
A graph theoretic approach to determining the transfer functions of
mechanical networks, towards efficient computation of their H2 norms

Gareth H. Willetts and Timothy H. Hughes1

Abstract— An alternative method for the determination of
a transfer function of a single-input single-output mechanical
system is given, illustrated with a model of a train suspension
system taken from [5], and its application in H2 norm analysis
following [7]. This example is demonstrated with a MATLAB
workbook, which follows the example step-by-step, calculating
the H2 norm from this transfer function numerically and
symbolically. Building on this, this method is then embedded
within an interior point optimisation scheme within MATLAB,
demonstrating how a workflow using these methods may look,
and demonstrating a speed up factor of around 20 times.
Computation time is given and compared to existing methods
built in to MATLAB. The associated code to reproduce all
results in this paper can be found on Github [6].

I. INTRODUCTION

The transfer function is a widely used characteristic of
a (linear) system. Transfer functions allow for frequency-
domain perspectives, useful for analysing frequency re-
sponses, determining stability from the poles in the complex
plane and designing control systems. They also determine
the most commonly considered performance characteristics
of the system, such as the H2 and H∞ norms.

It can often be useful to obtain the transfer function of a
system given a graphical representation of the components in
the system and their constituent behaviours, e.g., a schematic
of a mechanical network or electric circuit. In particular,
this then allows for calculation of performance characteristics
using transfer function methods, such as the efficient method
for computing the H2 norm from [7] which we will further
explore in this paper.

Given the range of methods available for analysis of first-
order state-space realisations, it is common for analysis of
transfer functions to be neglected in favour of state-space
methods. In the context of H2 norm computation, such meth-
ods amount to the solution of Lyapunov equations, yet [7]
emphasised the inefficiency of this approach and introduced
a more efficient transfer function method for computation of
the H2 norm. Furthermore, the construction of a state-space
realisation for a given mechanical network or electric circuit
from a schematic can be quite cumbersome [2]. Accordingly,
in this paper, we introduce a method based on Kirchhoff’s
tree theorem to directly compute the transfer function of
a mechanical network from its schematic, bypassing the
need for a state-space realisation. The results are equally

1Gareth H. Willetts and Timothy H. Hughes are with the Department of
Earth and Environmental Sciences, University of Exeter, Penryn, Cornwall,
ghw205@exeter.ac.uk, t.h.hughes@exeter.ac.uk.
For the purpose of open access, the author has applied a Creative Commons
Attribution (CC BY) licence to any Author Accepted Manuscript version
arising from this submission.

applicable to electric circuit analysis using the force-current
analogy [4].

This method builds on the work of Percival [3], ex-
panding the work on Kirchhoff’s tree formula for electrical
networks, whose edges have differential equation relation-
ships/admittances, to mechanical networks. In Section II we
provide a summary of some of the notation and results in [3]
in the context of mechanical networks. Section III outlines
the method to determine a transfer function of the mechanical
network, once the initial graph G has been constructed
following the definition in Section II.

The method is illustrated with a model of a train suspen-
sion system in Section IV taken from [5]. This example was
used in [7] to determine the H2 norm of a mechanical net-
work from its transfer function. For comparison, a free body
diagram approach is introduced in Section V. The benefits of
the method introduced in this paper are outlined in Sections
VI and VII, notably the simplification of determining the
transfer function of a mechanical system bypassing the often
cumbersome construction of a state-space realisation entirely.
We combine this method with the method from [7] for
symbolic computation of the H2 norm from the coefficients
of a transfer function, and we embed this within an interior
point optimisation algorithm to provide an efficient method
for the optimal design of a mechanical network. This is
compared with an alternative optimisation approach using
existing functionality in MATLAB, and is demonstrated to
be around 20 times faster.

II. NOTATION

As mentioned, this paper extends the work of Percival [3].
We begin by providing a summary of the notation from the
aforementioned paper, for mechanical networks:

1) G denotes an undirected graph, constructed using the
components of the mechanical system. One node on
the graph represents ground, and every other node
represents a point of connection. The edges connecting
the nodes in the graph represent components, with
weights denoting the mechanical admittance of the
components (i.e., the equal and opposite force applied
at the two end points of the element and directed along
the axis between these two end points divided by the
component of the relative velocity of these two end
points in the same direction, where positive values
imply that the force is directed outwards and the two
end points are moving apart, and where the force and
velocity are in the Laplace domain and assumed to
have zero initial conditions). Every mass component is

represented by an edge between its point of connection
with other components and the ground node1;

2) vab,cd denotes the component of the relative velocity
between nodes c and d along the axis between these
two nodes when either (i) the component of the relative
velocity between nodes a and b along the axis between
those two nodes is equal to v; or (ii) an equal and
opposite force F is applied at nodes a and b along the
axis between those two nodes (for any given nodes a,
b, c and d on the graph G). Here, a positive value of v
(resp. vab,cd) implies that nodes c and d (resp. a and b)
are moving apart, while a positive value of F implies a
force that is directed outwards along the axis between
nodes a and b. The force F and velocities v and vab,cd
are in the Laplace domain and are assumed to have
zero initial conditions;

3) T and Ta,b are tree admittance products (to be defined
in the next section) corresponding to the weighted
graph G and the weighted graph Ga,b obtained by
connecting node a to node b on the graph G (for any
distinct pair of nodes a, b on the graph G);

4) By definition, Ta,a = 0 for any given node a.

III. METHOD

Following [3], the method for obtaining transfer functions
of passive electrical networks using mathematical trees has
been adapted to obtain a transfer function of a mechanical
network using a graphical approach as follows. First, an
undirected graph G must be constructed following the ap-
proach in Section II of this paper. For any given graph, with
associated edge weights (admittances) and for any given pair
of distinct nodes a, b on the graph G, the tree admittance
product T or Ta,b (see point 3 in Section II) is obtained by:

1) finding every spanning tree on the relevant graph (G
or Ga,b),

2) multiplying the admittances of all of the edges on each
of these spanning trees,

3) summing all of these admittance products together.
The transfer function is then obtained from the following

equations:

vab,cd
v

=
Ta,d + Tb,c − Ta,c − Tb,d

2Ta,b
, (1)

vab,cd
F

=
Ta,d + Tb,c − Ta,c − Tb,d

2T
. (2)

This follows from Eqns. (38) and (40) in [3], referring
to the notation on the first page of the paper. Note that
in [3], Ta,b is instead characterised as 2-trees, which are
two disjointed trees on the graph that cover all nodes, one
of which contains node a and the other of which contains
node b. Our equivalent characterisation of these using the
connection of nodes on the graph of the network allows for
their computation using standard algorithms for obtaining

1Note that admittance is sometimes defined as the inverse of this quantity.
The definition that we choose is analogous to electrical admittance under
the force current analogy, which allows us to directly apply Kirchhoff’s tree
theorem to the analysis of mechanical networks.

the spanning trees of a given graph. Further discussion of
this equivalent characterisation and the proof of this graph
theoretic method for obtaining the transfer function of a
network will follow in an upcoming journal paper. This paper
is only intended to outline the methodology.

To obtain the transfer function of the mechanical system,
the following steps are executed in order.

• First, construct the graph of your mechanical network,
following the definition of G in Section II,

• Next, combine edges and sum their corresponding
weights when there is more than one edge connecting
any pair of nodes, in order to simplify the graph and
remove repeated edges,

• Combine pairs of nodes to form new graphs correspond-
ing to those whose tree admittance products appear in
Eqns. (1) or (2),

• In each of the graphs formed in the previous stage, sum
the admittances of any repeated edges and remove any
edges that connect a node to itself,

• Find all spanning trees on each of these graphs and
sum their admittance products, as described at the start
of Section III,

• Substitute these values into the Eqns. (1) or (2) to
compute the transfer function.

After the first step, where the graph G is constructed,
the rest of the steps can be automated using code; specif-
ically, using programming languages which allow for the
calculation of spanning trees of a simple, undirected graph
with weighted edges. In the context of electric circuits,
further work could look at automating the construction of
the weighted graph G from a SPICE netlist generated from
a circuit schematic drawn in a graphical user interface, e.g.,
using the programme LTspice. This approach will also be
relevant to mechanical networks using the force-current anal-
ogy (where springs, dampers and inerters are represented by
inductors, resistors and capacitors, respectively, and masses
are represented by capacitors connected to ground). The
authors are unaware of any user interfaces that can directly be
used to create weighted graph descriptions from a mechanical
network schematic.

The next section will feature an example using MATLAB
and its Symbolic Toolbox, but equivalently can be carried
out in Python using its NetworkX package and SymPy. This
will be discussed later in Section VII.

The final two steps are potentially inefficient due to the
number of computations involved, as each admittance prod-
uct in the numerators of Eqns. (1) and (2) will be computed
twice and some of these will cancel when those numerators
are computed. We are in the process of developing an
algorithm that determines which admittance products appear
in those numerators prior to computation, which may prove
to be more efficient.

IV. EXAMPLE

To put this into context, consider the model of a train
suspension system in [5]. Using this example, we have the
following mechanical network:

kw cw

Q2

Q1

zr

zs

zu

mw

mb

ms e

d

c

b

a

Fig. 1. Model of a train suspension system, with associated graph node
labels and displacements. Here, ms denotes the sprung mass, mb the mass
of the bogie, mw the mass of the wheel, kw the wheel stiffness, cw the
wheel damping coefficient, and Q1 and Q2 are suspension admittances to
be designed (see [7]).

Using the nodes on Fig. 1 and the connections between
the mechanical components, we obtain the following graph
G.

a

c b

d

e

m
w s

mbs

mss

cw

kw

s

Q 2
(s
)

Q 1
(s
)

Fig. 2. Graph G, constructed from the mechanical network in Fig. 1
following the definition in Section II. Note that this is the original graph,
before any repeated edges are combined (e.g., the edges between nodes b
and c). This is shown in Fig. 1 of the MATLAB workbook [6].

As there are two edges between nodes b and c, represent-
ing the spring and damper connected in parallel, the edges are
combined and the weights summed to produce the following
simplified undirected graph:

a

c b

d

e

m
w s

mbs

mss

cw + kw

s

Q 2
(s
)

Q 1
(s
)

Fig. 3. Graph G after the edges between nodes b and c are combined by
summing the weights of the edges. This is shown in Fig. 2 of the MATLAB
workbook [6].

The desired transfer function is from the displacement of
the train wheel (zr in Fig. 1) to the velocity of the sprung
mass (the time derivative of zs in Fig. 1), i.e., vab,ae/(v/s).
The H2 norm of this transfer function is a measure of
passenger comfort. To obtain this, referring back to Eqn.
(1), we require

vab,ae
v/s

=
s(Ta,e + Tb,a − Tb,e)

2Ta,b
, (3)

as we know that Ta,a = 0.
Thus, we begin by combining nodes a and e to calculate

Ta,e as follows. Each spanning tree will be drawn for this
first graph, to illustrate the method and to visualise what the
code in the associated MATLAB workbook [6] is doing. This
content is provided for tutorial purposes and includes some
duplication of computation of admittance products which can
be avoided as indicated at the end of the last section.

a

c b

d

m
w s

mbs

cw + kw

s

Q 2
(s
)

Q1(s)

m
s s

Fig. 4. The graph obtained by combining nodes a and e, in order to
calculate Ta,e.

As can be seen above, in Fig. 4, combining nodes a and e
creates a loop at node a, and there are two edges between a
and d. The loop at a is removed per the method outlined
in Section III, and edges between a and d combined by
summing the weights and removing the repeated edge:

a

c b

d

m
w s

mbs+Q1(s)

cw + kw

s

Q 2
(s
)

Fig. 5. The simplified graph, obtained by combining nodes a and e and
combining repeated edges, as well as removing the loop at node a.

Next, we find all spanning trees of this graph and sum
their admittance products. For this graph, there are 3 different
spanning trees.

a

c b

d

m
w s

mbs+Q1(s)

cw + kw

s

Fig. 6. The first spanning tree of the graph shown in Fig. 5, with admittance
product mws(mbs+Q1(s))(cw + kw

s
).

a

c b

d
mbs+Q1(s)

cw + kw

s

Q 2
(s
)

Fig. 7. The second spanning tree of the graph shown in Fig. 5, with
admittance product Q2(s)(mbs+Q1(s))(cw + kw

s
).

a

c b

d

m
w s

cw + kw

s

Q 2
(s
)

Fig. 8. The final spanning tree of the graph shown in Fig. 5, with admittance
product mwsQ2(s)(cw + kw

s
).

Summing the admittance products from Figs. 6, 7, 8 yields
a tree admittance product of ((kw + cws)(Q1(s)Q2(s) +
mbmws

2 + Q2(s)mbs + Q1(s)mws + Q2(s)mws))/s. It’s
worth noting that the edge between nodes b and c appears in
all three graphs, and thus is a factor in all three admittance
products. There can be some efficiency gains in accounting
for this, as there will be fewer computations if the tree
admittance products of the graph omitting this edge is
computed, and then multiplied by this edge weight. This

is an example of one of the rules included in the Percival
paper [3] to calculate tree admittance products. That paper
considered how this could be done manually, and further
work could consider how this could be automated. This is
particularly relevant when computing the denominator terms
Ta,b or T in Eqns. (1) and (2). We expect that a different
approach, described briefly at the end of Section III, will be
more effective at improving the efficiency of the computation
of the numerator terms in those equations.

We repeat this for node pairs b and a, and b and e
(omitted for brevity), to calculate Tb,a and Tb,e respectively.
Substituting these into the formula (3) returns the desired
transfer function.

Taking this transfer function, we can follow the method in
reference [7] to obtain the H2 norm of this transfer function.
This is shown in the MATLAB workbook [6], expanding
on the method outlined in reference [7] by determining a
symbolic expression for the H2 norm and using an uncon-
strained minimisation technique to minimise the H2 norm
over two variables c1 and c2, where Q1(s) = ks

s + c1 and
Q2(s) =

kb

s + c2. This optimisation problem was considered
in reference [5], and our results confirm theirs. Alternatively,
the H2 norm can be calculated numerically via the same
method for specified values of c1 and c2.

V. FREE BODY DIAGRAM APPROACH

For comparison, a free-body approach is applied in MAT-
LAB through the following implementation. We isolate each
of the masses in turn, drawing the corresponding free body
diagram and writing out the relevant equations using New-
ton’s Second Law. We consider the mechanical network to
be originally at rest, and for a fixed but arbitrary non-zero
input displacement zr to be applied whose Laplace transform
zr(s) exists. We then seek the relationship between this
and the Laplace transforms zs(s), zu(s) and zw(s) of the
displacements zs, zu and zw.

Q1(s)(szs(s)− szu(s))

zs

ms

Fig. 9. Considering the mass of the train body, ms.

First, considering the mass attributed to the train body ms,
we obtain the following equation:
mss

2zs(s) = −Q1(s)(szs(s)− szu(s)).

Q1(s)(szs(s)− szu(s))

Q2(s)(szu(s)− szw(s))
zu

mb

Fig. 10. Considering the mass of the train bogie, mb.

Next, considering the mass attributed to the train bogie
mb, we obtain the following equation:

mbs
2zu(s) = Q1(s)(szs(s) − szu(s)) − Q2(s)(szu(s) −

szw(s)).

Q2(s)(szu(s)− szw(s))

(cw + kw
s)(szw(s)− szr(s)))

zw

mw

Fig. 11. Considering the mass of the train wheel, mw .

Finally, considering the mass attributed to the train wheel
mw, we obtain the following equation:
mws

2zw = Q2(s)(szw(s)−szw(s))−(cw+
kw

s)(szw(s)−
szr(s))).

These three equations are arranged to form the matrix
equation Kx = L, where

K =

[
mss

2+Q1(s)s −sQ1(s) 0

−sQ1(s) s2mb+s(Q1(s)+Q2(s)) −sQ2(s)

0 −sQ2(s) mws2+Q2(s)s+cws+kw

]
,

x = [x1 x2 x3]
T
= [zs(s)

zr(s)
zu(s)
zr(s)

zw(s)
zr(s)]

T
, and L =

[
0
0

cws+kw

]
.

The desired transfer function is then given by

szs(s)

zr(s)
=

[
s 0 0

]
x.

and thus substituting K−1L for x yields the transfer function.
These polynomial matrix equations allow for the compu-
tation of the desired transfer function. In the MATLAB
workbook, we proceed via calculating the inverse of the
matrix K symbolically. Further work can investigate how the
efficiency and accuracy can be improved through polynomial
matrix algebra.

VI. OPTIMISATION

The following table comprises the main results of this
paper, summarising the timings for optimisation of the H2

norm, starting from the schematic of the train suspension
system shown in Fig. 1. This provides a comparison between
the methods presented in this paper and in reference [7], and
MATLAB’s inbuilt methods.

In the approach titled ”Graph theoretic approach and [7]”,
the relevant H2 norm squared is computed symbolically us-
ing the graph theory approach to computing the transfer func-
tion described in Section IV and the approach for symbolic
computation of the H2 norm squared described in reference
[7]. This is passed to an unconstrained minimisation scheme
in MATLAB, to determine the optimal values for the decision
variables c1 and c2 (the to-be-specified damping rates in
the mechanical network). The function mapping the decision
variables in the optimisation to the H2 norm can also be
used to compute the Gradient vector and Hessian matrices
symbolically if required by the optimisation scheme, but this
is not done here as it slows down the computation. Further
work could explore this for different systems, to see if there
are any potential efficiency gains.

In the approach titled ”Free-body diagrams and norm
function” the free-body diagram method outlined in Section
V is combined with MATLAB’s in-built norm function
to construct a function that, given inputs corresponding to
the decision variables c1 and c2, returns the desired H2

norm. This function is then passed to the same unconstrained
minimisation scheme.

Timings (s)
Graph theoretic approach and [7] 0.1460

Free-body diagrams and norm function 2.8098

Fig. 12. Table showing computation times for determining the transfer
function used in Section IV, and optimisation of its H2 norm over c1 and
c2.

The table in Fig. 12 shows a speed up factor of approx-
imately 20 times using the methods presented here and in
reference [7]. The approach considered in this paper is gener-
alisable to H2 norm optimisation of any single-input single-
output mechanical network comprising an interconnection
of linear springs, dampers, masses and inerters, subject to
the usual limitations inherent in nonlinear optimisation. The
extension to multi-input multi-output mechanical networks
will be presented in a subsequent publication.

These MATLAB results are provisional, and investigations
are ongoing into how the efficiency can be further improved.

VII. DISCUSSION

The approach presented here involves a complete symbolic
calculation of the square of the H2 norm to obtain a function
mapping the unknown parameter values (the decision vari-
ables in the optimisation) to the H2 norm. In other words,
the transfer function and H2 norm computation is executed
only once but symbolically in order to obtain a function to
pass to an optimisation routine. Alternatively, the function
passed to the optimisation routine can instead comprise the
algorithm for computing the transfer function and its H2

norm, which will then be evaluated numerically within the
optimisation routine. Further work can consider the relative
efficiency and accuracy of these two approaches when used
alongside various optimisation routines.

In contrast, MATLAB’s inbuilt functionality requires the
symbolic expression of the transfer function to be evaluated
numerically before being passed to the optimisation scheme
and at each subsequent step in the optimisation, which slows
down the method considerably.

Next, a comparison of the two methods for determining
the transfer function symbolically (i.e., as an expression in
terms of c1 and c2) will be shown.

Timings (s)
Graph method for transfer function 0.0451

Free-body diagram for transfer function 0.0251

Fig. 13. Table showing computation times for determining the transfer
function of the model train suspension system outlined in Section IV.

It’s noted that the computation time for the graph method
(described in Sections III and IV) is just under double
the computation time of the free-body diagram method, as
observed in Fig. 13, and thus a larger speed up factor could
have been observed in Fig. 12 if we had used the free-
body diagram approach alongside [7] to calculate the H2

norm. The graph approach has the advantage of requiring less

manual intervention once the graph G has been constructed,
and therefore is arguably easier to check and avoid errors
in computation. The relative efficiency of both methods as
the system grows in size is as yet unknown pending further
investigation.

As discussed earlier, it is expected that the efficiency of the
graph method can be improved considerably. In particular,
each of the admittance products in the numerators of Eqns.
(1) and (2) are being computed twice and further work can be
done to adjust the method to avoid this double computation.
This can be done through using logical operations on lists.
Referring back to Eqn. (1), a list can be constructed of all of
the trees that appear in both of the sets of trees featuring in
the tree admittance products Ta,d and Tb,c. Another list can
be constructed of all of the trees that appear in both of the
sets of trees featuring in the tree admittance products Ta,c

and Tb,d. The trees that appear in both lists can be removed,
and the sum of the tree admittance products that remain in
the first list less the sum of the tree admittance products
in the second list will correspond to half of the value of
the numerator in Eqn. (1). This avoids double computation,
which is particularly computationally expensive when using
symbolic admittances.

As also described earlier, it is expected that further ef-
ficiency gains can be obtained by automating the manual
techniques for efficiently computing tree admittance products
described in [3]. One technique, of relevance to the worked
example in Section IV, involves decomposing the graph
into biconnected components, whereupon the tree admittance
product will be given by the tree admittance products for
each of these biconnected components [1]. MATLAB and
Python both offer functions to return the biconnected com-
ponents of a graph.

A Python implementation is being developed using the
NetworkX package which circumvents certain issues entirely,
notably that MATLAB does not support symbolic weights
for graphs and thus look-ups are performed between vectors
currently. Python can support symbolic weights with SymPy,
and these can be used alongside NumPy arrays, which are
expected to increase performance.

VIII. FURTHER WORK

Journal papers are being prepared, consolidating the work
of this paper and [7] with mathematical proofs of various
stages, and performance metrics. These papers will also
describe a new version of the algorithm described in [7] that
is more tailored towards numerical computations as opposed
to symbolic. These methods can also be applied in a multi-
input multi-output setting, which is yet to be explored, but
will feature in this future work.

Further specific examples could be explored and docu-
mented in order to showcase the advantages of this method
over conventional Lyapunov approaches. A work package
considering a general solution to the polynomial Diophantine
equation in [7] could be completed, extending some of the
techniques used in calculating the H2 norm. This could form
a toolbox of general polynomial tools, for use in common

mathematical programming languages such as MATLAB and
Python.

Finally, it is aimed for these techniques to be packaged
up and shared as MATLAB and Python toolboxes, with
associated documentation, for use in research and industry.

IX. CONCLUSION

A novel method for calculating a transfer function of a
mechanical network has been shown, motivated by the need
for efficient determination of the transfer function of a given
system for H2 norm analysis. This has been applied to a
model of a train suspension system, taken from [5]. For
this example, the graph-theoretic approach to determining
the transfer function took 0.0451s, and it’s noted that there
is potential for this to be even faster by avoiding repetition in
its computation. A full optimisation of the H2 norm for the
train suspension example takes 0.1460s, using the method
outlined in this paper along with the method for calculating
the H2 norm symbolically from the coefficients from its
transfer function [7]. In contrast, MATLAB’s norm function,
along with a free-body approach to determining the transfer
function, takes 2.8098s, and is unable to compute a symbolic
expression for the H2 norm.

REFERENCES

[1] J. Hopcroft and R. Tarjan. “Algorithm 447: Efficient
algorithms for graph manipulation”. In: Communica-
tions of the ACM 16.6 (June 1973), pp. 372–378. DOI:
10.1145/362248.362272.

[2] T.H. Hughes. “Passivity and Electric Circuits: A behav-
ioral approach”. In: IFAC-PapersOnLine 50.1 (2017),
pp. 15500–15505. DOI: 10 . 1016 / j . ifacol .
2017.08.2117.

[3] W.S. Percival. “The solution of passive electrical net-
works by means of mathematical trees”. In: Journal of
the Institution of Electrical Engineers 1953.5 (1953),
pp. 214–214. DOI: 10.1049/jiee-2.1953.0144.

[4] M.C. Smith. “Synthesis of mechanical networks: The
inerter”. In: IEEE Transactions on Automatic Control
47.10 (2002), pp. 1648–1662. DOI: 10.1109/tac.
2002.803532.

[5] F.C. Wang et al. “The performance improvements of
train suspension systems with mechanical networks
employing inerters”. In: Vehicle System Dynamics 47.7
(2009), pp. 805–830.

[6] G.H. Willetts. Github Repository: GraphsUKACC2024.
Nov. 2023. URL: https : / / github . com /
GarethWilletts/GraphsUKACC2024.

[7] G.H. Willetts and T.H. Hughes. “Efficient and sym-
bolic computation of the H2 norm via the polynomial
Diophantine equation”. In: 2022 UKACC 13th Interna-
tional Conference on Control (CONTROL) (2022). DOI:
10.1109/control55989.2022.9781359.

X. ACKNOWLEDGEMENT

This work was fully supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) grant
EP/T518049/1 for the University of Exeter.

https://doi.org/10.1145/362248.362272
https://doi.org/10.1016/j.ifacol.2017.08.2117
https://doi.org/10.1016/j.ifacol.2017.08.2117
https://doi.org/10.1049/jiee-2.1953.0144
https://doi.org/10.1109/tac.2002.803532
https://doi.org/10.1109/tac.2002.803532
https://github.com/GarethWilletts/GraphsUKACC2024
https://github.com/GarethWilletts/GraphsUKACC2024
https://doi.org/10.1109/control55989.2022.9781359

	Introduction
	Notation
	Method
	Example
	Free Body Diagram Approach
	Optimisation
	Discussion
	Further Work
	Conclusion
	Acknowledgement

