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Automated medical coding, an essential task for healthcare operation and delivery, makes unstructured data manageable by

predicting medical codes from clinical documents. Recent advances in deep learning and natural language processing have

been widely applied to this task. However, deep learning-based medical coding lacks a uniied view of the design of neural

network architectures. This review proposes a uniied framework to provide a general understanding of the building blocks

of medical coding models and summarizes recent advanced models under the proposed framework. Our uniied framework

decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, mechanisms for

building deep encoder architectures, decoder modules for transforming hidden representations into medical codes, and the

usage of auxiliary information. Finally, we introduce the benchmarks and real-world usage and discuss key research challenges

and future directions.

CCS Concepts: · Applied computing→Health care information systems; Document management and text processing; ·

Computing methodologies→ Natural language processing.
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1 INTRODUCTION

In the ield of Natural Language Processing (NLP), deep learning that builds deep neural networks for rep-
resentation learning has attracted signiicant attention from the research community and achieved superior
performance in various applications such as automatic extraction of useful information and answer generation
from human queries [139, 167]. NLP techniques allow the machine to process human languages automatically
and have been widely studied in analyzing health-related texts, measuring healthcare quality, and promoting
the delivery of healthcare services. For example, Sentic PROMs (patient-reported outcome measures) enable
patients’ physio-emotional sensitivity tracking and measuring healthcare quality through sentic computing on
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free-text patient notes [21]. Contextualized text representations and classiication models also facilitate outbreak
management during epidemics [90]. There are other patient-centered applications, such as proactive mental
healthcare [79] and patient opinion mining [22], to name a few. This review focuses on deep neural network-based
NLP techniques for automated medical coding with medical ontologies, also known as medical code assignment,
medical code prediction, medical coding, or clinical coding. Medical code assignment uses all types of clinical
notes to predict medical codes in a supervised manner with human-annotated codes [144], formulated as a
multi-class multi-label text classiication problem in the medical domain. Most deep learning-based medical
coding models are trained in a centralized manner, while some recent publications investigate the emerging
application of federated learning [34].

Healthcare workers write clinical notes about a patient’s health status to document their insights and observa-
tions for further diagnosis decision support. Clinical notes as free-text descriptions are an essential component of
Electronic Health Records (EHRs), which contain patient medical history, symptom description, lab test result
summary, reasons for diagnoses, and daily activities [105]. Diagnosis codes in typical medical classiication
systems identify a patient’s diseases, disorders, symptoms, and speciic reasons for the hospital visit. In contrast,
procedural codes or intervention codes identify surgical, medical, or diagnostic interventions. Diagnosis codes,
which a trained health professional assigns, act as the standard translation of written patient descriptions. Diag-
nostic coding is an integral part of the clinical coding process in health information management with procedural
codes. Medical coding, particularly for billing purposes, often operates separately from the clinical care process
and may not signiicantly impact immediate patient care decisions. While medical coding primarily serves billing
and administrative purposes, accurate coding does have broader implications for healthcare quality assessment,
research, and resource allocation [18, 20, 132]. It can play a role in retrospective analysis, identifying trends in
patient populations, and assessing the efectiveness of certain treatments or interventions.

Clinical notes are usually annotated with standardized statistical codes to facilitate information management.
Diferent diagnosis classiication systems utilize various medical coding systems. The International Classiication
of Diseases (ICD) system, maintained by the World Health Organization (WHO), is one of the most widely-used
coding systems adopted in countries across the globe1. The ICD system transforms diseases, symptoms, signs, and
treatment procedures into standard medical codes. It has been widely used for clinical data analysis, automated
medical decision support [37], billing, and medical insurance reimbursement [141]. Speciic versions of ICD
include ICD-9, ICD-9-CM, ICD-10, and ICD-11. Most ICD-9 codes consist of three digits to the left of a decimal
point and one or two digits to the right. Some ICD-9 codes have łVž or łEž in front of the digits, representing
preventive health services and environmental causes of health problems. Figure 1 shows a fragment of the
patient’s clinical note with ICD-9-CM codes assigned. The ICD-9-CM created by the US National Center for
Health Statistics (NCHS) adapts ICD-9 codes used in the United States. The irst three characters of ICD-10
codes deine the category, and the next three digits describe the etiology, anatomic site, severity, and other vital
information. The latest ICD version is ICD-11, which will become efective in 2022, while older versions such as
ICD-9, ICD-9-CM, and ICD-10 are also concurrently used. Other widely used medical condition classiication
systems include the Clinical Classiications Software (CCS) and Hierarchical Condition Category (HCC) coding.
It is worth noting that CCS and HCC are derived directly from ICD codes and serve as specialized, broader
categorizations within the ICD framework, tailored for speciic purposes.

Properly coded medical information is vital for clinical decision-making, public health surveillance, research,
and reimbursement. Automated care pathways are often triggered by patients receiving a speciic diagnosis code.
On the national scale, care guidelines are often structured around diagnosis codes, providing interventions for
clearly deined conditions [54, 186]. On the healthcare provider side, quantitative measurement of healthcare
efectiveness and care development is, by necessity, based on code-based logic. Questions, such as how many

1https://www.who.int/standards/classiications/classiication-of-diseases
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Fig. 1. A medical coding model maps an example clinical note to the corresponding ICD procedure and diagnosis codes.

patients diagnosed with a given illness received appropriate care, can only be measured quantitatively based on
medical coding [47]. Automated diagnosis coding can also be deployed to detect missed diagnoses and adverse
efects [126]. Efective treatment often relies on the early detection of symptoms, and pre-emptive healthcare can
only be built on technology sensitive to slight deviations in the patient’s health state.

Automatic medical code assignment uses feature engineering techniques and machine learning-based classiiers
to predict medical codes from clinical notes [41]. Medical coding requires eicient matching between textual
mentions and speciic diagnosed codes. It exploits the dependencies between input and output variables by
learning structured output representation. Traditional medical coding systems deploy rule-based methods [59],
select manual features [125], and apply machine learning-based classiication models such as Support Vector
Machines (SVM) [17] and Bayesian ridge regression [112]. The hierarchical structure of the code system, depicted
as a tree structure with multiple levels, is a basic pattern for improving the automated coding method. For
example, Perotte et al. [144] adopted the ICD hierarchy and developed lat and hierarchical SVM for diagnosis
code classiication. The breakthrough of natural language processing with deep neural networks has led to neural
classiiers with word embedding and deep learning [182]. Neural methods for medical text encoding intensively
use recurrent neural networks (RNNs), convolutional neural networks (CNNs), and neural attention mechanisms,
where parameter selection is a vital issue [113].

However, three main challenges remain in processing medical text and automated coding.

(1) Noisy and Lengthy Clinical Notes. Clinical notes contain many professional medical vocabularies and noisy
information such as non-standard synonyms and misspellings. They are usually lengthy documents containing
many types of clinical information, such as health proiles, lab tests, radiology reports, operative reports, and
medications. Thus, they typically have hundreds or even thousands of words. Some patients with long hospital
stays may have much longer written notes. Additionally, writing styles can vary from one healthcare professional
to another, with domain-speciic lingo giving a given word diferent meanings depending on context. The medical
practice also evolves with time, with coding systems and notation changing from one year to another.

(2) High-dimensional Medical Codes. Medical notes are associated with multiple diagnoses, usually treated as a
multi-label extreme classiication problem containing a large label set. The high-dimensional label space has
thousands of codes. For example, ICD-9 and ICD-10 coding systems have more than 14,000 and 68,000 codes,
respectively. The space of target classes is exponential to the number of output classes making it extremely
challenging when facing high-dimensional medical ontologies.

(3) Imbalanced Classes. A patient typically is diagnosed with only a couple of codes over the whole coding
space, while patients with complicated diseases are associated with dozens of codes. Moreover, because of the
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existence of common and rare diseases, the distribution of medical codes in an EHR system is imbalanced, also
known as the long-tail phenomenon. For example, the distribution is highly skewed in the MIMIC-III dataset [85],
as shown in Fig. 22. The limitation of data acquisition also exacerbates the imbalance. The data from intensive
care units such as the MIMIC-III contains severe cases with other complications. Patient records of the visit to
general practitioners only have some general codes.
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Fig. 2. The distribution of ICD codes in the MIMIC-III dataset curated by Mullenbach et al. [131].

As an interdisciplinary study, the successful development of automated medical coding requires the collabora-
tion between computer scientists and clinical coders [172]. Automated medical coding still has a long way to
go with such challenging matters. This review illustrates the development trend in recent deep learning-based
medical coding methods and proposes a uniied encoder-decoder framework to shed light on future research. We
investigate how the existing methods can be categorized into the encoder-decoder framework widely adapted by
many AI applications and summarize and review deep learning-based natural language processing techniques for
automated medical coding to provide theoretical and pragmatic insights into the varieties and nuances of neural
network architectures in this ield. We unify recent neural network-based methods into an encoder-decoder
framework and introduce them under this uniied framework. This review is organized as follows. Sec. 2 intro-
duces related reviews in this ield and highlights our contributions. We formulate the uniied encoder-decoder
framework and corresponding building components in Sec. 3. Sec. 4 introduces widely-used benchmarks and
real-world applications. We discuss current limitations and point out future research directions in Sec. 5. Finally,
we conclude our studies in Sec. 6.

2 RELATED REVIEWS AND CONTRIBUTIONS

There have been several systematic and narrative reviews on automated medical coding, as summarized in Table 1.
One of the irst reviews reported the published accuracy of discharge coding in literature [24]. Burns et al. [19]
conducted an updated review on the accuracy of routinely collected data following Campbell et al. [24]. Stanill
et al. [160] introduced some conventional classiication methods and evaluated diferent types of automated
coding systems. Campbell et al. [23] conducted an application-oriented review of computer-assisted clinical

2The number documents on the y-axis, rather than the number of visits, follows the convention of Mullenbach et al. [131] and is mostly used

in NLP community.
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coding. A recent systematic review [88, 89] followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines and searched publications with machine learning (ML) and natural language
processing techniques. The authors reviewed publications from 2010 to 2020 in a narrative way. Khope and
Elias [91] conducted a similar systematic review but focused on the studies that used the MIMIC-III dataset.
Fewer reviews covered technical matters in medical coding. Teng et al. [164] conducted a technical review that
discusses recent advances in machine learning and natural language processing on medical coding. Published in
early 2022, it is a concurrent work focusing on feature engineering-based classiiers and deep learning methods.
However, it does not provide a uniied view that can generalize to all the nuanced varieties of deep learning
architectures or cover the most recent learning algorithms for automated medical coding. Those limitations of
exisiting reviews motivate us to propose a uniied view of automatic medical coding models.

Publications Period Category Scope or Focus

Campbell et al. [24] 1975 - 1998 Systematic review Coding accuracy

Stanill et al. [160] 1996 - 2009 Systematic review Automated coding tools

Burns et al. [19] 1990 - 2010 Systematic review Coding accuracy

Campbell et al. [23] 2006 - 2017 Narrative review Computer-assisted clinical coding

Kaur et al. [88] 2010 - 2020 Systematic review ML and NLP techniques

Teng et al. [164] 1990s - 2021 Technical review ML and NLP techniques

Khope and Elias [91] 2017-2023 Systematic review Studies on MIMIC-III dataset

Kaur et al. [89] 2010 - 2021 Systematic review ML and NLP techniques

Ours 2010s - 2023 Technical review Uniied deep learning framework

Table 1. A summary of related review articles on medical coding

Previous reviews introduce conventional classiication systems or neural network-based methods that devise
various network architectures to improve predictive performance. However, there is no uniied study on medical
coding models nor an insightful analysis of the overall model architecture’s submodules to solve the challenges
mentioned earlier. Besides, recent deep learning advances beyond standard supervised learning are less discussed
in existing surveys. The emerging deep learning paradigms include multitask learning, few-shot and zero-shot
learning, contrastive learning, adversarial generative learning, and reinforcement learning.
This paper focuses on deep learning-based NLP techniques and proposes an encoder-decoder framework

(Fig. 3) to unify existing advanced medical coding models. It discusses the efect of diferent building blocks to
resolve the challenges of medical coding. The categorization of building blocks is summarized in Table 2. We
provide a complete guideline for researchers or practitioners to develop eicient neural networks for automated
medical coding and analyze the critical problems for tackling the existing challenges. Besides, we discuss the
evaluation of medical coding and its real-world practice. Finally, we summarize the recent research trends and
limitations and point out several vital directions for future research. Medical coding tasks evolve rapidly, with
many deep learning-based publications emerging. In this review, we curate a collelction of publications that
generally come from academic databases such as PubMed, IEEE Xplore, and ACL Anthology. We conduct this
timely review to ill the gap by presenting a uniied review and introducing recent advances in deep neural
architectures for automated medical coding and emerging learning paradigms beyond supervised learning.

The development of a uniied encoder-decoder framework for advanced medical coding models, as discussed in
this paper, serves several crucial purposes in the ield of NLP applied to healthcare. This framework serves to unify
existing models, tackle speciic challenges in medical coding, and ofer practical guidelines for researchers and
practitioners. It emphasizes the importance of real-world evaluation and staying current with the rapidly evolving
landscape of medical coding tasks. By summarizing recent trends, identifying limitations, and suggesting future
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research directions, the paper provides a comprehensive resource for advancing the development of eicient
neural networks for automated medical coding and supports the continued growth of this critical ield.
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Fig. 3. An illustration of the unified encoder-decoder framework for automated medical coding

Categories Functions Representative Methods

Encoders Extract text features, explainable

feature learning

CNN, RNN, graph neural networks, attention, Transformers,

capsule networks

Deep Connections Build deep architecture Stacking, residual networks, embedding injection

Decoders Improve code prediction Linear layer, attention, hierarchical decoders, multitask de-

coders, few-shot/zero-shot decoders, autoregressive genera-

tive decoders

Auxiliary Data Enhance feature learning, human-

in-the-loop learning

Code descriptions, code hierarchy, Wikipedia articles, chart

data, entities and concepts, human-in-the-loop learning

Table 2. Categorization of building blocks under the unified framework

3 A UNIFIED ENCODER-DECODER FRAMEWORK

The recent development of automated medical coding devises novel neural networks for medical code prediction.
For example, recurrent neural network (RNN) basedmethods such as the long short-termmemory (LSTM) network
with attention mechanism [157] and GRU network with hierarchical attention [11] have been widely applied
to medical code prediction from discharge summaries. Deep learning-based CNN models have been compared
with a conventional classiier for diagnosis coding from radiology reports [87]. In addition to conventional
supervised learning, many novel learning paradigms have also been studied, for example, multitask learning [210]
and few-shot learning [184]. This review focuses on deep learning-based NLP techniques applied to automated
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medical coding, uniies recent advances to introduce their advantages, and summarizes their building blocks’
theoretical and pragmatic motivations.

We propose a uniied encoder-decoder framework (Fig. 3) for automated medical coding. In particular, encoders
refer to modules responsible for extracting relevant features from clinical text data, while decoders transform
these features into medical codes. The encoder modules take clinical notes as inputs and learn hidden represen-
tations, as described in Sec. 3.1. One important aspect of hidden representation learned by neural encoders is to
produce explanations and enable trustworthy coding systems grounded by human evaluation. Machine learning
(ML) algorithms excel in prediction and performance but often lack transparency, emphasizing the need for
explainable systems as discussed by Adadi [1]. In the ML context, łinterpretabilityž signiies a model’s inherent
understandability, while łexplainabilityž refers to methods to make a model interpretable. Explanations are the
speciic insights provided by a model to aid users in understanding predictions. A current debate revolves around
whether attention mechanisms contribute to model explanation, explored by Bibal et al. [13]. We also introduce
and summarize mechanisms for deepening the architectures in Sec. 3.2. The decoder modules decode the hidden
representations to predict the code probability (Sec. 3.3). While the choice of encoder and decoder can be interre-
lated, separating these modules within the framework enhances modularity, lexibility, comparative analysis,
interchangeability, and conceptual clarity. These beneits support a more comprehensive exploration of deep
learning approaches for medical coding while accommodating the complexity of encoder-decoder interactions in
various coding scenarios.

In addition to decoders in the standard supervised setting, we review recent advances such asmultitask decoders,
few-shot/zero-shot decoders, and autoregressive generative encoders. During encoding and decoding, auxiliary
information such as code hierarchy and textual descriptions can also be applied for enhancing representation
learning and improving decoding, which is discussed in Sec. 3.4. Besides, augmented learning with external
information, especially ontological knowledge, promotes explainable medical coding. Human-in-the-loop learning
integrates human coders into the automated medical coding system to further enhance the encoder-decoder
framework. They collaborate with automated algorithms to validate and improve coding accuracy. Human
coders are involved in various tasks, including validating the suggestions made by automated systems, resolving
ambiguous cases, ensuring compliance with coding guidelines, and reining the overall coding process. Their
expertise helps reine machine learning models, contributing to ongoing system enhancement and ensuring high-
quality, accurate medical coding. For example, active learning reduces annotation costs, and human-grounded
evaluation enables reliable performance evaluation. We summarize recent representative models in Table 3 under
the proposed uniied framework and review them in the following subsections.

3.1 Encoder Modules

Deep learning-basedmodels use word embedding techniques and develop complex neural network architectures to
learn rich text features for automatic medical code assignment. After some text preprocessing techniques, a clinical
note with � words is denoted as {�0, . . . , ��}. Its word embedding matrix, for example, built by word2vec [128] or
GloVe [143], is denoted as X = [w1, . . . ,w�]

� ∈ R�×�� , where �� is the dimension of word vectors. The encoder
modules of various neural architectures further process embeddings to learn rich hidden representations. In
the context of deep learning for medical coding, CNN-based approaches focus on extracting local features and
patterns from clinical documents, while RNN-based methods are employed to capture sequential dependencies
and contextual information within the text. Recent publications also leverage advanced language models like
BERT, which provide contextualized word embeddings, enhancing the understanding of medical narratives by
considering the broader context of each word in the document. These diverse techniques contribute to more
accurate and comprehensive automated medical coding systems. This section introduces various neural encoder
modules that have been developed in recent years.

ACM Comput. Surv.
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Models Encoders Deep Connections Decoders Auxiliary Data

Attentive LSTM [157] Attentive LSTM Stacking Linear Layer NA.

HA-GRU [11] Hierarchical GRU Stacking Attention NA.

LAAT [173] BiGRU Stacking Attention NA.

MT-RAM [161] BiGRU RAM LAN+Multitask NA.

BiCapsNetLE [10] BiLSTM+CapsNet Stacking Attention ICD Description

CAML [131] CNN Stacking LAN NA.

DR-CAML [131] CNN Stacking LAN ICD Description

MVC-LDA [153] Multi-view CNN Stacking Attention ICD Description

MultiResCNN [104] CNN Residual Network LAN NA.

DCAN [77] Dilated CNN Residual Network LAN NA.

HyperCore [26] CNN+Hyperbolic Stacking LAN+GCN ICD Hierarchy

GatedCNN-NCI [82] Gated CNN Embedding Injection NCI ICD Description

Fusion [123] Compressed CNN Residual Network Attention NA.

C-MemNN [147] Memory Networks Stacking Linear Layer NA.

KSI [9] CNN/RNN Stacking Linear or LAN Wikipedia Articles

MCDA [183] CNN/RNN Stacking Concept-drive Attention Wikipedia Articles

MSATT-KG [193] CNN+Attention Stacking Attention+KG ICD Hierarchy

CAIC [165] CNN/RNN Stacking Attention ICD Description

GMAN [203] GCN Stacking Mutual Attention Patient Info.

JLAN [106] BiLSTM Residual Network Self-attention+LAN ICD Description

DACNM [27] Dilated CNN Stacking N-gram+Linear ICD Description

BERT-XML [211] BERT Stacking LAN ICD Description

ISD [214] CNN Stacking Attention NA.

CMGE [188] Graph encoder Stacking Multitask Decoder NA.

RAC [93] CNN Stacking Attention Data Augmentation

ICDBigBird [127] BigBird Stacking Label Attention NA.

HieNet [181] CNN Stacking Progressive Mechanism ICD Hierarchy

MD-BERT [209] Hierarchical BERT Stacking Label Attention ICD Description

MSMN [204] LSTM Stacking Multi-synonyms Attention UMLS

Table 3. A summary of representative models under the unified encoder-decoder framework

3.1.1 Recurrent Neural Encoders. Recurrent neural networks model the temporal sequences via their internal
states and capture sequential dependencies. Thus, they have been widely applied to textual sequence modeling
and clinical note encoding. Generally, the recurrent neural encoder (in Fig. 4a) outputs a hidden representation
H� ∈ R�×�ℎ of the �-th layer:

H�
= RNN(X), (1)

where � is the number of words and �ℎ is the dimension of the hidden representation. However, the vanilla RNN-
based model sufers from the vanishing gradient issue [70]. Shi et al. [157], one of the irst works on applying
RNNs for medical coding, developed an Attentive LSTM network. This model encodes clinical descriptions
and long titles of ICD codes jointly with hierarchical text representations and uses an attention mechanism
for matching important diagnosis snippets. Catling et al. [29] compared the TF-IDF (term frequency-inverse
document frequency) feature with the word embedding features learned with the simpliied gated recurrent unit
(GRU). Mullenbach et al. [131] used a GRU with bi-direction as a baseline system for medical coding, where the
last hidden representations are used for classiication. From their pilot experiments, GRU shows more robust
predictive performance than the LSTM network-based coding model. Blanco et al. [15] studied capabilities of
various RNN models such as GRU and ELMo (Embeddings from Language Model). Other follow-up works such
as HA-GRU [11] and HLAN [50] further improved the vanilla BiGRU with hierarchical attention, including
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two levels on sentence and document representations. Hierarchical attention can help mitigate the diiculty of
encoding long text sequences. Sec. 3.1.5 introduces more details of hierarchical encoders.

3.1.2 Convolutional Neural Encoders. The success of convolutional neural networks in computer vision inspires
researchers to use convolutional architecture for medical coding. The TextCNN model [96] acts as a simple but
essential baseline. The convolutional layer extracts local features from pretrained or randomly initialized word
vectors. Fig. 4b illustrates the CNN-based text encoder. The representation with max-pooling is then used for med-
ical code classiication. Karimi et al. [87] compared standard CNN architecture with conventional classiiers such
as decision trees and support vector machines [59, 163] on both in-domain and out-of-domain data and showed
that CNN architectures with optimal parameter settings gain comparable results with conventional methods on
sparse and skewed data. CAML [131] combines multiple-ilter CNN-based text encoders and an attention decoder
(introduced in Sec. 3.3). DCAN [77] develops dilated convolution layers, which apply convolutions with dilated
ilters to increase the receptive ield. Given a sequence of one-dimensional elements x ∈ R� and a convolutional
ilter � : {0, . . . , � − 1} → R, the hidden representation in the �-th layer of stacked dilated convolution layers is
calculated as H�

� � =
∑�−1

�=0 � ( �) · x�−�� · � ,

H�
� � = (w� ∗�� � ) (w� � ) =

�−1︁

�=0

� ( �) · x�−�� · � , (2)

where �� is the dilation size of the spacing between kernel elements in the �-th layer, � is the element of input
sequence, and � − �� · � refers to past time steps. When stacking a deeper architecture, the dilation size is
exponentially increased to expand the receptive ield. Other models also use the CNN-based text encoder. For
example, MultiResCNN [104] concatenates the features of multi-ilter convolutions. Similarly, MVC-LDA [153]
introduces multi-view CNN by applying max-pooling over diferent channels with diferent convolutional ilters.
Ji et al. [82] developed a Gated CNN encoder that uses an LSTM-style gating mechanism to control the information
low. The Fusion model [123] deploys a Compressed CNN module that applies attention-based soft-pooling over
word convolution features, reducing the number of word representations. Critical entities can help to recognize
the correct medical code. ECNN [31] enhances the CNNmodel with entities extracted from the input text. Inspired
by the squeeze-and-excitation network [73], EfectiveCAN [117] stacks multiple residual squeeze-and-excitation
blocks with convolutional operations.

3.1.3 Neural Atention and Transformer Encoders. The neural attention mechanism computes a weighted sum
of vector values of hidden representations dependent on the query vectors. Compared to RNN and CNN, self-
attention has been widely adopted for transfer learning, i.e., as building blocks for large pre-trained language
models. This allows leveraging the linguistic associations from massive corpora for subsequent tasks. The
superior performance gained by BERT attracts researchers of medical coding to apply BERT-based text encoders,
as shown in Fig. 4c. However, due to the complexity of the self-attention mechanism, only a few works use
pure attention-based encoders to model the clinical notes especially discharge summaries. Since 2021, more
researchers have proposed to use transformer-based models. TransICD [14] applies transformer text encoder
and structured self-attention to learn representations. Coutinho et al. [40] used Transformers for ICD-10 coding
from Portuguese text. Some attempts explore the possibility of BERT encoders. Roitero et al. [152] built a BERT
model via domain-speciic pretraining and ine-tuning. BERT encoders are limited to encoder the maximum
sequence length of 512. When dealing with long documents, they do not achieve superior performance compared
with CNN or RNN-based encoders, potentially due to the limitation of BERT to encode long documents and
keywords according to Gao et al. [63]. Thus, BERT encoders are usually used to encode the long clinical notes in
a hierarchical manner, which will be introduced in Sec. 3.1.5.
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More recent studies attempt to study the performance of eicient transformer-based methods. For example,
Feucht et al. [61] found that Longformer achieves better results than BERT. Yogarajan et al. [201] applied
concatenated representations from contextualized language models and used Longformer [12] and Transformer-
XL [44] to processed longer sequences. Yang et al. [200] adopted longformer with domain-speciic knowledge
enhancement. Hou et al. [72] integrated the long-distance dependency features captured through Clinical-
Longformer with code synonyms, code hierarchy, and code co-occurrence knowledge to improve long-tail
classiication. Gomes et al. [67] compared the ability of the chunk encoder and longformer encoder for lengthy
text modeling. Michalopoulos et al. [127] applied BigBird [205] designed for long sequence encoding to encode
discharge summaries. Niu et al. [135] used the FLASH [74], a variant of Transformer, as a feature extractor to
extract meaningful semantic features from long clinical notes. Liu et al. [115] pre-trained the new language model
ClinicalplusXLNet based on ine-tuning the pre-trained Transformer model. The authors conducted continuous
pre-training using clinical corpus from MIMIC-III using XLNet-Base. Subsequently, Duan et al. [53] employed
ClinicalplusXLNet as the encoder, encoding the segmented clinical text to obtain semantic features. Xie et al. [192]
developed a knowledge-based dynamic prompt learning algorithm for coding prediction. The method utilizes
various masked language models and dynamically generates prompts based on personal medical information and
medical knowledge graphs to provide valuable information representation for the model training.

Previous methods rely on existing pretrained language models to obtain contextualized embeddings. Zhang et
al. [211] proposed BERT-XML that combines BERT encoders with multi-label attention. Rather than ine-tuning
the pretrained BERT encoder, the authors trained the self-supervised BERT-XML encoder from scratch on clinical
notes to solve the out-of-vocabulary issue. Moreover, they pretrained the BERT-XML model with a sequence
length of 1024 for long sequences.
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Fig. 4. Illustrations of representative neural text encoders. (a) The RNN encoder captures sequential dependency. (b) The
CNN encoder extracts local features. (c) The BERT encoder encodes contextualized information.

3.1.4 Graph Encoders. Many natural language processing tasks construct text graphs and adopt graph neural
networks as text encoders to learn textual features [190]. Several works in medical coding also use graph-based
encoders to capture the structural information during the diagnosis process. Yuan et al. [203] built a medical
graph that consists of diseases and indings and deployed the Graph Convolutional Network (GCN) [98] to
learn graph representations. The authors considered disease-disease (D-D) and disease-inding (D-F) graphs
as shown in Fig. 5a during the encoding of disease hierarchy and causal relations. Similarly, Lu et al. [121]
transformed text features extracted by pre-trained BERT into node representations in heterogeneous graphs and
utilized GCN for message passing. CMGE [188], a multi-granularity graph-based method, builds a hierarchical
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graph that contains four types of nodes: general nodes (patients’ age and gender), sentence nodes, clause nodes,
and entity nodes, as illustrated in Fig. 5b. It uses the Graph Attention Network (GAT) [171] for information
aggregation. The multi-granularity graph reasoning enables supporting fact extraction from the clinical notes
and explainable diagnosis prediction. Luo et al. [122] constructed a code relation graph to capture the complex
interaction relationships between ICD codes and improve code allocation accuracy.
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Fig. 5. Graph encoders on the constructed medical graph. a) GMAN applies the GCN layers to encode disease hierarchy and
disease-finding causal relations. b) CMGE uses the GAT as the graph encoder on a multi-granularity graph.

3.1.5 Hierarchical Encoders. Several methods adopt hierarchical text encoders, as a łmetaž-encoder with the
above encoding modules, to take the hierarchical structure of documents into encoding and potentially solve the
diiculty in encoding lengthy clinical documents that encode hierarchical elements of the long documents such as
characters, words, sentences, and chunks. Shi et al. [157] built a hierarchical encoder with character representation,
word representation, and sentence representation. Dong et al. [50] adapted hierarchical attention networks with
label-wise word-level and sentence-level representations for an improved attention-based explanation for each
code (in Fig. 6a). To make BERT-based text encoders compatible with long clinical notes, Ji et al. [78] developed
BERT-hier that divides long notes into chunks and uses another Transformer network to encode the embeddings
of diferent chunks (in Fig. 6b). Although the hierarchical BERT-based encoder improves the performance, it
is still not as good as advanced CNN or RNN-based models. Pascual et al. [142] conducted a similar study. A
recent work called Medical Document BERT (MD-BERT) [209] proposes a more advanced hierarchical encoding
method by considering token-level, sentence-level, and document-level representation learning and attaching the
classiication layer to any levels of interest according to speciic tasks. This model achieves better performance
than previous attempts on utilizing transformers-based text encoders. Other recent indings also show that
BERT-based encoders can achieve improved performance with better coniguration and training when handling
long texts. For example, Dai et al. [43] showed that the document splitting strategy for text encoders is important.
Afkanpour et al. [2] found that the utilization of token-level representation and longer text sequence can improve
performance. In addition to discharge summaries, text metadata such as time and note type is also used in the
hierarchical transformer model to improve temporal document sequence encoding [133].

3.1.6 Summary. Neural encoders play an important role in learning rich representations from clinical notes.
Early research on deep learning-based medical coding explored recurrent and convolutional neural networks and
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Fig. 6. Illustrations of the hierarchical encoder and decoder. (a) The hierarchical encoder learns hierarchical representations
of words, sentences, and documents. (b) The hierarchical BERT encoder processes text chunk by chunk and aggregates the
embeddings via an additional Transformer.

achieved improved performance than feature engineering-based methods. Many follow-up works further improve
CNNs and RNNs to enhance their capacity to capture long context. Self-attention-based Transformer networks
sufer from quadradic complexity. However, recent studies on hierarchical encoders and eicient transformers are
getting a better performance for medical coding. Graph neural networks that can capture structural information
represented in heterogeneous text graphs are emerging. The inductive bias in diferent neural encoders is the
key consideration for the choice of encoders. However, there is no clear evidence on which neural encoder
is optimal. One recommendation is to choose the neural encoder based on the data and the need for coding
practice. Neural architectures ofer beneits such as automated feature learning, representation hierarchies, and
performance improvement in medical coding tasks. However, their black-box nature, model complexity, lack
of intuitive representations, and the need for additional explainability techniques pose signiicant challenges
in achieving interpretability and explainability. Future research requires to develop methods to address these
limitations and make neural architectures more transparent and understandable for medical coding applications.

3.2 Building Deep Architectures

Most existing neural network-based medical coding models have deep architectures. The most straightforward
approach uses stacking to build deep neural architectures, such as stacking multiple recurrent layers and
hierarchical components of diferent levels of elements as in multi-layer perceptrons. Also, diferent neural
blocks can be stacked into deep networks, for example, the recalibrated aggregation module [161] with multiple
convolutional layers is built upon a bidirectional GRU network, the MSATT-KG [193] stacks densely connected
convolutional layers and multi-scale feature attention, and the BiCapsNetLE [10] deploys a capsule neural network
upon the BiLSTM layer to extract features further.
When encoding long clinical notes with very deep architectures, features learned by higher layers tend to

capture abstract features but sometimes miss some vital information. Ji et al. [82] proposed to use embedding
injection to mitigate the information loss with the increase of neural layers. The embedding injection concatenates
the original word embeddings into each intermediate layer of the backbone network as:

J� = concat
[

X, H�
]

, (3)

where J� ∈ R�×(��+�ℎ ) are the features with original embeddings injected.
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The most widely used approach to building deep networks for automated medical coding is to use residual
connections, as shown in Fig. 7a. Deep residual learning introduces the skip connection to avoid the efect of the
vanishing gradient. It enables the building of very deep neural network architectures. Given the input encoding
vector x, the output of residual connection is denoted as � = � (x+G(x)), where G represents neural layers and �
is a non-linear activation function. Several medical coding models use residual networks between stacked layers,
which are denoted as:

H�+1
= � (H� + G(H� )). (4)

MultiResCNN [104] is the irst to combine residual learning with the concatenation of multiple channels with
diferent convolutional ilters. Other follow-up works such as DCAN [77] and Fusion [123] also use the residual
neural network. We also illustrate the highway networks for building deep architectures in Fig. 7b, although no
existing medical coding models adopt the highway mechanism. Highway networks use the gating mechanism
(i.e., the transform gate and the carry gate) to control the amount of input information and avoid attenuation
when stacking very deep layers. The highway networks can be an alternative to building deep medical coding
models.
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Fig. 7. Illustrations of residual networks and highway networks for building deep architectures

3.3 Decoder Modules

After the encoder modules have extracted hidden representations of clinical notes, the decoder modules map
the learned representations into medical codes as the inal classiication results via a decoding process. The
hierarchical and large-scale characteristics of medical codes have promoted the design of various decoder modules.
This section introduces four main types of decoder modules, including the fully connected layer-based decoder
that ofers simplicity and eiciency (Sec. 3.3.1), neural attention decoders that enhance code prediction by
focusing on relevant information (Sec. 3.3.2), hierarchical decoders that leverage the hierarchical structure of
medical codes for more structured predictions (Sec. 3.3.3), multitask decoders that handle multiple coding systems
simultaneously (Sec. 3.3.4), and few-shot decoders aim to solve the few-shot learning problem and make accurate
predictions with minimal examples, making them valuable in challenging coding situations (Sec. 3.3.5).

In addition to these decoders, pipeline-based methods further deploy some post-hoc modules to boost perfor-
mance. For example, Tsai et al. [169] proposed a two-stage method, i.e., a candidate generation stage to generate
candidate sets of ICD codes and a candidate reranking stage that leverages the label correlation to rerank the
generated code sets. Some non-parametric post-processing methods can also be applied for adjusting the decoders

ACM Comput. Surv.



14 • S. Ji, et al.

of medical coding models; for example, the Classiication with Alternating Normalization method [83] that
redistributes the prediction probability.

3.3.1 Fully Connected Layer. The most straightforward decoder module is a linear fully-connected layer, widely
used in many classiication tasks. The prediction logits �̂ ∈ R� between 0 and 1 are produced by the Sigmoid
activation function with a pooling operation over the linearly projected matrix, calculated as:

�̂ = Sigmoid(Pooling(HWT), (5)

where W ∈ R�×�ℎ are the linear weights for� medical codes. Medical coding models that use a linear layer as a
decoder include Attentive LSTM [157] and C-MemNN [147].

3.3.2 Neural Atention Decoders. The neural attention mechanism has also been applied to decoding in addition
to its usage for encoding clinical notes introduced in Sec. 3.1.3. One useful attention mechanism for decoding
is the so-called Label-wise Attention Network (LAN) which prioritizes important information in the hidden
representation relevant to medical codes. The LAN-based decoder, as illustrated in Fig. 8a, uses the dot product
attention to calculate the attention score A ∈ R�×� as:

A = Sotmax(HU), (6)

where U ∈ Rℎ�×� is the query matrix of the label attention layer for� medical codes, and ℎ� is the dimension of
the query. By multiplying attention A with the hidden representation, i.e., ATH, the output of the attention layer
is obtained for medical code prediction. CAML [131] is the irst to apply LAN by using the attention matrix to
capture the importance of ICD code and hidden word representation pair. DCAN [77] and MultiResCNN [104]
also use the LAN decoder as a building block of their models. Fusion [123] deploys similar code-wise attention
after feature aggregation and RAC [93] implements the code-title guided attention module. The LAN-based
decoder preserves sequential information captured by the text encoder and enables label awareness to beneit
medical code classiication. JLAN [106] proposes a dual attention mechanism that combines self-attention and
label attention. LAAT [173] applies the structured self-attention [110] (in Fig. 8b) that projected the hidden
representation via a linear transformation and non-linear activation as:

H′
= tanh(W�H), (7)

whereW� ∈ R
ℎ×�ℎ is a weight matrix, and ℎ is the number of hops of the structured self-attention. In practice,

LAAT sets the number of attention hops to the number of labels. Similarly, TransICD [14] uses the structured self-
attention mechanism to achieve code-speciic decoding for automated medical code prediction. Attention-based
decoders enhance medical code prediction by modeling code information. However, due to the lack of training
data, code interaction cannot be efectively learned, especially for those rare codes. Zhou et al. [214] proposed
an interactive shared representation network to enhance the interaction among code-relevant information via
multi-layer transformer decoders. To capture code co-occurrence, the authors further implemented two additional
tasks, i.e., missing code completion and wrong code removal. Wu et al. [191] designed a joint attention decoder
that utilizes document-based attention to extract text information and label-based attention to emphasize the
semantic connection between label semantics and document content. To balance the contribution of document-
based attention and label-based attention to label feature representation, the authors employed layer and gate
mechanisms to achieve adaptive fusion. Due to the existing label attention mechanism to identify critical segments
in the entire text at once, it may ignore some crucial local information scattered in paragraphs. Kim et al. [94]
designed a new neural decoder composed of two label attention layers by integrating traditional and partition-
based label attention mechanisms to obtain global and local potential feature representations. Partition-based
label attention divides the text representation obtained from the encoder and generates label-speciic features for
each segment. Then, the weighted summation of features is performed to obtain a combined label-speciic feature
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matrix. Inspired by the coding process of clinical coders (selecting general categories irst and then speciic
subcategories), Nguyen et al. [134] designed a two-stage decoding process that utilizes attention mechanisms
irst to predict the parent code and then the child code based on previous predictions.
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Fig. 8. Illustrations of atention encoders. (a) Label atention learns label-aware representations for decoding. (b) Structured
self-atention also learns label-specific representations.

3.3.3 Hierarchical Decoders. Hierarchical models that use the hierarchical code structure have been studied
to improve automatic coding a long time ago [45]. Building hierarchical decoders is still a promising research
direction in the recent advances in deep learning-based methods. JointLAAT [173] proposes a hierarchical joint
learning method that produces the code prediction level by level according to the ICD hierarchy. Firstly, the model
predicts the normalized ICD codes with the irst three characters. Then, the irst level’s predictions are projected
back to a vector and concatenated with the label-speciic representation of the second level in the ICD hierarchy
for the inal prediction. An earlier work by Falis et al. [58] uses three hierarchical decoding layers for ICD codes,
as shown in Fig. 9. The hierarchical decoding-based JointLAAT outperforms the vanilla LAAT slightly in some
evaluation metrics. There is still room for improvement by making use of the hierarchical nature of the medical
coding system. Unlike those hierarchical decoding methods via joint learning, RPGNet [180] formulates the
medical coding task as a path generation problem and proposes a coarse-to-ine ICD path generation model based
on adversarial reinforcement learning. It leverages a path generator to generate paths and a path discriminator to
distinguish the generated paths from positive paths. Liu et al. [114] proposed hierarchical label-wise attention in
response to the hierarchical encoding at token and chunk levels.

3.3.4 Multitask Decoders. Multitask decoders predict medical codes with multiple task branches powered by
multitask learning [28]. Tsai et al. [168] took low-level code and high-level category as two task branches in
their multitask learning framework. Medical coding models aforementioned in this section build decoders for
a single coding system. However, several diferent systems have been used for diferent purposes. To enable
decoding of multiple coding systems and utilize the joint learning of similar tasks, MT-RAM [161] deploys a
multitask decoding scheme that includes two branches with label-wise attention for ICD and CCS code prediction
as shown in Fig. 10a. As a following-up work, MARN [162] improves the multitask decoders with the focal loss
to balance the learning of codes with imbalanced code frequencies. More publications introduce other auxiliary
tasks to train joint learning models. Wiegrefe et al. [185] predicted the outputs of the Apache clinical Text
Analysis Knowledge Extraction System (cTAKES)3 together with ICD codes as illustrated in Fig. 10b. CMGE [188]

3Available at https://ctakes.apache.org/
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Fig. 9. Illustrations of the hierarchical decoder that considers the hierarchical structure of medical ontology during code
prediction [58]. Circles with dots represent dot production and circles with łCž denotes concatenation.

in Fig. 10c considers graph classiication, sub-sentence classiication, and entity classiication. Rios et al. [150]
jointly trained a multitask learning model with losses for topography and histology codes and the hierarchical
loss with a hierarchical regularization.
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Fig. 10. Illustrations of multitask decoders. (a) MT-RAM adopts two-branch joint multitask training; (b) Wiegrefe et al.
used distantly surprised cTAKES output prediction as a task head; (c) CMGE adopts three classification tasks for graphs,
sub-sentences, and entities.

3.3.5 Few-shot/Zero-shot Decoders. The automatic medical coding task has a large label space, with some
frequently appearing and many labels never shown in the dataset. Few-shot models aim to predict codes that
only appear a few times in the training data, and zero-shot models aim to predict codes that never appear in the
training data. Rios and Kavuluru [151] are among the irst work of medical coding in the few-shot and zero-shot
settings. They deined the few-shot and zero-shot coding problem as a retrieval task (in Fig. 11a) in which the
model calculates the code probability as the semantic matching between the representations of clinical documents
and label vectors of target codes, denoted as:

�̃� = Sigmoid(e⊤� v� ), (8)

where e� is the label-speciic document vector and v� is the label vector for �-th label. The proposed model
ZAGCNN uses CNN layers to extract features of clinical notes and GCN layers to encode the ICD code hierarchy
boosted with code descriptions. Following the similar few-shot and zero-shot setting, Lu et al. [120] improved
the ZAGCNN model with knowledge aggregation from multiple graphs, i.e., the predeined hierarchy, the
semantic similarity graph of label description, and the label co-occurrence graph. Meta-LMTC [177] extends
the ZAGCNN model by using optimization-based Model-Agnostic Meta-Learning (MAML) algorithm [62] and
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two sampling strategies (i.e., instance- and label-based) for meta optimization. Unlike the ZAGCNN and its
extensions, Song et al. [159] adopted the generalized zero-shot learning method for ICD coding. The authors
proposed an Adversarial Generative Model (AGM) and utilized the Hierarchical Tree (HT) and code descriptions
to generate code-speciic features with the generative adversarial networks, as shown in Fig. 11b. The generated
features are further used to ine-tune the medical coding model for zero-shot codes. Those methods mentioned
above rely on external knowledge sources such as code hierarchy and descriptions (see more introduction about
the usage of auxiliary information in Sec. 3.4, speciically Sec. 3.4.2 for code descriptions and Sec. 3.4.3 for
code hierarchy). CoGraph [179] constructs a heterogeneous word-entity graph to represent clinical notes and
performs graph contrastive learning on the constructed graph to improve the model’s capability on few-shot
prediction. Contrastive learning explores the intra-correlation of word-entity graphs via sampling and the inter-
correlation of word-entity graphs via sequential modeling of graphs at diferent clinical stages. During the graph
construction of the CoGraph model, Wikipedia acts as the source of external knowledge to obtain entity nodes.
Ji et al. [80] showed that task-conditioned parameter generation with additional task information improves
zero-shot diagnosis prediction. Auxiliary knowledge plays an essential role in few-shot and zero-shot medical
coding.
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Fig. 11. Illustrations of few-shot and zero-shot medical coding. (a) ZAGCNN considers few-shot/zero-shot medical coding as
a retrieval problem. (b) AGM-HT utilizes adversarial generative training.

3.3.6 Autoregressive Generative Decoders. A recent pertaining and ine-tuning paradigm has been used for
medical coding as introduced in Section 3.1.3. However, in many cases, there is a signiicant gap between the
goals of the downstream tasks and the pretraining goals. Moreover, speciic ields require large amounts of the
supervised corpus during ine-tuning. A new ine-tuning paradigm based on the pretrained language model,
prompt tuning that gives some best cues as the task-speciic context for pretrained generative language models,
has emerged to address these challenges. This approach has proven efective in few-shot tasks [64, 103]. In medical
coding, Yang et al. [200] addressed the long-tail challenge using a prompt-tuning technique for label semantics,
representing the irst attempt to apply prompts to multiple label classiication tasks. Speciically, the authors added
a series of ICD code descriptions as the prompt and incorporated them early with clinical notes. To further improve
the performance of the medical coding, the authors proposed a knowledge-enhanced longformer that injected
three domain-speciic knowledge (hierarchy, synonyms, and abbreviations) and utilized comparative learning for
additional pre-training. In a follow-up study, Yang et al. [199] further tackled the long tail challenge in multi-label
classiication by converting it into an autoregressive generation task. The authors exploited a SOAP structure
(i.e., subjective, objective, assessment, and plan) to generate free text diagnoses and procedures, which is medical
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logic used by physicians to note clinical documentation. They then translated the generated text’s description to
infer ICD codes with clinical vocabulary constraints, which solves the hallucination issues of generative models.
Prompt tuning with generative language models provides a novel solution for medical coding. It has beneits
to utilize the knowledge from large language models. However, it also has some limitations. For example, the
hallucinated generation can dampen the coding accuracy and require some engineering eforts on controlled
generation, speciically when there is a shift in coding guidelines. Also, autoregressive generative models have
the scaling issue when generating tokens, making them slower than non-autoregressive methods [199].

3.3.7 Summary. The problem setup and the principle of learning paradigms are the main motivators for choosing
the decoder module. Neural attention decoders improve the fully connected layer-based decoder in the standard
supervised learning setup to prioritize the representation learning on important information. The hierarchical
decoders it the hierarchical nature of medical codes. Multitask decoders aim to predict medical codes of multiple
coding systems. Few-shot and zero-shot decoders solve the learning problem with rare or unseen medical
codes. And the autoregressive generative decoders, as an emerging approach, utilize the reasoning capacity of
large autoregressive language models. The choice of decoder module in medical coding models should align
with the problem’s nuances and learning paradigms. Each type of decoder ofers unique advantages, from
enhanced attention mechanisms for information prioritization to specialized hierarchical structures, multitasking
capabilities, adaptability to rare codes, and advanced autoregressive reasoning. Careful consideration of these
factors is essential to develop efective and context-aware medical coding systems that can meet the diverse
needs of healthcare professionals and patients.

3.4 Usage of Auxiliary Information

Auxiliary information can be utilized to enhance representation learning and improve the performance of
medical coding. This section introduces the usage of auxiliary information, including implicit information such
as label information via randomly initialized embeddings and explicit information (or external data) such as
Wikipedia articles, textual code descriptions, and code hierarchies. Implicit label information has been used by
most previously introduced label attention-based models. The joint embedding model (LEAM) [175] embeds
labels and leverages the compatibility between word and label embeddings to calculate attention scores. The
following paragraphs review the methods that use external data explicitly. The external data can be applied to
both encoders and decoders. When applied to encoders, external data enhance the representation learning of
clinical texts. The external information usually acts as the regularization for decoders when combining external
data augmentation with the decoding process.

In addition to explicit usage of auxiliary information, data augmentation methods can also be applied to enrich
the training data. Kim and Ganapathi [93] introduced a simple sentence permutation method to augment the
training data three times and improve code prediction performance.

3.4.1 Wikipedia Articles. Wikipedia articles explain medical diagnoses in detail and are used to enhance the
deep learning model on clinical text understanding. Prakash et al. [147] resorted to Wikipedia as an external
knowledge source. Speciically, the authors used term search to ind relevant articles to the diagnoses in clinical
notes. They proposed C-MemNN with an iterative condensation of memory representations that utilize external
knowledge sources from Wikipedia to enhance memory networks by preserving the hierarchical structure in the
memory. KSI [9] in Fig. 12a uses element-wise multiplication and attention mechanism to fuse the knowledge
from Wikipedia articles into clinical notes. There are 389 available Wikipedia pages when considering the irst
three digits of ICD-9 diagnosis codes. The KSI model deines the medical coding task as a classiication problem
of 344 ICD codes found in the code vocabulary of the used dataset. Following the same setup, MCDA [183],
a medical concept-driven attention model, aligns the clinical notes and Wikipedia articles in the latent topic
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space based on topic modeling. The joint embedding or alignment of Wikipedia and clinical notes introduces
external knowledge sources to medical coding models. However, because some speciic medical codes have no
corresponding Wikipedia pages, the usage of KSI is only limited to coding three-digit ICD-9 codes, i.e., diagnostic
category classiication. The absence of ine-grained coding may lead to the inefectiveness of medical coding
models in rare diagnoses or procedures.

3.4.2 Code Description. The textual description of medical codes describes the exact meaning of codes and
provides extra semantic information for abstract codes. The embeddings of code description are denoted as
D ∈ R�×�� , where� is the number of codes, and�� is the dimension of description embedding. Several publications
utilize the code description to enhance representation learning. DR-CAML [131] as shown in Fig. 12b uses the word
vectors of description as a regularization when optimizing the label-wise attention module. Similarly, CAIC [165]
develops cross-textual attention to establish the connection between medical notes and ICD codes. GatedCNN-
NCI [82] builds fully connected interaction between notes and codes. BiCapsNetLE [10] uses embeddings of
ICD descriptions to inject label information into the word embeddings of clinical notes and the features learned
by capsule networks. DLAC [61] proposes a description-based label attention that computes the label attention
matrix with the description matrix and transformed hidden representation matrix as

A = Sotmax
(

HU · D⊤
)

, (9)

where U ∈ R�ℎ×�� is a transformation matrix that aligns the dimensions of the hidden representation and the
description matrix. A prompt-based ine-tuning model [200] adds a series of ICD code descriptions as the prompt
to integrate code description and input notes for multi-label few-shot ICD coding.
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Fig. 12. Illustrations of models that DR-CAML and KSI infuse external text features for regularization and feature augmen-
tation. (a) KSI augments features via the multiplicative interaction between note features and embeddings of Wikipedia
articles (b) DR-CAML infuses code description via regularization.

3.4.3 Code Hierarchy. As introduced in Sec. 3.3.3, hierarchical decoders use the code hierarchy. MSATT-KG [193]
in Fig. 13a infuses code hierarchy into document representation via structured knowledge graph (KG) propagation
and label-dependent attention, where the code hierarchy is treated as a KG, and the graph convolutional network
(GCN) is used to capture code relationships. Similar to MSATT-KG, HyperCore [26] also uses GCN to encode the
code co-occurrence. Besides, it utilizes hyperbolic embedding and co-graph representation with code hierarchy,
as shown in Fig. 13b. HieNet [181] builds a bidirectional hierarchy passage encoder, consisting of a bidirectional
passage retriever and a tree position encoder, to represent the code hierarchy with semantic and positional features.
When classifying frequent codes with no signiicant hierarchical connections, Michalopoulos et al. [127] built a
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co-occurrence graph of ICD codes with edge weights measured by normalized point-wise mutual information and
applied graph convolutional networks to encode the ICD codes. Lu et al. [119] represented the ICD hierarchy as
a super-tree and introduced tree editing distance [208] to capture disease relationships at the code hierarchy. The
hierarchical structure of the code system is a unique characteristic of medical coding, especially for predicting
the complete code set. It is an exciting research direction that has the potential to improve coding performance
and produce reliable and interpretable coding results.
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Fig. 13. Illustrations of models that incorporate ICD hierarchy. (a) MSATT-KG uses GCN to encode the ICD code hierarchy.
(b) HyperCore also uses GCN but in hyperbolic space.

3.4.4 Medical Ontology. We generally consider ontologies as TBox (i.e., concept-level knowledge that consists
of logical statements constraining concepts) and ABox (data-level knowledge that consists of assertions over
instances) [8]. A taxonomy (or hierarchy) can be reduced from the TBox of an ontology through a reasoning
process called classiication [8, p. 34]4. Also, taxonomy has a DAG (directed acyclic graph) structure. Ontologies
in the context of medical coding encompass a wide spectrum of structures, each with distinct characteristics and
relationships; they are broadly referred to as terminologies or classiication systems [39]. In fact, ICD has the
form of an ontology.

Apart from that, the Uniied Medical Language System (UMLS) is a comprehensive collection of dictionaries and
ontologies of in-domain concepts [16, 111]. The UMLS is mainly based on three knowledge sources: Metathesaurus,
Semantic Network, and SPECIALIST Lexicon and Lexical Tools. Some studies explore the signiicance of ontology
comprehension in designing efective deep-learning models for medical coding tasks. MSMN [204] extracts
ICD code synonyms from the UMLS and proposes multiple synonym-matching networks to encode synonym
information. Dong et al. [52] leveraged the UMLS as an intermediary dictionary to extend the annotation
vocabulary of rare diseases for their identiication from clinical notes. Falis et al. [56] used UMLS (and their
concept matching to ICD) to augment training data for medical coding. The ability of a model to capture and utilize
these intricate relationships can greatly impact its accuracy in code prediction. Consequently, understanding

4The classiication as a Description Logic reasoning process [8] is diferent from its usage in machine learning.
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the speciic ontology used in a medical coding task becomes crucial in selecting, adapting, or developing deep
learning models.

While some ontologies, like the ICD, primarily rely on hierarchical relations without directional relationships,
others feature more complex and nuanced relationships, such as łcausesž and łis-caused-byž disease relations.
These variations in ontology structures can have profound implications for the applicability and efectiveness
of the deep learning approaches. The structures of diferent ontologies, such as the organization of concepts,
relationships, and attributes, vary signiicantly [68]. Approaches optimized for purely hierarchical taxonomies
may require adaptation, for example, when dealing with ontologies that incorporate causal relationships. Assume
we have ontology A and ontology B and consider the representation of the relationship łcaused byž between
diseases and risk factors. In ontology A, this relationship might be straightforward, while in ontology B, it
could involve nested attributes and additional complexities. For example, in ontology B, the relationship might
be represented as łCardiovascular Diseasež is łcaused byž łGenetic Factorsž AND łEnvironmental Factorsž.
Deep learning models optimized for simpler relationships might struggle to capture the nuances of complex
relationships in ontology B. The variability in how relationships are modeled afects the model’s ability to
understand and predict based on diferent ontological structures.
In the context of ontological representation, particularly within the Web Ontology Language (OWL) under

the EL proile [174], we exemplify the SNOMED CT [138] that employs existential restrictions with attributes to
articulate intricate relationships, such as those involving attributes like łDue tož (e.g., Cataract of the eye due
to diabetes mellitus (disorder)) which represent causal relations. Some complex relations can be represented as
triples, e.g., (A, Due to, B), but other complex relations require more expressive representation, for example, which
involves conjunctions and nested existential restrictions [32, 48]. In this aforementioned example, łCataract of
eye due to diabetes mellitusž is equivalent to a conjunction of various concepts and attributes under a nested
expression: Cataract of eye due to diabetes mellitus ≡ Disease ⊓ ∃ RoleGroup. (∃ FindingSite.
Structure of lens of eye ⊓ ∃ AssociatedMorphology. Abnormally opaque structure) ⊓ ∃ RoleGroup.
∃ DueTo. Diabetes mellitus5. For complex relations that can be represented with triples, knowledge graph
embeddings are essential [81]. Addressing more logically complex relations, the use of OWL, particularly EL++
embeddings, becomes imperative. For instance, OWL2vec* [33] and EL++ geometrical embeddings [102, 194]
exemplify this approach. Notably, despite the wealth of research, there appears to be a gap in exploring the
embedding of OWL ontologies, such as in SNOMED CT, within the context of clinical coding. This observation
suggests a promising avenue for future studies in this domain.

3.4.5 Chart Data. Patients’ chart data (or structured data) that record the physiological conditions of a patient
can be used to enhance the performance of code assignments. Multimodal machine learning methods use
text and chart data to predict medical code. Wang et al. [178] proposed a multi-label annotation model that
inputs topic embeddings from patient notes and feature encodings from patients’ chart data. The diagnosis code
assignment module incorporates a disease correlation graph to capture the disease correlation. Xu et al. [195]
used texts including discharge summaries, radiology reports, nursing notes, and tabular data such as admission,
lab events, and prescriptions. The authors developed an ensemble learning method with text CNN applied to text
representation learning and a decision tree applied to transformed numerical features. The experimental results
show that efective modeling of multimodal data can improve the model’s robustness and accuracy. Liu et al.
[118] proposed a tree-enhanced multimodal attention network, TreeMAN, to capture the decisive information
in structured medical data in EMRs. The authors irst processed structured medical data into tabular data, then
inputted tabular data into a trained decision tree to obtain tree-based features. Finally, the text representation
and tree-based features are fused into a uniied multimodal representation through an attention mechanism.

5Attributes like DueTo and AssociatedMorphology are in UpperCamelCase form. The expression is in SNOMED CT version 2024-02-01 for

the concept ID 43959009. For more examples, see SNOMED CT browser at https://browser.ihtsdotools.org/.
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3.4.6 Entities and Concepts. The text mentions aboutmedical codes in clinical notes contain richworld knowledge.
Apart from code descriptions and Wikipedia articles, several works also utilize entities and concepts that abstract
the expressions in clinical notes. These methods usually use existing clinical ontologies such as the Uniied
Medical Language System (UMLS). Entity recognition and concept extraction aim to augment the text feature
or provide additional supervision signals. Wiegrefe et al. [185] combined information extraction and medical
coding by utilizing the cTAKES knowledge extraction system to extract concepts and reported a negative
inding of document-level clinical coding. Falis et al. [56] extracted in-text UMLS entities (and the matched ICD
entities) with SemEHR [189] and MedCAT [101] to augment new coded training data with synonym and sibling
code replacement, and reported improved results s few-shot and zero-shot coding. Yuan et al. [204] obtained
code synonyms by aligning concepts in the UMLS. Inspired by the multi-head attention mechanism [170], the
authors proposed multiple synonyms matching networks that take code synonyms as queries to match clinical
texts and improve code prediction. Yang et al. [200] injected three domain-speciic knowledge from UMLS, i.e.,
hierarchy, synonyms, and abbreviations, into a knowledge-enhanced longformer that mitigates data sparsity and
improves model performance. Li et al. [109] introduced medical knowledge from UMLS to construct entity-level
text heterogeneous graphs. The usage of external knowledge improves individual notes’ local context feature
extraction. Ge et al. [66] utilized medical guideline knowledge from the Regional Documents of Old Dominion
EMS Alliance 6 and medical datasets to construct a heterogeneous graph of medical entities. This graph captures
entity relationships to compensate for data scarcity during model training.

3.5 Human-in-the-loop

In medical coding, the designed model and system need to meet the use scenarios of clinical coders, reduce the
manual coding cost and enhance coding accuracy [107, 108]. ICD coding models with explanations can support
decision-making better. In clinical practice, domain experts tend to trust the prediction results with reasonable
explanations [187]. Thus, human-in-the-loop artiicial intelligence that collaborates AI models with human beings
becomes a useful paradigm to support the development of computer-assisted clinical coding (CAC). Various
studies exploit human-computer interaction and are applied to augmented reality, brain-computer interface, and
user customization. Combining human intelligence with deep learning models for medical coding requires much
efort. For example, a successful human-computer interaction must empower the human coder to improve coding
eiciency and accuracy. One quantitative study on human-computer interaction showed that the computer system
should cater to the user’s diverse needs while ensuring eicient, efective, and safe interaction [99]. This section
considers human eforts as a form of auxiliary information in automated coding models. It reviews the literature
on medical coding methods relevant to human-in-the-loop learning systems, such as general computer-assisted
clinical coding, active learning for annotation, explainability, and human evaluation.

3.5.1 Computer-assisted Clinical Coding. CAC is a continuously developing technology that can improve the
accuracy and quality of clinical coding and relieve the pressure on clinical coding personnel by assigning diagnostic
and procedure codes from EHRs to automate clinical coding. Campbell et al. [23] reviewed and discussed CAC
literature, and their indings indicated that CAC positively impacts coding quality and accuracy. Additionally,
clinical coding personnel should view CAC as an opportunity rather than a threat. CAC transforms medical coding
into a knowledge-based environment, and the current role of clinical coding professionals is transformed into
clinical coding editors or analysts [130]. However, the clinical coding editor still has the ultimate responsibility.
They can reject any inappropriate clinical coding suggestions by CAC software and send a consultation letter to
clinicians to clarify ambiguous or contradictory documents [158]. The automated clinical coding worklow must
still follow the clinical coding principles and speciications. Using machine learning methods or computer-assisted

6https://odemsa.net/
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clinical coding to extract practical information from EHRs and assign medical codes is the actual demand of each
medical health organization. Biomedical-named entity recognition and linking (NER+L) is committed to extracting
concepts from texts in EHRs. Searle et al. [156] integrated MedCATTrainer with the biomedical NER+L model,
which leverages active learning to improve the underlying NER+L model. Moreover, they provided researchers
with conigurable interfaces to deine annotations speciic to their research problems. This interface makes
speciic annotations for conigurable use cases of previously identiied and linked concepts.

3.5.2 Active Learning. Deep learning models need many annotation examples for training, and domain experts
need a high cost to annotate these data. Recent studies investigated the adoption of human-in-loop learning. For
example, active learning lets human annotators focus on the most informative data samples. Thus, the cost of
manual labeling can be reduced. Ferreira et al. [60] employed the active learning method to select the sample
with an enormous amount of information, signiicantly reducing manual annotation costs while maintaining the
model’s performance. Speciically, the authors studied two strategies for selecting samples: uncertainty metric
and correlation. The uncertainty metric assesses how uncertain the model is for a particular instance, while the
correlation measures the similarity between instances.

3.5.3 Explainability. Human-in-the-loop systems in healthcare aim to strike a balance between leveraging the
capabilities of machine intelligence while maintaining the expertise and judgment of healthcare professionals. In
such systems, healthcare providers can trust the correctness of the machine intelligence system’s output [42], and
the explainability allows them to understand the system’s reasoning. Teng et al. [166] designed an explainable
G_Coder model that uses two methods to verify its explainability. The irst is to employ attention to extract
keywords from clinical notes and display the correlation between medical labels and evidence. The second is to use
doctors to judge the results of attention allocation quantitatively. Oberste et al. [137] established a framework for
characterizing user knowledge and prior knowledge included in explanations by reviewing knowledge-informed
machine learning in healthcare. The authors encourage future research to improve the explainability of the model
while considering user background and experience to stimulate more trust in clinical settings.

3.5.4 Human Evaluation. Human evaluation is vital in assessing medical coding systems. Kim et al. [92] compared
automated medical coding systems to human coders and introduced the Read, Attend, and Code (RAC) model,
which performed on par with human coders. They hired two professional coders to assign ICD-9 codes to 508
patient discharge summaries, establishing a human coding baseline. The human coding baseline exceeded the
machine learning baseline by a factor of 3.9 in micro-Jaccard similarity.

4 BENCHMARKING AND REAL-WORLD USAGE

This section introduces the data for benchmarking medical coding models and the evaluation metrics to evaluate
the performance.

4.1 Data

The MIMIC database, including MIMIC-II [154] and MIMIC-III [85], is currently the most popular data source for
the experimental study of medical coding. MIMIC-IV-Note [86] - the latest development of the MIMIC database -
contains deidentiied free-text clinical notes collected in the U.S.A. and can act as a good testbed for the latest
medical coding models. Searle et al. [155] argued that the defacto gold-standard codes assigned in MIMIC-III had
not undergone secondary validation and constituted a silver-standard dataset. The publicly available MIMIC
database has promoted research on medical coding. The 2007 Computational Medicine Challenge organized a
shared task on ICD coding with a dataset from a hospital in the US [145]. Another recent dataset is CodiEsp in
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Spanish, which mainly provides manual codes with in-text explanations (or evidence) of 1,000 Spanish clinical
notes, but also English translations of the notes and publications with ICD-10 codes. The dataset was used in the
CodiEsp track in eHealth CLEF 2020 [129].

In parallel to the public databases, many studies have also been conducted with private in-house patient notes.
For example, Zhang et al. [211] used de-identiied medical notes with ICD-10 codes from a hospital in the USA.
Teng et al. [165] built a dataset of outpatient medical records with ICD-10 codes collected from a irst-class
hospital in China. Chen et al. [31] also performed medical coding with datasets with 275,797 EMR documents from
two medical departments of top hospitals in China and released a Chinese medical knowledge graph7. Rios et
al. [150] used a dataset of pathology reports with ICD-0-3 codes collected from the Kentucky Cancer Registry. Liu
et al. [117] assigned ICD-10 codes to clinical documents of Dutch and French Datasets. Hansen et al. [69] utilized
patients’ medication history for diagnosis coding using the Danish register data. Teng et al. [164] introduced
several existing datasets for ICD coding. Clinical notes from patient records have strict administrative regulations
to protect patient privacy. However, more public de-identiied data will help evaluate the generalizability of
medical coding models.

4.2 Evaluation Metrics

Medical coding uses evaluation metrics of the multi-label multi-class classiication problem to evaluate the
predictive performance. Standard evaluation metrics such as the area under the receiver operating characteristic
curve (AUC-ROC) and F1-score with two averaging strategies (i.e., micro and macro) and precision at � (P@�) are
used by most publications. Micro scores consider all labels jointly and give more weight to frequent labels. The
MIMIC-III top-50 dataset contains samples with the top-50 frequent codes. The hierarchical nature of medical
codes leads to the need for hierarchical evaluation. Instead of using a lat evaluation that treats each code
independently, CoPHE [55] proposes a set of metrics that represent the depth of nodes in a hierarchy, allowing to
quantify incorrect but related codes and preserve the counts in the upper layers to assess the issues of under-
or over-prediction. Weak Hierarchical Confusion Matrix (WHCM) [56] further adapts the confusion matrix to
the document-level multi-label setting to track within-family or out-of-family confusion of codes based on the
assumptions of a code łfamilyž in the hierarchy (e.g., diagnosis codes that share the same irst three digits of
ICD-9).

4.3 Practice in Public Health

Manual medical coding in practice is not perfect; e.g., the overall medium accuracy of coding in the UK was
around 83% with a large variance among studies (50-98%) surveyed in [19] around 2012. Errors in manual coding
may be due to errors or incompleteness in the patients’ data, subjectivity in choosing diagnostic codes, lack of
coding expertise, or data entry errors [38]. There are usually backlogs (of months or over a year) of records to be
coded [3]. According to the survey in [23], a computer-assisted coding system can potentially help improve coding
accuracy, quality, and eiciency; however, the challenges lie in the requirements in the transition from a manual
process to a computer-assisted coding environment. Coders should be able to revise the codes suggested by the
system and be involved in the system development process [23]. There are also other challenges in linguistics
(e.g., hypothetical contexts) and data formats (e.g., hand-written notes). A recent, ongoing project on deploying
an NLP system for clinical coding is CogStack for the Artiicial Intelligence in Health and Care Award in England
[97]. CogStack uses word embedding and concept embedding-based NLP sub-module MedCAT [101] to extract
contextual entities with mapping to concepts or codes in UMLS, SNOMED, and ICD-10. We refer readers to [49]
for a detailed comment of manual and AI-assisted clinical coding from the perspective of public health in the UK.

7https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2020_SignOrSymptom_Relationship
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In China, ICD coding is crucial in medical statistics, medical evaluation, medical insurance, billing, and other
ields [46]. Currently, the widely used coding rule is ICD-10. The relevant departments regularly update the
coding rules and standards and prepare the extended version according to ICD-10, expanding it from 4 bits to 6
bits [176]. However, the vast number of ICD codes and regional diferences in the coding system lead to version
disparities that adversely impact the coding quality [65]. Moreover, coders must master domain knowledge,
coding rules, and medical terminology to complete basic coding tasks [36]. In a Class III hospital in China, only
two coders are typically assigned to code ICD for approximately 2000 inpatients daily [84]. Meanwhile, clinical
experts have indicated that data loss and distortion are signiicant issues resulting from imprecise or insuiciently
detailed descriptions in clinical notes, posing a major challenge to clinical coding practice. With the continuous
development of deep learning technology and hardware, various deep neural network methods for Chinese
corpus have been applied to the current ICD automatic coding model [27, 36, 65, 84, 198, 202, 212, 213]. Clinical
experts are optimistic about the potential and inevitability of integrating deep learning technology into the
clinical practice of ICD coding, which could alleviate the burden on manual coders and improve coding accuracy
[35]. However, the deep learning model is challenging to play a decision-making role independently [27]. Clinical
coders prefer to believe in the model with solid interpretability and high accuracy [187]. To address this, clinical
experts recommend building an ICD coding assistant system that provides queries, recommendations, prompts,
and other functionalities, integrating medical knowledge and rules into the clinical coding model based on deep
learning [207]. In particular, because the subjective clinical records are not rigorous and complete, it may be
advantageous to conduct learning and reasoning based on objective and factual data (such as microbiological
events and subscriptions) [118].

There are more case studies in other countries. In Finland, the use of ICD-10 codes is a widely adopted practice,
with most healthcare providers generating structured diagnosis codes as part of their day-to-day operations.
Medical coding is essential for the purposes of monitoring the quality of clinical care, billing, insurance processing,
and clinical research [100]. In the Finnish context, most of the medical coding is carried out within EMR systems,
with 100% coverage reached in 2007, and 74% of healthcare operators managing at least 90% of their referral
exchange electronically today [149]. The high degree of standardization and digitization of records has made it
easy to develop interoperable automated medical coding systems in the Finnish healthcare domain. NLP-based
medical coding has been explored as a way to identify unnoticed medical conditions, such as sleeplessness and
anxiousness disorders, from clinical notes. The Finnish Institute for Health and Welfare (THL) calls for more
widespread structuring of medical information, as well as for a systematic assessment of automated systems
for coding and recording purposes, paving way for more widespread use of automated medical coding [76]. In
Thailand, Ponthongmak et al. [146] developed deep learning models for ICD-10 coding. In Germany, the statutory
health insurance billing for outpatient care is based on the German Uniform Assessment Standard (EBM). Oberste
et al. [136] designed an ML system for EBM coding and achieved advanced predictive performance. This review
provides a general introduction to real-world applications. However, as a technical review, we could not cover
every detailed aspect in the real world. We refer readers to the original publications for details. When applying
deep learning-based medical coding methods to country-speciic scenarios, the data distribution, languages, and
coding schemes changed. Previous performant models that achieved good accuracy on the English MIMIC-III
dataset might not work well with new datasets. For example, Ponthongmak et al. [146] showed PLM-ICD and
CNN-PubMedBERT performedwell in the Thai datasets and translation can enable the adaptation of the pretrained
models to Thai-English clinical text. When moving to another country, the results might vary. This review serves
as a good guideline for researchers and developers to develop their own deep learning models for medical coding.
To comprehensively address the speciic nuances of medical coding practices in diferent countries Ð for example,
identifying the problems solved by country-speciic studies, understanding their diferences, and examining the
empirical results obtained Ð a dedicated quantitative survey focusing on each country’s context would be more
suitable.
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4.4 Open Sources and Tools

This section introduces useful resources, including open-source software, model implementations, pretrained
language models, and medical ontologies.
Open-source codes facilitate reproducible research on clinical NLP algorithms. The Python programming

language and the Pytorch deep learning framework dominate the landscape of deep learning-based medical coding.
Aitziber et al. [7] developed a machine learning-based extraction system called DTEncoding to automatically
generate diagnostic terms (DTs) from electronic health records. SNOMED CT Browser8 enables users to look up
diferent SNOMED CT editions and clinical healthcare terminologies based on the SNOMED member countries.
The National Center for Health Statistics (NCHS) developed and maintained the Mortality Medical Data Sys-
tem (MMDS) to automatically provide classiication, entry, and cause-of-death information on death certiicates.
Clinical-Coder [27] is an online system that assigns ICD-10 codes to Chinese clinical notes. It develops a Dilated
Convolutional Attention network with N-gram Matching Mechanism (DACNM) for automated medical coding.
Its dilated convolution is the same as that used in DCAN [77]. It further augments the system with an explicit
n-gram matching to capture the explicit semantic information. A video demonstration is available 9. The Clinical
Classiications Software (CCS) is a maintained coding system projecting ICD-9-CM codes into coarse-grained
CCS codes, which can be used as ontology and disease classiication codes. Recently, AnEMIC [95] has been
released typically for automatic ICD coding. It is an open-source framework that enables error-reduced data
preprocessing, model training, and evaluation for automatic ICD coding. The current release includes multiple
convolutional neural networks and transformer-based models.

Much literature [4, 75, 78] shows that models sufer from performance degeneration without considering the
in-domain adaptation. Most pretrained language models use text in the majority languages such as English and
Spanish for self-supervised pretraining. The research community should also pay more attention to the minority
languages and learning algorithms in the low-resource setting.

5 DISCUSSION AND FUTURE DIRECTIONS

Clinical notes generated by clinicians contain rich information about patients’ diagnoses and treatment procedures.
Healthcare institutions digitized these clinical texts into EHRs and other structural medical and treatment histories
of patients for clinical data management, health condition tracking, and automation. This paper reviews deep
neural network-based methods for automated medical coding under a uniied framework. The advances in deep
learning models have signiicantly improved predictive performance. However, the current trend of leaderboard-
oriented research is also concerning. It is easy to fall into the pitfall of excessive neural architecture engineering
by chasing the scores on the leaderboard of public benchmarks but missing other critical matters. For example,
the widely used MIMIC-III dataset may be imperfectly labeled, or under-coded [155]. Moreover, it only relects
clinical coding practice in the US more than a decade ago (till 2012) and only contains clinical notes written in
English. This section summarizes the current research and discusses some critical issues that should be carefully
considered when improving predictive performance.

5.1 Summary and Discussion

Our review proposes a uniied framework for automated medical coding and categorizes building blocks under
the uniied framework. First, we introduce four main neural encoder modules, i.e., recurrent neural networks,
convolutional neural networks, neural attention mechanism, and graph neural networks. Hierarchical encoders
that utilize the hierarchical structure of the text are also discussed in detail. RNNs can capture the sequential
dependency in text and are intensively used as the text encoder. Many models also use CNNs to extract local

8https://browser.ihtsdotools.org/
9Available at https://youtu.be/U4TImTwEysE

ACM Comput. Surv.

https://browser.ihtsdotools.org/
https://youtu.be/U4TImTwEysE


A Unified Review of Deep Learning for Automated Medical Coding • 27

features, which is validated to be efective in medical coding with many labels. The neural attention mechanism,
especially the self-attention-based Transformer network, sufers from quadratic complexity to the length of the
input sequence. A recent study on hierarchical neural architecture with Transformer-based encoders shows
that better construction of hierarchical text structure can improve the coding performance [209]. More eicient
attention mechanisms such as Longformer [12] and Big Bird [205] for long sequences are also attracting much
research attention while still very resource- and time-demanding compared to CNN models.
Most models stack neural layers to build deeper architectures. This review then introduces mechanisms to

build deep neural networks. The most frequently adopted method is the residual connection initially proposed
for image processing. The residual networks can avoid performance degradation of deep neural architectures
and have been used in many CNN-based models. However, the highway networks that use a gating mechanism
to control the information low of deep networks have not been used in building deep models for automated
medical coding.
Automated medical coding as a multi-label multi-class classiication problem relies on powerful decoder

modules to boost predictive performance. The most widely used decoder is the label attention mechanism that
learns label-aware representations for medical code prediction. The hierarchical nature of medical classiication
systems leads to the development of various hierarchical decoders. Other advances, such as multitask learning
and few-shot/zero-shot learning-based decoders, are also promising directions.
Finally, we review how to utilize auxiliary information to improve medical coding performance. Auxiliary

information includes Wikipedia articles, code descriptions, code hierarchy, chart data, entities, and concepts.
Most methods use external text such as medical code descriptions and Wikipedia articles to enhance textual
feature learning. Auxiliary information, such as code description, can also act as the regularization for model
optimization. For example, the DR-CAML [131] uses the embeddings of ICD code description as a regularizer to
enhance the representation learning for rare codes. The code hierarchy connects to hierarchical decoders closely.
Chart data and medical imaging data facilitate multimodal learning. Entities and concepts enable knowledge-
aware representation learning. External knowledge contributes to robust few-shot and zero-shot medical coding
signiicantly.

5.2 Future Directions

Deep learning has boosted the development of automated medical coding methods. Nevertheless, many challenges
exist. This section points out some future directions as follows.

Long-term Dependency and Scalability. It is challenging for neural encoders to capture long-term dependency,
especially when clinical notes are extremely long documents. Self-attention-based models that succeed in sentence
understanding have scalability issues due to the complexity of self-attention. Although some remedies attempt to
make self-attention more eicient in the NLP community, few studies have been done in the context of medical
coding. Also, recent deep learning models are becoming increasingly large. Future work should consider the
scalability issue when dealing with long clinical documents and high-dimensional medical codes.

Clinical Relatedness. Modern neural models can efectively learn textual features for given input texts. We can
usually achieve satisfactory performance with a strong classiier and appropriate training. However, whether
the encoding model can capture the clinical relatedness between diferent text mentions for medical coding is
still unclear. Besides, human clinical coders refer to diferent data types when assigning codes. Multimodal deep
learning methods are introduced to learn embeddings of multimodal data. Multimodal alignment and fusion are
critical components to capture clinical relatedness across diferent modalities. Future work needs to deeply infuse
clinical knowledge (e.g., knowledge graphs [30, 81]) into the neural encoders, enhancing the model’s capability
to learn knowledge-aware features and the model’s reasoning ability.
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Class Imbalance and Hierarchical Decoding. The medical coding tasks sufer from class imbalance with a long
tail of rare diagnoses in the class distribution. Nevertheless, current research considers less about the class
imbalance issue, which should be addressed in future work. In particular, more efective neural decoders would be
required for robust medical coding. The code hierarchy as prior human knowledge sheds light on the imbalanced
classes. However, how to enable global and local learning for the whole hierarchy and local branches in the
hierarchy is a challenging future work when developing hierarchical decoding approaches. More importantly,
enabling few-shot and zero-shot learning for rare and unseen codes without external knowledge is an unsolved
problem.

Interpretability. Existing models with a certain level of explanation are post-hoc studies, for example, by
interpreting the predictions through the visualization of attention weights [51, 61]. It is important to understand
the model’s prediction and prioritize features learned by the model. For example, embedding external medical
knowledge bases like the uniied medical language systemmight be further utilized to learn rich knowledge-aware
representation to help medical text understanding. Knowledge-aware reasoning will need to be introduced to
improve the interpretability of medical prediction. However, the medical coding model, mainly occupied by deep
learning, is still largely a black box. Thus, further work should focus more on interpretability that can improve the
transparency of neural medical coding models, explain and justify model predictions, and ensure accountability
and adherence to privacy and ethical guidelines.

Human-in-the-loop Systems. Medical coding models are supposed to facilitate current worklows at hospitals.
One important future research direction is to integrate the human-in-the-loop systems [206] into medical coding,
in which human experts can interact with the model training process and enhance the model performance [71].
For example, the active learning paradigm can select informative samples for human annotators when preparing
the training data. Hospitals usually provide coding guidelines for human coders. For example, one rule from the
current guideline requires that hypertension with pregnancy should not be coded as hypertension. Involving
human experts can explicitly inject those coding rules into the labeled data and correct the model predictions if
they fail to follow the coding guidelines.

Updated Guidelines and Data Shift. Coding guidelines are usually updated frequently. The changes in guidelines
should be considered in developing automated medical coding tools to facilitate the updated worklows at
hospitals. As time goes by, clinical practice can change. For example, a new pandemic might lead to signiicant
changes in the health systems. Medical coding models should also be able to be robust to data shifts. Considering
the increasing nature of health records, incremental learning or lifelong learning [140] might also be studied.
Multitask learning [210] that solves the medical coding with diferent coding schemes can also be further deployed.
When new codes enter the standard classiication system during the update of coding guidelines, the medical
coding model should be adaptable to the zero-shot coding problem. Furthermore, medical coding models should
also produce uncertainty-aware predictions when facing updated coding guidelines and schemes.

Novel Encoder-decoder Architectures and Large Language Models. While the existing work can be generalized to
an encoder- decoder architecture, sequence-to-sequence (seq2seq) models are less explored for medical coding
by modeling text sequence input to code sequence output. Seq2seq models have been applied for multi-label
classiication to model the correlation among labels [196], and more recently for entity recognition and linking
from texts [25]. Atutxa et al. [5] performed a sequence-to-sequence benchmark for ICD-10 coding, published
as working notes. However, the paper did not reveal details about how ICD codes are decoded in a sequence-
to-sequence manner10. Motivated by the seq2seq machine translation model, Atutxa et al. [6] continued the

10The decoder generates the output sequence one element at a time. At each step, it takes the previously generated element and the current

state as input to predict the next element in the sequence.
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study on a real seq2seq model, in which the decoder process considers the previous output when decoding a new
medical code. As a future direction, novel decoding processes of the seq2seq method can be explored to better
capture the dependency of medical codes. Considering the prominent generation capabilities enabled by large
pretrained language models [197] (e.g., encoder-decoder based T5 [148] and decoder-only BioGPT [124]) and
instruction-tuned models such as ChatGPT11, our initial version of this review argued that a potential direction is
to generate codes from input documents and prompt-based learning that leverages crafted or learned templates
(or prompts) for generation, as surveyed in [116], may also be incorporated to decode medical codes or concepts
in the large hierarchical coding space. Recent advances, such as Yang et al. [199], investigated autoregressive
generation with prompts. Utilizing the ability of large language models (LLMs), such as ChatGPT, for medical
coding would be an interesting direction. Falis et al. [57] studied zero-shot prompting and data augmentation
with GPT-3.5 and showed the limited capacity of GPT-3.5. LLM-based methods hold the potentail for contextual
understanding on medical text beneiting from the inherent language capabilities of such models. However, they
struggle with improving the coding accuracy, especically dealing codes without exisiting examples. Moreover,
this direction comes with challenges related to data quality, domain-speciic terminology, ine-tuning, and ethical
considerations. The integration of LLMs into medical coding represents a challenging path toward improving
accuracy and eiciency in this critical healthcare task.

Privacy and Security Concerns. Medical texts often contain both identifying information (such as a patient’s name
or other identifying characteristics) as well as sensitive information (such as health state or intimate knowledge
of their life). Thus, privacy and security concerns must always be addressed when processing, analyzing, and
utilizing text-form data. When utilizing machine learning-based models, one must always remember that such
models will likely retain patient-speciic information unless training data has been thoroughly anonymized. This
inherent memorization aspect makes the sharing of models between organizations diicult, as it is arduous to
ensure that no patient-speciic information can be reverse-engineered from a given model.

6 CONCLUSION

Recent years have witnessed increasing attention to the problem of automated medical coding. This paper
reviews automated medical coding from an in-depth perspective that uniies a great variety of existing deep
learning-based models into an encoder-decoder framework without losing technical nuances in each speciic
type of model. Speciically, we discuss 1) neural encoders with recurrent and convolutional networks, neural
attention mechanisms, and hierarchical encoders typically used for long clinical notes; 2) mechanisms to build
deep architectures, including simple stacking, embedding injection, and residual connection; 3) decoder modules
with linear layers, neural attention, hierarchical and multitask decoders; 4) the usage of auxiliary information
such as Wikipedia articles, code descriptions, and code hierarchy. Besides, we introduce data for medical coding,
the evaluation of medical coding models, and real-world practice. We summarize the limitations and point out
future research directions at the end of this review.
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