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This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium
points, a challenging problem for a general nonlinear system, using binary Gaussian process classification
(GPC). Interest in this method stems from the fact that an arbitrary point belonging to the system’s state
space can be classified in the region of attraction or not. Importantly the proposed GPC approach for
determining ROA gives a minimum confidence level associated with the estimate. Moreover, the active
learning scheme helps to update the GPC model and yield better predictions by selecting informative ob-
servations from the state space sequentially. The methodology is applied to several examples to illustrate
the effectiveness of this approach.
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1. Introduction

The Region of Attraction (ROA) of an asymptotically stable equi-
librium point x* of a dynamic system is the set of all the initial
states space from which trajectories of the system converge to x*
as time approaches infinity [14]. The exact ROA is often difficult
to compute, some prior knowledge of its size and shape is helpful.
Moreover, for a general nonlinear system, the ROA could be a very
complicated set, where analytical representation can be impossible.

Numerous methods have been proposed in the literature for es-
timating the ROA of an equilibrium point, most of them can be
classified as Lyapunov based and non-Lyapunov based methods [8].
The Lyapunov based approaches focus on determining Lyapunov
function level sets, including Zubov methods [10,34] and La Salle
methods [17], either by putting conditions for the Lyapunov func-
tion or extending the Lyapunov theory. A line search involving the
solution of Linear Matrix Inequalities (LMIs) is used to compute the
Lyapunov matrix in Valmorbida et al. [29] in order to obtain the
largest ellipsoid of polynomial systems when the Lyapunov func-
tion space is restricted to quadratic functions. In general cases, for
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higher order Lyapunov functions, Sum of Squares (SOS) methodol-
ogy can be used to transfer the problem into a set of Semi-Definite
Programs (SDPs) [6]. The second family, non-Lyapunov methods,
does not explicitly employ Lyapunov functions. Typical method like
the “tracking function” method [22] guarantees a practical stabil-
ity region by using a consideration of La Salle [17] about the con-
ditions for system trajectories so as not to cross a fixed surface.
Using integral quadratic constraints (IQCs) [12,25,26] allows to es-
timate ROA for generic problems like hard-nonlinearities. A global
optimization approach [18] is proposed for the estimation of the
ROA based on maximal Lyapunov functions by finding the best
level set of a Lyapunov function which is fully contained in the
region of negative definiteness of its time derivative. Rather than
focusing on learning invariant sets that require trajectories to al-
ways lie within the set, Shen et al. [27] learns sets that satisfy a
more flexible notion of invariance, Recurrent Sets, with necessary
and sufficient conditions, to obtain an inner approximations of the
ROA.

Recently, many works have studied to compute the ROAs for
systems with uncertainties. Novel statistical verification frame-
works [23] can be used to estimate the ROA for both deterministic
and stochastic systems by combining data-driven statistical learn-
ing techniques and control system verification. Similar statistical
methodology is used in Tadiparthi and Bhattacharya [28] by
combining efficient uncertainty sampling with a modified rep-
resentative sampling technique to arrive at a formulation that
fuses informativeness with represent ativeness in the learning
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paradigm. Berkenkamp et al. [1] integrates ideas from Gaussian
process regression (GPR) learning, safe Bayesian optimization
and ROA computation based on Lyapunov functions for uncertain
systems to provide an algorithm to actively and safely explore
the state space in order to expand the ROA estimate. Chen et al.
[5] proposes a sampling-based method for constructing robust
Lyapunov functions for uncertain dynamical systems by neural
networks to estimate the ROA.

Our contributions. Firstly, in this paper, we transfer the estima-
tion of the ROA into a binary classification problem to overcome
the difficulty in determining the inner approximation of ROA
by constructing a Lyapunov function for complicated nonlinear
systems, which is typically a complex problem. The statistical
classification model used in this work is Gaussian process classi-
fication (GPC) [21,32]. The underlying concept captures complex
relationships between the input and output data and provides
variance and confidence level information about the estimated
ROA. Secondly, active learning methodology [4,9] is adopted
to update the GPC model sequentially by selecting informative
observations. The proposed approach requires only a few initial
training samples, and over iterations, the algorithm chooses more
informative sampling locations to converge to the estimate of ROA
ultimately. The resulting algorithm returns an approximate ROA
and a minimum confidence level associated with the estimate.

The remaining of the paper is organised as follows. Section 2 in-
troduces the definition of the ROA, followed by the details for
GPC in Section 3. The methodology of estimation of the ROA with
GPC is proposed in Section 4 and tested with several examples in
Section 5. Finally, we conclude the paper in Section 6.

2. Problem statement
2.1. Region of attraction (ROA)

Consider an autonomous nonlinear dynamic system:
X =F(x), (1)

where x € R" is the state vector. The vector field F(x): R" — R"
is assumed to be globally Lipschitz continuous to guarantee the
existence and uniqueness of the solution of the system. The vec-
tor x* is an equilibrium point of system (1), if it has the property
that the state of the system starts at x*, it will remain at x* for
all future time, and are real roots of the equation F(x*) = 0. Let
¢ (t;X(ty), tp) denote the trajectory with initial state x(ty) during
time period [tg, t], formally the ROA of the equilibrium point x* is
given by Khalil [14]:

R(X) = {x(to> R lim ¢ (t:X(to). 1) =x*}. )

Throughout this work, we assume, without loss of generality,
that the equilibrium point is the origin of the state space R", x* =
0. The ROA of the equilibrium point x* = 0 is given by

R(0) = {x(to) R : lim p(£: X(to). to) = 0}. (3)

2.2. Binary classification

In machine learning, binary classification refers to a supervised
learning algorithm [2], which categorizes new observations into
one of two classes. The initial state x(ty) can be classified either
in the ROA R(0), or in its complementary region R(0) such that
R(0)NR(0) =¢ and R(0) UR(0) = R". Hence, the estimation of
the ROA is posed as a binary classification problem, labelled as +1
for all the points in R(0), and —1 for all the points in R(0). This
paper uses GPC to design the scheme for determining ROA. The
advantage of the GPC methodology is that it can capture complex
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relationships between the input and output data while providing
confidence-level information about the estimated ROA. The details
of GPC are introduced in the sequel. Other commonly used meth-
ods for binary classification are decision trees [24], support vector
machines [7], and neural networks [11], among others.

3. Gaussian process classification

A GP is an infinite collection of random variables where any
finite subset follows a joint multivariate Gaussian distribution. GP
can be divided into GP regression (GPR) and classification problems
as a supervised learning method. Here, we only introduce the GPC;
more details on GPR can be found in Williams and Rasmussen [32].

Suppose a data set £ = {X,y} with N input-output data pairs,
consists of inputs X = [Xq, ... ,xN]T and corresponding outputs y =
[y1, --.,yN]T. where x; € R", for the sake of brevity of the initial
state X;(tp), is the input, and a label y; = y(x;) € {—1,+1} is the
binary class label, i=1,...,N.

A Gaussian process prior over the latent function f(X) is,

fx) ~ N (mx). k(x. x)). (4)

In (4), m(x) represents the mean function and k(x, x’) is the
covariance function. For simplicity, we choose a zero mean func-
tion m(x) = 0. The covariance functions are required to be positive
semi-definite functions and have the property that points closer
in the input space are more strongly correlated [32]. A commonly
used covariance function is the squared exponential covariance
function with automatic relevance determination (ARD) distance
measure. The covariance function is parameterized as

k(x.x') = o} exp (—%(x—x’)TA(x—x’)>, (5)

where Uf2 is the signal variance linked to the general function vari-
ance, A =diag(l) is a diagonal matrix with I defining the n x 1
positive ARD characteristic legnth-scale vector, and n corresponds
to the input state space dimension. Obviously, a short length scale
hence corresponds to high relevance. Other mean and covariance
functions can be found in Williams and Rasmussen [32].

We use a vector 0 = {ofz,l} to gather all the parameters of
covariance function, which are known as hyperparameters. Since
f(x) has a GP prior, for any N input vectors X = [Xq, ..., xN]T, de-

note f = [fl,...,fN]T, where f; = f(x;), i=1,...,N, the prior over
f is jointly Gaussian,

p(fIX, 6) = N (0, K), (6)
where 0 is the N x 1 zero mean vector, and K = K(X, X) having el-
ements k;j = k(X;,X;), i,j=1,...,N, is the N x N covariance ma-
trix.

The likelihood p(y|f) is calculated as

N

) =[[pwilf). (7)
i=1

since the likelihood factorizes over the training samples. To find

the posterior distribution over the latent variable p(fIX, y, 0), using
(7), according to the Bayesian rule,

N
p(fIX.y.6) = L p(£IX.0) [T p0il ). (8)
i=1

where the prior p(f|X, 0) is Gaussian, and the normalization term
Z is the marginal likelihood

N
Z=p(vIx.0) = [ p(EX.6) [T eyl fyct. 9)
i=1
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In this paper, we use the probit likelihood for binary classifica-
tion [2]

pilf) = 2Wifi), (10)

where ®(z) is the cumulative density function of a standard nor-
mal distribution ®(z) = jfoc N (|0, 1)dx. Other sigmoidal transfor-
mation including linear logistic regression is discussed in Williams
and Rasmussen [32]. Using (10) in (9), the posterior distribution
becomes

1 N
p(fIX.y.0) = > p(fIX.0) [T 2 ifo). (11)
i=1
Suppose we want to predict the class label y, at a test point X,
from the definition of GP we know the joint prior over the train-
ing and test latent variable f and f, (short for f(x.)), given the
corresponding inputs, is Gaussian

p(f. f.1X.x..0) =N<o, [,fr ,ﬁ‘D (12)

where K, = [k(X1.X,). ..., k(Xyn. X:)]T, Kux = k(X,, X,), and the con-

ditional becomes

p(flf. X, X.,0) = N (KTK'f, k... — KTKT'K.). (13)
The prediction distribution can be computed as

p(LIX..x.0) = [ p(£If.X.x..0)p(fIX.y. 6)df. (14)

However, the posterior p(fIX, y, 0) in (11) is analytically in-
tractable because of the non-Gaussian likelihood in (10), which
makes the evaluation of the integral on the right hand of (14) im-
possible.

To circumvent above difficulty, we follow the expectation prop-
agation (EP) framework [15,16,19] and approximate the likelihood
in (10) by a local likelihood approximation. By doing this, the pos-
terior p(f|X, \A 0) in (11) becomes Gaussian. Meanwhile, as the nor-
malization likelihood Z in (9) is conditional on the hyperparam-
eters 0, which allows us to estimate the hyperparameters using
maximum likelihood 1I (ML-II) type [16] hyperparameter estima-
tion by setting the derivatives of the log marginal likelihood w.r.t
to the hyperparameter 6 to zero. More methods to handle this
problem include Laplace approximation method [31] and Markov
chain Monte Carlo [20].

If we denote the learned hyperparameters 6 = 0., the approxi-
mate predictive distribution q(f.|X.y.X..#.) then becomes

q(f1X.y.x.,0.) = N (.. 072), (15)
with mean

=K (K+5) "4 (16)
and variance

02 = ko — K (K+ £) 7K., (17)

where ji and ¥ are the mean vector and covariance matrix for
the local likelihood approximation [19]. Using (15) in (10), the pre-
dicted probability of the class label y, becomes

[
q(y. =+11X.y.x..0.) = @(m). (18)

4. Estimation of region of attraction with Gaussian process
classification

For the rest of the paper, we omit the explicit dependency
of the predictive probability of the class label on X,y, X,, 0, for
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Fig. 1. Binary classification. In this two dimension scenario, the black star is the
Equilibrium point x* = 0, the green region is the R(0). Green dots are initial points
in the R(0), and red stars are those in the 7(0). Four blue triangles x., i=1,..., 4,
from right to left, are the test points. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

the sake of brevity. From (18), the approximate predictive prob-
ability of the class label y, =+1 is q(y. = +1). Hence the ap-
proximate predictive probability of the class label y, = -1 nat-
urally becomes q(y. =—-1)=1-q(y. = +1). When q(y, = +1) >
0.5>q(y.=-1), we assign the class label y.=+1, X, € R(0).
Contrary when q(y, = +1) < 0.5 < q(y. = —1) the class label y, is
assigned value —1, and X, € R(0). In consequence, for the estima-
tion of ROA framework, we have

RO) for q@y.=+1)>0.5,
X € {7'2(0) for otherwise. (19)

For the binary classification, as shown in the Fig. 1, since the
GPC prediction is based on the location of the test data (see (5)),
intuitively, g; > g2 > 0.5 > q3 > q4, Where ¢; = q( = +1 |xi).

Given the initial training data set £, it is possible to have an
initial rudimentary estimate of the ROA of the dynamical system.
For a statistical classification model, GPC provides a more accurate
estimation of the ROA with more data points. However, having as
many data points is generally impossible due to either the fixed
computational budget or the cost of more observations from the
dynamic system simulations.

Inspired by Bayesian optimisation, we use active learning
[4,9] to solve this problem by selecting informative initial condi-
tions in the state space for subsequent observations over the it-
erations. To this end, a metric is required to measure the level of
being 'informative’. From (17) and (5), we know that the predictive
variance depends on the location of the test data point and the
training data points. In Figurel, points like x! and x? contain rel-
atively less new helpful information of the ROA since they are far
more likely (with probability close to 1 or 0) to be classified either
in the R(0) or R(0) with lower variance. It is because training
points of a single label surround x! and x2. By contrast, points like
x2 and x3 have predictive probability close to 0.5 and higher vari-
ance, which makes them difficult to be classified. Points with pre-
dictive probability close to 0.5 (actually, the points on state space
close to the boundary of the ROA) yield much more useful infor-
mation about the shape of the ROA and more accurate estimated
ROA.

The resulting metric to select the “best” or the most informative
point and simulate the dynamic system to gather an observation
becomes:

X = arg min(|q(y. = +1) — 0.5),

XeDs
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.

= arg min| |® - 00 ).
%eDs J1+0? ©
. s
=arg min| | —— -0} |,
%eDs JV1+0?
= arg max V, (20)
XeDs

where V = ./1+ 62/|1.]. The set Ds contains the available loca-
tions determined through random sampling. In this paper, we se-
lect the data as a grid over the state space. To quantity the confi-
dence of the prediction, we introduce a probability

p=q. =+1[X). (21)

The process starts with Ny initial training set £ of passively-
selected samples (usually generated through random sampling and
time simulations of the dynamics). Using £, an initial GPC is
trained, and using the GPC an initial ROA estimate Sy is found to
initiate active sampling further. Suppose we have a computational
budget that the number of observations (consequently simulations)
is Tioa- The sequential procedure then selects one point over the
state space from the available sample locations set Ds according to
(20). A simulation is carried out at the selected X to obtain y(X),
which is then used to update the GPC model and the estimated
ROA &; associated with the GPC. This iterative procedure repeats
until either the number of remaining locations T = Ty, — Ny or
the pnin (@ minimum confidence level associated with the esti-
mate) has been reached. The total number of observations T and
the minimum probability p.,;, control the accuracy of the estima-
tion, we will have further discussion in the numerical examples
later. The algorithm returns an approximate ROA and a minimum
confidence level associated with the estimate at the end of itera-
tion. Algorithm 1 shows the analysis steps.

Algorithm 1 Estimation the ROA with GPC.

Require: initial training dataset £ = {X,y}, available sample loca-
tion Ds, maximum number of additional samples T, train the GPC
model with £, initial ROA Sy, minimum probability pyi,, p=0
while i < T and p < py,, do

Select X = arg max V
XxeDs

Perform simulation at X, obtain y(X) and p

Add {x,y(x)} to training dataset £

Retrain GP model with updated £, updated ROA S;
end while
return S; and pp;,

5. Experiments

In this section, the proposed algorithm is illustrated by three
examples.

5.1. Van der Pol oscillator

Consider the dynamics of a Van der Pol oscillator, a non-
conservative oscillator with nonlinear damping [13]:

X1 = —X2,

X1 — (1 =x3)x,. (22)
In this example, the initial training data set £ consists of 36

(6 x 6) initial condition points X, which are selected as a grid

over the state space [—3, 3] x [-3, 3] and shown in Fig. 3 as black
points, and corresponding labels y, which is obtained by running

X2
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Fig. 3. Training and selected informative points. The black dots are the 36 initial
training data points, the blue circles are the 64 selected informative points. Red
solid line is the real ROA and the faded lines are the trajectories with the initial
blue circles. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

the simulation for a sufficiently large time (e.g. 10 s) and checked
if the state for a duration of last 5 s time interval is close to the
equilibrium point, for example, the Euclid distance is less than
10—4. Through this paper, we use the same way to generate train-
ing dataset, since we assume no other knowledge of the ROA is
available in advance. The maximum number of additional sam-
ples T = 64, to make the total number of observations Ty, < 100.
The available sample locations Ds is a 1,002,001 (1001 x 1001) data
points grid over the state space [—3, 3] x [-3, 3], and the minimum
probability is py;, = 99.999%.

Fig. 2 shows estimated ROAs at different ith steps. It is obvi-
ous with i increasing, the estimated ROAs are getting closer to the
real one and end up with a conservative estimation. Comparison
is given by the real ROA Sg. Fig. 3 illustrates the training points
(black dots) as a grid over the state space, selected informative
points at each it" step (indicated as blue circles) and trajectories
(faded lines) starting from them.

Fig. 4 shows estimated ROAs given different p,,,. It can be seen
that a larger p,, gives a smaller ROA, which means a higher con-
fidence level of the estimate, a smaller approximate ROA. In Fig. 5,
different training datasets are used to obtain the estimated ROAs.
The black dashed line shows an estimated ROA with the initial
training dataset containing 36 training points as a grid (the same
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Fig. 4. Estimated ROAs for different minimum probability pp;,.
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Fig. 5. Estimated ROAs with different initial training datasets.

= = *GPC based
==Real ROA

—-==Lyapunov based

I I L I
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Fig. 6. Comparison of different ROAs. The black dash line shows the estimated ROA
using the proposed method in this paper, red solid line is the real ROA and blue
sash-dot line give the estimated ROA using Lyapunov based method introduced in
Vannelli and Vidyasagar [30]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Comparison of estimated ROA by proposed algorithm (black dashed) and the
one in Bjornsson et al. [3] (red solid). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

as in the previous result), the green dot line gives the estimated
ROA with the initial training dataset containing 36 random se-
lected training points, and the blue dash-dot line depicts the re-
sult with 72 training points which is a union of those two training
datasets. In all three situations Ty, = 100. An observation can be
made from the Fig. 5 that different initial training datasets affect
the result of the estimated ROA, but all over iterations promisingly
converge towards the real ROA.

Fig. 6 depicts a comparison of different ROAs obtained by the
proposed method in this paper (black dash line), the real ROA (red
solid line) and a Lyapunov based method introduced in Vannelli
and Vidyasagar [30] (blue sash-dot line), respectively. It is evident
that the proposed algorithm gives a good estimation of inner ap-
proximation of the real ROA. Please bear in mind the algorithm in-
troduced in Vannelli and Vidyasagar [30] gives a closed form of the
ROA which contains several boundaries when plotted the ROA, as
you can see in Fig. 6, however, only the closed boundary around
the origin is the estimated ROA. We refer the interested reader
once more to Vannelli and Vidyasagar [30] for a more in-depth dis-
cussion.

5.2. 3-dimensional example

Here we give a 3-dimensional system example from Bjérnsson
et al. [3]:

X = X](X% +X§ -1) —Xz(X% +1),
X=X +x5—1)+x (X5 +1),
X3 = 10%3(x3 — 1). (23)

In this example, a 216 (6 x 6 x 6) grid points over the state
space [—1,1] x [-1,1] x [-1, 1] are used as training data set, and
the maximum number of additional samples T = 84, to make the
total number of observations Ty, < 300. The available sample lo-
cation Ds is a 1,030,301 (101 x 101 x 101) data points grid over the
state space [-1,1] x [-1,1] x [-1, 1], and the minimum probabil-
ity is pmin = 99.999%.

In Fig. 7, the red plot is the ROA obtained by the algorithm
provided in Bjoérnsson et al. [3] (available freely at www.ru.is/
kennarar/sigurdurh/MICNON2015CPP.rar) and the transparent grey
volume is the estimated ROA obtained with alg:EROAGPC. A blue
solid trajectory corresponding to an initial point (marked as blue
circle) between two volumes is also given to show it is in the ROA.
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Fig. 8. Estimations of the ROA for different saturation levels.

5.3. Closed-loop short period GTM aircraft

The closed-loop short period motion of the NASA’s Generic
Transport Model (GTM) can be approximated as a two states poly-
nomial system [12]:

@ = —1.4920% + 4.23902 + 0.2402a:8 + 0.003063aq
—0.06498% + 0.006226q* — 3.2360 — 0.31668 + 0.9227,
G = —7.2280 + 18.360% + 41.508 — 45.34c — 59.998

—4.372q +1.103¢°,
4

K= 180" (24)

where « is the angle of attack, q is the pitch rate, and § is the el-
evator deflection, which is assumed to be subject to actuator mag-
nitude saturation:

S = sgn((SCMD)Ssat for
- 8CMD for

demp = Kq,

[Scmp| > &5,

otherwise. (25)

where sgn(-) is the sign function and &% is the saturation level.
The GTM steady-state solution consists of a locally stable equi-
librium point at the origin x* =0. In this example, 36 (6 x 6)
training data points are selected as a grid over the state space
[-1.5,1.5] x [-6, 6], and the maximum number of additional sam-
ples T = 64, to make the total number of observations Ty < 100.
The available sample location Ds is a 1,002,001 (1001 x 1001) data
points grid over the state space [-1.5,1.5] x [-6, 6], and the min-
imum probability is ppyi, = 99.999%.

Fig. 8 gives the estimations of the ROA of the saturated GTM
model obtained with alg:EROAGPC. The estimation of ROAs with
the open loop and unsaturated (US) closed-loop and three levels of
saturation 3% = 0.05 rad, 0.10 rad and 0.15 rad are given for com-
parison. It can be seen the estimated ROAs with §5% are larger than
the open loop ROA but smaller than the unsaturated closed-loop
ROA. What is more, as the value of 5% increases, the correspond-
ing ROAs get closer to the unsaturated closed-loop ROA, which
is an expected result. Fig. 8 also gives trajectories with black cir-
cles marks corresponding to four initial conditions. Four faded pink
solid lines are unstable trajectories without enough saturation lev-
els (6% = [open loop, 0.05 rad, 0.10 rad, 0.15 rad]), and four faded
green solid lines are stable trajectories with enough saturation lev-
els (6% =[0.05 rad, 0.10 rad, 0.15 rad, unsaturated]).

6. Conclusion

Estimating the region of attraction for a general nonlinear sys-
tem is a hard problem. In this paper, we formulate whether or not
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an initial state belongs to the region of attraction of the system
into a binary classification problem and leverage machine learning
principles. Here we use a Gaussian Process Classification frame-
work. Our method starts with building a GPC model with a few
selected training data points and, subsequently, updating the GPC
model over iterations with more informative points using active
learning, given a designed metric. The noteworthy feature of the
proposed method is the provision of a minimum confidence level
associated with the estimation of the ROA. The efficacy of the pro-
posed methodology is demonstrated using multiple examples from
the literature, and the comparison of the new results with exist-
ing solutions is promising. Further research will explore develop-
ing more computationally efficient ways to estimate the ROA for
higher dimension systems with multi-output sparse GP [33] using
inducing points. In the future, we aim to apply the techniques to
various industrial problems.
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