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a b s t r a c t 

This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium 

points, a challenging problem for a general nonlinear system, using binary Gaussian process classification 

(GPC). Interest in this method stems from the fact that an arbitrary point belonging to the system’s state 

space can be classified in the region of attraction or not. Importantly the proposed GPC approach for 

determining ROA gives a minimum confidence level associated with the estimate. Moreover, the active 

learning scheme helps to update the GPC model and yield better predictions by selecting informative ob- 

servations from the state space sequentially. The methodology is applied to several examples to illustrate 

the effectiveness of this approach. 
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. Introduction 

The Region of Attraction (ROA) of an asymptotically stable equi- 

ibrium point x � of a dynamic system is the set of all the initial 

tates space from which trajectories of the system converge to x � 

s time approaches infinity [14] . The exact ROA is often difficult 

o compute, some prior knowledge of its size and shape is helpful. 

oreover, for a general nonlinear system, the ROA could be a very 

omplicated set, where analytical representation can be impossible. 

Numerous methods have been proposed in the literature for es- 

imating the ROA of an equilibrium point, most of them can be 

lassified as Lyapunov based and non-Lyapunov based methods [8] . 

he Lyapunov based approaches focus on determining Lyapunov 

unction level sets, including Zubov methods [10,34] and La Salle 

ethods [17] , either by putting conditions for the Lyapunov func- 

ion or extending the Lyapunov theory. A line search involving the 

olution of Linear Matrix Inequalities (LMIs) is used to compute the 

yapunov matrix in Valmorbida et al. [29] in order to obtain the 

argest ellipsoid of polynomial systems when the Lyapunov func- 

ion space is restricted to quadratic functions. In general cases, for 
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igher order Lyapunov functions, Sum of Squares (SOS) methodol- 

gy can be used to transfer the problem into a set of Semi-Definite 

rograms (SDPs) [6] . The second family, non-Lyapunov methods, 

oes not explicitly employ Lyapunov functions. Typical method like 

he “tracking function” method [22] guarantees a practical stabil- 

ty region by using a consideration of La Salle [17] about the con- 

itions for system trajectories so as not to cross a fixed surface. 

sing integral quadratic constraints (IQCs) [12,25,26] allows to es- 

imate ROA for generic problems like hard-nonlinearities. A global 

ptimization approach [18] is proposed for the estimation of the 

OA based on maximal Lyapunov functions by finding the best 

evel set of a Lyapunov function which is fully contained in the 

egion of negative definiteness of its time derivative. Rather than 

ocusing on learning invariant sets that require trajectories to al- 

ays lie within the set, Shen et al. [27] learns sets that satisfy a 

ore flexible notion of invariance, Recurrent Sets, with necessary 

nd sufficient conditions, to obtain an inner approximations of the 

OA. 

Recently, many works have studied to compute the ROAs for 

ystems with uncertainties. Novel statistical verification frame- 

orks [23] can be used to estimate the ROA for both deterministic 

nd stochastic systems by combining data-driven statistical learn- 

ng techniques and control system verification. Similar statistical 

ethodology is used in Tadiparthi and Bhattacharya [28] by 

ombining efficient uncertainty sampling with a modified rep- 

esentative sampling technique to arrive at a formulation that 

uses informativeness with represent ativeness in the learning 
l Association. This is an open access article under the CC BY-NC-ND license 
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aradigm. Berkenkamp et al. [1] integrates ideas from Gaussian 

rocess regression (GPR) learning, safe Bayesian optimization 

nd ROA computation based on Lyapunov functions for uncertain 

ystems to provide an algorithm to actively and safely explore 

he state space in order to expand the ROA estimate. Chen et al. 

5] proposes a sampling-based method for constructing robust 

yapunov functions for uncertain dynamical systems by neural 

etworks to estimate the ROA. 

Our contributions . Firstly, in this paper, we transfer the estima- 

ion of the ROA into a binary classification problem to overcome 

he difficulty in determining the inner approximation of ROA 

y constructing a Lyapunov function for complicated nonlinear 

ystems, which is typically a complex problem. The statistical 

lassification model used in this work is Gaussian process classi- 

cation (GPC) [21,32] . The underlying concept captures complex 

elationships between the input and output data and provides 

ariance and confidence level information about the estimated 

OA. Secondly, active learning methodology [4,9] is adopted 

o update the GPC model sequentially by selecting informative 

bservations. The proposed approach requires only a few initial 

raining samples, and over iterations, the algorithm chooses more 

nformative sampling locations to converge to the estimate of ROA 

ltimately. The resulting algorithm returns an approximate ROA 

nd a minimum confidence level associated with the estimate. 

The remaining of the paper is organised as follows. Section 2 in- 

roduces the definition of the ROA, followed by the details for 

PC in Section 3 . The methodology of estimation of the ROA with 

PC is proposed in Section 4 and tested with several examples in 

ection 5 . Finally, we conclude the paper in Section 6 . 

. Problem statement 

.1. Region of attraction (ROA) 

Consider an autonomous nonlinear dynamic system: 

˙  = F ( x ) , (1) 

here x ∈ R 

n is the state vector. The vector field F ( x ) : R 

n → R 

n 

s assumed to be globally Lipschitz continuous to guarantee the 

xistence and uniqueness of the solution of the system. The vec- 

or x � is an equilibrium point of system (1) , if it has the property

hat the state of the system starts at x � , it will remain at x � for

ll future time, and are real roots of the equation F ( x � ) = 0 . Let

(t; x (t 0 ) , t 0 ) denote the trajectory with initial state x (t 0 ) during 

ime period [ t 0 , t] , formally the ROA of the equilibrium point x � is

iven by Khalil [14] : 

 ( x 

� ) := 

{ 

x (t 0 ) ∈ R 

n : lim 

t→∞ 

φ(t; x (t 0 ) , t 0 ) = x 

� 

} 

. (2) 

Throughout this work, we assume, without loss of generality, 

hat the equilibrium point is the origin of the state space R 

n , x � =
 . The ROA of the equilibrium point x � = 0 is given by 

 ( 0 ) := 

{ 

x (t 0 ) ∈ R 

n : lim 

t→∞ 

φ(t; x (t 0 ) , t 0 ) = 0 

} 

. (3) 

.2. Binary classification 

In machine learning, binary classification refers to a supervised 

earning algorithm [2] , which categorizes new observations into 

ne of two classes. The initial state x (t 0 ) can be classified either 

n the ROA R ( 0 ) , or in its complementary region R̄ ( 0 ) such that

 ( 0 ) ∩ R̄ ( 0 ) = ∅ and R ( 0 ) ∪ R̄ ( 0 ) = R 

n . Hence, the estimation of

he ROA is posed as a binary classification problem, labelled as +1 

or all the points in R ( 0 ) , and −1 for all the points in R̄ ( 0 ) . This

aper uses GPC to design the scheme for determining ROA. The 

dvantage of the GPC methodology is that it can capture complex 
2 
elationships between the input and output data while providing 

onfidence-level information about the estimated ROA. The details 

f GPC are introduced in the sequel. Other commonly used meth- 

ds for binary classification are decision trees [24] , support vector 

achines [7] , and neural networks [11] , among others. 

. Gaussian process classification 

A GP is an infinite collection of random variables where any 

nite subset follows a joint multivariate Gaussian distribution. GP 

an be divided into GP regression (GPR) and classification problems 

s a supervised learning method. Here, we only introduce the GPC; 

ore details on GPR can be found in Williams and Rasmussen [32] . 

Suppose a data set L = { X , y } with N input-output data pairs, 

onsists of inputs X = [ x 1 , . . . , x N ] 
T and corresponding outputs y = 

 

y 1 , . . . , y N ] 
T , where x i ∈ R 

n , for the sake of brevity of the initial 

tate x i (t 0 ) , is the input, and a label y i = y ( x i ) ∈ {−1 , +1 } is the

inary class label, i = 1 , . . . , N. 

A Gaussian process prior over the latent function f ( x ) is, 

f ( x ) ∼ N 

(
m ( x ) , k 

(
x , x 

′ )). (4) 

In (4) , m ( x ) represents the mean function and k 
(
x , x ′ 

)
is the 

ovariance function. For simplicity, we choose a zero mean func- 

ion m ( x ) = 0 . The covariance functions are required to be positive

emi-definite functions and have the property that points closer 

n the input space are more strongly correlated [32] . A commonly 

sed covariance function is the squared exponential covariance 

unction with automatic relevance determination (ARD) distance 

easure. The covariance function is parameterized as 

 

(
x , x 

′ ) = σ 2 
f exp 

(
−1 

2 

(
x − x 

′ )T 
�

(
x − x 

′ )), (5) 

here σ 2 
f 

is the signal variance linked to the general function vari- 

nce, � = diag( l ) is a diagonal matrix with l defining the n × 1 

ositive ARD characteristic legnth-scale vector, and n corresponds 

o the input state space dimension. Obviously, a short length scale 

ence corresponds to high relevance. Other mean and covariance 

unctions can be found in Williams and Rasmussen [32] . 

We use a vector θ = 

{ 

σ 2 
f 
, l 

} 

to gather all the parameters of 

ovariance function, which are known as hyperparameters. Since 

f ( x ) has a GP prior, for any N input vectors X = [ x 1 , . . . , x N ] 
T , de- 

ote f = [ f 1 , . . . , f N ] 
T 

, where f i = f ( x i ) , i = 1 , . . . , N, the prior over

 is jointly Gaussian, 

p 
(
f | X , θ

)
= N ( 0 , K ) , (6) 

here 0 is the N × 1 zero mean vector, and K = K ( X , X ) having el-

ments k i j = k 
(
x i , x j 

)
, i, j = 1 , . . . , N , is the N × N covariance ma-

rix. 

The likelihood p(y | f ) is calculated as 

p(y | f ) = 

N ∏ 

i =1 

p ( y i | f i ) , (7) 

ince the likelihood factorizes over the training samples. To find 

he posterior distribution over the latent variable p 
(
f | X , y , θ

)
, using 

7) , according to the Bayesian rule, 

p 
(
f | X , y , θ

)
= 

1 

Z 
p 
(
f | X , θ

) N ∏ 

i =1 

p ( y i | f i ) , (8) 

here the prior p 
(
f | X , θ

)
is Gaussian, and the normalization term 

is the marginal likelihood 

 = p 
(
y | X , θ

)
= 

∫ 
p 
(
f | X , θ

) N ∏ 

i =1 

p ( y i | f i ) d f . (9) 
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Fig. 1. Binary classification. In this two dimension scenario, the black star is the 

Equilibrium point x � = 0 , the green region is the R ( 0 ) . Green dots are initial points 

in the R ( 0 ) , and red stars are those in the R̄ ( 0 ) . Four blue triangles x i ∗, i = 1 , . . . , 4 , 

from right to left, are the test points. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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In this paper, we use the probit likelihood for binary classifica- 

ion [2] 

p ( y i | f i ) = �( y i f i ) , (10) 

here �(z) is the cumulative density function of a standard nor- 

al distribution �(z) = 

∫ z 
−∞ 

N (x | 0 , 1) dx . Other sigmoidal transfor-

ation including linear logistic regression is discussed in Williams 

nd Rasmussen [32] . Using (10) in (9) , the posterior distribution 

ecomes 

p 
(
f | X , y , θ

)
= 

1 

Z 
p 
(
f | X , θ

) N ∏ 

i =1 

�( y i f i ) . (11) 

Suppose we want to predict the class label y ∗ at a test point x ∗,

rom the definition of GP we know the joint prior over the train- 

ng and test latent variable f and f ∗ (short for f ( x ∗) ), given the

orresponding inputs, is Gaussian 

p 
(

f, f ∗| X , x ∗, θ
)

= N 

(
0 , 

[
K K ∗

K 

T 
∗ k ∗∗

])
, (12) 

here K ∗ = [ k ( x 1 , x ∗) , . . . , k ( x N , x ∗) ] T , k ∗∗ = k ( x ∗, x ∗) , and the con-

itional becomes 

p 
(

f ∗| f , X , x ∗, θ
)

= N 

(
K 

T 
∗ K 

−1 f , k ∗∗ − K 

T 
∗ K 

−1 K ∗
)
. (13) 

The prediction distribution can be computed as 

p 
(

f ∗| X , y , x ∗, θ
)

= 

∫ 
p 
(

f ∗| f , X , x ∗, θ
)

p 
(
f | X , y , θ

)
d f . (14) 

However, the posterior p 
(
f | X , y , θ

)
in (11) is analytically in- 

ractable because of the non-Gaussian likelihood in (10) , which 

akes the evaluation of the integral on the right hand of (14) im- 

ossible. 

To circumvent above difficulty, we follow the expectation prop- 

gation (EP) framework [15,16,19] and approximate the likelihood 

n (10) by a local likelihood approximation. By doing this, the pos- 

erior p 
(
f | X , y , θ

)
in (11) becomes Gaussian. Meanwhile, as the nor- 

alization likelihood Z in (9) is conditional on the hyperparam- 

ters θ, which allows us to estimate the hyperparameters using 

aximum likelihood II (ML-II) type [16] hyperparameter estima- 

ion by setting the derivatives of the log marginal likelihood w.r.t 

o the hyperparameter θ to zero. More methods to handle this 

roblem include Laplace approximation method [31] and Markov 

hain Monte Carlo [20] . 

If we denote the learned hyperparameters θ = θ∗, the approxi- 

ate predictive distribution q 
(

f ∗| X , y , x ∗, θ∗
)

then becomes 

 

(
f ∗| X , y , x ∗, θ∗

)
= N 

(
μ∗, σ 2 

∗
)
, (15) 

ith mean 

∗ = K 

T 
∗
(
K + 

˜ �
)−1 

˜ μ, (16) 

nd variance 

2 
∗ = k ∗∗ − K 

T 
∗
(
K + 

˜ �
)−1 

K ∗, (17) 

here ˜ μ and 

˜ � are the mean vector and covariance matrix for 

he local likelihood approximation [19] . Using (15) in (10) , the pre- 

icted probability of the class label y ∗ becomes 

 

(
y ∗ = +1 | X , y , x ∗, θ∗

)
= �

( 

μ∗√ 

1 + σ 2 ∗

) 

. (18) 

. Estimation of region of attraction with Gaussian process 

lassification 

For the rest of the paper, we omit the explicit dependency 

f the predictive probability of the class label on X , y , x ∗, θ∗ for 
3 
he sake of brevity. From (18) , the approximate predictive prob- 

bility of the class label y ∗ = +1 is q ( y ∗ = +1 ) . Hence the ap-

roximate predictive probability of the class label y ∗ = −1 nat- 

rally becomes q ( y ∗ = −1 ) = 1 − q ( y ∗ = +1 ) . When q ( y ∗ = +1 ) > 

 . 5 ≥ q ( y ∗ = −1 ) , we assign the class label y ∗ = +1 , x ∗ ∈ R ( 0 ) .

ontrary when q ( y ∗ = +1 ) < 0 . 5 ≤ q ( y ∗ = −1 ) the class label y ∗ is 

ssigned value −1 , and x ∗ ∈ R̄ ( 0 ) . In consequence, for the estima-

ion of ROA framework, we have 

 ∗ ∈ 

{
R ( 0 ) for q ( y ∗ = +1 ) > 0 . 5 , 

R̄ ( 0 ) for otherwise . 
(19) 

For the binary classification, as shown in the Fig. 1 , since the 

PC prediction is based on the location of the test data (see (5) ),

ntuitively, q 1 > q 2 > 0 . 5 > q 3 > q 4 , where q i = q 
(
y ∗ = +1 | x i ∗

)
. 

Given the initial training data set L , it is possible to have an

nitial rudimentary estimate of the ROA of the dynamical system. 

or a statistical classification model, GPC provides a more accurate 

stimation of the ROA with more data points. However, having as 

any data points is generally impossible due to either the fixed 

omputational budget or the cost of more observations from the 

ynamic system simulations. 

Inspired by Bayesian optimisation, we use active learning 

4,9] to solve this problem by selecting informative initial condi- 

ions in the state space for subsequent observations over the it- 

rations. To this end, a metric is required to measure the level of 

eing ’ informative ’. From (17) and (5) , we know that the predictive

ariance depends on the location of the test data point and the 

raining data points. In Figure 1 , points like x 1 ∗ and x 4 ∗ contain rel- 

tively less new helpful information of the ROA since they are far 

ore likely (with probability close to 1 or 0) to be classified either 

n the R ( 0 ) or R̄ ( 0 ) with lower variance. It is because training

oints of a single label surround x 1 ∗ and x 4 ∗ . By contrast, points like 

 

2 ∗ and x 3 ∗ have predictive probability close to 0.5 and higher vari- 

nce, which makes them difficult to be classified. Points with pre- 

ictive probability close to 0.5 (actually, the points on state space 

lose to the boundary of the ROA) yield much more useful infor- 

ation about the shape of the ROA and more accurate estimated 

OA. 

The resulting metric to select the “best ” or the most informative 

oint and simulate the dynamic system to gather an observation 

ecomes: 

¯  = arg min 

x ∈D s 
( | q ( y ∗ = +1 ) − 0 . 5 | ) , 
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Fig. 2. Estimated ROAs for different steps. 

Fig. 3. Training and selected informative points. The black dots are the 36 initial 

training data points, the blue circles are the 64 selected informative points. Red 

solid line is the real ROA and the faded lines are the trajectories with the initial 

blue circles. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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= arg min 

x ∈D s 

( 

∣∣∣∣∣�
( 

μ∗√ 

1 + σ 2 ∗

) 

− �(0) 

∣∣∣∣∣
) 

, 

= arg min 

x ∈D s 

( 

∣∣∣∣∣ μ∗√ 

1 + σ 2 ∗
− 0 

∣∣∣∣∣
) 

, 

= arg max 
x ∈D s 

˜ V , (20) 

here ˜ V = 

√ 

1 + σ 2 ∗ / | μ∗| . The set D s contains the available loca- 

ions determined through random sampling. In this paper, we se- 

ect the data as a grid over the state space. To quantity the confi- 

ence of the prediction, we introduce a probability 

p̄ = q ( y ∗ = +1 | ̄x ) . (21) 

The process starts with N 0 initial training set L of passively- 

elected samples (usually generated through random sampling and 

ime simulations of the dynamics). Using L , an initial GPC is 

rained, and using the GPC an initial ROA estimate S 0 is found to 

nitiate active sampling further. Suppose we have a computational 

udget that the number of observations (consequently simulations) 

s T total . The sequential procedure then selects one point over the 

tate space from the available sample locations set D s according to 

20) . A simulation is carried out at the selected x̄ to obtain y ( ̄x ) ,

hich is then used to update the GPC model and the estimated 

OA S i associated with the GPC. This iterative procedure repeats 

ntil either the number of remaining locations T = T total − N 0 or 

he p min (a minimum confidence level associated with the esti- 

ate) has been reached. The total number of observations T and 

he minimum probability p min control the accuracy of the estima- 

ion, we will have further discussion in the numerical examples 

ater. The algorithm returns an approximate ROA and a minimum 

onfidence level associated with the estimate at the end of itera- 

ion. Algorithm 1 shows the analysis steps. 

lgorithm 1 Estimation the ROA with GPC. 

equire: initial training dataset L = { X, y } , available sample loca- 

tion D s , maximum number of additional samples T , train the GPC 

model with L , initial ROA S 0 , minimum probability p min , p̄ = 0 

while i ≤ T and p̄ < p min do 

Select x̄ = arg max 
x ∈D s 

˜ V 

Perform simulation at x̄ , obtain y ( ̄x ) and p̄ 

Add { ̄x , y ( ̄x ) } to training dataset L 

Retrain GP model with updated L , updated ROA S i 
end while 

return S i and p min 

. Experiments 

In this section, the proposed algorithm is illustrated by three 

xamples. 

.1. Van der Pol oscillator 

Consider the dynamics of a Van der Pol oscillator, a non- 

onservative oscillator with nonlinear damping [13] : 

˙ 
 1 = −x 2 , 

˙ 
 2 = x 1 − (1 − x 2 1 ) x 2 . (22) 

In this example, the initial training data set L consists of 36 

 6 × 6 ) initial condition points X, which are selected as a grid 

ver the state space [ −3 , 3] × [ −3 , 3] and shown in Fig. 3 as black

oints, and corresponding labels y, which is obtained by running 
4 
he simulation for a sufficiently large time (e.g. 10 s) and checked 

f the state for a duration of last 5 s time interval is close to the

quilibrium point, for example, the Euclid distance is less than 

0 −4 . Through this paper, we use the same way to generate train- 

ng dataset, since we assume no other knowledge of the ROA is 

vailable in advance. The maximum number of additional sam- 

les T = 64 , to make the total number of observations T total ≤ 100 .

he available sample locations D s is a 1,0 02,0 01 ( 10 01 × 1001 ) data

oints grid over the state space [ −3 , 3] × [ −3 , 3] , and the minimum

robability is p min = 99 . 999% . 

Fig. 2 shows estimated ROAs at different i th steps. It is obvi- 

us with i increasing, the estimated ROAs are getting closer to the 

eal one and end up with a conservative estimation. Comparison 

s given by the real ROA S R . Fig. 3 illustrates the training points

black dots) as a grid over the state space, selected informative 

oints at each i th step (indicated as blue circles) and trajectories 

faded lines) starting from them. 

Fig. 4 shows estimated ROAs given different p min . It can be seen 

hat a larger p min gives a smaller ROA, which means a higher con- 

dence level of the estimate, a smaller approximate ROA. In Fig. 5 , 

ifferent training datasets are used to obtain the estimated ROAs. 

he black dashed line shows an estimated ROA with the initial 

raining dataset containing 36 training points as a grid (the same 
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Fig. 4. Estimated ROAs for different minimum probability p min . 

Fig. 5. Estimated ROAs with different initial training datasets. 

Fig. 6. Comparison of different ROAs. The black dash line shows the estimated ROA 

using the proposed method in this paper, red solid line is the real ROA and blue 

sash-dot line give the estimated ROA using Lyapunov based method introduced in 

Vannelli and Vidyasagar [30] . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Comparison of estimated ROA by proposed algorithm (black dashed) and the 

one in Björnsson et al. [3] (red solid). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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5 
s in the previous result), the green dot line gives the estimated 

OA with the initial training dataset containing 36 random se- 

ected training points, and the blue dash-dot line depicts the re- 

ult with 72 training points which is a union of those two training 

atasets. In all three situations T total = 100 . An observation can be 

ade from the Fig. 5 that different initial training datasets affect 

he result of the estimated ROA, but all over iterations promisingly 

onverge towards the real ROA. 

Fig. 6 depicts a comparison of different ROAs obtained by the 

roposed method in this paper (black dash line), the real ROA (red 

olid line) and a Lyapunov based method introduced in Vannelli 

nd Vidyasagar [30] (blue sash-dot line), respectively. It is evident 

hat the proposed algorithm gives a good estimation of inner ap- 

roximation of the real ROA. Please bear in mind the algorithm in- 

roduced in Vannelli and Vidyasagar [30] gives a closed form of the 

OA which contains several boundaries when plotted the ROA, as 

ou can see in Fig. 6 , however, only the closed boundary around 

he origin is the estimated ROA. We refer the interested reader 

nce more to Vannelli and Vidyasagar [30] for a more in-depth dis- 

ussion. 

.2. 3-dimensional example 

Here we give a 3-dimensional system example from Björnsson 

t al. [3] : 

˙ 
 1 = x 1 (x 2 1 + x 2 2 − 1) − x 2 (x 2 3 + 1) , 

˙ 
 2 = x 2 (x 2 1 + x 2 2 − 1) + x 1 (x 2 3 + 1) , 

˙ 
 3 = 10 x 3 (x 2 3 − 1) . (23) 

In this example, a 216 ( 6 × 6 × 6 ) grid points over the state

pace [ −1 , 1] × [ −1 , 1] × [ −1 , 1] are used as training data set, and

he maximum number of additional samples T = 84 , to make the 

otal number of observations T total ≤ 300 . The available sample lo- 

ation D s is a 1,030,301 ( 101 × 101 × 101 ) data points grid over the

tate space [ −1 , 1] × [ −1 , 1] × [ −1 , 1] , and the minimum probabil-

ty is p min = 99 . 999% . 

In Fig. 7 , the red plot is the ROA obtained by the algorithm

rovided in Björnsson et al. [3] (available freely at www.ru.is/ 

ennarar/sigurdurh/MICNON2015CPP.rar ) and the transparent grey 

olume is the estimated ROA obtained with alg:EROAGPC. A blue 

olid trajectory corresponding to an initial point (marked as blue 

ircle) between two volumes is also given to show it is in the ROA. 

http://www.ru.is/kennarar/sigurdurh/MICNON2015CPP.rar
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Fig. 8. Estimations of the ROA for different saturation levels. 
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.3. Closed-loop short period GTM aircraft 

The closed-loop short period motion of the NASA’s Generic 

ransport Model (GTM) can be approximated as a two states poly- 

omial system [12] : 

˙ α = −1 . 492 α3 + 4 . 239 α2 + 0 . 2402 αδ + 0 . 003063 αq 

− 0 . 0 649 δ2 + 0 . 00 6226 q 2 − 3 . 236 α − 0 . 316 6 δ + 0 . 9227 q, 

˙ q = −7 . 228 α3 + 18 . 36 α2 + 41 . 5 αδ − 45 . 34 α − 59 . 99 δ

−4 . 372 q + 1 . 103 q 3 , 

CMD = Kq, K = 

4 π

180 
, (24) 

here α is the angle of attack, q is the pitch rate, and δ is the el-

vator deflection, which is assumed to be subject to actuator mag- 

itude saturation: 

= 

{
sgn (δCMD ) δ

sat for | δCMD | > δsat , 

δCMD for otherwise . 
(25) 

here sgn (·) is the sign function and δsat is the saturation level. 

he GTM steady-state solution consists of a locally stable equi- 

ibrium point at the origin x � = 0 . In this example, 36 ( 6 × 6 )

raining data points are selected as a grid over the state space 

 −1 . 5 , 1 . 5] × [ −6 , 6] , and the maximum number of additional sam-

les T = 64 , to make the total number of observations T total ≤ 100 .

he available sample location D s is a 1,0 02,0 01 ( 10 01 × 1001 ) data

oints grid over the state space [ −1 . 5 , 1 . 5] × [ −6 , 6] , and the min-

mum probability is p min = 99 . 999% . 

Fig. 8 gives the estimations of the ROA of the saturated GTM 

odel obtained with alg:EROAGPC. The estimation of ROAs with 

he open loop and unsaturated (US) closed-loop and three levels of 

aturation δsat = 0 . 05 rad , 0 . 10 rad and 0 . 15 rad are given for com-

arison. It can be seen the estimated ROAs with δsat are larger than 

he open loop ROA but smaller than the unsaturated closed-loop 

OA. What is more, as the value of δsat increases, the correspond- 

ng ROAs get closer to the unsaturated closed-loop ROA, which 

s an expected result. Fig. 8 also gives trajectories with black cir- 

les marks corresponding to four initial conditions. Four faded pink 

olid lines are unstable trajectories without enough saturation lev- 

ls ( δsat = [ open loop , 0 . 05 rad , 0 . 10 rad , 0 . 15 rad ] ), and four faded

reen solid lines are stable trajectories with enough saturation lev- 

ls ( δsat = [0 . 05 rad , 0 . 10 rad , 0 . 15 rad , unsaturated ] ). 

. Conclusion 

Estimating the region of attraction for a general nonlinear sys- 

em is a hard problem. In this paper, we formulate whether or not 
6

n initial state belongs to the region of attraction of the system 

nto a binary classification problem and leverage machine learning 

rinciples. Here we use a Gaussian Process Classification frame- 

ork. Our method starts with building a GPC model with a few 

elected training data points and, subsequently, updating the GPC 

odel over iterations with more informative points using active 

earning, given a designed metric. The noteworthy feature of the 

roposed method is the provision of a minimum confidence level 

ssociated with the estimation of the ROA. The efficacy of the pro- 

osed methodology is demonstrated using multiple examples from 

he literature, and the comparison of the new results with exist- 

ng solutions is promising. Further research will explore develop- 

ng more computationally efficient ways to estimate the ROA for 

igher dimension systems with multi-output sparse GP [33] using 

nducing points. In the future, we aim to apply the techniques to 

arious industrial problems. 
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