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Abstract
The Dagstuhl Seminar 23361 Multiobjective Optimization on a Budget carried on a series of
seven previous Dagstuhl Seminars (04461, 06501, 09041, 12041, 15031, 18031, 20031) focused on
Multiobjective Optimization. The original goal of this series has been to strengthen the links
between the Evolutionary Multiobjective Optimization (EMO) and the Multiple Criteria Decision
Making (MCDM) communities, two of the largest communities concerned with multiobjective
optimization today. This seminar particularly focused on the case where the approaches from
both communities may be challenged by limited resources.

This report documents the program and the outcomes of Dagstuhl Seminar 23361 “Multiob-
jective Optimization on a Budget”. Three major types of resource limitations were highlighted
during the seminar: methodological, technical and human related. The effect of these limitations
on optimization and decision-making quality, as well as methods to quantify and mitigate this
influence, were considered in different working groups.
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Multiobjective optimization (MO), a discipline within systems science that provides models,
theories, and methodologies to address decision-making problems under conflicting objectives,
has a myriad of applications in all areas of human activity ranging from business and
management to engineering. This seminar is a result of the desire to continue to make

∗ Editor / Organizer
† Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Multiobjective Optimization on a Budget, Dagstuhl Reports, Vol. 13, Issue 9, pp. 1–68
Editors: Richard Allmendinger, Carlos M. Fonseca, Serpil Sayin, and Margaret M. Wiecek

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:richard.allmendinger@manchester.ac.uk
mailto:cmfonsec@dei.uc.pt
mailto:ssayin@ku.edu.tr
mailto:wmalgor@clemson.edu
mailto:stiglmayr@uni-wuppertal.de
http://www.dagstuhl.de/23361
https://doi.org/10.4230/DagRep.13.9.1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


2 23361 – Multiobjective Optimization on a Budget

MO useful to society as it faces complex decision-making problems and experiences limited
resources for decision making. Of particular interest are processes that evolve competitively
in environments with scarce resources and lead to decision problems that are characterized by
multiple, incommensurate, and conflicting objectives, and engage multiple decision-makers.
Viewing optimization and decision making as the complementary aspects of the multiobjective
paradigm, the seminar set out to focus around three major types of resource limitations:
methodological (e.g., number of solution evaluations), technical (e.g., computation time,
energy consumption), and human related (e.g., decision maker availability and responsiveness).
The effect of these limitations on optimization and decision-making quality, as well as methods
to quantify and mitigate this influence, were of particular interest. Ideas related to modelling,
theory, algorithm design, benchmarking, performance metrics, and novel applications of MO
under budget constraints were discussed.

To initiate a discussion among the participants on how to address challenges of MO under
a budget, the organizers presented specific research directions at the beginning of the seminar.
These directions along with their highlights are described below.

Model reduction: In the MO problem not all functions may be of interest to the decision
maker (DM) or not all objectives may be in conflict with each other. Under a limited
budget, it is of interest to make the original problem simpler by removing unnecessary
objective functions while the solution set remains unchanged. Another reason to reduce
the problem is its size. MO problems with four or more criteria bring computational and
decision-making challenges that are not typical when the number of objectives is lower.
Model decomposition and coordination-based decision making: If a reduction of the
objectives is not possible, then the solution of the overall MO problem in its entirety
may be challenging or even impossible to obtain. In this situation, decomposition of the
MO problem into a set of MO subproblems with a smaller number of criteria becomes
appealing provided solving the subproblems can be coordinated and related to solving
the original problem. When the MO problem is decomposed while computation of the
overall solution set is possible, the decomposition goal is to enhance capability of making
coordinated tradeoff decisions by working in lower dimensional spaces, which decreases
the cognitive burden on DMs. Otherwise, if computation of the overall solution set is
not possible, the decomposition goal becomes more challenging since the intention is to
coordinate the subproblems’ solution sets to construct the overall set and to facilitate
decision making in a similar way.
Representation of the optimization solution set: It is of interest to design cost-effective
methods for obtaining a complete or partial description of the Pareto set. An exact
description of this set might be available analytically as a closed-form formula, numerically
as a set of points, or in mixed form as a parametrized set of points. Unfortunately, for
the majority of MO problems, it is not easy to obtain an exact description of the solution
set that includes typically a very large number or infinite number of points. Even if it is
theoretically possible to find these points exactly, this is often computationally challenging
and expensive, and therefore is usually abandoned. On the other hand, if it is possible to
obtain the complete solution set, one might not be interested in this task due to overflow
of information. Another reason for approximating the solution set, rather than finding
the solution set exactly, is that many real-world problems (e.g., in engineering) cannot be
completely and correctly formulated before a solution procedure starts. Since the exact
solution set is very often not attainable, an approximated description of the solution set
becomes an appealing alternative.



R. Allmendinger, C. M. Fonseca, S. Sayin, and M. M. Wiecek 3

Surrogate-assisted optimization: The combination of evolutionary MO (EMO) algorithms
with efficient computational models, often known as metamodels or surrogates, has
become a common approach to approximate outcomes of a time-consuming, expensive,
and/or resource intense simulation or physical experiment, and thus to tackle problems
with a limited budget. Surrogate-assisted (SA) methods vary in aspects such as the use
of the metamodel (e.g., different models for different objective functions or one model for
all objective functions), type of metamodel (e.g., Gaussian process, radial basis neural
network, etc.), how the metamodel is updated (e.g., expected improvement, expected
hypervolume improvement), and training time of the metamodel. In particular, the
combination of optimization with Gaussian process approximation, known as Bayesian
optimization, is a recent trend to efficiently deploy data in model development.
Multistage optimization: In real-world applications, problem data does not always become
available all at once, but at different points in time until a final decision needs to be made.
In particular, waiting until all the required data is available may not leave enough time
to run the optimization process on the whole problem and successfully compute a final
decision. In addition, it is often possible to model the uncertainty associated with the yet
unknown data given the data that is already known, at least to some extent. Two-stage
(and, more generally, multi-stage) approaches to optimization reformulate the original
problem as a number of sub-problems to be solved sequentially, in such a way that the
last problem(s) in the sequence can effectively be solved in the (short) time available.
Preference acquisition and communication with the decision maker: The ultimate goal
in MO is to serve one or multiple DMs whose goal is to come up with a single most
preferred solution from among the ones that are available. Given an optimization model,
DM’s preferences may be incorporated prior to, during or after employing a solution
procedure. In particular, interactive methods require the DM’s involvement in the solution
process during which they reveal their preferences based on the presented information.
Under a limited budget, communication with the DM shall be designed effectively and
economically.
Benchmarking of algorithms: SA methods are considered as the method of choice to
tackle problems subject to a limited budget in terms of function evaluations. However,
SA methods are not often compared to widely different alternatives (e.g., different kernels
and distance measures, non-SA methods, etc.), and are often tested on narrow sets
of problems (multimodal, low-dimensional, static, deterministic, unconstrained, and
continuous functions) and rarely on real-world problems, which makes it difficult to assess
where (or if) these methods actually achieve state-of-the-art performance in practice.
Moreover, several aspects in the design of SA algorithms vary across implementations
without a clear recommendation emerging from current practices, and many of these
design choices are not backed up by authoritative test campaigns. This seminar topic
aimed to raise awareness and hence a push to more work being carried out on developing
benchmarking guidelines for SA algorithms.

In response to the presented research directions, some participants found research topics
of interest among those suggested by the organizers. These topics included model reduction,
decomposition and coordination, solution set representation, and surrogate modeling. Other
participants proposed different topics that also targeted the theme of MO under a budget.
Those topics included design of experiments for MO, correlations in MO, and design of
evolutionary algorithms. Overall, seven research topics were proposed and pursued.

Independently of developing and forming research topics, a collection of eight talks were
given during the seminar. Two of the speakers were considered “invited” because they
were asked before the seminar to give a talk. These talks addressed two of the research
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directions initiated by the organizers. The other speakers, being inspired by the ongoing
seminar, proposed talks that were integrated daily into the seminar program. The invited
and contributed talks kept the seminar in balance ensuring ample time for working in groups.

During the seminar the schedule was updated on a daily basis to maintain flexibility in
balancing time slots for the invited and contributed talks, discussions, and working group
sessions. The working groups were established on the first day in an interactive fashion.
Starting with three large working groups focused around the three central topics of the
seminar (methodological, technical, and human-related resource limitations), participants
were invited to formulate their favorite topics and most important challenges. The three
initial groups split to eventually form eight groups by the end of the seminar. During the
week the participants were allowed to change the working groups based on their research
interest. The abstracts of the delivered talks and the extended abstracts of the working
groups can be found in the subsequent chapters of this report.

Further notable events during the week included: (i) a hike that took place on Wednesday
afternoon, (ii) a session allowing the participants to share the details of upcoming professional
events in the research community, (iii) a joint session with the participants of the concurrent
seminar 23362 “Decision-Making Techniques for Smart Semiconductor Manufacturing” and
(iv) an informal get together on Thursday evening.

Offers and Needs Market
An Offers & Needs Market ran throughout the entire week. The participants could write
their research offers and needs regarding MO on note paper in different colors and post them
on pin boards (see Fig. 1) to attract or find a possible collaborator. Participants discussed
potential collaboration opportunities during the coffee breaks and after hours.

Figure 1 Offers and needs market.

Outcomes
The outcomes of each of the working groups can be seen in the sequel.

The organizers have arranged a special issue of the Journal of Multi-Criteria Decision
Analysis entitled “Multiobjective Optimization on a Budget” for which they will serve as
Guest Editors. This issue will be an outlet for papers authored and submitted by the
seminar’s participants as well as by researchers world-wide.

This seminar resulted in a very insightful, productive and enjoyable week. It has already
led to first new results, cooperations and research topics.
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3.9 Multi-objective Branch-and-Bound on a Budget
Michael Stiglmayr (Universität Wuppertal, DE)

License Creative Commons BY 4.0 International license
© Michael Stiglmayr

Joint work of Julius Bauß, Michael Stiglmayr

In this talk we discuss modifications of multi-objective branch-and-bound to diversify solutions
and yield a good approximation of the non-dominated set when only limited computation
time is available. It is crucial not only to find efficient solutions in early stages of the
algorithm but also to find a set of solutions whose images are close to and well distributed
along the non-dominated frontier. In particular the adaptation of branching and queuing of
sub-problems seems to be important. We use, e.g., the hypervolume indicator as a measure
for the gap between lower and upper bound set to implement a multi-objective best-first
strategy. Moreover, gap measure indicate the solution quality when prematurely stopping
the branch-and-bound algorithm.

References
1 Bauß, J., Stiglmayr, M.: Augmenting bi-objective branch and bound by scalarization-based

information (2023), https://arxiv.org/abs/2301.11974
2 Bauß, J., Stiglmayr, M.: Adapting branching and queuing for multi-objective branch and

bound (2023), https://arxiv.org/abs/2311.05980

4 Working groups

4.1 Decoupled Design of Experiments for Multi-objective Optimisation
on a Budget

Mickaël Binois (INRIA – Sophia Antipolis, FR), Jürgen Branke (University of Warwick, GB),
Jonathan Fieldsend (University of Exeter, GB), Robin Purshouse (University of Sheffield,
GB)

License Creative Commons BY 4.0 International license
© Mickaël Binois, Jürgen Branke, Jonathan Fieldsend, and Robin Purshouse

4.1.1 Introduction

Fundamental to the performance of surrogate-based optimisation frameworks is the need
to construct an initial model based on a carefully selected set of initial designs, and any
prior system knowledge. This is both in the case of Bayesian optimisation, which used and
iteratively update model(s) mapping decision vectors to predicted performance criteria values,
and for evolutionary computation approaches which involving surrogates. The selection and
construction of initial designs, which are often treated separately to the decision vectors
queried during the subsequent optimisation process, are usually referred to as the design of
experiments (or DoE for short). This is because these decision vectors are selected to – in
some fashion – be maximally informative on the global underlying process, rather than being
biased towards particular regions.

Without any prior information regarding the properties of the objective function(s) such
DoE for model fitting are commonly based around space filling sequences such as Latin
hypercube sampling [9] or Sobol sequences [10], as purely random sampling tends to naturally
result in clusters, which do not serve model fitting well, particularly when the budget for
sampling is tight.
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Where there are multiple criteria being modelled, this leads to an interesting and under-
explored question: should one evaluate all initial designs fully, or selectively evaluate a
subset of objectives per design, allowing a greater number of locations to be partially evaluated
when building the model(s)? A few works have looked at decoupling objective evaluations
during the search process – particularly where there are different costs associated with each
objective, but this can also be advantageous where there is a difference in the complexity
of the functions being modelled (e.g. one being smooth slowly changing, the other being
rugged and fast changing). As such, this appears to be a promising direction for further
investigation and research, as even small improvements in such areas can effectively lead to
large savings for expensive optimisation problems.

4.1.2 Related Work

A small number of existing works have considered decoupled and/or cost-aware multi-objective
optimisation – some of which have considered these factors during the initial DoE phase.
Below we discuss the most relevant approaches. A wider survey on the topic of objectives
with different costs can be found in [1].

Hernández-Lobato and colleagues proposed the Predictive Entropy Search for Multi-
Objective Bayesian Optimization (PESMO) method [6]. PESMO uses predictive entropy
search as the acquisition function. This function represents each objective using an additive
component, which enables a decoupled evaluation approach to be adopted. The approach
was subsequently extended to also consider constraints (again where decoupling is possible)
[5].

Suzuki et al. developed the Pareto-frontier entropy search (PFES) approach [11]. PFES
is also an entropy approach but considers the entropy in objective-space rather than decision-
space, which is computationally simpler. This method also includes cost in evaluating the
objectives by including cost in the denominator of the acquisition function. Like PESMO,
the approach is easily extended to consider decoupled evaluations.

Iqbal and colleagues proposed the Flexible Multi-Objective Bayesian Optimization
(FlexiBo) algorithm [7]. The approach uses a decoupled evaluation in the Bayesian op-
timisation run but uses a coupled initial DoE procedure. FlexiBo includes two main features:
(1) a new acquisition function that is the expected change in hypervolume if only one
objective function is evaluated, divided by the cost of this function evaluation; and (2) a
confidence region in the objective space for the partially evaluated points. The estimated
cost of evaluating each objective is updated each time the objective is evaluated – this is a
mean estimate of the cost (treating any observed variability as occurring at random).

Most recently, Buckingham et al. extended the multi-attribute Knowledge Gradient [2] to
the case where objectives can be evaluated independently [3]. The authors demonstrate the
benefit of independent evaluation not only when the computational times for objectives differ,
but also when the lengthscales of the modelled landscapes (which determine the smoothness
of the landscape) differ.

A slightly different problem is considered in [8], where one objective is much cheaper
(essentially free) to evaluate than the other. They directly incorporate evaluation of the
cheap objectives into a pair of hypervolume-based acquisition functions for BO. Consequently,
the cheap objectives are evaluated many times while the acquisition function is optimized.

A summary of the different approaches is shown in Table 1, highlighting which methods
feature decoupled and cost-aware acquisition functions during the initial DoE, the subsequent
optimisation run, or both phases.
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Table 1 Existing methods for decoupled cost-aware multi-objective optimisation.

Design of experiments Optimisation
Approach Decoupled? Cost-aware? Decoupled? Cost-aware? Acquisition function
PESMO [6] ✓ ✗ ✓ ✗ predictive entropy search
PFES [11] ✗ ✗ ✓ ✓ cost-weighted Pareto frontier entropy
FlexiBO [7] ✗ ✗ ✓ ✓ cost-weighted objective space entropy
C-MOKG [3] ✗ ✗ ✓ ✓ cost-weighted multi-objective knowledge gradient

4.1.3 New analyses by the working group

4.1.3.1 Initial DoE when evaluations are decoupled

The costs of the objectives are assumed to be the same for now.
Goal: studying the effect on coupled vs. decoupled designs of experiments (DoE) on the

uncertainty on the Pareto front.
To this end, we experiment on Gaussian process models (GPs). More precisely, we

generate samples from a Gaussian process model and use it as the ground truth. The
hyperparameters are supposed to be known to remove the effect of inference. Hence there is
no model mismatch. Examples of outcome are given in Figure 2.
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Figure 2 Top: two realisations of Gaussian process priors, with Matérn 5/2 covariance kernel,
with lengthscale hyperparameters (0.3, 0.4) (resp. (0.4, 0.2)) for f1 (resp. f2), and unit variance.
Bottom: corresponding image in the objective space.

Next, to measure the uncertainty on the Pareto front associated with the fitted GPs, we
rely on the so called Vorob’ev deviation (VD), a set based variance measure, see Algorithm 1
for a pseudo code and, e.g., [4] for the details. The reference point used for hypervolume
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Algorithm 1: Pseudo-code for the testing procedure.
1 Generate the first design of experiments X1 for objective 1.
2 (Coupled case) X2 = X1 the DoE of the second objective is the same.
3 (Decoupled case) Generate X2 the second DoE.
4 Build GP models.
5 Generate s conditional samples on some designs Xs from all GPs.
6 Compute the s non-dominated points on couples of samples from the different GPs.
7 Compute the corresponding Vorob’ev deviation.
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Figure 3 Attainment function representation in the coupled (left) and decoupled (right) cases.
The blue triangle mark observations in the coupled case, where both objectives are evaluated. The
cyan line represents the estimated Pareto front of the GP while the reference Pareto front is in blue.

computations is taken to be (3, 3). An example is provided in Figure 3, where the DoE for
the first objective is the same while the second one is either coupled or decoupled. One
visible effect is that when both objectives are jointly evaluated, the area that is dominated
(attainment value = 1) is larger. This is probably because in the decoupled case, solutions
are never surely dominated (even though the domination probability is extremely low).

We compare VD values of different setups for the coupled and decoupled case:

the DoE for the first objective is either uniformly sampled or is a maximin Latin hypercube
design;
the DoE for the second objective is the same as the first objective (coupled case), uniformly
sampled or an LHS augmenting the DoE of the first objective.

Figure 4 shows the results. Comparing the top row (both initial designs uniformly
sampled) with the middle row (an augmenting LHS used to complement the first uniform
DoE), there seems to be not much difference. However, the bottom row (first design is
sampled with LHS, second uses augmenting LHS) shows a significant improvement of the
Vorob’ev deviation of either the coupled (red dots) or decoupled (box plots) sampling. Clearly,
a space-filling design improves our estimate of the Pareto front, but it seems not sufficient to
only make the design of the second objective space-filling.

Note that with respect to the Vorob’ev deviation, when at least one of the designs is
random (first two rows, first two columns), the red dots are sometimes above and sometimes
below the median of the boxplots, while the red dots are mostly below the median of the
boxplots in the bottom row (full space-filling design). This indicates that at least if a
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space-filling design is used, decoupled sampling is worse than coupled sampling, possibly due
to the effect mentioned above on the size of the known dominated region. Note, however,
that in these experiments we assume equal cost of sampling the two objectives, and equal
lengthscales of the two objectives. As we see later, in other cases decoupling may be beneficial.

The results look slightly different when considering the expected product of the standard
deviations of the GP (right column), which is an indication of the accuracy of the estimation
quality of the models over the entire search space, rather than the Pareto frontier. Here, the
first two rows show a clear benefit of decoupled sampling. However, this benefit seems to
disappear once both objectives are sampled using space-filling designs (third row).
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Figure 4 Boxplots of Vorob’ev deviation with decoupled designs, over 11 different runs and 10
replications per run. In the top row, both initial designs are uniformly sampled, in the middle
row, an augmenting LHS is used to complement the first uniform DoE, and in the bottom row, an
augmenting LHS is used to complement the first LHS design. Left column shows VD, middle column
shows VD against true Pareto front, and right column shows standard deviation product. The value
of the coupled design is in red.
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4.1.3.2 Initial DoE when evaluations have different costs

Now let us assume the cost is different between different objectives f1 and f2 (etc). The first
tasks are to define the total time budget for experiments and get relative costs of f1, f2, . . .,
f3. We will then consider a number of alternative approaches to DoE, including a coupled
baseline.

1. (Coupled) Both functions evaluated at once.
2. (Decoupled naive) Both functions evaluated the same number of times, but at differing

locations. (generated by Augmented LHS)
3. (Decoupled) The allocation of total budget to the two functions depends on lengthscales

and relative costs, according to Eq. 1. Objectives with smaller lengthscales and smaller
cost are sampled more often.

Considering how to split the computational budget, let us consider the simplest case
of optimising a (weighted) sum of two objectives. In such a case, if we want to minimise
integrated mean squared prediction error (IMSPE), then it is not possible to improve beyond
coupled sampling, as the variances of the two functions just add up, and the optimal design
for each function would be the same. However, if the costs or lengthscales are different,
then we could use IMSPE to determine an appropriate allocation of the budget to the two
functions as follows:

min IMSPE(n1)
c1 × n1

+ IMSPE(N − n1)
c2 × (N − n1) , (1)

where N is the total budget, n1 is the number of samples allocated to objective f1, and c1(c2)
are the cost of evaluating objective f1(f2).

As in the previous section, we rely on GP samples to define a ground truth. We also
assume some known values of the lengthscales of the objectives: (0.3, 0.4) for the first,
(0.4, 0.2) for the second. We start with four initial designs for each objective in the various
cases, then 26 decoupled evaluations are performed. We only compare the ‘coupled’, ‘naive’
and ‘decoupled’ strategies. The results are in Figure 5. First, from the IMSPE results, we
observe that the values for objective 1 and 2 are different (importantly, the GP variances
are equal here), due to the different lengthscales. The naive baseline always performs worst.
Then, in the same cost case, there is no change between the coupled and decoupled case. As
the cost of f2 increases, the effect is that the IMSPE of f1 is reduced faster compared to f2,
with no strong detrimental effect on f2 for the same total cost. The outcome is that it is
reasonable to sample more f1, in a ratio that only depends on the lengthscales and relative
cost.

4.1.4 Discussion and future research ideas

In this report, we have examined the possibility of improving the quality of the surrogate
models obtained through a DoE in case of multi-objective optimisation where the evaluation
of the different objectives can be decoupled. We found that for the case of equal lengthscales,
decoupling the evaluations (i.e., evaluating different solutions on different objectives) did
tend to worsen the quality of the Pareto front estimate as measured by Vorob’ev deviation.
However, when objectives had different costs and/or lengthscales, decoupling could improve
results substantially in terms of total IMPSE.

In the future, we plan to investigate also other sampling strategies such as taking into
account the posterior of the first objective when deciding where to evaluate the second
objective, or to learn each objective function’s lengthscale and cost on the fly.
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Figure 5 Left: IMSPE vs. cost for the various strategies. Right: objectives evaluated per iteration.
Top: cost is equal for both objectives, Middle: cost of f2 is 5 times greater, Bottom: cost of f2 is 10
times greater.
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4.2.1 Motivation

Indicator-based evolutionary algorithms are among the most powerful multi-objective al-
gorithms, in particular when using hypervolume (HV) contribution as indicator. They are
not really suitable for many-objective problems, as the computational cost for computing HV

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


R. Allmendinger, C. M. Fonseca, S. Sayin, and M. M. Wiecek 65

14 Vanessa Volz, Boris Naujoks, Pascal Kerschke, and Tea Tušar. Single- and multi-objective
game-benchmark for evolutionary algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2019, Prague, Czech Republic, July 13-17, 2019, pages
647–655. ACM, 2019.

5 Seminar Schedule

Monday, September 4, 2023

09:00–10:30 Welcome Session
• Welcome and introduction
• Short presentation of all participants

Coffee Break
11:00–12:00 Seminar Overview

• Seminar scope
• Offers-and-needs market

Lunch
14:00–15:30 Modelling to Address Budget Constraints

• Juliane Mueller: Surrogate model guided optimization of expensive black-
box multiobjective problems

• Andrea Raith: Problem decomposition in biobjective optimization
Coffee Break

16:00–16:30 Working Group Formation
16:30–18:00 Working Groups

Dinner

Tuesday, September 5, 2023

09:00–09:30 Reporting from Small Working Groups Chair: Matthias Ehrgott
09:30–10:30 Small Working Groups

Coffee Break
11:00–12:00 Heuristic Optimization and Human Involvement Chair: Jürgen Branke

• Thomas Bäck: How to help end users when the budget is limited?
• Robin Purshouse: Towards decision analytic workflows for real-world

problems: Simulation model calibration and multi-objective optimization
on a shared evaluation budget

• Benjamin Doerr: Runtime analysis for the NSGA-II
• Kaisa Miettinen: Perspectives to dealing with computationally expensive

multiobjective optimization problems
Lunch

14:00–15:30 Small Working Groups
Coffee Break

16:00–17:00 Small Working Groups

23361



66 23361 – Multiobjective Optimization on a Budget

17:00–18:00 Reporting from Small Working Groups and General Discussion
Dinner

Wednesday, September 6, 2023

09:00–10:30 Small Working Groups
Coffee Break

11:00–12:00 Approximation and Exact Methods Chair: Karl-Heinz Küfer
• Kathrin Klamroth: Objective space methods: Pareto front approximations

on a budget
• Michael Stiglmayr: Multi-objective branch-and-bound on a budget
• Frank Neumann: Fast Pareto optimization using sliding window selection
• Alma Rahat: Efficient approximation of expected hypervolume improve-

ment using Gauss-Hermite quadrature
12:00-12:15 Group Photo Outside

Lunch
13:30–15:30 Hiking Trip

Coffee Break
16:00–18:00 Small Working Groups

Dinner

Thursday, September 7, 2023

09:00–10:00 Reporting from Small Working Groups Chair: Kaisa Miettinen
Coffee Break

10:30–12:00 Small Working Groups
Lunch

14:00–15:30 Small Working Groups
Coffee Break

16:00–16:30 Graphical and probabilistic approaches Chair: Boris Naujoks
• Ralph Steuer: A visualization-aided approach for solving tri-criterion

portfolio problems
• Hao Wang and Kaifeng Yang: Probability of “improvement” in multi-

objective Bayesian optimization
16:30–17:00 Announcements
17:00–18:00 Joint session with DS22362

Dinner
20:00–23:00 Informal Get Together (BYOB, meet in the cafeteria)

Friday, September 8, 2023

09:00–10:30 Final Reporting from Working Groups
Coffee Break

11:00–12:00 Closing Session



R. Allmendinger, C. M. Fonseca, S. Sayin, and M. M. Wiecek 67

6 Topics of interest for participants for next Dagstuhl Seminar

In the closing session on Friday, the participants reflected upon their experience and presented
their ideas on a potential future seminar that would leverage the progress made during
the current one. During this discussion, some topics appeared to center around “Artificial
Intelligence (AI)”. A two-way perspective was suggested: AI for multiobjective optimization
and multiobjective optimization for AI. Another suggestion was to focus on the “gap” between
the industrial and the academic practice of multiobjective optimization. This suggestion was
well-received by both industrial and academic participants of the seminar as the focus during
the week was on a “budget” that might also mean decision maker’s limitations. Focusing on
how the theoretical and methodological achievements on the academic front can be made
more accessible to practitioners in industry may be a future direction to pursue. This
direction will also possibly require placing more emphasis on modelling, handling the noise,
errors and uncertainties in the process. The organizers will use these suggestions as the basis
for their discussion about possible topics for the next edition of this seminar series and for
the preparation of a proposal for a continuation of the series.

7 Changes in the seminar organization body

As part of a continuing effort to renew the organizing board of this series of Dagstuhl
Seminars, Margaret Wiecek steps down from the team of organizers, a role that she has
held for three terms of office. On behalf of all the participants of the seminar, Richard
Allmendinger, Carlos Fonseca and Serpil Sayin would like to express appreciation to Margaret
for her contributions and leadership that have been fundamental for the series success.

We are pleased to announce that our esteemed colleague and a multiple-times Dagstuhl
attendee Susan Hunter has agreed to serve as a co-organizer for future editions of this
Dagstuhl Seminar series on Multiobjective Optimization. We look forward to collaborating
with her in the near future.
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