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1. Introduction

Let A be a finite-dimensional semisimple Q-algebra and let Λ be an order in A. For 
example, if G is a finite group, then the group ring Z[G] is an order in the group algebra 
Q[G]. A Λ-lattice is a (left) Λ-module that is finitely generated and torsion-free over Z. 
A special case of the Jordan–Zassenhaus theorem says that for each positive integer t, 
there are only finitely many isomorphism classes of Λ-lattices of Z-rank at most t.

Now fix a positive integer n. Then there exists a positive integer m with the following 
property: given any Λ-lattice X such that Q ⊗ZX is free of rank n as an A-module, there 
exists a free Λ-sublattice Y of X such that the index [X : Y ] is at most m. To see this, 
first note that by clearing denominators of a free basis of Q ⊗Z X over A, any such X
must contain a (non-unique) free Λ-sublattice of rank n, necessarily of finite index mX

in X. Since the Jordan–Zassenhaus theorem implies that there are only finitely many 
choices for X up to isomorphism, we may take m to be the maximal mX as X ranges 
over all such choices. Masser–Wüstholz [41,42] defined the class index in(Λ) to be the 
smallest possible value of m. Using methods from the geometry of numbers, they were 
able to provide upper bounds for in(Λ) in special cases that led to results on the existence 
of isogenies between abelian varieties of small degrees (see also [34]).

We can in fact consider bounds that are also upper bounds with respect to division. In 
the above argument, we can instead take m to be any common multiple of the mX . Then 
m has the following property: given any Λ-lattice X such that Q ⊗Z X is free of rank n
as an A-module, there exists a free Λ-sublattice Y of X such that [X : Y ] divides m. The 
main goals of the present article are to give explicit choices of m with this property and 
to give examples of arithmetic applications. In fact, the setting generalises to the case in 
which Λ is an O-order where O is a Dedekind domain whose field of fractions K is a global 
field assumed not to be equal to O, and A is a finite-dimensional semisimple K-algebra. 
In this situation, the group index [X : Y ] is replaced by the generalised module index 
[X : Y ]O. The main result, Theorem 4.5, gives upper bounds for this index with respect 
to division that are independent of X and can be chosen to satisfy certain conditions. 
The proof of this result requires the hypothesis that A is a separable K-algebra; if K
is of characteristic zero, then this follows automatically from the assumption that A is 
semisimple.

We now give examples of the algebraic results and arithmetic applications. The follow-
ing result is a weaker version of Theorem 5.3 obtained via specialisation and Remark 7.2.

Theorem 1.1. Let G be a finite group and let k be a positive integer. Then there exists a 
positive integer i, which can be chosen to be coprime to k, with the following property: 
given any Z[G]-lattice X such that Q ⊗Z X is free of rank n over Q[G], there exists a 
free Z[G]-sublattice Z of X such that the index [X : Z] divides i · |G|�3|G|/2�n.

In Theorem 5.3, we also give conditions on G under which we can take i = 1 (see 
also §5.4). The term |G|�3|G|/2�n is a crude but neat upper bound for a more precise 
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expression that will be made explicit. The following result is Theorem 5.15, which is just 
one example of the stronger results that can be obtained in special cases.

Theorem 1.2. Let G be a finite group and suppose that there exist positive integers 
t, n1, . . . , nt such that Q[G] ∼=

∏t
i=1 Matni

(Q). If X is an Z[G]-lattice such that Q ⊗ZX

is free of rank n over Q[G], then there exists a free Z[G]-sublattice Z of X such that 
[X : Z] divides

(
|G||G|

t∏
i=1

n
−n2

i
i

) 3n
2

.

Before sketching the ideas used in the proof of the main result, we discuss how a 
variant of Theorem 1.1 can be applied in the following arithmetic situation. Let L/K be 
a finite Galois extension such that K is equal to either Q or an imaginary quadratic field. 
Let G = Gal(L/K) and let μL denote the roots of unity of L. In this setting, O×

L /μL

is a Z[G]-lattice and one can show that L/K has a so-called Minkowski unit, that is, 
an element ε ∈ O×

L /μL such that Q ⊗Z (O×
L /μL) = Q[G] · ε. Such an ε is said to be 

a strong Minkowski unit if O×
L /μL = Z[G] · ε. The existence of strong Minkowski units 

(which some authors refer to as Minkowski units) has been studied in numerous articles; 
see Remark 8.3. In §8, we give several results on the approximation of strong Minkowski 
units. The following result is a weakening of Theorem 8.5 obtained via Remark 8.6.

Theorem 1.3. Let G be a finite group and let k be a positive integer. Then there exists a 
positive integer i, which can be chosen to be coprime to k, with the following property: 
given any finite Galois extension L/K with Gal(L/K) ∼= G and K equal to either Q or 
an imaginary quadratic field, there exists a Minkowski unit ε ∈ O×

L /μL such that the 
index [O×

L /μL : Z[Gal(L/K)] · ε] divides i · |G|�3|G|/2�−2.

Again, stronger results can be obtained in special cases. Analogous applications to 
the approximation of normal integral bases are given in §7 and to the Galois module 
structure of rational points on abelian varieties are given in §9.

We now outline the ideas used in the proof of the main result Theorem 4.5. Let O be 
a Dedekind domain whose field of fractions K is a global field and assume that O �= K. 
Let A be a finite-dimensional separable K-algebra and let Λ be an O-order in A. Let 
M be a maximal O-order in A containing Λ. Note that the existence of M is ensured 
by the separability hypothesis on A and that the choice of M need not be unique. Let 
X be a Λ-lattice such that K ⊗O X is free of rank 1 over A (the higher rank case is 
similar). We consider the unique M-lattice MX contained in X that is maximal with 
respect to inclusion. Then MX is locally free over M, and as explained in Corollary 4.2, 
MX contains a free M-sublattice M · ε with an index that can be controlled (the key 
ingredients here are the Jordan–Zassenhaus theorem and Roiter’s lemma). Hypotheses 
on M can also be given to ensure that this index is trivial (see Lemma 2.2). We then 
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obtain a bound on the index [X : Λ · ε]O by taking the product of bounds on the indices 
corresponding to each of the three inclusions

Λ · ε ⊆ M · ε ⊆ MX ⊆ X.

Note that [M · ε : Λ · ε]O = [M : Λ]O, which is equal to the product of the indices 
of the localisations of M and Λ. Moreover, [X : MX]O divides [MX : MX]O, where 
MX is the unique M-lattice containing X that is minimal with respect to inclusion. In 
Corollary 3.3, we show that [MX : MX]O divides [M : J ]O where J is any full two-sided 
ideal of M contained in Λ. Again, [M : J ]O can be computed by localisation. Crucially, 
the product of bounds of indices obtained is independent of the choice of Λ-lattice X.

If G is a finite group such that |G| is invertible in K and Λ = O[G], then J can be 
taken to be the (left) conductor of M into Λ (the left and right conductors are equal in 
this case) and [M : J ]O can be computed explicitly using Jacobinski’s conductor formula 
[23]. We also obtain an explicit formula for [M : O[G]]O, which may be of independent 
interest. Note that in the setting of Theorem 1.1 with n = 1, the term |G|�3|G|/2� is a 
crude but neat upper bound for [M : Z[G]] · [M : J ] = [M : Z[G]]3 and the term i is 
the upper bound for [MX : M · ε] given by Corollary 4.2. Moreover, we can take i = 1
when M satisfies the equivalent conditions of Lemma 2.2 (see §5.4 for conditions on G
under which this holds).
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2. Preliminaries on lattices and orders

For further background, we refer the reader to [11,46,21]. Let O be a Dedekind domain 
with field of fractions K. To avoid trivialities, we assume that O �= K.

2.1. Lattices over Dedekind domains

An O-lattice M is a finitely generated torsion-free O-module, or equivalently, a finitely 
generated projective O-module. Using the former definition and the fact that O is noethe-
rian, we see that any O-submodule of an O-lattice is again an O-lattice.
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For any finite-dimensional K-vector space V , an O-lattice in V is a finitely generated 
O-submodule M of V . Given such an M , we define a K-vector subspace of V by

KM := {α1m1 + α2m2 + · · · + αrmr | r ∈ Z≥0, αi ∈ K,mi ∈ M}

and say that M is a full O-lattice in V if KM = V . Each O-lattice M may be viewed 
as a full O-lattice in the finite-dimensional K-vector space K ⊗O M by identifying M
with its image 1 ⊗M . We may identify K ⊗O M with KM .

Let M and N be a pair of full O-lattices in a finite-dimensional K-vector space V . 
Since N contains a K-basis for V , for each m ∈ M there is a nonzero r ∈ O such that 
rm ∈ N . Therefore there exists a nonzero r ∈ O such that rM ⊆ N since M is finitely 
generated over O.

For a maximal ideal p of O, let Op denote the localisation of O at p. Let Ôp denote 
the completion of O at p and let K̂p denote its field of fractions. For an O-lattice M , we 
define the localisation M at p to be the Op-lattice Mp := Op ⊗O M and the completion 
of M at p to be the Ôp-lattice M̂p := Ôp⊗O M . By identifying M with its image 1 ⊗M , 
we may view M as embedded in Mp. Viewing M and each Mp as embedded in KM , we 
have M =

⋂
p
Mp, where p ranges over all maximal ideals of O (see [46, (4.21)]).

2.2. Generalised module indices

Much of the material in the following paragraph is explained in more detail in [18, 
§3]. Let M, N be full O-lattices in a finite-dimensional K-vector space V . First consider 
the case in which O is a discrete valuation ring. Then M and N are both free and of 
equal rank over O, and so there exists an α ∈ AutK(V ) with α(M) = N . Moreover, α is 
unique modulo AutO(N); hence its determinant is unique modulo O×, and so the ideal 
[M : N ]O := O det(α) is a uniquely defined fractional ideal of O. Now consider the case in 
which O is an arbitrary Dedekind domain. For almost all maximal ideals p of O we have 
Mp = Np and hence [Mp : Np]Op

= Op (see [11, Exercise 4.7]). Therefore there is a unique 
fractional ideal [M : N ]O of O such that ([M : N ]O)p = [Mp : Np]Op

for all p. Note 
that if M1, M2, M3 are full O-lattices in V , then [M1 : M3]O = [M1 : M2]O · [M2 : M3]O. 
Moreover, if O′ is a Dedekind domain containing O, then O′⊗O [M : N ]O = [O′⊗O M :
O′ ⊗O N ]O′ . If N ⊆ M are Z-lattices of equal rank, then we abbreviate [M : N ]Z to 
[M : N ], which is consistent with the fact that [M : N ]Z is the Z-ideal generated by the 
usual group index of N in M .

Lemma 2.1. Suppose we have a diagram of O-lattices with exact rows

0 N1 N2 N3 0

0 M1 M2 M3 0,
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such that KNi = KMi for i = 1, 2, 3. Then [M2 : N2]O = [M1 : N1]O · [M3 : N3]O.

Proof. For i = 1, 3, fix K-linear maps αi : KMi → KMi such that αi(Mi) = Ni. Let 
π : N2 → N3 denote the map in the above diagram. Since N3 is O-projective, there exists 
an O-section s : N3 → N2 of π. Then define α̃3 : KM3 → KM2 by α̃3 = (K ⊗O s) ◦ α3. 
Fixing an O-linear splitting M2 ∼= M1 ⊕ M3 (which exists since M3 is O-projective) 
and thus a K-linear splitting KM2 ∼= KM1 ⊕ KM3, we then obtain a K-linear map 
α2 := (α1 + α̃3) : KM2 → KM2 such that α2(M2) = N2 and α1(M1) = N1. Hence, with 
respect to a K-basis of KM2 extending a K-basis of KM1, the matrix representing α2
is block upper triangular. Consequently, det(α2) = det(α1) det(α3), and thus we obtain 
the desired result. �
2.3. Duals of lattices

Let M be an O-lattice. The linear dual M∨ := HomO(X, O) is also an O-lattice and 
there is a canonical identification (M∨)∨ = M . Moreover, (−)∨ is inclusion-reversing. 
For a maximal ideal p of O, we have (Mp)∨ = (M∨)p. Together with the fact that 
determinants are invariant under transposition, this implies that if M and N are full 
O-lattices in a finite-dimensional K-vector space V , then [M : N ]O = [N∨ : M∨]O.

2.4. Lattices over orders

Let A be a finite-dimensional K-algebra and let Λ be an O-order in A, that is, 
a subring of A that is also a full O-lattice in A. Note that Λ is both left and right 
noetherian since Λ is finitely generated over O. A left Λ-lattice X is a left Λ-module that 
when considered as an O-module is also an O-lattice; in this case, KX may be viewed 
as a left A-module.

Henceforth all modules (resp. lattices) shall be assumed to be left modules (resp. 
lattices) unless otherwise stated. Two Λ-lattices are said to be isomorphic if they are 
isomorphic as Λ-modules.

For a maximal ideal p of O, the localisation Λp is an Op-order in A, and the completion 
Λ̂p is a Ôp-order in K̂p ⊗K A. Localising a Λ-lattice X at p yields a Λp-lattice Xp, and 
completing X at p yields a Λ̂p-lattice X̂p. Given Λ-lattices X and Y , we have that 
Xp

∼= Yp as Λp-lattices if and only if X̂p
∼= Ŷp as Λ̂p-lattices (see [46, (18.2)]). For a 

positive integer n, a Λ-lattice X is said to be locally free of rank n, if for each maximal 
ideal p of O, the Λp-lattice Xp is free of rank n, or equivalently, the Λ̂p-lattice X̂p is free 
of rank n. Note that every locally free Λ-lattice is projective by [11, (8.19)].

2.5. Maximal orders

Suppose that A is a separable finite-dimensional K-algebra (see [46, §7c]). A maximal
O-order in A is an O-order that is not properly contained in any other O-order in A. 



H. Johnston, A. Torzewski / Journal of Algebra 657 (2024) 81–108 87
For any O-order Λ in A, there exists a (not necessarily unique) maximal O-order M in 
A containing Λ by [46, (10.4)]. If M is a maximal O-order, X is an M-lattice, and n is 
a positive integer, then by [11, (31.2)(iii)] we have that KX is free of rank n over A if 
and only if X is locally free of rank n.

2.6. Locally free class groups and cancellation properties

Suppose that K is a global field and that A is separable finite-dimensional K-algebra. 
Let Λ be an O-order A. Let P (Λ) be the free abelian group generated by symbols [X], one 
for each isomorphism class of locally free Λ-lattices X, modulo relations [X] = [X1] +[X2]
whenever X ∼= X1 ⊕ X2. We define the locally free class group Cl(Λ) of Λ to be the 
subgroup of P (Λ) consisting of all elements that can be written in the form [X] − [Y ], 
with X, Y locally free and KX ∼= KY .

We remark that [X] − [Y ] = 0 in Cl(Λ) if and only if X is stably isomorphic to Y , 
that is, X ⊕ Λ(k) ∼= Y ⊕ Λ(k) for some positive integer k (here Λ(k) denotes the direct 
sum of k copies of Λ). The order Λ is said to have the locally free cancellation property
if given any pair of locally free Λ-lattices X and Y ,

X ⊕ Λ(k) ∼= Y ⊕ Λ(k) for some k ∈ Z≥0 =⇒ X ∼= Y.

Moreover, Λ is said to have the stably free cancellation property if this holds in the special 
case that Y is free. If A satisfies the so-called Eichler condition relative to O, then Λ
has the locally free cancellation property; this condition is satisfied if A is commutative 
(see [12, §51] for further details).

If n is a positive integer and Y is any locally free Λ-lattice of rank n, then by [11, 
(31.14)] there exists a locally free Λ-lattice X in A such that Y ∼= Λ(n−1) ⊕ X. Hence 
every element of Cl(Λ) is expressible in the form [X1] −[X2], where X1 and X2 are locally 
free Λ-lattices in A. In particular, the Jordan–Zassenhaus theorem [46, (26.4)] implies 
that Cl(Λ) is finite. Moreover, for each such pair X1, X2, there exists another such lattice 
X3 such that X2 ⊕X3 ∼= Λ ⊕X1 by [11, (31.7)]. Therefore every element of Cl(Λ) is in 
fact expressible in the form [X] − [Λ] for some locally free Λ-lattice X in A.

The following result is easily deduced from the above discussion.

Lemma 2.2. The following statements are equivalent:

(i) every locally free Λ-lattice is in fact free;
(ii) every locally free Λ-lattice of rank 1 is in fact free;
(iii) Cl(Λ) is trivial and Λ has the stably free cancellation property;
(iv) Cl(Λ) is trivial and Λ has the locally free cancellation property.

Remark 2.3. Lemma 2.2 will often be applied in the case that Λ is a maximal Z-order. 
Smertnig and Voight [50, Theorem 1.3] have classified all maximal Z-orders in totally 
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definite quaternion algebras with the locally free cancellation property, and from this it is 
straightforward to determine whether any given maximal Z-order in a finite-dimensional 
semisimple Q-algebra has the locally free cancellation property. See also Remark 5.12.

3. Overlattices and sublattices for overorders

Let O be a Dedekind domain with field of fractions K and assume that O �= K.

3.1. Setup and definitions

Let A be a finite-dimensional K-algebra. Let Λ ⊆ Γ be O-orders in A and let X be a 
Λ-lattice. Define

ΓX := {γ1m1 + γ2m2 + · · · + γrmr | r ∈ Z≥0,mi ∈ X, γi ∈ Γ} ⊆ KX.

This is the unique Γ-lattice in KX containing X that is minimal with respect to inclusion.
There exists a nonzero r ∈ O such that rΓ ⊆ Λ (see §2.1) and so rΓX is a Γ-lattice 

contained in X of finite index. Since the sum of any two Γ-lattices contained in X is also 
a Γ-lattice contained in X, we see that there exists a unique Γ-lattice contained in X
that is maximal with respect to inclusion, which we shall denote by ΓX.

For a right Λ-lattice X, we define XΓ and XΓ similarly. Note that ΓΛ (resp. ΛΓ) 
coincides with the right (resp. left) conductor of Γ into Λ (see [11, (27.2)]).

3.2. Bounds on indices

The following result gives a bound on

[ΓX : ΓX]O = [ΓX : X]O · [X : ΓX]O

that only depends on Γ and Λ, and not on the particular choice of lattice X.

Proposition 3.1. Let A be a finite-dimensional K-algebra and let Λ ⊆ Γ be O-orders in 
A. Let J be any full two-sided ideal of Γ contained in Λ. Let X be a Λ-lattice such that 
ΓX is locally free of rank n over Γ. Then [ΓX : ΓX]O divides [Γ : J ]nO.

Remark 3.2. There are many possible choices of J , and the best choice will be context 
specific. For example, a weak but general choice is J = [Γ : Λ]O · Γ. Moreover, J can 
always be taken to be the two-sided ideal of Γ generated by the central conductor of Γ
into Λ, that is, by {x ∈ C | xΓ ⊆ Λ}, where C denotes the centre of A.

Proof of Proposition 3.1. Since J is a left Γ-lattice contained in Λ, we have that JX is a 
left Γ-lattice contained in X. Hence JX is contained in ΓX. The chain of containments
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JX ⊆ ΓX ⊆ X ⊆ ΓX

implies that [ΓX : ΓX]O divides [ΓX : JX]O. Thus it remains to show that

[ΓX : JX]O = [Γ : J ]nO.

Since indices are defined locally and ([ΓX : JX]O)p = [ΓpXp : JpXp]Op
for every 

maximal ideal p of O, we can and do assume without loss of generality that O is a 
discrete valuation ring. Then by hypothesis there exist ε1, . . . , εn ∈ ΓX such that ΓX =
Γε1 ⊕ · · · ⊕ Γεn. Since J is a right Γ-module, we have

JX = JΓX = J(Γε1 ⊕ · · · ⊕ Γεn) = Jε1 ⊕ · · · ⊕ Jεn.

Therefore

[ΓX : JX]O = [Γε1 ⊕ · · · ⊕ Γεn : Jε1 ⊕ · · · ⊕ Jεn]O = [Γ : J ]nO. �
Corollary 3.3. Let A be a separable finite-dimensional K-algebra and let Λ be an O-order 
in A. Let M be a maximal O-order in A containing Λ and let J be any full two-sided 
ideal of M contained in Λ. Let X be a Λ-lattice such that KX is free of rank n over A. 
Then [MX : MX]O divides [M : J ]nO.

Proof. Since KX is free of rank n over A, we have that MX is locally free of rank n
over M (see §2.5), and so the desired result follows directly from Proposition 3.1. �
Remark 3.4. In Proposition 3.1 and Corollary 3.3, the order Λ can be replaced by the so-
called associated order A(X) = {α ∈ A | αX ⊆ X}. Thus if the containment Λ ⊆ A(X)
is strict, then working over A(X) may allow a choice of J ⊆ A(X) with improved index 
[M : J ]O. For example, if M is a maximal order containing Λ and we take X = M, 
then A(X) = M and so we can take J = M, which is consistent with the fact that 
MX = X = MX in this situation. Of course, the disadvantage of this approach is that 
A(X) depends on X.

3.3. Duals and overorders

For an O-order Λ in a finite-dimensional K-algebra and any left (resp. right) Λ-lattice 
X, the dual X∨ = HomO(X, O) has the structure of a right (resp. left) Λ-lattice, and 
there is a canonical identification (X∨)∨ = X.

Lemma 3.5. Let Λ ⊆ Γ be O-orders in a finite-dimensional K-algebra.

(i) If X is a left Λ-lattice, then we have an equality of right Γ-lattices (ΓX)∨ = (X∨)Γ
and an equality of indices [ΓX : X]O = [X∨ : (X∨)Γ]O.
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(ii) If X is a right Λ-lattice, then we have an equality of left Γ-lattices (XΓ)∨ = Γ(X∨)
and an equality of indices [XΓ : X]O = [X∨ : Γ(X∨)]O.

Proof. We only prove part (i). Since (−)∨ reverses inclusions, (ΓX)∨ is a right Γ-lattice 
contained in X∨. Hence (ΓX)∨ is contained in (X∨)Γ by definition of the latter. Dual-
ising, we also have that

ΓX = ((ΓX)∨)∨ ⊇ ((X∨)Γ)∨. (3.1)

Since ((X∨)Γ)∨ is itself a left Γ-lattice containing X, this forces equality in (3.1) and 
hence (ΓX)∨ = (X∨)Γ as desired. Finally, since (−)∨ preserves indices (see §2.3) we 
have that [ΓX : X]O = [X∨ : (ΓX)∨]O = [X∨ : (X∨)Γ]O. �
3.4. The commutative separable setting

In the setting of commutative separable algebras, the following result of Fröhlich is a 
refinement of Corollary 3.3.

Theorem 3.6 (Fröhlich [17]). Let A be a commutative separable finite-dimensional K-
algebra and let Λ be an O-order in A. Let M be the unique maximal O-order in A. Let 
X be a Λ-lattice such that KX is free of rank n over A. Then both [MX : X]O and 
[X : MX]O divide [M : Λ]nO.

Proof. The claim that [MX : X]O divides [M : Λ]nO is contained in [17, Theorem 4].
It remains to show that [X : MX]O divides [M : Λ]nO. Since A is separable there is 

an isomorphism of (right) A-modules A ∼= HomK(A, K) induced by the pairing of [11, 
(7.41)]. Thus there are A-module isomorphisms

K(X∨) ∼= HomK(KX,K) ∼= HomK(A(n),K) ∼= HomK(A,K)(n) ∼= A(n).

Lemma 3.5(ii) implies that [X : MX]O = [X∨M : X∨]O = [MX∨ : X∨]O, where in the 
last equality, we consider X∨ as a left M-lattice, as we may since M is commutative. 
Moreover, since K(X∨) is free of rank n over A, the first claim and the appropriate 
substitution imply that [MX∨ : X∨]O divides [M : Λ]nO. �
Remark 3.7. [5, §7, Example 1] shows that the result analogous to Theorem 3.6 does not 
always hold in the noncommutative separable setting.

4. Free sublattices of bounded index

Let O be a Dedekind domain with field of fractions K. Assume that K is a global 
field and that O �= K. Let A be a separable finite-dimensional K-algebra.
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4.1. Free sublattices of locally free lattices

The following result gives a bound on the index of a free sublattice in a locally free 
lattice.

Proposition 4.1. Let Γ be an O-order in A and let K be any nonzero ideal of O. Then 
there exists a nonzero ideal I of O, that can be chosen to be coprime to K, with the 
following property: for every locally free Γ-lattice X, there exists a free Γ-sublattice Y of 
X such that [X : Y ]O divides I.

Proof. By [11, (31.14)], for a positive integer n and a locally free Γ-lattice X of rank 
n, there exists a locally free Γ-lattice W of rank 1 such that X ∼= Γ(n−1) ⊕ W . Thus 
the problem reduces to the case of locally free Λ-lattices W of rank 1. The number 
of isomorphism classes of such lattices is finite by the Jordan–Zassenhaus theorem [46, 
(26.4)]. For each such class, choose a representative W and note that by Roiter’s lemma 
[11, (31.6)] there exists an embedding ιW : Γ ↪→ W such that [W : ιW (Γ)]O is coprime to 
K. Now take I to be any common multiple of the (finite number of) ideals [W : ιW (Γ)]O
as W varies. �
Corollary 4.2. Let M be a maximal O-order in A and let K be any nonzero ideal of O. 
Then there exists a nonzero ideal I of O, that can be chosen to be coprime to K, with the 
following property: given any M-lattice X such that KX is free as an A-module, there 
exists a free M-sublattice Y of X such that [X : Y ]O divides I.

Proof. Let X be an M-lattice. Then KX is free as an A-module if and only if MX is 
locally free over M (see §2.5). Hence the result follows from Proposition 4.1. �
Remark 4.3. If Γ (resp. M) satisfies the equivalent conditions of Lemma 2.2, then it is 
clear that we can take I = O in Proposition 4.1 (resp. Corollary 4.2).

Given a finite set S of maximal ideals of O, let OS =
⋂

p/∈S Op, where p ranges over 
all maximal ideals of O not in S. We include the following result for general interest.

Corollary 4.4. Let Γ be an O-order in A and let T be a finite set of maximal ideals of O. 
Then there exists a finite set S of maximal ideals of O such that S ∩T = ∅ and OS ⊗O Γ
satisfies the equivalent conditions of Lemma 2.2.

Proof. If K is the product of the maximal ideals in T and I is the ideal given by 
Proposition 4.1, then we can take S to be the set of maximal ideals dividing I. �
4.2. The main theorem

The main theorem of the present article is as follows.
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Theorem 4.5. Let O be a Dedekind domain with field of fractions K. Assume that K is 
a global field and that O �= K. Let A be a separable finite-dimensional K-algebra and let 
Λ be an O-order in A. Let M be a maximal O-order in A containing Λ and let J be any 
full two-sided ideal of M contained in Λ. Let K be any nonzero ideal of O. Then there 
exists a nonzero ideal I of O, that can be chosen to be coprime to K, with the following 
property: given any Λ-lattice X such that KX is free of rank n over A, there exists a 
free Λ-sublattice Z of X such that [X : Z]O divides I · [M : Λ]2nO if A is commutative or 
I · [M : J ]nO · [M : Λ]nO otherwise. Moreover, if M satisfies the equivalent conditions of 
Lemma 2.2, then we can take I = O.

Proof. Let I be the ideal of O given by Corollary 4.2. If M satisfies the equivalent 
conditions of Lemma 2.2, then we can take I = O by Remark 4.3. Then there exists 
a free M-sublattice Y of MX such that [MX : Y ]O divides I. Let ε1, . . . , εn be a free 
M-basis of Y , so that Y = Mε1 ⊕ · · · ⊕ Mεn, and let Z = Λε1 ⊕ · · · ⊕ Λεn. Then 
Z ⊆ Y ⊆ MX ⊆ X and [X : Z]O = [X : MX]O · [MX : Y ]O · [Y : Z]O. Note that 
[Y : Z]O = [M : Λ]nO. Moreover, Corollary 3.3 implies that [X : MX]O divides [M : J ]nO, 
and under the assumption that A is commutative, Theorem 3.6 implies that in fact 
[X : MX]O divides [M : Λ]nO. Therefore we obtain the desired result. �
Remark 4.6. The statement of Theorem 4.5 extends to Λ-lattices X admitting a surjec-
tion A(n) � KX of A-modules. More specifically, the ideal I has the following property: 
given any Λ-lattice X admitting a surjection A(n) � KX of A-modules, there exists 
a Λ-sublattice Z of X generated by at most n elements such that [X : Z]O divides 
I · [M : J ]nO · [M : Λ]nO. This can be seen as follows. There exists an A-module B such 
that KX ⊕B ∼= A(n). Thus given any full Λ-lattice W in B, the Λ-lattice X ⊕W satis-
fies the conditions of Theorem 4.5 and so admits a free Λ-sublattice Z ′ of index dividing 
I · [M : J ]nO · [M : Λ]nO, and the image of Z ′ under the projection X ⊕W � X is the 
desired sublattice Z. Of course, one should expect stronger bounds if one specifies the 
isomorphism class of KX; one such situation is considered in §6.

5. Group rings

5.1. Conductors of group rings

The extra structure of group rings is exploited in the following result, which will allow 
us to make an optimal choice of the two-sided ideal J that appears in the statement of 
Theorem 4.5.

Proposition 5.1. Let O be a Dedekind domain with field of fractions K �= O. Let G be 
a finite group and let Γ be an O-order in K[G] containing O[G]. Then O[G]Γ = ΓO[G]
and we have

[Γ : O[G]]O = [O[G] : ΓO[G]]O = [Γ : ΓO[G]]
1
2
O. (5.1)
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Moreover, if |G| is invertible in K and Γ = M is a maximal O-order, then this index is 
independent of the choice of M.

Remark 5.2. In the case that |G| is invertible in K and Γ = M is a maximal O-order, 
Jacobinski has given an explicit description of O[G]Γ = ΓO[G] (see Theorem 5.5) and 
this leads to an explicit formula for the index of (5.1) (see Corollary 5.6).

Proof of Proposition 5.1. Given an O-order Λ in K[G], let Λop denote the O-order de-
fined by the image of Λ under the involution on K[G] induced by g �→ g−1. Any left 
(resp. right) Λ-lattice carries a canonical structure of a right (resp. left) Λop-lattice with 
g−1 acting as g did previously. Given a left (resp. right) Λ-lattice X, we denote by X∗

the dual lattice X∨ = HomO(X, O) considered as a left (resp. right) Λop-lattice. Note 
that for a left Λ-lattice X, we have [(X∨)Λ : X∨]O = [ΛX∗ : X∗]O, etc.

Now observe that Γop is an O-order containing O[G] = O[G]op. Hence ΓopO[G] =
Γop = O[G]Γop. We also have that

(ΓopO[G])∨ = (O[G]∨)Γ
op

= Γ(O[G]∗),

(O[G]Γop)∨ = Γop
(O[G]∨) = (O[G]∗)Γ,

where in each case the first equality follows from Lemma 3.5 and the second equality 
follows from the definition of (−)∗. Therefore Γ(O[G]∗) = (O[G]∗)Γ. Furthermore, there 
is an O[G] = O[G]op-isomorphism O[G]∗ ∼→ O[G] given by 1g �→ g, where 1g denotes the 
element of HomO(O[G], O) defined by h �→ 0 for h �= g and g �→ 1. Hence we conclude 
that ΓO[G] = O[G]Γ.

We have that [Γ : O[G]]O = [Γop : O[G]op]O since (−)op is an O-linear isomorphism. 
As O[G] = O[G]op, we then have

[Γ : O[G]]O = [Γop : O[G]]O
= [(O[G])∨ : ((O[G])∨)Γ

op
]O

= [O[G]∗ : Γ((O[G])∗)]O
= [O[G] : ΓO[G]]O,

where the second equality follows from Lemma 3.5(i). Since

[Γ : ΓO[G]]O = [Γ : O[G]]O · [O[G] : ΓO[G]]O,

the second equality of (5.1) follows.
For the last statement, note that the hypotheses ensure that K[G] is separable and 

hence maximal orders exist (see §2.5). For any O-order Λ in K[G], let Disc(Λ) denote the 
discriminant of Λ with respect to the reduced trace map tr : K[G] → K. Then Disc(M)
is independent of the choice of maximal O-order M of K[G] by [46, (25.3)]. Moreover, 
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by [11, (26.3)(iii)] we have Disc(O[G]) = [M : O[G]]2O · Disc(M), and so [M : O[G]]O is 
independent of the choice of M. �
5.2. The main theorem for group rings

We now obtain a more precise version of Theorem 4.5 for lattices over group rings.

Theorem 5.3. Let O be a Dedekind domain with field of fractions K. Assume that K is 
a global field and that O �= K. Let G be a finite group such that |G| is invertible in K. 
Set s = 2 if G is abelian and s = 3 otherwise. Let M be a maximal O-order in K[G]
containing O[G]. Let K be any nonzero ideal of O. Then there exists a nonzero ideal I of 
O, that can be chosen to be coprime to K, with the following property: given any O[G]-
lattice X such that KX is free of rank n over K[G], there exists a free O[G]-sublattice Z
of X such that [X : Z]O divides I · [M : O[G]]snO . Moreover, if M satisfies the equivalent 
conditions of Lemma 2.2, then we can take I = O.

Remark 5.4. In the case O = Z, explicit conditions on G under which M satisfies the 
equivalent conditions of Lemma 2.2 are given in Proposition 5.11 and Corollary 5.13.

Proof of Theorem 5.3. We apply Theorem 4.5 with Λ = O[G]. If G is abelian, then 
the desired result follows directly. Otherwise, by Proposition 5.1 we can and do take 
J = O[G]M = MO[G], and we have [M : J ]nO · [M : Λ]nO = [M : Λ]3nO . �
5.3. Jacobinski’s formula and the index of a group ring in a maximal order

For further details on the following setup and notation, we refer the reader to [11, 
§27] and the references therein.

Let O be a Dedekind domain with field of fractions K �= O. Let G be a finite group 
such that |G| is invertible in K. Then K[G] is a separable finite-dimensional K-algebra. 
We may write K[G] = A1 × · · · × At, where each Ai is a simple K-algebra. For each i, 
let Ki denote the centre of Ai. Then each Ki is a finite separable field extension of K, 
and there exist integers n1, . . . , nt such that dimKi

Ai = n2
i for each i. Let tri denote the 

reduced trace from Ai to K (see [11, §7D]). Then tri = TKi/K ◦ trAi/Ki
, where TKi/K is 

the ordinary trace from Ki to K, and trAi/Ki
is the reduced trace from Ai to Ki.

Let M be a maximal O-order such that O[G] ⊆ M ⊆ K[G]. For each i, let Mi =
M ∩Ai, let Oi denote the integral closure of O in Ki, and define the inverse different of 
Mi with respect to tri to be D−1

i = {x ∈ Ai : tri(xMi) ⊆ O}. Then M = M1×· · ·×Mt

and each D−1
i is a two-sided Mi-lattice containing Mi.

Theorem 5.5 (Jacobinski [23]). In the notation above, we have

MO[G] = O[G]M =
t⊕

|G|n−1
i D−1

i .

i=1
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A less explicit version of the following result is given in [13, Proposition 3.6].

Corollary 5.6. In the notation above, we have

[M : O[G]]O = [O[G] : MO[G]]O =
(
|G||G|

t∏
i=1

(
n

[Ki:K]n2
i

i [D−1
i : Mi]O

)−1
) 1

2

,

and this index is independent of the choice of M.

Proof. By Theorem 5.5 we have

[M : MO[G]]O =
t∏

i=1
[Mi : (|G|n−1

i D−1
i )]O

=
t∏

i=1
(|G|n−1

i )dimK Ai [Mi : D−1
i ]O

= |G||G|
t∏

i=1
(n[Ki:K]n2

i
i [D−1

i : Mi]O)−1,

where in the last equality we have used that dimK Ai = [Ki : K]n2
i for each i and that ∏t

i=1 dimK Ai = |G|. The desired result now follows from Proposition 5.1. �
Corollary 5.7. In the notation above, if Ai

∼= Matni
(K) for i = 1, . . . , t, then

[M : O[G]]O = [O[G] : MO[G]]O =
(
|G||G|

t∏
i=1

n
−n2

i
i

) 1
2

.

Proof. The hypotheses imply that Ki = K and D−1
i = Mi for i = 1, . . . , t. Thus the 

desired result follows from Corollary 5.6. �
A result similar to the following is given in [13, p. 173, (11)].

Corollary 5.8. In the notation above, if G is abelian, then

[M : O[G]]O = [O[G] : MO[G]]O =
(
|G||G|

t∏
i=1

(ΔKi/K)−1

) 1
2

,

where ΔKi/K denotes the discriminant of Oi with respect to O.

Proof. Since A is commutative, for every i we have ni = 1, Ai = Ki, and Mi = Oi. 
Thus the reduced trace tri coincides with the ordinary trace TKi/K and so
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D−1
i = {x ∈ Ki : TKi/K(xOi) ⊆ O}

is the usual inverse different of Oi with respect to O. Moreover,

[D−1
i : Mi]O = [D−1

i : Oi]O = [Oi : Di]O = NormKi/K(Di) = ΔKi/K ,

where for the third equality, it suffices to first localise and then consider the determi-
nant of the K-linear endomorphism of Ki given by multiplication by a generator of Di. 
Therefore the desired result now follows from Corollary 5.6. �

We now make the last result completely explicit in the case K = Q.

Proposition 5.9. Let G be a finite abelian group and let e denote its exponent. Let M be 
the unique maximal Z-order in Q[G]. Then

[M : Z[G]] =

⎛⎝|G||G|
∏
d|e

(
d−φ(d)

∏
p|d

p
φ(d)
p−1

)td

⎞⎠ 1
2

,

where td denotes the number of cyclic subgroups of G of order d and φ(−) denotes the 
Euler totient function.

Proof. By [1, Theorem 2], we have Q[G] ∼=
∏

d|e Q(ζd)(td), where Q(ζd)(td) denotes the 
direct product of td copies of Q(ζd) (see also [45]). Moreover,

Δ−1
Q(ζd)/Q =

(
d−φ(d)

∏
p|d

p
φ(d)
p−1

)
Z

by [54, Proposition 2.7]. Therefore the desired result now follows from a straightforward 
calculation and Corollary 5.8 in the case K = Q. �

The following special case is equivalent to [55, Lemma 5.2], which was proven using 
different methods.

Corollary 5.10. Let p be a prime, let k be a positive integer, and let G be the cyclic group 
of order pk. Let M be the unique maximal Z-order in Q[G]. Then

[M : Z[G]] = p1+p+···+pk−1
.

5.4. The case of group rings over the integers

Let H denote the quaternion division algebra over R. For a finite group G, let IrrC(G)
denote the set of complex irreducible characters of G. Recall that χ ∈ IrrC(G) is said to 
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be an irreducible symplectic character if it is real-valued and the corresponding factor of 
R[G] is isomorphic to the ring of k× k matrices over H, for some positive integer k. For 
each χ ∈ IrrC(G), let Q(χ) denote the field generated by the values of χ, and let C(χ)
be the narrow class group of Q(χ) if χ is symplectic, and the usual ideal class group of 
Q(χ) otherwise.

The following result is well-known to experts, but the authors were unable to locate 
it in this precise form in the literature.

Proposition 5.11. Let G be a finite group and let M be a maximal Z-order in Q[G]. 
Suppose that no factor of R[G] is isomorphic to the quaternions H. Then M satisfies 
the equivalent conditions of Lemma 2.2 if and only if C(χ) is trivial for each χ ∈ IrrC(G).

Proof. The hypothesis on R[G] ensures that Q[G] satisfies the Eichler condition relative 
to Z (see [12, §51A]). Hence Jacobinski’s cancellation theorem [12, (51.24)] implies that 
every Z-order in Q[G], in particular M, has the locally free cancellation property. Now 
write Q[G] = A1 × · · · × At, where each Ai is a simple Q-algebra. For each i, let Ki

denote the centre of Ai and let Mi = Ai ∩M. Then M = M1 ×· · ·×Mt and Cl(M) ∼=
Cl(M1) ⊕ · · · ⊕ Cl(Mt). Each Ki is isomorphic to Q(χ) for some χ ∈ IrrC(G) and by 
[12, (49.32)] Cl(Mi) is isomorphic to C(χ). Therefore we obtain the ‘if’ direction of the 
desired equivalence. The ‘only if’ direction now follows from the fact that {Ki : 1 ≤ i ≤
t} = {Q(χ) : χ ∈ IrrC(G)}. �
Remark 5.12. The hypothesis in Proposition 5.11 that no factor of R[G] is isomorphic 
to the quaternions H can be weakened to the requirement that M has the locally free 
cancellation property (or the stably free cancellation property). Maximal Z-orders with 
the locally free cancellation property in Q[G] for G a binary polyhedral group have 
been classified in [51, Theorem II]. For example, for 2 ≤ n ≤ 5 every maximal Z-
order in Q[Q4n] satisfies the equivalent conditions of Lemma 2.2, where Q4n denotes the 
generalised quaternion group of order 4n. See also Remark 2.3.

Corollary 5.13. Let G be a finite abelian group and let e denote its exponent. Define

Σ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25,

26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 54, 60, 66, 70, 84, 90}

and let M be the unique maximal Z-order in Q[G]. Then M satisfies the equivalent 
conditions of Lemma 2.2 if and only if e ∈ Σ.

Proof. First write G ∼= Cn1 ×Cn2 ×· · ·×Cnk
for positive integers k, n1, . . . , nk such that 

ni | ni+1 for 1 ≤ i ≤ k − 1. Then e = nk and {Q(χ) : χ ∈ IrrC(G)} = {Q(ζd) : d | e}. 
Since Z[ζd] is the ring of integers of Q(ζd), this implies that
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{C(χ) : χ ∈ IrrC(G)} = {Cl(Z[ζd]) : d | e}.

The set Σ is precisely the set positive integers n for which Cl(Z[ζn]) = 0 by [35]; see also 
[54, Theorem 11.1] (note that we include choices of n such that n ≡ 2 mod 4). It can 
easily be checked that Σ is also precisely the set of choices of e for which Cl(Z[ζd]) = 0
for all d | e. Since no factor of Q[G] is isomorphic to the quaternions H, the desired 
result now follows from Proposition 5.11. �
Remark 5.14. The hypotheses of Proposition 5.11 and Corollary 5.13 are much weaker 
than Cl(Z[G]) itself being trivial. If G is a finite abelian group, then a result of Ph. 
Cassou-Noguès [10] shows that Cl(Z[G]) is trivial if and only if either G ∼= C2 × C2 or 
G ∼= Cn where 1 ≤ n ≤ 11 or n ∈ {13, 14, 17, 19}. If G is a finite non-abelian non-dihedral 
group, then a result of Endô and Hironaka [15] shows that Cl(Z[G]) is trivial if and only 
if G ∼= A4, S4 or A5 (the if direction was already shown by Reiner and Ullom [47]). For 
partial results in the dihedral case, see [16].

Many specialisations of Theorem 5.3 can now be obtained by applying the results of 
§5.3, Proposition 5.11 and/or Corollary 5.13; the following is just one such example.

Theorem 5.15. Let G be a finite group and suppose that there exist positive integers 
t, n1, . . . , nt such that Q[G] ∼=

∏t
i=1 Matni

(Q). If X is an Z[G]-lattice such that QX is 
free of rank n over Q[G], then there exists a free Z[G]-sublattice Z of X such that [X : Z]
divides (

|G||G|
t∏

i=1
n
−n2

i
i

) 3n
2

.

Proof. Proposition 5.11 implies that any maximal Z-order in Q[G] satisfies the equivalent 
conditions of Lemma 2.2. Thus the result follows from Theorem 5.3 and Corollary 5.7. �
Remark 5.16. The collection of finite groups G satisfying the hypothesis of Theorem 5.15
is closed under direct products and includes symmetric groups and hyperoctahedral 
groups (e.g. the dihedral group of order 8). See [49] and [24] for more on this topic.

6. Group rings modulo trace

Let O be a Dedekind domain with field of fractions K �= O. Let G be a finite group 
such that |G| is invertible in K and let TrG =

∑
g∈G g. Then both K[G] and its quotient 

K[G]/(TrG) are separable finite-dimensional K-algebras. The purpose of this section is 
to consider lattices over the O-order O[G]/(TrG).

Let e = 1 −|G|−1TrG, which is a central idempotent of K[G]. Let πe : K[G] → eK[G]
be the projection map associated to e. Given a subset X ⊆ K[G], let Xe = πe(X) and let 
X1−e = X∩ker(πe). In particular, K[G]e = eK[G] ∼= K[G]/(TrG) and K[G]1−e = TrGK.
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Let Λ = O[G] and let M be a maximal O-order in K[G] containing Λ. Then Me = eM
is a maximal O-order of K[G]e containing Λe. By Proposition 5.1, MΛ is a two-sided 
ideal of M contained in Λ. Hence (MΛ)e is a choice of two-sided ideal of Me contained 
in Λe. This is not necessarily the largest such choice, but its form allows us to make use 
of our previous computations.

Lemma 6.1. We have [Me : Λe]O = |G|−1[M : Λ]O and [Λe : (MΛ)e]O = [M : Λ]O.

Proof. Consider the following diagram of O-lattices with exact rows

0 Λ1−e Λ Λe 0

0 M1−e M Me 0.

Then by Lemma 2.1 we have [M : Λ]O = [M1−e : Λ1−e]O · [Me : Λe]O. Note that 
M1−e =

(
|G|−1TrG

)
·O and Λ1−e = M1−e ∩Λ = TrG ·O. Hence [M1−e : Λ1−e]O = |G|, 

and so we obtain the first equality.
Similarly, we also have the following diagram of O-lattices with exact rows

0 (MΛ)1−e MΛ (MΛ)e 0

0 Λ1−e Λ Λe 0.

(6.1)

Then by Lemma 2.1 we have [Λ : MΛ]O = [Λ1−e : (MΛ)1−e]O · [Λe : (MΛ)e]O. By 
maximality of MΛ, the subset (MΛ)1−e is the largest M1−e-sublattice contained in Λ1−e. 
Since M1−e ∼= O, we find that Λ1−e, an O-lattice, is already a M1−e-sublattice so that 
the left vertical map of (6.1) is an equality. Hence we have [Λe : (MΛ)e]O = [Λ : MΛ]O. 
But [Λ : MΛ]O = [M : Λ]O by Proposition 5.1, and thus we obtain the desired result. �
Theorem 6.2. Let O be a Dedekind domain with field of fractions K. Assume that K is 
a global field and that O �= K. Let G be a finite group such that |G| is invertible in K. 
Set s = 2 if G is abelian and s = 3 otherwise. Let M be a maximal O-order in K[G]
containing O[G]. Let K be any nonzero ideal of O. Then there exists a nonzero ideal 
I of O, that can be chosen to be coprime to K, with the following property: given any 
O[G]/(TrG)-lattice X such that KX is free of rank n over K[G]/(TrG), there exists a 
free O[G]/(TrG)-sublattice Z of X such that [X : Z]O divides I · |G|−2n · [M : O[G]]snO . 
Moreover, if M satisfies the equivalent conditions of Lemma 2.2, then we can take I = O.

Proof. Let Λ = O[G]. Then Me is a maximal O-order of K[G]e containing Λe =
O[G]/(TrG). Note that if M satisfies the equivalent conditions of Lemma 2.2, then so 
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does Me. By Lemma 6.1 we have [Me : Λe]O = |G|−1[M : Λ]O. By Proposition 5.1, 
J := (MΛ)e is a two-sided ideal of Me contained in Λe. Then we have

[Me : Λe]O · [Me : J ]O = [Me : Λe]2O · [Λe : J ]O = |G|−2 · [M : Λ]3O.

Therefore we obtain the desired result by applying Theorem 4.5 for the O-order Λe, the 
maximal O-order Me and the ideal J . �
7. Application: approximation of normal integral bases

We refer the reader to [19] for an overview of normal integral bases, on which there 
is a vast literature. In this section, we consider examples of applications of the algebraic 
machinery of previous sections to the approximation of normal integral bases.

Beyond the base field and the isomorphism type of the Galois group, the following 
result does not use any arithmetic information about the Galois extensions concerned.

Theorem 7.1. Let K be a number field and let K be any nonzero ideal of OK . Let G be a 
finite group and let M be a maximal O-order in K[G] containing OK [G]. Set s = 2 if G
is abelian and s = 3 otherwise. Then there exists a nonzero ideal I of OK , that can be 
chosen to be coprime to K, with the following property: given any Galois extension L/K
with Gal(L/K) ∼= G, there exists α ∈ OL such that [OL : OK [Gal(L/K)] · α]O divides 
I · [M : OK [G]]sOK

. Moreover, if M satisfies the equivalent conditions of Lemma 2.2, 
then we can take I = OK .

Proof. The normal basis theorem says that for a finite Galois extension of fields L/K
we have L ∼= K[Gal(L/K)] as K[Gal(L/K)]-modules. Therefore the desired result now 
follows easily from Theorem 5.3 with n = 1 and O = OK . �
Remark 7.2. An explicit formula for [M : OK [G]]OK

is given in Corollary 5.6. In partic-
ular, a weak but general bound is that [M : OK [G]]sOK

divides |G|�s|G|/2�.

By making the further assumption that the extensions concerned are at most tamely 
ramified, we obtain the following result with a stronger conclusion.

Theorem 7.3. Let K be a number field, let K be any nonzero ideal of OK , and G be a 
finite group. Then there exists a nonzero ideal I of OK , that can be chosen to be coprime 
to K, with the following property: given any at most tamely ramified Galois extension 
L/K with Gal(L/K) ∼= G, there exists α ∈ OL such that [OL : OK [Gal(L/K)] · α]OK

divides I. Moreover, if OK [G] satisfies the equivalent conditions of Lemma 2.2, then we 
can take I = OK .

Proof. For an at most tamely ramified Galois extension L/K with Gal(L/K) ∼= G, we 
have that OL is a locally free OK [G]-lattice of rank 1 by [19, Chapter I, §3, Corollary 2], 
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for example. Therefore the desired result now follows easily from Proposition 4.1 with 
O = OK and Γ = OK [G]. �
Remark 7.4. Improved bounds can be obtained in special cases. For example, if G is 
a finite group with no irreducible symplectic characters (e.g. G is abelian or of odd 
order), then every (at most) tamely ramified Galois extension L/Q with Gal(L/Q) ∼= G

has a normal integral basis by a special case of Taylor’s proof [53] of a conjecture of 
Fröhlich (see [19, §I] for an overview). Moreover, if G is a finite abelian group, then 
Leopoldt’s theorem [26] (see also [27]) implies that for every Galois extension L/Q with 
Gal(L/Q) ∼= G, there exists α ∈ OL such that [OL : Z[Gal(L/Q)] ·α] divides [M : Z[G]], 
where M is the unique maximal Z-order in Q[G]. By contrast, Theorems 7.1 and 7.3
are very general and their short proofs use little or no arithmetic information about the 
particular field extensions concerned.

8. Application: approximation of strong Minkowski units

In this section, we consider examples of applications of the algebraic machinery of 
previous sections to the approximation of strong Minkowski units.

Definition 8.1. Let L/K be a Galois extension of number fields and let G = Gal(L/K). 
Let μL denote the roots of unity of L. An element ε ∈ O×

L /μL is said to be

(i) a Minkowski unit of L/K if Q ⊗Z (O×
L /μL) = Q[G] · ε,

(ii) a strong Minkowski unit of L/K if O×
L /μL = Z[G] · ε.

The following result is well known.

Lemma 8.2. Let L/K be a Galois extension of number fields and let G = Gal(L/K). If 
K is equal to either Q or an imaginary quadratic field then L/K has a Minkowski unit. 
Moreover, if either L is totally real or K is imaginary quadratic, then Q ⊗Z (O×

L /μL) ∼=
Q[G]/(TrG) as Q[G]/(TrG)-modules (and as Q[G]-modules).

Proof. By definition, L/K has a Minkowski unit if and only if Q ⊗Z O×
L is cyclic as a 

Q[G]-module. By a theorem of Herbrand (see [52, Chapter I, §4.3], for example) there is 
an isomorphism (Q ⊗Z O×

L ) ⊕Q ∼= Q[S∞] of Q[G]-modules, where S∞ denotes the set 
of infinite places of L. So the existence of a Minkowski unit is implied by Q[S∞] being 
cyclic as a Q[G]-module, which is equivalent to S∞ being transitive as a G-set. This 
occurs precisely when K has a unique infinite place. If either L is totally real or K is 
imaginary quadratic, then the unique infinite place of K splits completely in L/K and 
thus Q[S∞] ∼= Q[G] as Q[G]-modules. �
Remark 8.3. The existence of strong Minkowski units (which some authors refer to as 
Minkowski units) in special cases has been studied in numerous articles, including [44,36,
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7,14,37–39,6,28,29,20,9,40,31–33], as well as [43, §3.3 & §3.5.1] and the references therein. 
Also see the articles cited below.

Remark 8.4. If L/Q is a Galois extension with [L : Q] odd, then L is totally real and 
O×

L /μL
∼= {u ∈ O×

L : NormL/Q(u) = 1} as Z[Gal(L/Q)]-lattices.

The following result is a strong refinement and generalisation of [30, Theorem 1], [2, 
Proposition 5.2] and [3, Theorem 3.3], which only consider finite cyclic or abelian totally 
real extensions of Q and do not actually bound the index in question.

Theorem 8.5. Let G be a finite group and let k be a positive integer. Set s = 2 if G
is abelian and s = 3 otherwise. Then there exists a positive integer i, which can be 
chosen to be coprime to k, with the following property: given any finite Galois extension 
L/K with Gal(L/K) ∼= G and K equal to either Q or an imaginary quadratic field, 
there exists a Minkowski unit ε ∈ O×

L /μL such that [O×
L/μL : Z[Gal(L/K)] · ε] divides 

i · |G|−2[M : Z[G]]s, where M is a maximal Z-order in Q[G] containing Z[G].

Remark 8.6. An explicit formula for [M : Z[G]] is given in Corollary 5.6. In particular, 
a weak but general bound is that |G|−2[M : Z[G]]s divides |G|�s|G|/2�−2.

Remark 8.7. It is interesting to compare Theorem 8.5 with [4, Theorem 1.1], which in 
the case that L/Q is a finite Galois extension asserts the existence of a Minkowski unit 
ε such that the index [O×

L/μL : Z[Gal(L/Q)] · ε] is bounded by an expression involving 
the Weil height of ε, the regulator of L, the degree [L : Q] and rankZO×

L .

Proof of Theorem 8.5. Let Γ = Z[G]/(TrG). By Theorem 6.2 there exists a positive 
integer i, which can be chosen to be coprime to k, with the following property: given 
any Γ-lattice X such that QX ∼= Q[G]/(TrG) as Q[G]/(TrG)-modules, there exists a free 
Γ-sublattice Y of X such that [X : Y ] divides i · |G|−2[M : Z[G]]s. Note that if ε ∈ X is 
a free Γ-generator of Y , then Y = Γ · ε = Z[G] · ε. For L/K with either L totally real or 
K imaginary quadratic, the desired result now follows from Lemma 8.2 after fixing an 
isomorphism Gal(L/K) ∼= G. For L/K with L totally imaginary and K = Q, the result 
follows from Lemma 8.2 and Remark 4.6. �
Corollary 8.8. Let G be a finite group and let M be a maximal Z-order in Q[G] containing 
Z[G]. Suppose that M satisfies the equivalent conditions of Lemma 2.2 (see §5.4 for 
conditions on G under which this holds). Set s = 2 if G is abelian and s = 3 otherwise. 
Then given any finite Galois extension L/K with Gal(L/K) ∼= G and K equal to either 
Q or an imaginary quadratic field, there exists a Minkowski unit ε ∈ O×

L /μL such that 
[O×

L /μL : Z[Gal(L/K)] · ε] divides |G|−2[M : Z[G]]s.

Proof. Under the hypotheses on M, the desired result follows as in the proof of Theo-
rem 8.5 after noting that we can take i = 1 in the application of Theorem 6.2. �
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Remark 8.9. Let L/Q be a finite Galois extension such that L is CM and let L+ denote 
its maximal totally real subfield. Let ε ∈ O×

L+/{±1} be a Minkowski unit of L+/Q

and by abuse of notation let this also denote its image in O×
L /μL. By [54, Theorem 

4.12] we have that [O×
L : μLO×

L+ ] = 1 or 2, and so [O×
L /μL : Z[Gal(L/Q)] · ε] divides 

2[O×
L+/{±1} : Z[Gal(L+/Q)] ·ε]. Thus ε is also a Minkowski unit of L/Q, and we obtain 

stronger analogues of Theorem 8.5 and Corollary 8.8 in this situation.

The above results can be strengthened for extensions of prime degree.

Theorem 8.10. Let p be an odd prime and let k be a positive integer. Then there exists 
a positive integer i, which can be chosen to be coprime to k, with the following property: 
given any cyclic field extension L/K with [L : K] = p and K equal to either Q or an 
imaginary quadratic field, there exists a Minkowski unit ε ∈ O×

L /μL such that [O×
L/μL :

Z[Gal(L/K)] · ε] divides i.

Proof. Let G be the cyclic group of order p and let M = Z[G]/(TrG). Then M ∼= Z[ζp], 
which is a maximal Z-order. By Corollary 4.2 there exists a positive integer i, which 
can be chosen to be coprime to k, with the following property: given any M-lattice X
such that QX is free of rank 1 as a Q[G]/(TrG)-module, there exists a free M-sublattice 
Y of X such that [X : Y ] divides i. Note that if ε ∈ X is a free M-generator of Y , 
then Y = M · ε = Z[G] · ε. The desired result now follows from Lemma 8.2 since the 
hypotheses ensure that either L is totally real or K is imaginary quadratic. �

The following result is not new, as it is the combination of [56] (see also [8, Corollary]) 
and an easy consequence of [22, Théorèm]; we include it for completeness.

Corollary 8.11. Let p be a prime such that 3 ≤ p ≤ 19. Then every cyclic field extension 
L/K with [L : K] = p and K equal to either Q or an imaginary quadratic field has a 
strong Minkowski unit.

Proof. In the proof of Theorem 8.10, adding the hypothesis that p ≤ 19 implies that 
M ∼= Z[ζp] has trivial class group and so satisfies the equivalent conditions of Lemma 2.2. 
Hence we can take i = 1 by Remark 4.3, and this implies the desired result. �
Remark 8.12. It is interesting to compare Theorem 8.10 to (i) [8, Theorem] when K =
Q and (ii) [22, Théorèm] when K is imaginary quadratic. Result (i) considers cyclic 
extensions L/Q of odd prime degree p and gives sufficient conditions on ideals of Z[ζp]
of norm equal to the class number hL of OL for both the existence and non-existence of 
a strong Minkowski unit of L/Q. The proof uses the fact that O×

L/{±1} contains a free 
Z[ζp]-submodule of index hL generated by a cyclotomic unit. Result (ii) is analogous and 
uses elliptic units. By contrast, the proof and statement of Theorem 8.10 do not depend 
on the particular extension L/K.
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9. Application: rational points on abelian varieties

In this section, we consider examples of applications of the algebraic machinery of 
previous sections to the Galois module structure of rational points of abelian varieties. 
By the Mordell–Weil theorem, for every abelian variety A over a number field K, the 
group A(K)/A(K)tors is a free Z-module of finite rank. If L/K is a Galois extension of 
number fields, then A(L)/A(L)tors is a Z[Gal(L/K)]-lattice, so is amenable to study via 
our methods.

Theorem 9.1. Let G be a finite group and let k be a positive integer. Set s = 2 if G is 
abelian and s = 3 otherwise. Then there exists a positive integer i, which can be chosen to 
be coprime to k, with the following property: given any Galois extension of number fields 
L/K with Gal(L/K) ∼= G, and any abelian variety A/K such that Q ⊗Z A(L) is cyclic 
as a Q[G]-module, there exists ε ∈ A(L)/A(L)tors such that [A(L)/A(L)tors : Z[G] · ε] is 
finite and divides i · [M : Z[G]]s, where M is any maximal Z-order in Q[G] containing 
Z[G].

Remark 9.2. An explicit formula for [M : Z[G]] is given in Corollary 5.6. In particular, 
a weak but general bound is that [M : Z[G]]s divides |G|�s|G|/2�.

Remark 9.3. Let G be a finite group. The isomorphism class of a finite-dimensional 
Q[G]-module V is entirely determined by the values of dimQ V H as H runs over a set 
of representatives of the set of cyclic subgroups of G up to conjugacy (see [48, §13.1, 
Corollary to Theorem 30′]). In particular, V is free of rank 1 if and only if dimQ V H =
[G : H] for all cyclic subgroups H of G up to conjugacy.

Proof of Theorem 9.1. By Theorem 5.3, there exists a positive integer i, which can be 
chosen to be coprime to n, with the following property: given any Z[G]-lattice X such 
that Q ⊗Z X is free of rank 1 as a Q[G]-module, there exists a free Z[G]-sublattice Y
of X such that [X : Y ] divides i · [M : Z[G]]s. By Remark 4.6, i also has the property 
that given any Z[G]-lattice X such that Q ⊗ZX is cyclic as a Q[G]-module, there exists 
a cyclic Z[G]-sublattice Y of X such that [X : Y ] divides i · [M : Z[G]]s. In particular, 
this holds for X = A(L)/A(L)tors after fixing an isomorphism G ∼= Gal(L/K). �
Theorem 9.4. Let p be an odd prime and let k be a positive integer. Then there exists a 
positive integer i, which can be chosen to be coprime to k, with the following property: 
given any cyclic extension L/K of number fields with [L : K] = p and any abelian variety 
A/K such that rankZA(K) = 0 and rankZA(L) = p − 1, there exists ε ∈ A(L)/A(L)tors
such that [A(L)/A(L)tors : Z[Gal(L/K)] · ε] is finite and divides i.

Proof. Let G be the cyclic group of order p and let M = Z[G]/(TrG). Then M ∼= Z[ζp], 
which is a maximal Z-order. By Corollary 4.2 there exists a positive integer i, which can 
be chosen to be coprime to n, with the following property: given any M-lattice X such 



H. Johnston, A. Torzewski / Journal of Algebra 657 (2024) 81–108 105
that QX ∼= Q[G]/(TrG) as Q[G]/(TrG)-modules, there exists a free M-sublattice Y of X
such that [X : Y ] divides i. After fixing an isomorphism G ∼= Gal(L/K), the desired result 
now follows since the rank hypotheses ensure that Q ⊗Z (A(L)/A(L)tors) ∼= Q[G]/(TrG)
as Q[G]-modules (see Remark 9.3) and hence as Q[G]/(TrG)-modules. �
Remark 9.5. Note that for Q ⊗Z (A(L)/A(L)tors) to be cyclic as a Q[G]/(TrG)-module, 
it is necessary that rankZA(L) = 0 or p − 1.

Corollary 9.6. Let p be a prime such that 3 ≤ p ≤ 19. Then given any cyclic extension of 
number fields L/K with [L : K] = p and any abelian variety A/K such that rankZA(K) =
0 and rankZA(L) = p − 1, there exists ε ∈ A(L)/A(L)tors such that A(L)/A(L)tors =
Z[Gal(L/K)] · ε.

Proof. In the proof of Theorem 9.4, the additional hypothesis that p ≤ 19 implies that 
M ∼= Z[ζp] has trivial class group and so satisfies the equivalent conditions of Lemma 2.2. 
Hence we can take i = 1 by Remark 4.3, and this implies the desired result. �
Theorem 9.7. Let p be a prime, let F be an imaginary quadratic field with discriminant 
coprime to p, and let K be a nonzero ideal of OF . Then there exists an ideal I of OF , 
which can be chosen to be coprime to K, with the following property: given any cyclic 
extension of number fields L/K with [L : K] = p and such that K contains F , and 
any elliptic curve E/K with complex multiplication by OF and with rankZE(K) = 0
and rankZE(L) = 2(p − 1), there exists ε ∈ E(L)/E(L)tors such that [E(L)/E(L)tors :
OF [Gal(L/K)] · ε]OF

divides I.

Proof. Let G be the cyclic group of order p. The discriminant of Z[ζp] is a power of p
and in particular is coprime to the discriminant of OF . Hence Q(ζp) and F are linearly 
disjoint over Q. Moreover, by [25, III, §3, Proposition 17] we have OF [ζp] = OF (ζp). Thus 
OF [G]/(TrG) ∼= OF [ζp] is a maximal OF -order. By Corollary 4.2 there exists a nonzero 
ideal I of OF , which can be chosen to be coprime to K, with the following property: given 
any OF [G]/(TrG)-lattice X such that F ⊗OF

X ∼= F [G]/(TrG) as F [G]/(TrG)-modules, 
there exists a free OF [G]/(TrG)-sublattice Y of X such that [X : Y ]OF

divides I.
Let E, L and K be as in the theorem and fix an isomorphism G ∼= Gal(L/K). 

By assumption, E has CM by OF defined over K. The commuting Galois action and 
action by endomorphisms then give E(L)/E(L)tors the structure of an OF [G]-lattice. 
Moreover, as rkZE(K) = 0, it is in fact a OF [G]/(TrG)-lattice and since rankZE(L) =
2(p − 1), we have that dimQ F ⊗OF

(E(L)/E(L)tors) = 2(p − 1). Since F and Q(ζp)
are linearly disjoint, the unique F [G]/(TrG)-module with these properties is F [G]/(TrG)
itself. Therefore E(L)/E(L)tors is an example of an OF [G]/(TrG)-lattice such that F⊗OF

X ∼= F [G]/(TrG). �
Remark 9.8. Since Q(ζp) and F are linearly disjoint over Q, the F [G]/(TrG)-module 
F ⊗OF

(E(L)/E(L)tors) is cyclic if and only if either rankZE(L) = 0 or 2(p − 1).
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Corollary 9.9. Let p be a prime, let F be an imaginary quadratic field with discriminant 
coprime to p such that OF (ζp) has trivial class group. Then for every cyclic extension of 
number fields L/K such that K contains F and [L : K] = p, and for every elliptic curve 
E/K with complex multiplication by O and with rankZE(K) = 0 and rankZE(L) =
2(p − 1), we have that E(L)/E(L)tors is free as an OF [G]/(TrG)-module.

Proof. In the proof of Theorem 9.7, the additional hypothesis that OF (ζp) has trivial class 
group ensures that OF /(TrG) ∼= OF (ζp) satisfies the equivalent conditions of Lemma 2.2. 
Hence we can take I = OF by Remark 4.3, and this implies the desired result. �
Data availability

No data was used for the research described in the article.

References

[1] R.G. Ayoub, C. Ayoub, On the group ring of a finite abelian group, Bull. Aust. Math. Soc. 1 (1969) 
245–261. MR 252526.

[2] T. All, On p-adic annihilators of real ideal classes, J. Number Theory 133 (7) (2013) 2324–2338. 
MR 3035966.

[3] T. All, On the p-adic completion of the units of a real abelian number field, J. Number Theory 136 
(2014) 1–21. MR 3145320.

[4] S. Akhtari, J.D. Vaaler, Minkowski’s theorem on independent conjugate units, Eur. J. Math. 3 (1) 
(2017) 111–149. MR 3610268.

[5] D.W. Ballew, Numerical invariants and projective modules, J. Algebra 17 (1971) 555–574. MR 
274497.

[6] L. Bouvier, J.-J. Payan, Modules sur certains anneaux de Dedekind. Application à la structure du 
groupe des classes et à l’existence d’unités de Minkowski, J. Reine Angew. Math. 274/275 (1975) 
278–286, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. MR 
0374084.

[7] L. Bouvier, J.-J. Payan, Sur la structure galoisienne du groupe des unités d’un corps abélien de 
type (p, p), Ann. Inst. Fourier (Grenoble) 29 (1) (1979) 171–187. MR 526783.

[8] A. Brumer, On the group of units of an absolutely cyclic number field of prime degree, J. Math. 
Soc. Jpn. 21 (1969) 357–358. MR 0244193.

[9] D. Burns, On the Galois structure of units in number fields, Proc. Lond. Math. Soc. (3) 66 (1) 
(1993) 71–91. MR 1189093.

[10] Ph. Cassou-Noguès, Classes d’idéaux de l’algèbre d’un groupe abélien, Université de Bordeaux, 
Talence, 1972, Thèse présentée à l’Université de Bordeaux I, Talence, pour l’obtention du titre de 
Docteur en Mathématiques (mention: Mathématiques Pures). MR 0340393.

[11] C.W. Curtis, I. Reiner, Methods of Representation Theory. Vol. I, Pure and Applied Mathematics, 
John Wiley & Sons Inc., New York, 1981, With applications to finite groups and orders, A Wiley-
Interscience Publication. MR 632548 (82i:20001).

[12] C.W. Curtis, I. Reiner, Methods of Representation Theory. Vol. II, Pure and Applied Mathematics, 
John Wiley & Sons Inc., New York, 1987, With applications to finite groups and orders, A Wiley-
Interscience Publication. MR 892316 (88f:20002).

[13] I. Del Corso, F. Ferri, D. Lombardo, How far is an extension of p-adic fields from having a normal 
integral basis?, J. Number Theory 233 (2022) 158–197. MR 4356849.

[14] D. Duval, Sur la structure galoisienne du groupe des unités d’un corps abélien réel de type (p, p), 
J. Number Theory 13 (2) (1981) 228–245. MR 612684.

[15] S. Endô, Y. Hironaka, Finite groups with trivial class groups, J. Math. Soc. Jpn. 31 (1) (1979) 
161–174. MR 519042.

[16] S. Endô, T. Miyata, On the class groups of dihedral groups, J. Algebra 63 (2) (1980) 548–573. MR 
570730.

http://refhub.elsevier.com/S0021-8693(24)00258-8/bib0D31BC00004DAA0941819DAB43EF8E90s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib0D31BC00004DAA0941819DAB43EF8E90s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibE7B3D7F67475976624221C3F43574A2Bs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibE7B3D7F67475976624221C3F43574A2Bs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib0924DC2831BEB5B8D6D3C298C5017FB9s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib0924DC2831BEB5B8D6D3C298C5017FB9s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA761484D7FCCA219230BD2066BBA1978s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA761484D7FCCA219230BD2066BBA1978s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3F2955531F1FDCA3C02ED7DD764CFBF7s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3F2955531F1FDCA3C02ED7DD764CFBF7s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA642964D3C490FF9A4AED3784FBE1D4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA642964D3C490FF9A4AED3784FBE1D4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA642964D3C490FF9A4AED3784FBE1D4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA642964D3C490FF9A4AED3784FBE1D4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib722A0FBE7A9AE15F28233082DC22A5AEs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib722A0FBE7A9AE15F28233082DC22A5AEs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBDCB25F3ACB1BF60A890F16D63F0B675s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBDCB25F3ACB1BF60A890F16D63F0B675s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib6C71603ED63133573D9D2FAAFE8BE4D5s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib6C71603ED63133573D9D2FAAFE8BE4D5s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibF07F4961E0F703B30673A380E9B23027s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibF07F4961E0F703B30673A380E9B23027s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibF07F4961E0F703B30673A380E9B23027s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3812669072B52D85C8B8B322114F1FE6s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3812669072B52D85C8B8B322114F1FE6s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3812669072B52D85C8B8B322114F1FE6s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibE1C8B76F3F7271645865546B7EB1F5ADs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibE1C8B76F3F7271645865546B7EB1F5ADs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibE1C8B76F3F7271645865546B7EB1F5ADs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib8419E2C95AE195B2CCB838548888CFABs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib8419E2C95AE195B2CCB838548888CFABs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibADA3E06C7968202EB3D2A3CB6B041DDBs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibADA3E06C7968202EB3D2A3CB6B041DDBs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibD3CBE272838458E30070A88D828E2839s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibD3CBE272838458E30070A88D828E2839s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2EE4A2A6B2DCD45819EB8C05884E4F4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2EE4A2A6B2DCD45819EB8C05884E4F4Ds1


H. Johnston, A. Torzewski / Journal of Algebra 657 (2024) 81–108 107
[17] A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford Ser. 
(2) 16 (1965) 193–232. MR 0210697.

[18] A. Fröhlich, Local fields, in: Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965, 
Academic Press, London, 1967, pp. 1–41. MR 236145.

[19] A. Fröhlich, Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik und ihrer 
Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol. 1, Springer-Verlag, Berlin, 
1983. MR 717033.

[20] A. Fröhlich, Units in real abelian fields, J. Reine Angew. Math. 429 (1992) 191–217. MR 1173123.
[21] A. Fröhlich, M.J. Taylor, Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, 

vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934.
[22] R. Gillard, Unités elliptiques et unités de Minkowski, J. Math. Soc. Jpn. 32 (4) (1980) 697–701. MR 

589107.
[23] H. Jacobinski, On extensions of lattices, Mich. Math. J. 13 (1966) 471–475. MR 204538.
[24] D. Kletzing, Structure and Representations of Q-Groups, Lecture Notes in Mathematics, vol. 1084, 

Springer-Verlag, Berlin, 1984. MR 765700.
[25] S. Lang, Algebraic Number Theory, second ed., Graduate Texts in Mathematics, vol. 110, Springer-

Verlag, New York, 1994. MR 1282723.
[26] H.W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine 

Angew. Math. 201 (1959) 119–149. MR 108479.
[27] G. Lettl, The ring of integers of an abelian number field, J. Reine Angew. Math. 404 (1990) 162–170. 

MR 1037435.
[28] R. Marszałek, Minkowski units in certain metacyclic fields, Acta Arith. 51 (4) (1988) 381–391. MR 

971088.
[29] R. Marszałek, Minkowski units in a class of metabelian fields, J. Number Theory 37 (1) (1991) 

67–91. MR 1089790.
[30] F. Marko, On the existence of p-units and Minkowski units in totally real cyclic fields, Abh. Math. 

Semin. Univ. Hamb. 66 (1996) 89–111. MR 1418221.
[31] F. Marko, On the existence of Minkowski units in totally real cyclic fields, J. Théor. Nr. Bordx. 

17 (1) (2005) 195–206. MR 2152220.
[32] R. Marszałek, Units in real abelian fields, Acta Arith. 146 (2) (2011) 115–151. MR 2747023.
[33] R. Marszałek, Units in real cyclic fields, Funct. Approx. Comment. Math. 45 (2011) 139–153. MR 

2865419.
[34] D. Masser, Multiplicative isogeny estimates, J. Aust. Math. Soc. Ser. A 64 (2) (1998) 178–194. MR 

1619802.
[35] J.M. Masley, H.L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 

286 (287) (1976) 248–256. MR 429824.
[36] N. Moser, Unités et nombre de classes d’une extensions dièdrale de Q, Astérisque 24–25 (1975) 

29–35. MR 0376610.
[37] N. Moser, Sur les unités d’une extension galoisienne non abélienne de degré pq du corps des ra-

tionnels, p et q nombres premiers impairs, Ann. Inst. Fourier (Grenoble) 29 (1) (1979) 137–158. MR 
526781.

[38] N. Moser, Unités et nombre de classes d’une extension galoisienne diédrale de Q, Abh. Math. Semin. 
Univ. Hamb. 48 (1979) 54–75. MR 537446.

[39] N. Moser, Théorème de densité de Tchebotareff et monogénéité de modules sur l’algèbre d’un groupe 
métacyclique, Acta Arith. 42 (3) (1983) 311–323. MR 729740.

[40] M. Mazur, S.V. Ullom, Galois module structure of units in real biquadratic number fields, Acta 
Arith. 111 (2) (2004) 105–124. MR 2039416.

[41] D.W. Masser, G. Wüstholz, Factorization estimates for abelian varieties, Publ. Math. Inst. Hautes 
Études Sci. (81) (1995) 5–24. MR 1361754.

[42] D.W. Masser, G. Wüstholz, Refinements of the Tate conjecture for abelian varieties, in: Abelian 
Varieties, Egloffstein, 1993, de Gruyter, Berlin, 1995, pp. 211–223. MR 1336608.

[43] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, third ed., Springer Mono-
graphs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267.

[44] J.-J. Payan, Sur les unités de Minkowski, in: Séminaire Delange-Pisot-Poitou (15e année: 1973/74), 
Théorie des nombres, Fasc. 1, Exp. No. 19, 1975, p. 6. MR 0404203.

[45] S. Perlis, G.L. Walker, Abelian group algebras of finite order, Trans. Am. Math. Soc. 68 (1950) 
420–426. MR 34758.

[46] I. Reiner, Maximal Orders, London Mathematical Society Monographs. New Series, vol. 28, The 
Clarendon Press, Oxford University Press, Oxford, 2003, Corrected reprint of the 1975 original, 
With a foreword by M.J. Taylor. MR 1972204.

http://refhub.elsevier.com/S0021-8693(24)00258-8/bib914A96EBE2993375E980778D3CFECAFEs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib914A96EBE2993375E980778D3CFECAFEs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib16890A036B8A1D13AEA35F31EDB7BF42s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib16890A036B8A1D13AEA35F31EDB7BF42s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib11079CD2E860464A46ACE0C9BD661FABs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib11079CD2E860464A46ACE0C9BD661FABs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib11079CD2E860464A46ACE0C9BD661FABs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib6D75C0896032D054579CB167E02D2CEDs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib867E74F07345668359FF555EE498132As1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib867E74F07345668359FF555EE498132As1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibAD5D0B06A77762DFA7F565FD56EF30F3s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibAD5D0B06A77762DFA7F565FD56EF30F3s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibA98DF63D30A4DD31928752DF2C191828s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibFE52DFBCD78C7FD40E36CA8DE676B024s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibFE52DFBCD78C7FD40E36CA8DE676B024s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib7AF573BD691BF5E938AC8B054EE1D67Es1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib7AF573BD691BF5E938AC8B054EE1D67Es1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib446DFCBAB1BF495B8FB23BE7223DA0B2s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib446DFCBAB1BF495B8FB23BE7223DA0B2s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibB4050D3BB9355735BB10E578150F49B2s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibB4050D3BB9355735BB10E578150F49B2s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2725138A1B7F3991E5690C77EB12A231s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2725138A1B7F3991E5690C77EB12A231s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibEE372ECD019FE655A9FC69AD21960D79s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibEE372ECD019FE655A9FC69AD21960D79s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib9055464E9705A67816868C7D456E1E98s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib9055464E9705A67816868C7D456E1E98s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib93FFFEAF5A275635D60DBE0BCCB65B4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib93FFFEAF5A275635D60DBE0BCCB65B4Ds1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib562FD9DB3721682EE963E1789D3F6B6As1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib74340794C5730F236D9B5584BEB0E646s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib74340794C5730F236D9B5584BEB0E646s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibC219A27A86DECDFE447DAB103652159Cs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibC219A27A86DECDFE447DAB103652159Cs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibB0D57048160A38D8C938CEFFC095F91Cs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibB0D57048160A38D8C938CEFFC095F91Cs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibDBCC9E1234130A8905C204623D8FD7DDs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibDBCC9E1234130A8905C204623D8FD7DDs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2DF33DD0FEA34B47FFCDFE8782293641s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2DF33DD0FEA34B47FFCDFE8782293641s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib2DF33DD0FEA34B47FFCDFE8782293641s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibEA95AA8C50955D6DC2584F4567AD4093s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibEA95AA8C50955D6DC2584F4567AD4093s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibF3CDB6BF7FCC81BBD7E6B75208A8747As1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibF3CDB6BF7FCC81BBD7E6B75208A8747As1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib391ED9EA0CB161B188D9E2173F5AB639s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib391ED9EA0CB161B188D9E2173F5AB639s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBB0D51668B7AC2635C5B3C2167A487B7s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBB0D51668B7AC2635C5B3C2167A487B7s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3594C2B35670190B864EF84FDE9C6D9Es1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib3594C2B35670190B864EF84FDE9C6D9Es1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib53FCF78F3220F9C52010FAC8C65236B9s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib53FCF78F3220F9C52010FAC8C65236B9s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib58CF965E15653F3626B551AEC8A511DAs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bib58CF965E15653F3626B551AEC8A511DAs1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBCB2C7F751AFE2CC2FBE5224C3D4D111s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBCB2C7F751AFE2CC2FBE5224C3D4D111s1
http://refhub.elsevier.com/S0021-8693(24)00258-8/bibBCB2C7F751AFE2CC2FBE5224C3D4D111s1


108 H. Johnston, A. Torzewski / Journal of Algebra 657 (2024) 81–108
[47] I. Reiner, S. Ullom, Remarks on class groups of integral group rings, in: Symposia Mathematica, 
Vol. XIII, Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972, Academic Press, 
London, 1974, pp. 501–516. MR 0367043.

[48] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42, 
Springer-Verlag, New York-Heidelberg, 1977, Translated from the second French edition by Leonard 
L. Scott. MR 0450380.

[49] L. Solomon, Rational characters and permutation characters, in: Symposia Mathematica, Vol. XIII, 
Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972, Academic Press, London, 1974, 
pp. 453–466. MR 0357573.

[50] D. Smertnig, J. Voight, Definite orders with locally free cancellation, Trans. Lond. Math. Soc. 6 (1) 
(2019) 53–86. MR 4105795.

[51] R.G. Swan, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983) 
66–172. MR 703486.

[52] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, in: Dominique Bernardi, 
Norbert Schappacher (Eds.), Lecture Notes, in: Progress in Mathematics, vol. 47, Birkhäuser Boston, 
Inc., Boston, MA, 1984. MR 782485.

[53] M.J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1) 
(1981) 41–79. MR 608528.

[54] L.C. Washington, Introduction to Cyclotomic Fields, second ed., Graduate Texts in Mathematics, 
vol. 83, Springer-Verlag, New York, 1997. MR 1421575.

[55] C. Wittmann, Zeta functions of integral representations of cyclic p-groups, J. Algebra 274 (1) (2004) 
271–308. MR 2040875.
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