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Abstract

Lagrangian averaging theories, most notably the Generalised La-

grangian Mean (GLM) theory of Andrews & McIntyre (1978a), have

been primarily developed in Euclidean space and Cartesian coordinates.

We re-interpret these theories using a geometric, coordinate-free formu-

lation. This gives central roles to the flow map, its decomposition into

mean and perturbation maps, and the momentum 1-form dual to the

velocity vector. In this interpretation, the Lagrangian mean of any

tensorial quantity is obtained by averaging its pull back to the mean

configuration. Crucially, the mean velocity is not a Lagrangian mean

in this sense. It can be defined in a variety of ways, leading to alter-

native Lagrangian mean formulations that include GLM and Soward

& Roberts’s (2010) glm. These formulations share key features which

the geometric approach uncovers. We derive governing equations both

for the mean flow and for wave activities constraining the dynamics of

the pertubations. The presentation focusses on the Boussinesq model

for inviscid rotating stratified flows and reviews the necessary tools of

differential geometry.
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1. INTRODUCTION

Numerous fluid dynamical phenomena are the result of interactions between small-scale

or high-frequency fluctuations – associated with waves or turbulence – and mean flows.

Examples include acoustic streaming, the formation of jets in geophysical and astrophysical

fluids, and the dynamo effect in conducting fluids.

Averaging, over time, space or ensembles of flow realisations, is central to the analysis

of these phenomena since it enables the decomposition between mean flow and fluctuations

that is required both conceptually and practically. It has long been recognised that the most

straightforward form of averaging, Eulerian averaging, that is averaging at fixed spatial

location, often leads to unsatisfactory decompositions. This especially true for advection-

dominated, high-Reynolds-number flows whose dynamics is controlled by material transport

(of scalars such as temperature and potential vorticity, or of vectors such as vorticity and

magnetic field). Eulerian averaging does not preserve the structure of the advective terms in

the equations governing fluid motion: the average of the material derivative along the flow

differs from the material derivative along an averaged flow by terms – Reynolds stresses or

similar – whose impact is often difficult to ascertain. As a result, the strong constraints that

material conservation laws impose on the dynamics are obscured by the averaging process.

Lagrangian averaging offers a solution. It replaces averaging at fixed position by aver-

aging at fixed particle label or, in other words, averaging along fluid particle trajectories.

Lagrangian averaging has a long history, dating back to pioneering work by Eckart (1963),

Dewar (1970), Bretherton (1971), Soward (1972), Grimshaw (1975) and others. The land-

mark paper by Andrews & McIntyre (1978a) provides solid foundations for Lagrangian

averaging in the form of the theory of the Generalised Lagrangian Mean (GLM).

A key idea of GLM and its predecessors is to use a suitably defined mean position of

particles as a proxy for their label. This avoids the difficulties caused by the intricate nature

of the mapping between particle labels and positions and gives the averaged equations of

motion a familiar, Eulerian-looking appearance. Andrews & McIntyre (1978a) derive these

averaged equations for a general compressible rotating fluid.

There is now a large body of literature that applies these or similar GLM equations

obtained for other fluid models to study the effect of waves on mean flows in the atmosphere

and ocean (e.g. Bühler & McIntyre 1998, 2005, Holmes-Cerfon et al. 2011, Xie & Vanneste

2015). A widespread application is to ocean surface waves. Their impact on currents is

modelled using the Craik–Leibovich equations (Craik & Leibovich 1976), a version of the

GLM equations specialised for high-frequency potential waves (Leibovich 1976, Holm 1996,

Suzuki & Fox-Kemper 2016). The book by Bühler (2014) gives a detailed account of GLM

theory and its applications.

The derivation of GLM equations from the parent fluid model requires elaborate manip-

ulations. The resulting equations have attractive properties but also disconcerting features.

For instance, the key Lagrangian mean momentum equation (Theorem I of Andrews &

McIntyre (1978a), here ignoring the Coriolis terms) appears in the form

(∂t + uL · ∇)(uL
i − pi) + ∂iu

L
k (uL

k − pk) = −∂i(· · · ), 1.

where uL, in components uL
i , is the GLM mean velocity, pi the components of the pseudo-

mentum, and we do not detail the complicated pressure-like term on the right-hand side.

The appearance of both uL and uL − p as velocity-like vectors is notable, as is the unusual

contraction in the second term on the left-hand side.

In this review, we make the case that a geometric approach to Lagrangian averaging,
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using basic tools of exterior calculus, offers a straightforward route for the derivation and

interpretation of GLM equations. The geometric viewpoint arises naturally in variational

approaches to GLM (Grimshaw 1984, Gjaja & Holm 1999, Holm 2002a,b, Salmon 1998,

2013, 2016) but it is also useful when dealing directly with the equations of motion, as

we do here. At its most basic, a geometric approach makes it clear that Eq. 1. should be

interpreted as

(∂t + LuL)ν
L = −d(· · · ), 2.

where νL = (uL − p) · dx is a 1-form, LuL denotes the Lie derivative along uL and d is the

differential. The GLM version of Kelvin’s circulation theorem is then a short step away.

Beyond this, the geometric approach provides a unified way to understand a broad class

of Lagrangian mean theories that generalize Andrews & McIntyre’s GLM. These theories

differ in their definition of the Lagrangian mean flow but share many of GLM’s properties,

including the form of Eq. 2.. Lagrangian mean theories alternative to GLM have been

proposed by Roberts & Soward (2006a,b) and Soward & Roberts (2010, 2014) building on

the pioneering work of Soward (1972). The key feature of their so-called ‘glm’ theory is

that, for an incompressible fluid, the Lagrangian mean velocity is divergence free, unlike

that of standard GLM (see also Vanneste & Young 2022). Gilbert & Vanneste (2018) point

out the underlying geometric foundations of Lagrangian mean theories and put forward

alternatives to both GLM and glm.

A virtue of the geometric approach is that it leads to general results valid on arbitrary

Riemannian manifolds and with arbitrary coordinate systems. This is useful for applications

that include two-dimensional flows on the sphere or three-dimensional flows described in

spherical coordinates. The geometric approach also sheds light on features of standard

GLM that depend on the Euclidean structure assumed by Andrews & McIntyre (1978a)

and Bühler (2014). The most prominent of such features is the definition of the Lagrangian

mean velocity itself, which in GLM relies on the averaging of velocity vectors based at

different points in space. Here, we follow Gilbert & Vanneste (2018) in giving the lead role

to the mean flow map (see also Holm 2002a,b). The mean flow map can be defined in a

variety of ways, none of which should be thought of as resulting from the application of an

averaging operator to flow maps (averaging operators involve summations and hence only

apply to elements of vector spaces, which flow maps are not). The mean velocity is then

simply the time derivative of the mean flow map. This viewpoint accommodates alternative

Lagrangian mean theories (GLM, glm, etc.) in a unified way.

This review focusses on two aspects of Lagrangian averaging: (i) the geometric deriva-

tion of the mean momentum equation, generalising Eq. 2.; and (ii) the derivation of wave

activity conservation laws and the related equations governing the evolution of the pseu-

domomentum. Aspect (ii) gives a new geometric view of results obtained in the GLM

framework by Andrews & McIntyre (1978b) and Bühler (2014, §10.3) (see also Grimshaw

1984, Salmon 2013). These results constrain the dynamics of the perturbations – the dif-

ference between exact and mean fields that results for fluctuations such as waves – and,

via Eq. 2., of the mean flow. We do not discuss the detailed models of perturbations

that are required to close Eq. 2.. These include linear models for wave-like perturbations

(e.g., Grimshaw 1975, Bühler & McIntyre 1998, Gjaja & Holm 1999, Bühler & McIntyre

2005, Holmes-Cerfon et al. 2011, Bühler 2014, Wagner & Young 2015, Xie & Vanneste

2015, Salmon 2016, Holm et al. 2023) and heuristic closures, either deterministic (e.g. Holm

1999, Marsden & Shkoller 2001, 2003, Roberts & Soward 2009, Soward & Roberts 2008) or

stochastic (e.g. Holm 2019, 2021). A geometric approach is also beneficial for these models,
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Figure 1

The flow map φ maps the label a = (a1, a2, a3) of a fluid particle to the position x = (x1, x2, x3)
of the particle at time t. The velocity field evaluated at x, u(x), gives the velocity of the particle.

as demonstrated by the studies by Holm and co-workers on variational formulations.

We concentrate the presentation on the Boussinesq model of rotating stratified fluid

(e.g. Vallis 2006). This model is widely used in geophysical fluid dynamics. From the

perspective of this review, it has the advantage of illustrating the main features of a ge-

ometric approach to Lagrangian averaging. Extensions to fully compressible fluids or to

magnetohydrodynamics are straightforward, if unwieldy (Gilbert & Vanneste 2018, 2021).

We also restrict our attention to non-dissipative, unforced dynamics. Finally, we consider

averaging as a general, abstract procedure, in the manner of Andrews & McIntyre (1978a)

and most authors since. This is best thought of as ensemble averaging, that is, averaging

over a collection of independent flow realisations. This can be approximated in practice by

temporal or spatial averaging in a single flow, usually building on a time scale or spatial

scale separation.

A few comments about the notation used in this review are worthwhile. We have

adopted as far as possible standard fluid-dynamical and GLM notation, such as boldface

vectors and L to denote Lagrangian mean quantities, with a few exceptions. We use

lightface fonts for the (Eulerian) position x and label a of fluid particles, with xi and ai,

i = 1, 2, 3 as coordinates. This emphasise the distinction between points on a manifold and

(tangent) vectors which can be overlooked in the Euclidean setting. The bold x appears

only as shorthand for (x1, x2, x3) and should be thought of as a collection of coordinates

rather than a vector. For convenience, we do not indicate the explicit time dependence of

various objects. Thus, with φ the (time-dependent) flow map, we write

x = φ(a) 3.

and

∂tφ(a) = u(φ(a)) 4.

instead of x = φ(a, t) and ∂tφ(a, t) = u(φ(a, t), t). (See Figure 1 for an illustration of the

flow map and velocity vector.) As is standard, we use the overbar to denote (ensemble)

Flow map and
velocity field: are
related by
∂tφ = u ◦ φ,
i.e., u = ∂tφ ◦ φ−1.

average carried out at fixed independent variables, so ū denotes the Eulerian mean velocity.
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We introduce an unconventional double bar notation for the mean flow map ¯̄φ and

associated Lagrangian mean velocity ¯̄u. This emphasises that they are not the result of a

direct averaging procedure. We restrict the use of the notation L for a specific definition

of Lagrangian averaging (Eq. 40.) that applies to any tensorial object and on any manifold.

It turns out that, even in standard GLM, the mean velocity is not consistent with this

definition, so uL ̸= ¯̄u. To follow the convention of the rest of this review, Eqs. 1. and

2. should therefore be rewritten with ¯̄u in place of uL. We do not indicate explicitly the

dependence of various fields on flow realisations. Instead, overbars of various kinds decorate

all realisation-independent (mean) fields.

The differential geometry machinery we rely on is standard and exposed, for instance,

in the books by Schutz (1980) or Frankel (2004). The broad set up is a manifold – the fluid

domain – equipped with a metric g, such that g(u,v) ∈ R is the scalar or dot product of u

and v, and the associated volume form µ. We use differential forms, mainly the momentum

1-form ν, vorticity 2-form dν and volume 3-form µ, and operators including contraction

⌟, exterior derivative d, Lie derivative L and push-forward and pull-back by maps. We

summarise the relevant concepts in three sidebars. We primarily use a coordinate-free

notation which greatly simplifies most derivations. The geometric approach is also effective

when it comes to obtain explicit coordinate expressions. We illustrate this with a few

detailed computations.

2. GEOMETRIC FORMULATION OF THE BOUSSINESQ EQUATIONS

We use the Boussinesq equations governing the dynamics of incompressible rotating strati-

fied fluids as representative of the class of models typically considered in studies of wave–

mean-flow interactions. In standard form, they read

∂tu+ u · ∇u+ f × u = −∇p+ b e3, 17a.

∂tb+ u · ∇b = 0, 17b.

∇ · u = 0, 17c.

where u = (u1, u2, u3) is the velocity vector, e3 is the vertical unit vector, f = f e3, with

f the Coriolis parameter, p is the pressure scaled by the uniform background density ρ0,

and b is the buoyancy acceleration, defined as b = −gρ/ρ0, with ρ the density perturbation

(e.g. Vallis 2006).

Eqs. 17. apply to Euclidean space and Cartesian coordinates. They generalise to arbi-

trary manifolds and coordinates in a way that is straightforward in appearance only: the

derivative u · ∇u needs to be interpreted as the covariant derivative ∇uu, a sophisticated

object that involves Christoffel symbols and is difficult to average. It is therefore prefer-

able to write the Boussinesq equations in an alternative form that involves the simpler Lie

derivative – the natural derivative along the flow. This necessitates making use of the mo-

mentum 1-form ν = νi dx
i as well as of the velocity vector u = ui ∂i. Here and in what

follows, summation over repeated indices is understood.

For Eqs. 17., ν is just a version of u, obtained by lowering the superscript using the

metric g,

ν = u♭ = g(u, ·), or, in coordinates, νi = giju
j , 18.

In Cartesian coordinates, since gij = δij , this is simply

Musical Notation: ♭
and ♯ denote the

lowering and raising
of indices using the

metric g and its

inverse.

ν = u1 dx1 + u2 dx2 + u3 dx3 = u · dx, 19.
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VECTORS AND FORMS

The familiar (contravariant) vectors have duals, namely 1-forms (or covariant vectors) defined as linear maps

on vectors, such that the pairing α(v) of the 1-form α with the vector v is a real number. In coordinates

xi, vectors and 1-forms are written as

v = vi∂i and α = αi dx
i, 5.

where ∂i = ei are basis vectors (the notation calls to mind the interpretation of vectors as directional

derivatives) and dxi are basis 1-forms, respectively, and summation is implied. The two bases are dual in

the sense that dxi(∂j) = δij . Together with linearity, this implies the coordinate expression

α(v) = αiv
i 6.

for the pairing between α and v.

In three dimensions, there are three other differential forms: 0-forms, which are just scalars, and 2- and

3-forms. The 2-forms β and 3-forms γ are defined as bi- and tri-linear antisymmetric maps on vectors, with

β = 1
2
βij dx

i ∧ dxj and γ = 1
6
γijk dx

i ∧ dxj ∧ dxk. 7.

Here βij and γijk are anti-symmetric in their indices and (dxi ∧ dxj)(u,v) = u[ivj] = uivj − ujvi and

(dxi ∧ dxj ∧ dxk)(u,v,w) = u[ivjwk], where [· · · ] denotes full (unnormalised) antisymmetrisation. 1-, 2-

and 3-forms integrate over lines, surfaces and volumes, respectively.

The interior product ⌟ pairs a k-form with a vector to yield a (k − 1)-form, with

u ⌟α = α(u) = αiu
i, u ⌟β = uiβij dx

j and u ⌟γ = 1
2
uiγijk dx

j ∧ dxk. 8.

The exterior derivative d is a differential operator from fields of k-forms to fields of (k + 1)-forms, with

df = ∂if dx
i, dα = ∂jαi dx

j ∧ dxi, dβ = ∂kβij dx
k ∧ dxi ∧ dxj 9.

and dγ = 0. It satisfies d2 ≡ d ◦ d = 0 and encodes gradient, divergence and curl.

where we use x = (x1, x2, x3) and the dot product formally, as shorthand for handling

multiple components, with no implication that x or dx should be regarded as vectors.

In terms of ν, Eqs. 17. take the form

(∂t + Lu)(ν + λ) = −dπ + b dx3, 20a.

(∂t + Lu)b = 0, 20b.

Lu µ = 0, 20c.

where Lu denotes the Lie derivative along u (see sidebar), π = p − 1
2
|u|2 − λ(u) with

Cartan’s Formula:
Lu(·) =
d(u ⌟ ·) + u ⌟ d(·)
applies to all

k-forms, k ≥ 1. For
a scalar field Lu(·) =
u ⌟ d(·) = d(·)(u).

|u|2 = g(u,u) = ν(u), and

λ = 1
2
(f × x) · dx = 1

2
f(−x2 dx1 + x1 dx2). 21.

The Coriolis terms can be verified to reduce to that in Eq. 17a. by making use of Cartan’s
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ACTION OF MAPS: PUSH-FORWARD AND PULL-BACK

A map φ such as the flow map (using the position at t = 0 as label) takes a point x in the fluid domain and

sends it to another, φ(x). Maps have a natural action on vectors and differential forms. A vector v at x is

pushed forward to the vector φ∗v at φ(x) obtained by joining the images under φ of the two infinitesimally

close endpoints x and x+ εv of v with ε→ 0. The push-forward has coordinates

(φ∗v)
i(φ(x)) = vj(x) ∂jφ

i(x). 10.

Conversely, a 1-form α at φ(x) is pulled back to the 1-form φ∗α at x in such a way that α(φ∗v) = (φ∗α)(v)

for all v. In coordinates,

(φ∗α)i(x) = αj(φ(x)) ∂iφ
j(x). 11.

For an invertible map, the pull-back of vectors and push-forward of 1-forms are defined as the push-forward

and pull-back by the inverse map φ−1. Push-forward and pull-back can be applied to any tensors, starting

with scalar functions for which (φ∗f)(x) = f(φ−1(x)) and (φ∗f)(x) = f(φ(x)) The definition for higher-

order tensors uses their interpretation as multilinear maps on vectors or 1-forms. A useful property is that

push-forward and pull-back commute with the exterior derivative d.

formula to write

Luλ− dλ(u) = u ⌟ dλ = (f × u) · dx. 22.

The incompressibility condition 20c. can equivalently be written as divu = 0 since Lu µ =

(divu)µ defines the divergence.

The form of Eq. 20., sometimes referred to as Euler–Poincaré form, emerges from a

variational formulation of the Boussinesq equations (Arnold 1966, Arnold & Khesin 1998,

Holm et al. 1998). It applies to arbitrary manifolds possessing a metric g, with a suitable

definition of λ and the replacement of dx3 in Eq. 20a. by the differential of the geopotential.

The Lie derivative Lu which appears in the momentum Eq. 20a. is the natural derivative

of the 1-form ν along the flow of u. Unlike the covariant derivative of u that appears in

Eq. 17a., it is independent of the metric and transforms straightforwardly under mappings.

This makes Eqs. 20. a convenient starting point for Lagrangian averaging.

For our purposes, it is essential to keep a clear distinction between the momentum 1-

form field ν and the vector field u, that is, between the advected and advecting fields in

Eq. 20a. For the Boussinesq equations and indeed for many other fluid models, they are

directly related via Eq. 18. This is not always the case, however. A simple example of a

different, non-trivial relation between ν and u is provided by the hydrostatic Boussinesq

equations: the hydrostatic approximation, which neglects vertical acceleration, amounts to

replacing Eq. 19. by

ν = u1 dx1 + u2 dx2, 23.

while retaining the three components of u elsewhere. Holm’s α-model (Holm 1999, Marsden

& Shkoller 2001, 2003, Oliver & Vasylkevych 2019) or Tao’s modification of the Euler

equations (Tao 2016) are other, more involved examples of non-trivial relations between ν

and u. In the presence of rotation, it is convenient to rewrite Eq. 20a. compactly as

(∂t + Lu)νa = −dπ + b dx3. 24.

www.annualreviews.org • Lagrangian averaging 7



LIE DERIVATIVE

The notion of material derivative, or derivative along a flow, is expressed by the Lie derivative, an infinites-

imal version of the pull-back which applies to scalars, vectors, 1-forms and higher-order tensors. Given a

vector field v, we can define the associated flow map ψs, such that

d

ds
ψs(x) = v(ψs(x)) and ψ0(x) = x, 12.

with s a time-like variable (fictitious time), independent of the actual time t. The Lie derivative of a tensor

field τ (independent of s) is then

Lvτ =
d

ds

∣∣∣∣
s=0

ψ∗
sτ. 13.

This is the rate of change of τ as we pull it back under the flow ψs associated with v. Applying this to

scalar, vector and 1-form fields gives the coordinate expressions

Lv f = vj∂jf, (Lv u)i = vj∂ju
i − uj∂jv

i and (Lv α)i = vj∂jαi + αj∂iv
j . 14.

The useful formula
d

dt
φ∗τ = φ∗ (∂t + Lu) τ 15.

relates the time derivative of the pull-back of any time dependent tensor τ by the flow map φ to its Lie

derivative with respect to the velocity field u. Kelvin’s circulation theorem and the frozen-in nature of

vorticity for the Euler equations are immediate applications of this formula. The Lie derivative commutes

with the exterior derivative operator d and transforms naturally under pull-back:

dLvτ = Lv dτ and φ∗Lv τ = Lφ∗v φ
∗τ. 16.

This introduces the absolute momentum

νa = ν + λ, 25.

which is also not wholly related to u via the metric.

3. LAGRANGIAN AVERAGING

Fluid models involve material transport, of momentum, vorticity and buoyancy in the case

of the Boussinesq equations, as is made plain by the presence of the operator ∂t+Lu in Eqs.

20. Lagrangian averaging preserves this structure by averaging various fields not at fixed

Eulerian position x, but at fixed Lagrangian label a. We now review how this averaging is

carried out.

8 A. D. Gilbert and J. Vanneste



MOMENTUM EQUATION: FROM 1-FORM TO COMPONENTS

We illustrate the direct manipulation of forms by deriving the Boussinesq momentum equation in coordinates

from the 1-form formulation Eq. 20a. The most useful rules for such manipulations are the Leibniz product

rule for the Lie derivative and the commutation of Lie derivative and exterior derivative. With λ = λi dx
i =

1
2
(f × x)i dx

i, we write the left-hand side of Eq. 20a. as

(∂t + Lu)(νi dx
i + λi dx

i) =
(
(∂t + Lu)νi

)
dxi + νid(Lu x

i) + Lu(λi) dx
i + λi d(Lu x

i) 26a.

=
(
(∂t + uj∂j)νi

)
dxi + νi du

i + uj∂jλi dx
i + λi du

i. 26b.

The right-hand side reads

−d(p− 1
2
νiu

i − λiu
i) + b dx3 = −∂ip dxi + 1

2
νi du

i + 1
2
ui dν

i + λi du
i + ui∂jλi dx

j + b dx3. 27.

Equating Eqs. 26b. and 27. and noting that uj∂jλi dx
i − ui∂jλi dx

j = (f × u) · dx and that, in Euclidean

space, νi = ui gives (
(∂t + uj∂j)ui + (f × u)i

)
dxi = −∂ip dxi + b dx3, 28.

matching the standard form Eq. 17a. of the Boussinesq momentum equation.

3.1. Scalar Example: Buoyancy Equation

Let us consider the (scalar) buoyancy b as a straightforward example. Averaging Eq. 20b.

at fixed x, that is, performing an Eulerian average, gives

∂tb̄+ Lu b = ∂tb̄+ uj∂jb = ∂tb̄+ Lū b̄+ u′
j∂jb

′ = 0, 29.

where we have introduced perturbations to the mean fields, denoted by primes, by writing

u = ū+ u′ and b = b̄+ b′. The last term in Eq. 29., involving a product of perturbations,

spoils the transport structure of the buoyancy equation. In contrast, if we let B(a) =

b(φ(a)), Eq. 20b. becomes ∂tB = 0, leading upon averaging to

∂tB̄ = 0, 30.

with B̄(a) = b(φ(a)) the Lagrangian average of the buoyancy.

While this equation is formally simple it is not practical: the intricate nature of the flow

map in all but the simplest flows makes it impossible to recover useful information about b

from B or B̄. Generalised Lagrangian Mean (GLM) theories offer a solution by regarding B̄

not as a function of the label a but as a function of a mean position ascribed to the particle

identified by a.

GLM relies on the decomposition

φ = Ξ ◦ ¯̄φ 31.

of the flow map, factorised as the composition of the mean flow map ¯̄φ and a (realisation-

dependent) perturbation map Ξ. The precise definition of ¯̄φ is unimportant for now. What

matters is that it is chosen such that, in all flow realisations, the perturbations Ξ remain

www.annualreviews.org • Lagrangian averaging 9



u

label space

fluid domain

mean domain

φ

¯̄φ

Ξ

a

¯̄u

Figure 2

Decomposition of an ensemble of flow maps φ, here represented by three realisations, into the

mean map ¯̄φ and perturbation maps Ξ. The velocities u of the fluid particle labelled by a in each
flow realisation, and its mean velocity ¯̄u, are also indicated.

close to the identity for long times. This is required so that ¯̄φ can serve as a representative of

the ensemble of flow maps, in accordance with the intuitive interpretation of the mean. It is

also necessary in practice to ensure the convergence of asymptotic or numerical procedures

for the computation of Lagrangian mean quantities.

Figure 2. visualises the decomposition 31. of the flow map, showing a small, three-

member ensemble for illustration. An often-used ensemble arises for wave-like, nearly peri-

odic motion: ensemble members are distinguished by a phase shift, and the mean map then

traces the corresponding ‘guiding-centre’ trajectory as illustrated in Figure 3

In general, ¯̄φ is not obtained by applying an averaging operator to the flow map, a

notion that, in fact, makes little sense – averaging is a linear operation, fundamentally an

addition, but flow maps are not elements of a vector space and cannot therefore be added.

We emphasise this with the (unconventional) double-bar notation. The Lagrangian mean

velocity ¯̄u = ¯̄uj∂j is defined as the velocity field associated with ¯̄φ, that is, such that

∂t ¯̄φ(a) = ¯̄u( ¯̄φ(a)). 32.

In general, the mean flow ¯̄u is similarly not the result of the application of an averaging

operator to the ensemble of vector fields u. Differentiating Eq. 31. with respect to t gives

w + Ξ∗ ¯̄u = u, i.e. ¯̄u = Ξ∗(u−w), 33.

where w is the perturbation velocity defined by ∂tΞ(x) = w(Ξ(x)) and we use that the

inverse of the push-forward Ξ∗ is the pull-back Ξ∗.

With this notation in place, the Lagrangian mean of b is defined by

b
L
( ¯̄φ(a)) = B̄(a) = b(φ(a)) 34.

and satisfies

∂tb
L
+ ¯̄uj∂jb

L
= 0. 35.

10 A. D. Gilbert and J. Vanneste
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¯̄φ(a)

a

φ
¯̄φ

Ξ

label space

physical space
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trajectory

Figure 3

Alternative view of the flow map decomposition, in which the ensemble of flow maps arises from a

phase shift in a nearly periodic motion. The mean map describes the ‘guiding-centre’ trajectory of
each fluid particle.

Eq. 35. clearly respects the transport structure of the original, unaveraged buoyancy equa-

tion, unlike Eq. 29.

3.2. General Lagrangian Averaging and the Momentum Equation

An alternative derivation of Eq. 35. uses the geometric machinery of pull-back and Lie

derivative: first note that b
L
(x) = b(Ξ(x)), that is,

b
L
= Ξ∗b. 36.

The key identity

Ξ∗(∂t + Lu)τ = (∂t + L¯̄u)Ξ
∗τ, 37.

valid for any tensor field τ , can then be exploited (Gilbert & Vanneste 2018). Applying Ξ∗

to Eq. 20b. gives, after averaging,

(∂t + L¯̄u)b
L
= 0, 38.

i.e. Eq. 35.

The advantage of this derivation is that it readily generalises: equations involving the

material transport of an arbitrary tensor τ expressed as a Lie derivative are handled by

first pulling them back to the mean configuration using Ξ, then averaging. This gives

Ξ∗(∂t + Lu)τ = (∂t + L¯̄u)τ
L. 39.

Here, τL denotes the Lagrangian mean of τ , defined as

τL = Ξ∗τ , 40.

generalising the scalar definition of Eq. 36. We emphasise that Eq. 40. provides a natural,

Lagrangian Mean:
defined as pull-back

to the mean

configuration
followed by
averaging.

coordinate-independent construction of the Lagrangian mean, one that applies to any ten-

sorial object. It is geometrically sound, pulling back the ensemble of values of the tensor

τ to the same point before carrying out the average. We reserve the notation L for this
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construction and caution that this convention is not adopted in standard GLM literature

where L is sometimes used for mean fields constructed differently.

With the definition in Eq. 40., applying Ξ∗ to Eq. 24. yields

(∂t + L¯̄u)Ξ
∗νa = −dΞ∗π + Ξ∗(b dx3), 41.

using that pull-back and exterior derivative d commute. Averaging then gives

(∂t + L¯̄u)νa
L = −dπL + b dx3

L
. 42.

The Lagrangian mean momentum equation 42. closely resembles the original momentum

equation 20a.. The key difference is that the link between advected momentum and ad-

vecting velocity field – the trivial ν = u♭ of the original equation – is broken: νL and ¯̄u are

not directly related, νL ̸= ¯̄u♭. Physically, this is because perturbations to the mean have a

dynamical effect which is manifested in the mismatch. It is natural to introduce a field that

quantifies the mismatch and hence encodes the impact of the perturbations on the mean.

This field is the pseudomomentum (or at least a version thereof).

To include rotation, we define the pseudomomentum 1-form p as (minus) the difference

between the absolute Lagrangian-averaged momentum νa
L = νL + λ

L
and the absolute

momentum associated with the mean velocity, that is,

−p = νa
L − (¯̄u♭ + λ). 43.

With this definition, we can rewrite the Lagrangian-mean momentum Eq. 42. as

(∂t + L¯̄u)(¯̄u♭ − p) + ¯̄u ⌟ dλ = −d
(
πL + λ(¯̄u)

)
+ b dx3

L
. 44.

This is a geometric form of Theorem I of Andrews & McIntyre (1978a).

Several points are noteworthy. First, because the Lie derivative in Eq. 44. is applied

to a 1-form, namely α = ¯̄u♭ − p, its coordinate expression reads ¯̄uj∂jαi + αj∂i ¯̄u
j , which

explains what might otherwise be thought as a peculiar combination of terms in Theorem

I, as noted in Eq. 1.. Second, the Coriolis term ¯̄u ⌟ dλ on the left-hand side involves the

Lagrangian mean velocity rather than, say, the Lagrangian mean momentum or the Eulerian

mean velocity. This is central to the conclusion that, for fast rotation, geostrophic balance

is between the Lagrangian mean velocity and the gradient of a pressure-like mean field

(Moore 1970, Andrews & McIntyre 1978a, Xie & Vanneste 2015, Wagner & Young 2015,

Kafiabad et al. 2021). Third, while the pressure-like term is complicated,

πL + λ(¯̄u) = p ◦ Ξ− 1
2
(u ◦ Ξ) · (u ◦ Ξ + f ×Ξ) + 1

2
¯̄u · (f × x), 45.

with Ξ = (Ξ1,Ξ2,Ξ3), its origin is clear. The same can be said of the coordinate expression

for p, deduced from Eq. 43. to be

−pi = (νj ◦ Ξ) ∂iΞj − gij ¯̄u
j + 1

2
(f ×Ξ)j ∂iΞ

j − 1
2
(f × x)i. 46.

GLM Lifting Map:
the alternative

notation pξ = p ◦ Ξ
is used for what we

interpret as the
pull-back of scalars
Ξ∗p.

Fourth, the buoyancy term in Eq. 44., b dx3
L
= (Ξ∗b) dΞ3 = (b ◦ Ξ) dΞ3, can be ex-

pressed in terms of the Lagrangian mean buoyancy under the assumption, which we make

henceforth, that the ensemble of buoyancy fields to be averaged results from the same initial

field, b0 say. In this case, Eq. 20b. implies that b = φ∗b0 = Ξ∗ ¯̄φ∗b0 hence

Ξ∗b = ¯̄φ∗b0 47.
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is independent of the flow realisation and equal to its average,

Ξ∗b = Ξ∗b = b
L
. 48.

This reduces the buoyancy term in Eq. 44. to

b dx3
L
= b

L
dΞ3. 49.

3.3. Circulation, Vorticity and Potential Vorticity

The circulation around a closed curve C is expressed in terms of the momentum as∮
C

ν, 50.

since 1-forms are naturally integrated along curves. The form of the momentum Eq. 20a. is

ideal to derive Kelvin’s circulation theorem. Let Ct = φ∗C0 denote a material closed curve,

thought of as the image at time t of a curve C0 in label space. Then,

d

dt

∮
Ct

νa =
d

dt

∮
C0

φ∗νa =

∮
C0

φ∗(∂t + Lu)νa =

∮
Ct

(∂t + Lu)νa 51a.

=

∮
Ct

b dx3 = −
∮

Ct

x3 db, 51b.

where we use Eq. 24., that b dx3 = d(bx3) − x3 db and the fact that integrals of exact

differentials over closed curves vanish. The absolute circulation
∮

Ct
νa is conserved provided

that Ct lies on a constant-buoyancy surface b = const. (equivalently, C0 lies on a surface

b0 = const).

The steps leading to Eq. 51b. can be applied to the Lagrangian mean momentum Eq.

42. For a contour C t = ¯̄φ∗C0 = Ξ∗Ct that moves with the mean velocity ¯̄u, this gives

d

dt

∮
Ct

νa
L =

∮
Ct

b dx3
L
= −

∮
Ct

Ξ3 db
L
, 52.

using Eq. 49. The same result is obtained by averaging Eq. 51b. directly, noting that∮
Ct

νa =

∮
Ct

Ξ∗νa =

∮
Ct

νa
L. 53.

Vorticity is best considered as the 2-form dν obtained by taking the exterior derivative

of the 1-form ν:

dν = d(ν1 dx
1 + ν2 dx

2 + ν3 dx
3) 54a.

= (∂2ν3 − ∂3ν2) dx
2 ∧ dx3 + (∂3ν1 − ∂1ν3) dx

3 ∧ dx1 + (∂1ν2 − ∂2ν1) dx
1 ∧ dx2. 54b.

In three dimensions, dν can be identified with a vorticity vector ζ via ζ ⌟µ = dν. (In R3,

dx2 ∧ dx3 is identified with e1 = ∂1, etc., and the components in Eq. 54b. are also those

of ζ.) The Boussinesq vorticity equation is a short step away from the momentum Eq. 24.:

applying d, using its commutation with the Lie derivative and that d2 = 0 gives

(∂t + Lu)dνa = db ∧ dx3. 55.
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In R3 and accounting for incompressibility, the corresponding vector form (∂t + Lu)ζa =

∂2b e1 − ∂1b e2, involves the familiar transport term u · ∇ζ − ζ · ∇u.

The material conservation of potential vorticity is deduced by taking the wedge product

of Eq. 55. with db, which satisfies (∂t +Lu)db = 0, and using that db∧ db = 0 to obtain the

material conservation law

(∂t + Lu)Q = 0, 56.

where Q is the potential vorticity 3-form

Q = dνa ∧ db. 57.

As a 3-form, Q is naturally integrated over volumes. It can be interpreted as Haynes &

McIntyre’s (1987, 1990) ‘potential vorticity substance’, with its nature as a divergence made

clear by rewriting it as Q = −d(b dνa) (see also Bretherton & Schär 1993). The usual scalar

potential vorticity q is defined by

qµ = Q. 58.

It is also conserved, (∂t + Lu)q = 0, thanks to the incompressibility condition Lu µ = 0.

The Lagrangian mean counterparts of Eqs. 55. and 56. are readily obtained by pulling

back these equations and averaging. With Ξ∗b = Ξ∗b = b
L
, we obtain from Eq. 55. that

(∂t + L¯̄u)dνa
L
= db

L ∧ dΞ3, where dνa
L
= Ξ∗dνa = dνa

L 59.

is both the Lagrangian mean of the vorticity, and the vorticity associated (via the exterior

derivative, equivalent to a curl) with the Lagrangian mean momentum. Similarly, Eq. 56.

gives

(∂t + L¯̄u)Q
L
= 0, where Q

L
= Ξ∗Q = dνa

L ∧ dbL 60.

is both the Lagrangian mean of the potential vorticity, and the potential vorticity con-

structed from νa
L and b

L
.

In summary, provided that the Lagrangian mean momentum 1-form νa
L is taken as

starting point instead of the mean velocity vector ¯̄u (or the vector ¯̄u+ 1
2
f ×x), the relations

between Lagrangian mean momentum, vorticity and potential vorticity are straightforward

and parallel those of the original Boussinesq equations. The differential geometric machinery

makes the derivation of these relations particularly simple, relying on the consistent use of

Eq. 40. to define all Lagrangian mean quantities and on the commutation of the exterior

derivative with the pull-back Ξ∗ and Lie derivative.

A subtlety arises with the scalar potential vorticity. This is because the Lagrangian

mean velocity ¯̄u need not be divergence free or, equivalently, the mean map ¯̄φ need not

be volume preserving, unlike the divergence free u and volume preserving φ in each flow

realisation (we discuss this further in §4). To handle this, we define the Lagrangian mean

mass 3-form

µL = Ξ∗µ = ¯̄φ∗µ. 61.

The second equality follows from the incompressibility condition φ∗µ = µ. It shows that

Ξ∗µ is realisation independent and hence equal to its average µL. In Euclidean space, with

µ = dx1 ∧ dx2 ∧ dx3,
µL = dΞ1 ∧ dΞ2 ∧ dΞ3 = det

(
∂jΞ

i)µ. 62.

Pulling back the continuity equation with Ξ∗ shows that µL satisfies

(∂t + L¯̄u)µ
L = 0. 63.
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Combining this with Eq. 60. gives the material conservation along the mean flow ¯̄u of the

scalar ¯̄q defined by µL ¯̄q = Q. This differs from the Lagrangian mean qL of q unless ¯̄φ

preserves volume. The effective mean density ρ̃ used by Andrews & McIntyre (1978a),

Bühler (2014) and others to handle the divergence of the mean flow is such that ρ̃µ = µL.

4. MEAN FLOW DEFINITIONS

So far, we have not specified how the mean velocity ¯̄u is chosen beyond the loose requirement

that the associated flow map ¯̄φ be a good representative of the ensemble of flow maps

φ. This makes it clear that the results of the previous sections are independent of this

choice. The conventional definition of ¯̄u and ¯̄φ is that of the GLM theory of Andrews

& McIntyre (1978a). The simplest way of expressing this definition is as follows. For a

choice of coordinates xi, the flow map has coordinates φi(a). The mean flow map is defined

coordinate-wise by
¯̄φi(a) = φi(a). 64.

Thus the mean position of particle a at time t is obtained by averaging the three coordinates

of that particle at time t over flow realisations. Equivalently, we can write this as Ξi(x) = xi

or, introducing the displacement components ξi such that

Ξi(x) = xi + ξi(x), 65.

as

ξi(x) = 0. 66.

This implicit form is the one originally proposed by Andrews & McIntyre (1978a) and

used since. We emphasise that the construction is based on a choice of coordinates. Only

in Euclidean space, where positions can be interpreted as vectors, have Eqs. 64.–66. an

intrinsic vectorial meaning.

The GLM mean velocity is obtained by differentiating Eq. 64. with respect to t to find
¯̄ui( ¯̄φ(a)) = ui(φ(a)), hence

¯̄ui(x) = ui(Ξ(x)), i.e. ¯̄ui = ui ◦ Ξ. 67.

In general, this expression is not geometrically intrinsic: it depends on the choice of coor-

dinates in which the components ui are expressed. The tempting coordinate-free version
¯̄u = u ◦ Ξ is not well defined: the vectors u ◦ Ξ corresponding to different flow realisations

live in different tangent planes and hence cannot be averaged, unless in Euclidean space

where vectors can be translated freely.

The lack of intrinsic geometric meaning results in inconvenient properties. First, the

Lagrangian mean velocity is generally divergent, that is, the Lagrangian mean flow does not

preserve volume, unlike all the original flows in the ensemble (McIntyre 1988). Second, the

range of ¯̄φ may differ from the fluid domain, most strikingly if the domain is a spherical shell

or the surface of a 2-sphere. On the other hand, Eqs. 64. and 66. lead to simplifications.

For instance, the pseudomomentum in Eq. 46. reduces to

−pi = (uj ◦ Ξ) ∂iξj + 1
2
(f × ξ)j ∂iξj , 68.

when we further assume the space to be Euclidean so that gij = δij . The explicit definition

of the GLM mean flow is also convenient for the numerical computation of Lagrangian

averages (Kafiabad 2022, Kafiabad & Vanneste 2023).
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An alternative definition of the mean flow is the glm definition proposed by Soward &

Roberts (2010). It replaces Eq. 66. by a geometrically meaningful condition. The central

idea is to use a (realisation-dependent) vector field, q say, as a proxy for the perturbation

map Ξ (q should not be confused with the scalar potential vorticity q introduced earlier).

The vector field q generates Ξ in the sense that the flow of q from some fictitious time ε = 0

to ε = 1 is Ξ. Explicitly, q defines a one-parameter family of flow maps Ξε (at fixed t) with

∂εΞε(x) = q(Ξε(x)), Ξ0(x) = x and Ξ1(x) = Ξ(x). 69.

The glm mean flow is then prescribed by requiring that

q = 0. 70.

This is a geometric statement that applies on any manifold and is independent of the choice

of coordinates. Importantly, for incompressible fluids, the volume preservation of Ξ and

hence of ¯̄φ is easily enforced through the linear constraint

divq = 0, 71.

which survives averaging. A disadvantage of glm is that the property ξi = 0 does not hold,

which precludes simplifications such as those leading to the compact form Eq. 66. Another

is that the correspondence between q and Ξ is only formal: not all diffeomorphisms can

be obtained as time-1 flows of a steady vector field. It can however be implemented using

asymptotic expansions, disregarding questions of convergence.

Definitions of the mean flow other than those of GLM or glm are possible. Gilbert

& Vanneste (2018) propose to take ¯̄φ as the map closest to the realisations φ in a least-

square sense, with the distance between flow maps taken as the ‘Arnold distance’ that is,

the distance whose geodesics are solutions of the Euler equations (Arnold 1966, Ebin &

Marsden 1970, Arnold & Khesin 1998, Holm et al. 1985). Different definitions lead to a

different decomposition of the flow maps φ between mean part ¯̄φ and perturbations Ξ. All

acceptable definitions should lead to mean flow maps that remain close to one another for

long times.

5. SMALL-AMPLITUDE PERTURBATIONS

Practical results are obtained using perturbation expansions based on the closeness of the

perturbation maps Ξ to the identity. A typical set up expands the velocity as

u = εu(1) + ε2u(2) + · · · , 72.

where u(1) is a wave field with u(1) = 0 and ε ≪ 1 an amplitude parameter. Here and in

what follows · · · denotes neglected terms that are O(ε3). In Euclidean space and with the

GLM definition, the mean velocity is

¯̄u = u(x+ εξ(1) + ε2ξ(2) + · · · )

= ε2u(2)︸ ︷︷ ︸
Eulerian mean

+ ε2ξ(1) · ∇u(1)︸ ︷︷ ︸
Stokes drift uS

+ · · · . 73.

The Stokes drift and hence Lagrangian mean velocity are divergent, with

div ¯̄u = ∂i ¯̄u
i = ε2 ∂t

(
1
2
∂ij

(
ξ(1)iξ(1)j

))
+ · · · , 74.
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where we use that ∂tξ
(1) = u(1). Because this is an exact time derivative, the volume change

associated with this divergence stays bounded and small over long times.

The Lagrangian mean momentum is

νa
L
i =

(
νj ◦ Ξ + 1

2
(f ×Ξ)j

)
∂iΞj

= 1
2
(f × x)i + ε2ν

(2)
i + ε2 ξ(1)j∂jν

(1)
i + ν

(1)
j ∂iξ(1)j +

1
2
(f × ξ(1))j ∂iξ

(1)j + · · · . 75.

In Euclidean space, ui = νi and we can freely raise or lower indices. The pseudomomentum

is then

−pi = ε2
(
u(1)j∂iξ(1)j +

1
2
(f × ξ(1))j∂iξ(1)j

)
+ · · · , 76.

consistent with Eq. 68. Eqs. 73.–76. are standard results of GLM theory. Together with

the Lagrangian mean momentum equation, they make it possible to predict the evolution

of the Lagrangian and Eulerian mean flows when the wave field u(1) is prescribed.

To obtain their glm counterparts, we implement a perturbative approach that uses Ξε

in Eq. 69. rather than Ξ1 as the perturbation map. We use the formal representation

Ξ∗
ε = exp

(∫ ε

0

Lq dε

)
= id + εLq(1) + 1

2
ε2

(
L2

q(1) + Lq(2)

)
+ · · · 77.

of the pull-back by Ξ in terms of the generating vector field q (e.g. Lichtenberg & Lieberman

1992, Vanneste & Young 2022). In particular,

Ξi(x) = Ξ∗xi = xi + εq(1)i + 1
2
ε2
(
q(1)j∂jq

(1)i + q(2)i
)
+ · · · , 78.

so that

ξ(1) = q(1) and ξ(2) = 1
2

(
q(1) · ∇q(1) + q(2)). 79.

Thus, at a linear, O(ε) level, the displacement ξ(1) and the generating vector q(1) can be

identified. The constraint q = 0 implies the non-zero quadratic mean displacement

ξ(2) = 1
2
ξ(1) · ∇ξ(1). 80.

This stands in contrast with the GLM defining assumption of zero mean displacements, Eq.

66..

Time differentiating Eq. 79. further gives the perturbation velocity w = (∂tΞ) ◦ Ξ−1 as

w = ε ∂tq
(1) + 1

2
ε2
(
∂tq

(2) − Lq(1)∂tq
(1))+ · · · . 81.

Using Eq. 77. in Eq. 33. leads to

¯̄u = ε
(
u(1) − ∂tq

(1))+ ε2
(
u(2) − 1

2
∂tq

(2) + Lq(1)u
(1) − 1

2
Lq(1)∂tq

(1))+ · · · . 82.

The O(ε) term needs to vanish for the left-hand side to be a mean quantity, hence ∂tq
(1) =

u(1). Taking this into account in the O(ε2) term and averaging leads to

¯̄u = ε2 u(2)︸ ︷︷ ︸
Eulerian mean

+ 1
2
ε2 Lq(1)u(1)︸ ︷︷ ︸

solenoidal Stokes drift uS
sol

+ · · · . 83.
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This is divergence free, in contrast to the GLM equivalent in Eq. 73. Vanneste & Young

(2022) argue in the context of surface waves that the glm, solenoidal Stokes drift, which in

Eucidean space can be rewritten as

uS
sol =

1
2
ε2 q(1) · ∇u(1) − u(1) · ∇q(1) = 1

2
ε2 ∇×

(
u(1) × q(1)

)
, 84.

is an advantageous alternative to the traditional Stokes drift uS = ε2ξ(1) · ∇u(1). The

difference,

uS − uS
sol = ε2

(
ξ(1) · ∇u(1) − 1

2
ξ(1) · ∇u(1) + 1

2
u(1) · ∇ξ(1)

)
= 1

2
ε2 ∂t

(
ξ(1) · ∇ξ(1)

)
85.

(using that q(1) = ξ(1)), is a time derivative and hence stays bounded over long time scales.

This confirms that the mean trajectories according to GLM and glm definitions stay close

to one another. The glm Lagrangian mean momentum is obtained directly using Eq. 77. as

νa
L = 1

2
(f × x) · dx+ ε2 ν(2) + ε2

(
Lq(1)ν(1) + 1

4
L2

q(1)(f × x) · dx
)
+ · · · . 86.

We note that, regardless of the specific definition of the mean, the Lagrangian mean of

the velocity in the sense of Eq. 40. is approximated as

uL = Ξ∗u = ε2 u(2) + ε2 Lq(1)u(1) + · · · . 87.

This differs from the mean velocity fields ¯̄u obtained for GLM and glm, by an O(ε2) term

that is not an exact time derivative. Thus the integral curves of uL drift away from those of ¯̄u

(the mean trajectories ¯̄φ), byO(1) distances after long, O(ε−2) times leading to perturbation

maps Ξ well away from the identity. This makes uL so defined unsuitable as a mean velocity.

For simplicity, we have assumed in the above that the velocity u has no O(1) term.

Gilbert & Vanneste (2018) give more general results that include the contributions from an

O(1), realisation-independent velocity u(0) = u(0).

6. WAVE ACTION

We now turn to the geometric formulation of wave activity conservation laws. Wave ac-

tivities are quantities that, in the small-amplitude limit, are quadratic in the perturbation

fields and so can be approximated to leading order, that is, to O(ε2), from knowledge of an

O(ε) approximation to the perturbation fields. Their conservation constrains the dynamics

of the perturbations and can serve as a basis to parameterise wave–mean flow interactions.

We use geometric language to extend results of Andrews & McIntyre (1978b) and Bühler

(2014, §10.3) beyond the Euclidean setting, highlighting the role of symmetries.

We begin with the conservation of wave action, the wave activity associated with phase

averaging. Suppose that the fluctuation maps Ξ in the decomposition Eq. 31. depend

periodically on a phase parameter α. An ensemble of flows is then obtained by varying α.

The associated average corresponds to integration with respect to α, so that any average

of an α derivative vanishes, ∂α · = 0. Naturally the metric g and volume form µ do not

depend on α and so for example we can write

∂αg(u,u) = ∂α(ν(u)) = 2g(u, ∂αu) = 2ν(∂αu). 88.

The mean map ¯̄φ is also independent of α. With this we can differentiate the composition

of maps φ = Ξ◦ ¯̄φ with respect to time t or α and obtain two vector fields: u = (∂tφ)◦φ−1,
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as earlier, and z = (∂αφ) ◦ φ−1 = (∂αΞ) ◦ Ξ−1. These vector fields may be related through

equating mixed second derivatives to obtain the key link

∂αu = ∂tz+ Lu z. 89.

Our starting point in deriving the wave action equation is the momentum equation 20a.,

which we first contract with z. Let us focus first on the key term (∂t + Lu)νa to obtain

[(∂t + Lu)νa](z) = (∂t + Lu)(νa(z))− νa((∂t + Lu)z) 90a.

= (∂t + Lu)(νa(z))− νa(∂αu) 90b.

= (∂t + Lu)(νa(z))− ∂α
(
1
2
ν(u) + λ(u)

)
, 90c.

making use of Eqs. 88. and 89. This is written as transport of νa(z) and an α-derivative

that vanishes under averaging (Gilbert & Vanneste 2018). However the scalar νa(z) does

not provide a satisfactory definition of wave activity for the full equation of motion since its

approximation to O(ε2) requires evaluation of the vector field z to O(ε2). A more suitable

definition (following Andrews & McIntyre 1978b) is obtained by applying the pull-back Ξ∗

and using Eq. 37. to find

Ξ∗([(∂t + Lu)νa](z)
)
= Ξ∗ [(∂t + Lu)(νa(z))]− Ξ∗∂α

(
1
2
ν(u) + λ(u)

)
91a.

= (∂t + L¯̄u)Ξ
∗(νa(z))− ∂αh+ (∂αΞ

∗)
(
1
2
ν(u) + λ(u)

)
, 91b.

where h = Ξ∗( 1
2
ν(u) + λ(u)) and is unimportant as ∂αh vanishes under averaging. Now

the derivative of the pull-back ∂αΞ
∗ is linked to the Lie derivative by z according to

(∂αΞ
∗)τ = Ξ∗Lz τ 92.

for any tensor τ , generalising Eq. 13. Thus we obtain

Ξ∗([(∂t + Lu)νa](z)
)
= (∂t + L¯̄u)Ξ

∗(νa(z))− ∂αh+ Ξ∗Lz (
1
2
ν(u) + λ(u)). 93.

Returning to Eq. 20a., for the pressure-like term we have Ξ∗(−dπ(z)) = −Ξ∗Lzπ, which

combines with the last terms of Eq. 93. to give −Ξ∗Lzp, with p the original pressure. For

the buoyancy term b dx3, contracting with z and pulling back by Ξ∗ gives

Ξ∗[(b dx3)(z)] = (Ξ∗b) Ξ∗[dx3(z)] = b
L
Ξ∗Lz x

3 = b
L
∂α(Ξ

∗x3) = ∂α(b
L
Ξ3), 94.

making use of Eq. 48. and again of Eq. 92. The definition of the wave activity as Ξ∗(νa(z)),

instead of νa(z), is key to Eq. 94. which reduces the buoyancy term to an α-derivative, to

vanish on averaging.

Putting all this together, from applying Ξ∗ to the contraction of Eq. 20a. with z, we

obtain

(∂t + L¯̄u)Ξ
∗(νa(z))− ∂α

(
h+ ¯̄bΞ3) = −Ξ∗Lz p. 95.

We now average to eliminate the second term on the left-hand side, giving

(∂t + L¯̄u)νa(z)
L
= −Lz p

L
. 96.
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We then multiply by µL = Ξ∗µ, and simplify using Eq. 63., Cartan’s formula and Lz p
L
µL =

d(pzL ⌟µL), which follows from writing

Ξ∗(Lz p)µ
L = Ξ∗((Lz p)µ

)
= Ξ∗(Lz(pµ)

)
= LΞ∗z

(
(Ξ∗p)µL) = d

(
Ξ∗(pz) ⌟µL) 97.

and averaging. This leads to a conservation law with local form

∂t(Aµ
L) + d

(
(A¯̄u+ B) ⌟µL) = 0, 98.

where we have defined the wave action density A and non-advective flux B as

A = Ξ∗(νa(z)) = νa(z)
L

and B = Ξ∗(pz) = pzL. 99.

The corresponding global form is deduced by integrating over a domain D with boundary

∂D to obtain

d

dt

∫
D

AµL +

∫
∂D

(A¯̄u+ B) ⌟µL = 0, 100.

using Stokes theorem.

Eqs. 98.–99. give a coordinate-free version of the wave action density and flux derived

by Andrews & McIntyre (1978b) and Bühler (2014). We obtain coordinate expressions

matching theirs by noting that

A = Ξ∗(νai zi) = (νai ◦ Ξ) (zi ◦ Ξ) = (νai ◦ Ξ) ∂αΞi 101a.

and Bi = (p ◦ Ξ) (Ξ∗z)i = (p ◦ Ξ) (∂jΞi)−1 (zj ◦ Ξ) = (p ◦ Ξ) (∂jΞi)−1 ∂αΞj , 101b.

where (∂jΞ
i)−1 denotes the (i, j) entry of the inverse of the matrix ∂jΞ

i and can be expressed

in terms of the co-factors of this matrix.

We check that the wave action is a wave activity by showing that A and B can be

calculated to leading order solely from the leading order perturbation fields. With the

expansions

Ξi(x) = xi + εξ(1)i + ε2ξ(2)i + · · · and νa = ν(0)
a + εν(1)

a + ε2ν(2)
a + · · · , 102.

where ν
(0)
a = ν

(0)
a is independent of α, we compute

∂αΞ
i = ε∂αξ

(1)i + ε2∂αξ
(2)i + · · · and νa ◦Ξ = ν(0)

a + εν(1)
a + εξ(1) ·∇ν(0)

a +O(ε2), 103.

Introducing this into Eq. 101a. and noting that the average removes εν
(0)
ai ∂αξ

(1)i and, for

GLM, ε2ν
(0)
ai ∂αξ

(2)i, leaves

A = νa(z)
L
= ε2 ν

(1)
ai ∂αξ(1)i + ε2 ∂jν

(0)
ai ξ(1)j ∂αξ(1)i + · · · . 104.

For glm, the term ε2ν
(0)
ai ∂αξ

(2)i persists, but Eq. 80. can be used to express it in terms of the

first order field ξ(1). The O(ε2) leading order approximation to B can be derived similarly.
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7. SYMMETRY AND KILLING VECTORS

We have developed theory so far in a geometric setting, making use of a general metric g and

associated volume form µ, although for simplicity we have used an Euclidean formulation of

the Coriolis term and buoyancy force. It is often natural to single out a preferred direction,

in particular in order to consider a mean flow ¯̄u and ensemble of perturbations Ξ that are

invariant under translations in this direction. The Euclidean setting of the original GLM

theory gives a privileged role to the directions along the three Cartesian coordinates. This

is reflected in many of its results, especially those framed in terms of energy–momentum

tensors (Andrews & McIntyre 1978b, Grimshaw 1984, Salmon 2013). In spherical geometry,

the longitude ϕ is typically singled out, leading to the consideration of axisymmetric mean

flows and zonal averaging.

To develop theory along these lines, and capture the notion of some ignorable coordinate

geometrically, we introduce the notion of a Killing vector field k (Schutz 1980, Frankel 2004).

This has the properties

Lk g = 0 and Lk µ = 0 105.

(the second follows from the first). The first property can also be expressed as

Killing Field: vector
field that leaves the
metric invariant.

∇k♭ + (∇k♭)
⊺ = 0 or ∇ikj +∇jki = 0, 106.

where ∇ denotes the covariant derivative and ki = (k♭)i, and so k is familiar to fluid

dynamicists as a vector field with zero rate-of-strain tensor: the flow of k does not distort

fluid elements. We denote by ψα the flow map obtained by integrating along k for a

fictitious time α. In Cartesian geometry we could take, for example, k = ∂1 and ψα is then

the translation x1 7→ x1 + α through α along the x1-axis. In spherical geometry, typically

k = ∂ϕ and the transformation ψα is the rotation ϕ 7→ ϕ+α. With a Killing vector field k,

we can express the invariance of the mean flow ¯̄u in this direction by Lk ¯̄u = 0, and likewise

for any other tensor.

Let us first make use of a Killing field to obtain a conserved momentum. Contracting

Eq. 24. with k yields, using Eq. 105. and standard manipulations,

(∂t + Lu)(νa(k))− (Lk λ)(u) = −Lk p+ b dx3(k), 107.

where dx3(k) = k3, the vertical component of k. To gain a conservation law from this we

need to remove the Coriolis and buoyancy terms Lk λ and bk3. The latter vanishes provided

that k lies wholly in the (x1, x2) directions. If k represents a rotation about the x3 axis

then λ ∝ k♭ and the Coriolis term also vanishes. However if k is a translation, that is

constant k1 and k2, then it does not, with Lk λ = 1
2
f(−k2 dx1 + k1 dx2). In this case we

can use the gauge freedom discussed in Bühler (2014, §10.4.4): since the Coriolis term in

Eq. 20a. depends on dλ rather than λ (as shown using Cartan’s formula), λ is defined up

to the transformation λ 7→ λ+ dh for any scalar function h. For a translation, say k = ∂1,

we can pick h = − 1
2
fd(x1x2) leading to the new, equivalent Coriolis term λ = −fx2 dx1

which satisfies Lk λ = 0 as required.

With the Coriolis and buoyancy terms removed by whatever means, integrating Eq.

107. times µ over a domain D gives

d

dt

∫
D

νa(k)µ+

∫
∂D

(
νa(k)u+ pk

)
⌟µ = 0, 108.
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which is conservation, in each realisation in the ensemble, of linear momentum if k generates

translations and angular momentum if k generates rotations.

The evolution of momentum on Lagrangian parcels in Eq. 107. can also be pulled back

to the mean flow by applying Ξ∗, to obtain

(∂t + L¯̄u)Ξ
∗(νa(k))− Ξ∗(Lk(λ)(u)) = −Ξ∗Lk p+ b

L
Ξ∗(dx3(k)), 109.

using that Ξ∗b = b
L
. Averaging then gives

(∂t + L¯̄u)νa(k)
L
− Lk(λ)(u)

L
= −Lk p

L
+ b

L
dx3(k)

L
. 110.

When, as above, the Coriolis and buoyancy terms are removed, this corresponds to a con-

servation law, namely

d

dt

∫
D

νa(k)
L
µL +

∫
∂D

(
νa(k)

L
¯̄u+ pk

L)
⌟µL = 0. 111.

obtained by multiplying by µL and integrating over D .

On the other hand, we can contract the Lagrangian mean momentum equation 42. with

k to obtain

(∂t + L¯̄u)νa
L(k) + νa

L(Lk ¯̄u) = −Lk π
L + b

L
dx3

L
(k). 112.

This leads to the conservation law

d

dt

∫
D

νa
L(k)µL +

∫
∂D

νa(k)
L
¯̄u ⌟µL = 0, 113.

provided that the mean fields are invariant to translation along the Killing vector field k

(since dx3
L
(k) = Lkx3

L
), as is the case for spatial averaging in the direction of k.

Subtracting Eq. 112. from Eq. 110. leads to the equation

(∂t + L¯̄u)pk − Lk(λ)(u)
L
− νa

L(Lk ¯̄u) = −Lk p
L
+ Lk π

L + b
L (
dx3(k)

L
− dx3

L
(k)

)
114.

for the wave activity

−pk = νa
L(k)− νa(k)

L
. 115.

This wave activity can be interpreted as a form of pseudomomentum, related to but distinct

from the general pseudomomentum defined in Eq. 46. We emphasise the differences: pk is

a scalar defined for a specific Killing field k, whereas p is a 1-form defined independently of

such a field. Assuming that λ(k) = 0, the natural relation

p(k) = pk 116.

only holds provided that ν(k)
L
= ¯̄u♭(k), which clearly depends on the definition chosen

for the mean flow. In Euclidean space, we can take k = ∂i for i = 1, 2, 3. With the GLM

definition of the mean, we then have

ν(∂i)
L
= νi

L = νi ◦ Ξ = ui ◦ Ξ = ¯̄ui. 117.

As a result, the two versions of the pseudomomentum coincide:

pi = pk for k = ∂i. 118.
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This is an advantage of the GLM definition of the mean flow which is tied to the coordinate

representation of the flow map and velocity field or, in the language of this section, to a

choice of three independent Killing fields.

Eq. 114. reduces to the (Boussinesq form of the) GLM pseudomomentum equation

(Bühler 2014, Eq. (10.125)). When λ(k) = 0, k3 = 0 and the mean flow is invariant under

translation along k it yields the conservation law (the difference of Eqs. 111. and 113.),

d

dt

∫
D

pk µ
L +

∫
∂D

(
pk ¯̄u+ pk

L)
⌟µL = 0. 119.

We conclude by observing the relation between the construction leading to Eq. 115.

and the derivation of the wave action in §6. Given a Killing field k and an ensemble of

perturbation maps Ξ, we can generate a broader ensemble of maps Ξα by conjugation under

the translation ψα,

Ξα = ψ−α ◦ Ξ ◦ ψα. 120.

We can associate with this the α-independent vector field

z = (∂αΞα) ◦ Ξ−1
α

∣∣
α=0

= Ξ∗k− k. 121.

The action in Eq. 99. corresponding to this is

A = Ξ∗(νa(z)) = (Ξ∗νa)(k)− Ξ∗(νa(k)) = νa
L(k)− νa(k)

L
= −pk. 122.

Eq. 114. for pk is closely related to wave action conservation, with some differences that

disappear when the averaging is along the direction of k. In variational formulations of

Lagrangian averaging (Grimshaw 1984, Holm 2002a,b, Salmon 2013), the conservation of

pk in this case is interpreted as arising from Noether’s theorem.

SUMMARY POINTS

1. Lagrangian averaging is best formulated starting with a geometric formulation of

fluid models in terms of the momentum 1-form ν.

2. When decomposing flow maps as φ = Ξ ◦ ¯̄φ, various choices can be made for the

mean map ¯̄φ and corresponding mean velocity ¯̄u. Andrews & McIntyre’s GLM and

Soward & Roberts’s glm theories correspond to two distinct choices.

3. The Lagrangian mean of any tensor τ is defined as τL = Ξ∗τ . The Lagrangian

mean momentum νL is the natural dynamical variable for the mean equations.

Its difference with the 1-form ¯̄u♭ associated with ¯̄u, defined as pseudomomentum,

encodes the impact of perturbations on the mean.

4. Geometrically intrinsic forms of wave activities are readily derived. The conserva-

tion law of wave action arises for an ensemble of perturbations parameterised by a

phase; further conservation laws are generated by Killing vector fields leaving the

mean fields invariant.

5. The approach is general and easily handles different coordinate systems, for example

spherical polar coordinates and axisymmetric fields, and different manifolds, for

example flow on the surface of a 2-sphere.
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