoking among the pregnant mothers, mean birthweight of SA babies is smaller 

than that of European babies. It was suggested to explore the genetic associations 

on top of the routinely available clinical features, and since they were the same, 

this was consistent with a previous study (Nongmaithem et al., 2022) where it has 

been found that the underlying difference in birthweight between SAs and 

Europeans was not explained by genetics. 

 

In the SA group, mothers tend to deliver more babies than in the European group 

and it has been found that birthweight increases with increasing parity (Hinkle et 

al., 2014). Birthweight is larger with increasing parity. The results show that the 

association between birthweight and parity is less in SAs than in Europeans since 



154 
 

a higher number of babies means overall, less influence on reducing birthweight.  

 

The fetal genetic score showed a slightly stronger association with birthweight in 

Europeans than in the SAs and the maternal genetic score had a similar 

association with birthweight in both SAs and Europeans. Similarly, to what has 

been found before, fetal genetics contributes more to birthweight than maternal 

genetics (Warrington et al., 2019) and the genetic scores give more accurate 

results when they have been created from GWAS of matching ancestry(Warrington 

et al., 2019). In this case, since both the scores were created with GWAS of 

European ancestry, although the associations are not far apart in the two ethnic 

groups, Europeans show a slightly stronger association, most likely as the genetic 

score was more accurate for that ethnic group.  

The maternal genetic score was associated with birthweight to the same extent in 

South Asians and Europeans. This was different from what was found in a previous 

study where the maternal GS was less strongly associated with birthweight in SA 

than in Europeans when the GS were assessed on their own.  The one possible 

explanation for different findings could be because in this study, the samples being 

analysed were from the same city in the UK, hence making them similar to one 

another while in the other study, the samples were from various locations (mostly 

outside the UK). (Nongmaithem et al., 2022) 

 

Strengths and limitations 

This study assessed SA and European babies who share the same environment 

(City of Bradford). Comparisons of the contributions of maternal characteristics in 

both ethnic groups are more accurate than studies which have used cohorts from 

different geographical locations (Babies of South Asian and European ancestry 

show similar associations with genetic risk score for birth weight despite the 

smaller size of South Asian newborns(Nongmaithem et al., 2022). When these 

groups share the same environment, the differences due to environmental 

exposures are removed and hence, makes the groups quite comparable. Both 

cohorts had a good sample size for accurate comparisons to be made and these 



155 
 

were consistent with previous studies where the sample sizes were about the 

same and generated similar power(Nongmaithem et al., 2022). 

The study addressed an ethnic group which is at high risk of adverse pregnancy 

outcomes. A study carried out has found that women of SA ethnicity are at higher 

risk of adverse pregnancy outcomes such as prenatal death (De Graaff et al., 

2023). It gave useful insight on how genetics further explain variance in birthweight 

on top of other routinely available clinical features. Previous studies have explored 

interventions in terms of diabetes in this group (Greenhalgh et al., 2015), 

prevalence of GDM in women of SA ancestry and other related pregnancy 

complications (Ahkter et al., 1996) low birthweight in the SA group (Metgud et al., 

2012)and genetic studies have assessed the relationship between DNA 

methylation and cardiometabolic traits (Fragoso-Bargas et al., 2021). 

One of the limitations to this project was the fact that the individual contributions of 

the predictors to birthweight could not be directly comparable from the linear 

regression models. This is why the R-squared statistic from univariate analysis 

were used to make direct comparisons.  

The genetic score in SA was created from GWAS of European ancestry. The 

accuracy of these genetic scores were, therefore, not as good as the genetic score 

for the European group as the two ethnicities have different underlying genetics 

(Tekola-Ayele et al., 2018). 

 

Future work 

Despite their lower birthweights, SAs have higher skinfold thickness(Anand et al., 

2016). Further exploration of this could lead to better understanding of what causes 

the difference in birthweight between these two groups. One way of measuring 

skinfold thickness is by the measurement of favorable adiposity. Adiposity is also 

defined as body fat, and it is more desirable for it to be stored under the skin than 

around organs such as the liver and the heart. Genes dictate where this fat is 

stored, and this can then be termed as having “favourable adiposity” or 

“unfavourable adiposity” (Martin et al., 2021). 



156 
 

Favorable adiposity could be the next step in investigating the underlying 

mechanisms that causes the difference in birthweight as it has different patterns in 

SAs and Europeans (Anand et al., 2016). SAs have greater skinfold thickness than 

Europeans due to a higher glucose level and higher levels of maternal body fat. 

The thin-fat phenotype that has been put forward previously (Kurpad et al., 2011) 

suggests that it is possible to have lower birthweight despite a greater amount of 

fat and it amounts to the fat being added to an already thin frame. To investigate 

whether this hypothesis holds true in SAs as compared to Europeans, the 

contribution of adiposity to birthweight could be assessed by adding it to 

multivariable linear regression models alongside other characteristics. It would be 

interesting to compare the contribution of the genetic score of favorable adiposity 

to birthweight, in SAs and Europeans. To do this, we would need access to data 

that has recorded favorable and unfavorable adiposity and the GWAS of favorable 

and unfavorable adiposity to create the genetic scores.  
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Chapter 5: Developing and validating a multivariable clinical prediction 

model for babies born LGA in European and South Asian cohorts 

 

Summary 

It is important to be able to predict if a baby is at risk of LGA to reduce and prevent 

adverse pregnancy outcomes. Prediction models for LGA have been developed 

before but these are not used in clinical practice due to their limited clinical utility. 

The aim of this project was to develop a model for LGA using data from the Exeter 

Family Study of Childhood Health (EFSOCH) and to validate the model in an 

external European as well as a South Asian cohort (Born in Bradford Study) for 

generalizability. Compared to other prediction models that used a varied selection 

of predictors such as ultrasound, biomarkers and medical history in addition to 

maternal characteristics, the idea of this prediction model was that it would improve 

on current detection of LGA in everyone, and not just in mothers at risk of 

gestational diabetes and because it uses routinely available clinical features, 

including maternal fasting glucose, it would be fairly easy to implement in clinical 

practice. The final model achieved a good level of predictive performance 

(AUC=0.761), but it was not good enough to be implemented in clinical practice. It 

validated well internally, as well as externally in a European cohort but required a 

re-calibration to externally validate well in a South Asian cohort. 

 

Conclusions 

This clinical prediction model for LGA had an ROC curve of 0.761, suggesting 

good discrimination, but its predictive power as it stands, is not strong enough for it 

to be adopted in clinical practice as it did not reach 0.80. It also has a good 

predictive ability indicated by its internal validation of bootstrapping where Emax 

was 0.0242 and Somer’s Dxy was 0.5035, respectively. Emax represents the 

maximum error in predicted probabilities and since the model’s Emax was close to 

0, this shows that there were not a lot of errors in predicted probabilities. Somer’s 

Dxy is the rank correlation assessing the difference between predicted probabilities 

and observed responses; a value close to 1 indicates that the model can make 
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predictions close to actual values.  The model externally validated well in a South 

Asian cohort with the area under the curve as 0. 707 (95% CI: 0.637-0.7769), but it 

required re-calibration as LGA was less common in the SA. The mean predicted 

probability for LGA was found to be 0.071 and 3.5% of LGA was determined after 

re-calibration.  

 

Implications of the findings 

The area under the curve of the model is 0.761 which is better than current 

published models for LGA built in European cohorts. Examples include AUC 

between 0.60 and 0.69 for six models in Netherlands(Meertens et al., 2019), AUC 

between 0.66 and 0.75 for twelve models in a Canadian population(Kuhle et al., 

2018) and AUC was 0.67 for a prediction model based on the SCOPE study. 

(SCOPE is an international prospective cohort study involving centers in Auckland, 

New Zealand; Adelaide, Australia; London, Manchester and Leeds, UK; and Cork, 

Ireland (Vieira et al., 2017)). 

The model’s c-statistic shows that while it makes good predictions, it is not good 

enough to be used in clinical practice on its own (Shipe et al., 2019). However, in 

line with additional information and monitoring, it could then be implemented. In 

current clinical practice, pregnant women have their own customized growth chart 

which has been prepared based on information about their height, weight, ethnicity 

and parity. This chart is prepared to show the predicted pattern of growth of the 

baby during the pregnancy. The symphysis fundal height (that is, the distance 

between top of the womb and the bone at the front of the pelvis) is also measured 

during antenatal visits for women pregnant over 26 weeks and compared to the 

growth chart. If on more than two occasions, the measurement is greater than 

expected, the woman is then set up for an ultrasound scan. If the baby is possibly 

larger than the 90th centile, the mother is given an OGTT if she is less than 36 

weeks pregnant (Okonofua and Akaba, 2021). This implies that only women with 

specific criteria based on their symphysis fundal height and ultrasound scan are 

further monitored or have preventive measures taken for risk of LGA. A study 

assessed the accuracy of ultrasound measurements in calculating the Estimated 
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Fetal Weight (EFW) and has found that while a Mean Percentage Error (MPE) 

within 5% of accuracy is desirable in practice, currently, the level of errors 

associated with ultrasound scan estimates of fetal birthweight is below 10% (Milner 

and Arezina, 2018). In contrast, this prediction model assesses any pregnant 

woman for risk of delivering a baby born LGA and not only those that meet certain 

criteria, and it avoids the uncertainty generated by ultrasound scans. 

Other models for LGA have used the same predictors that have been used in this 

one (mother’s smoking status, parity, mother’s weight, mother’s height(Meertens et 

al., 2019), but none of these that assess healthy pregnant women have used 

maternal fasting glucose. Models assessing mothers with GDM have used 

maternal fasting glucose as a predictor (Wang et al., 2023, Cooray et al., 2022). 

The model uses maternal fasting glucose as one of its predictors and it added 

significantly to the other routine clinical feature with each mmol/L of glucose 

leading to 2.6 times increase in the odds of LGA. In line with what has been found 

before, maternal fasting glucose is a key driver of fetal growth (Tyrrell et al., 2016) 

and therefore, provides valuable additional predictive power in predicting LGA as 

compared to other prediction models that did not use maternal fasting glucose as a 

predictor. 

The prediction model was developed in a European cohort and externally validated 

in both European and South Asian groups. While it validated well in the European 

group, providing a probability of having a baby born LGA as 0.110 which is very 

close to the true mean probability in the actual population (10%), a re-calibration 

was required in the SA group. This model can be used in both a European 

population and a SA one (but with the application of a re-calibration).  

 

Strengths and limitations 

This prognostic model was built based on a cohort of healthy pregnant women and 

can easily be used in two distinct ethnic groups, which makes it very good for 

generalizability. The model is, therefore, able to correctly reflect the new target 

population. As compared to other published models, only the models in one study 
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performed external validation (Meertens et al., 2019) and this was still within the 

same ethnic group. The other models only go as far as internal validation(Wang et 

al., 2023, Wahab et al., 2022, Kuhle et al., 2018).  

In terms of different ethnic groups, the model was successfully validated in a group 

with high risk of GDM(Fragoso-Bargas et al., 2021). This model uses maternal 

fasting glucose as a predictor in healthy pregnant women whereas this predictor 

has only been used before, in models with women having GDM (Cooray et al., 

2022).  

Many of the previously published models do not mention checking of assumptions 

such as sample size. The sample size for this model is very good when compared 

to many prediction models where model assumptions like these were not checked 

before the model was created. About 73% (95% CI: 63–82%) of 94 assessed 

prediction models with binary outcomes used smaller sample sizes than required to 

estimate risk of event(Dhiman et al., 2023). The clinical usefulness of this 

prognostic model was not checked. While a value of 0.761 for the c-statistic can 

indicate that a model would not be clinically ideal, this statistic on its own is not 

enough to assess the clinical usefulness of the model (Shipe et al., 2019). 

 

Future work 

The next step in this project would be to use decision curve analysis to formally 

evaluate the clinical utility of this model. This is to assess whether this model is 

useful in making medical decision of classifying a baby of being at risk of LGA or 

not. There is a specific threshold at which the probability of delivering a baby born 

LGA could influence the mother to choose a certain clinical option-treatment or no 

treatment. This potential relationship is used to derive the net benefit of the model 

over a range of different threshold probabilities. Plotting net benefit against 

threshold probability creates the “decision curve.” Currently, if detection of possible 

LGA happens after 26 weeks, no further treatment is provided to the mother. By 

choosing a certain threshold as the key factor, a decision curve could be designed 

by plotting the net benefit over different various threshold probabilities (Vickers and 
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Elkin, 2006). This, then, helps to see over which range the model was of value and 

the associated benefit.  

 

To improve the model, other predictors could be added to this that are already 

available. Clinical notes show that biomarkers are usually recorded in urinalysis.  

Other types of models could also be used; for example, Machine Learning (ML) or 

ordinal regression. In terms of ordinal regression (Singh et al., 2020), the model 

could be further developed into predicting LGA (birthweight above the 90th centile 

and below the 95th centile) or severe LGA (birthweight above the 95th centile). ML 

techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) 

have been used in cancer detection(Kourou et al., 2015). Similarly, these could be 

used for detection of risk of LGA.  

 

Future work 

This thesis extensively investigated the contributions of several factors to 

birthweight, including parental birthweights and heights, blood pressure, maternal 

genetics, fetal genetics, and maternal fasting glucose. Although it has not been 

explored in this project, maternal BMI as well as pre-pregnancy maternal BMI 

(Cogswell and Yip, 1995) mostly influence birthweight. However, BMI represents 

the ratio of weight to the squared of height (weight/ (height)2) and this formula 

could result in significant loss of information because it is using the inverse of 

height rather than height itself (which has been shown to be a direct, significant 

predictor of birthweight. In this case, we suggest that future investigations could 

explore the contribution to birthweight by maternal height and weight alongside 

other characteristics and compare this to the contribution of birthweight by 

maternal BMI alongside other characteristics.  

 

The second project explored the associations of several characteristics with 

birthweight in two different ethnic groups, including maternal and fetal genetic 

scores. As mentioned previously, data about fetal genetics would not be available 
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prior to a baby’s birth and the method known as cell-free fetal DNA (cffDNA) 

genotyping could be used to extract genetic data about the fetus before birth. 

cffDNA (Wang et al., 2021) is fetal DNA that circulates freely in the maternal blood. 

This test is usually offered to mothers at 16 weeks’ gestation and the availability of 

fetal genetic information before birth would make it possible to use this information 

and increase the accuracy of predictions. This also improves the idea of genetic 

scores being used in the future and expands on the potential this could bring about 

in making genetics a readily accessible tool. 

 

Finally, the risk of LGA has been explored in healthy, pregnant women and LGA 

has been known to be a possible adverse outcome in women with gestational 

diabetes (GDM). The Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) 

Study (Coustan et al., 2010) has shown that maternal glucose levels during 

pregnancy vary significantly among women, and this could lead to adverse 

pregnancy outcomes. For example, women with GDM have higher fasting glucose 

levels and higher maternal glucose leads to increased fetal growth (Scholl et al., 

2001) as maternal fasting glucose explains about twice the amount of variance in 

birthweight compared to the fetal genetic score(Hughes et al., 2018). This makes 

this group of women susceptible to adverse pregnancy outcomes such as LGA. 

 

Research has also found that not all women with GDM deliver big babies (Surkan 

et al., 2004). Hence, being able to predict LGA in this group is quite important. The 

model did not reach the threshold to be used in clinical practice but since glucose 

is a more significant predictor in a group of women with GDM, the model might 

make more accurate predictions.  Glycemic control for women with GDM has been 

found to influence birthweight (Langer et al., 1989) Therefore, being able to predict 

the risk of LGA in this group and using this information for better glycemic control 

could reduce the risk of LGA in women with GDM significantly.  
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Conclusions 

Modeling of birthweight and risk of LGA has been extensively done in this research 

work. Different modeling approaches such as linear regression and logistic 

regression have been used, and there are new findings as well as results that are 

in line with previous research studies. The exciting novel findings include maternal 

and fetal genetics contributing to about 6% to birthweight on their own and 

explaining additional variance when added on top of routinely available clinical 

features (15.7%).  

 

We found possible evidence that supports the suggestion that the contribution of 

maternal genetics to birthweight is influenced by the exposure of the maternal 

intrauterine environment(Nongmaithem et al., 2022). When the maternal 

intrauterine environment is the same, maternal genetics has similar contributions to 

birthweight in SAs and Europeans (Born in Bradford European and Pakistani 

groups had the same location and the maternal genetic score had similar 

associations with birthweight) and when the environment is different, maternal 

genetics contributes less to birthweight of SAs. Overall, most characteristics had 

similar associations to birthweight in the two different ethnic groups.  

 

Finally, the risk of LGA can be assessed using routinely available clinical features 

in clinics and the model we developed can be easily implemented in a European 

cohort and a South Asian cohort after re-calibration. Previously developed and 

published clinical prediction models have not externally validated their models in a 

different ethnic group to the one it was developed in. The model we developed was 

found to perform better than currently published models for assessing the risk of 

delivering a baby born LGA and can also easily be used in two separate ethnic 

groups. 
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