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Abstract—This research delves into a thorough examination
of two distinct path-planning algorithms, denoted as algorithm
A and algorithm B, operating in dynamic environments replete
with moving obstacles. The primary objective of the study is to
optimize the performance of algorithm A, thereby evolving it
into the innovative algorithm B. Employing rigorous simulation
examples, this study assesses the performance metrics of both
algorithms, shedding light on their respective strengths and limi-
tations. When confronted with dynamic settings featuring swiftly
moving obstacles, algorithm B demonstrates a slight advantage
owing to its optimized features. Despite this improvement, both
algorithms face challenges in densely populated environments,
leading to increased failure rates. Key metrics, including failure
rate occurrences and navigation efficiency as a function of the
distance covered towards the target, offer valuable insights into
the nuanced behavior of these algorithms. The study’s outcomes
highlight the intricacies associated with the development of path-
planning algorithms for real-world applications, particularly in
dynamic and densely populated environments. The research ac-
centuates the perpetual necessity for refinement and optimization,
focusing specifically on adaptive algorithms capable of effectively
managing high-velocity moving obstacles. These insights hold
paramount importance in the advancement of intelligent robotic
systems, empowering them to navigate intricate and dynamic
environments with unparalleled precision and efficiency.

Index Terms—Path Planning Algorithms, Dynamic Environ-
ments, Moving Obstacles, Obstacle Avoidance

I. INTRODUCTION

Path planning entails the identification of the optimal tra-
jectory within a specified area, connecting two points in a
manner that maximizes efficiency. It aims to optimize the
path between a source and destination by identifying the
shortest and optimal route connecting them [1]. It is a well-
studied topic due to its numerous applications in fields such as
autonomous navigation, circuit board route and layout design,
logistics, network routing, and video games, just to mention
a few. As a result, researchers have developed and analyzed
numerous algorithms. There are classical methods such as
cell decomposition (CD) [2], roadmap approach (RA), arti-
ficial potential field (APF) [3], A* algorithm [1] and reactive
methods such as reactive approaches such as genetic algorithm
(GA) [4], fuzzy logic (FL), neural network (NN) [5], firefly
algorithm (FA), particle swarm optimization (PSO) [6], ant
colony optimization (ACO) [7], bacterial foraging optimization
(BFO) and artificial bee colony (ABC) [8].

One of the biggest challenges faced by autonomous systems
is the ability to navigate complex environments. Numerous
techniques utilise the random walk methodology [9], it is not
the optimal or most efficacious solution. To overcome this
challenge, path-planning algorithms are used to enable robots
to chart optimal routes while avoiding obstacles. With the
increasing demand for automation in various industries, the
need for sophisticated path-planning techniques has become
more important than ever before. There are two distinct
approaches to navigation and path planning: global and local.
Global navigation is applicable in environments where the
agent possesses prior knowledge of its environment and the
obstacles’ trajectory. It is typically used in environments where
the path is precomputed before the agent commences its move-
ment. In contrast, local navigation occurs in dynamic environ-
ments, necessitating real-time computation of path planning
strategies based on the current state of the surroundings. The
local navigation problem is inherently indeterminate, making
it impossible to predict whether the agent will successfully
reach its target position, a situation often denoted as an NP-
hard problem. Consequently, this unpredictability can lead to
mobile robots becoming trapped in local optima, resulting in
infinite loops or the inability to navigate around obstacles.
Global and local navigation are also known as off-line and
on-line navigation [10].

The path planning algorithm for a familiar environment
relies on classical methods like A*, CD, RA, and APF. While
widely used due to their simplicity, these traditional algorithms
have limited intelligence and often result in high computation
costs and failure in densely populated and/or dynamic environ-
ments. Lately, reactive methods, including genetic algorithms,
fuzzy logic, neural networks, and various others, have gained
popularity in mobile robot navigation. These approaches are
preferred over conventional methods due to their adeptness
in handling environmental uncertainties [11]. In mobile robot
obstacle avoidance, the grid-based approach is a fundamental
technique. It discretizes the environment into non-overlapping
cells, each corresponding to a specific location, indicating ob-
stacle presence or free space [12], [13]. Its prevalence is owed
to several key advantages. Firstly, this method offers a gran-
ular understanding of the environment, facilitating informed
decision-making based on obstacle information. Additionally,
its ease of implementation and efficient storage and retrieval



Fig. 1: Mobile robot navigation employing the artificial poten-
tial field (APF) technique [11].

of grid data in computer memory make it a practical choice
for real-time navigation [14]. This grid-based representation
is foundational, empowering robots with the intelligence and
adaptability necessary for navigating complex environments
safely and effectively. This study introduces a new method
designed to enhance the efficiency of classical pathfinding
algorithms in dynamic settings. The approach is tested on
a 2D regular square grid environment and integrates some
concepts from velocity obstacles (VO) and artificial potential
fields (APF) to improve dynamic environment path-finding
performance.

II. RELATED WORKS
A. Artificial Potential Fields

Artificial potential fields (APF) is a classic technique used in
path planning and obstacle avoidance (see Fig. 1). It creates
a virtual field where obstacles repel the robot and the goal
attracts it. The robot moves by following the gradient of
this field, navigating efficiently in real-time. Although APF
algorithms can get trapped in local minima, researchers use
advanced methods like escape functions to enhance their per-
formance, making APF a valuable tool for navigating robots
in complex and dynamic environments [15]. The APF method
offers several advantages in mobile robot navigation. It is
characterized by its simplicity and ability to plan the path in
real time, especially in dynamic environments [11]. However,
there are notable drawbacks to consider. APF algorithms can
get trapped in local optima, leading to less-than-optimal paths,
especially in intricate environments. Tuning the parameters
correctly is crucial, and striking the right balance can be
challenging [15].

B. Cell Decomposition

Cell decomposition is a fundamental technique in robotic
path planning, essential for navigating complex environments.
Dividing the grid into cells that are either free or occupied
in the presence of obstacles By representing the environment
discretely, cell decomposition simplifies the path-planning pro-
cess. Additionally, the use of cell decomposition provides ben-
efits in terms of improving computational speed. It minimizes
the complexity of path planning algorithms by transforming
the environment into a structured grid, enabling robots to
navigate efficiently. Additionally, the technique supports global
planning, allowing the robot to consider long-range paths
while making decisions [16].
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Fig. 2: Building blocks of a MR navigation system [10].

C. The A* Algorithm

The A* algorithm is used for pathfinding and is renowned
for its efficiency and optimality. It operates on a graph,
systematically exploring possible paths from the start to the
goal node. A* employs a heuristic function that estimates the
cost from the current node to the goal, guiding the search
process. By considering both the actual cost from the start
and the heuristic estimate, A* intelligently selects nodes to
explore, effectively balancing between finding the shortest path
and computational efficiency. One of its key strengths lies in
its ability to guarantee the discovery of the shortest path, given
an appropriate heuristic [1].

D. Velocity Obstacle Method

The Velocity Obstacle (VO) method is a crucial concept
in motion planning. It operates by predicting potential future
collisions based on the relative velocities and positions of mov-
ing objects within a robot’s vicinity. By calculating velocity
obstacles, which delineate the forbidden velocity space for
the robot to avoid collisions, this method facilitates real-time
decision-making. VO techniques allow robots to dynamically
adjust their velocities to navigate complex and dynamic envi-
ronments efficiently [17]. By offering a predictive framework,
the VO method stands as a cornerstone in enhancing the
autonomy and safety of robotic systems, finding valuable
applications in various domains such as robotics, autonomous
vehicles, and human-robot interaction scenarios. On the pos-
itive side, VO techniques offer proactive collision avoidance,
enabling robots to anticipate potential collisions and adjust
their paths accordingly. This predictive ability enhances safety
and enables seamless navigation in dynamic environments
[18]. Moreover, VO methods are highly adaptable and can
be employed in decentralized systems, allowing individual
robots to make collision avoidance decisions independently.
Additionally, the reliance on predictable motion patterns of
surrounding objects might limit the method’s effectiveness in
highly unpredictable scenarios. In considering VO for applica-
tions, striking a balance between its predictive capabilities and
the challenges associated with its implementation is crucial for
optimal utilization in real-world robotic systems [17].
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Fig. 3: 4-node (left) and 8-node (right) motion control ap-
proaches [11].

III. MATERIALS AND METHODS

Mobile robot (MR) navigation encompasses a multifaceted
process that entails environmental perception, localization,
map construction, cognitive decision-making, path planning,
and motion control. Sensory data interpretation falls under
the purview of perception, while localization determines the
precise robot position, and map construction assembles an
accurate representation of the robot’s surroundings. Cognitive
decision-making is a pivotal stage where the optimal path
is strategized, setting the stage for trajectory execution via
motion control.All these components are essential to fulfill
the navigation requirements, as illustrated in Fig. 2.

A. Implementing the Grid Environment

The environment is represented as a 2D array, a departure
from the typical binary grid systems, prevalent in existing
models [19]. A 100x100 grid is used for all the simulations
discussed in this paper.

B. Motion Control

In regular, square grid environments, two prevalent
motion control methods are employed: the 4-node and 8-node
approaches (see Fig. 3). This study adopts the 8-node approach
due to its provision of greater movement possibilities within
the environment. Utilizing the grid’s inherent coordinate
system, motion control is achieved through a 2D translation
vector, specifically the velocity vector, as illustrated below:

p; = Py + Vg, (1)
p;/ = Dy +'Uya 2

where, (pl,,p),) are the new position in 2D, (p.,p,) are the
current position and (v, v,) the agent’s velocity.

C. Path Planning Algorithm

The A* algorithm emerged as a key contender for this
study, owing to its intricate equilibrium between complexity,
performance, and computational efficiency. Consequently, this
paper utilizes the A* algorithm as a foundational framework.
This study utilizes a foundation to propose, put into action,
examine, and assess different optimization techniques. These
techniques are aimed at enhancing the algorithm’s accuracy in
identifying optimal paths within dynamic environments.

Central to the A* algorithm lies a crucial heuristic function
responsible for approximating the cost of transitioning from
the present state to the desired target. In the context of this
research, a minimal-distance function was chosen for the
A* algorithm’s implementation. The improved A* algorithm
accounts for dynamic obstacles [1], [20], [21] and assigns the
lowest cost to cells in the opposite direction. This enhanced
version will adapt to changing environments while maintaining
efficient path planning. Provided below are the outlined steps
for the A* algorithm [22], [23]:

Initialization:
Initialize an open set containing the start node;
Initialize an empty closed set;
Set the cost of the start node: g(start) = 0;
Set the heuristic estimate from start to goal:
h(start) = heuristic(start, goal);
Calculate the total cost: f(start) = g(start) + h(start);

while the open set is not empty do
Select the node with the lowest f value (current

node);
Move the current node from the open set to the
closed set;
if current node is the goal node then
Terminate the search and backtrack the path;
end
Expand the current node: for each neighbor of the

current node do
Calculate the cost to move from the current

node to the neighbor: g(neighbor) =
g(current) + cost(current, neighbor);
if the neighbor is not in the closed set or the
new cost is lower then
Update the neighbor’s cost: g(neighbor);
Calculate the heuristic estimate from
neighbor to goal:
h(neighbor) = heuristic(neighbor, goal);
Calculate the total cost:
f(neighbor) = g(neighbor) + h(neighbor);
Add the neighbor to the open set;

end
end

end
Backtrack path:once the goal node is reached,

reconstruct the path from goal to start ;
Algorithm 1: A* Path Planning Algorithm

The heuristic function h(n) is often based on the Euclidean
distance between two nodes (I (x;,y;)) and (J (z;,y;)), and
the Euclidean distance (D) calculated as:

D = /(@i — 25 + (i — ;)" 3)

This distance acts as an estimate of the cost from the current
node to the target node. The A* algorithm combines this
heuristic estimate with the actual cost g(n) to guide the search
efficiently. Below show the steps for improved A* algorithm:



Initialization:

Initialize an open set containing the start node;

Initialize an empty closed set ;

Set the cost of the start node: g(start) = 0;

Set the heuristic estimate from start to goal:
h(start) = heuristic(start, goal);

Calculate the total cost:
f(start) = g(start) + h(start);

while the open set is not empty do

Select the node with the lowest f value as the
current node;

Move the current node from the open set to the
closed set;

if the current node is the goal node then

Terminate the search;
end
Expand Current Node: for each neighbor of the

current node do
Calculate the cost to move from the current

node to the neighbor: g(neighbor) =
g(current) + cost(current, neighbor);
if the neighbor is already in the closed set and
the new cost is higher then
‘ Skip it;
end
if the neighbor is not in the open set or the
new cost is lower then
Update the neighbor’s cost: g(neighbor);
Calculate the heuristic estimate from
neighbor to goal: h(neighbor) =
heuristic(neighbor, goal);
Calculate the total cost: f(neighbor) =
g(neighbor) + h(neighbor);
Add the neighbor to the open set;

end

end

Dynamic Obstacle Handling: if a dynamic obstacle

is detected then

Identify the cells affected by the obstacle;

Assign a temporary high cost to these cells;

Update the costs of neighboring cells
accordingly;

Reevaluate the path by repeating the A*
process;

end

end
Opposite Direction Cost : if recalculating the path due
to dynamic obstacles: then
For cells in the opposite direction (opposite to the
original path);
a.Assign a lower cost(f(opposite_cell) =
g(opposite_cell) + h(opposite_cell))to
encourage exploration away from the obstacle;
b.Update the costs of neighboring cells as needed;
end
Backtrack path: once the goal is reached, reconstructs

the path from the goal node to the start node;
Algorithm 2: Improved A* Algorithm

IV. OPTIMIZATION TECHNIQUES USED IN ALGORITHM B

1) Improved A* algorithm: The proposed variation of the
A* algorithm, denoted as algorithm B, introduces a novel
application of artificial potential fields (APF) to enhance path
planning around dynamic obstacles. This optimization tech-
nique aims to improve the algorithm’s efficiency in navigating
dynamic environments by repelling the mobile robot (MR)
from dynamic obstacles.

2) Collision Course Determination: To further enhance
efficiency, the APF technique is selectively activated only
when the MR and an obstacle are on a collision course. This
determination is made by calculating the dot product between
the MR’s position vector with respect to the obstacle and the
obstacle’s velocity vector. If the dot product yields a positive
value, indicating a converging trajectory, the APF mechanism
is activated to influence the path planning process.

3) Simplicity and Compatibility: By introducing only re-
pulsive forces when necessary, the algorithm remains compu-
tationally efficient, balancing the need for responsiveness in
dynamic environments with the overall simplicity of the path-
planning framework. The idea of a local map is introduced and
incorporated into both the algorithms. This is a computational
optimization method that reduces the search space of the
algorithm, thus increasing the computation and memory per-
formance of the algorithm. The local map is characterized by
the MR’s maximum allowable velocity and a factor of safety
constant. Using the MR’s maximum velocity, the algorithm
searches only the cells, reachable from its current position.
The factor of safety represents an area around a dynamic
obstacle(s) where detection is possible, thus allowing the MR
to safely react to the obstacle.

V. MATHEMATICAL MODELLING OF THE A* ALGORITHM

The implemented A* algorithm utilizes one essential
mathematical component, h(n). This is the heuristic function
that estimates the cost of the cheapest path from node n to
the goal node. This function provides an approximation of
the remaining cost from n to the goal, serving as a guiding
factor for the search algorithm. As previously mentioned,
the heuristic function h(n) is calculated by computing the
Euclidean distance between a designated cell or location
and the target. Consequently, the resultant function for each
iteration of the algorithm is computed by computing the
minimum value of h(n) in a set of all possible nodes of
length m, shown as:

f(n) =min ({h(n)1, h(n)2, ...,h(N)n}). @@

Repeating this function for each iteration configuration state,
until the goal is achieved constitutes the algorithm’s approach
to optimal path planning.

VI. MOBILE ROBOT’S ARTIFICIAL INTELLIGENCE AND
ITS IMPACT ON NAVIGATION PERFORMANCE

The success of any path-planning algorithm in dynamic
environments heavily relies on the intelligence embedded
within the mobile robot (MR). In the context of the present



study, the term intelligence refers to the capabilities of the MR
to perceive its surroundings, make informed decisions, and
adapt its path planning strategy in real-time. The foundation
of the mobile robot’s artificial intelligence lies in its perception
and sensing capabilities. The MR gathers real-time information
about its environment. This sensory input allows the robot to
identify obstacles, discern their trajectories, and continuously
update its understanding of its dynamic surroundings. The
heart of the MR’s artificial intelligence will certainly lie in
its decision-making algorithms. These algorithms, often driven
by machine learning or rule-based systems, enable the robot
to interpret the sensory data and make intelligent decisions
regarding its path. The ability to assess risk, predict obstacle
movements, and dynamically adjust the path planning strategy
contributes significantly to the MR’s adaptability in dynamic
environments. In dynamic scenarios, where obstacles move
unpredictably and environmental conditions change rapidly,
the MR’s artificial intelligence will definitely play a pivotal
role. The MR’s ability to adapt its path planning in real-time
based on the evolving situation is a key determinant of its
success. This adaptability ensures that the robot can navigate
through complex and dynamic environments efficiently and
safely. The integration of artificial intelligence into the mo-
bile robot’s decision-making processes directly influences the
outcomes of the present study. The proposed path planning al-
gorithms, including the optimized A* algorithm, are designed
to synergize with the MR’s intelligence, leveraging real-time
data to navigate through dynamic environments effectively.

VII. RESULTS AND DISCUSSIONS

To comprehensively assess the performance and behavior
of the proposed path-planning algorithms, a series of rigorous
tests were conducted. Twenty distinct simulations were run
across four diverse environments, each serving as a unique
case study. These environments were meticulously chosen
to observe and analyze the algorithms’ effectiveness and
adaptability. They include:

A. Sparsely Populated Dynamic Environment

In this specific case study, a total of twenty simulations
were conducted, positioning 5 dynamic obstacles within the
grid environment. Importantly, these obstacles were designed
to move at a speed comparable to that of the MR i.e. both the
MR and obstacles were set to have a maximum speed of 1 unit
per iteration. The outcomes of this study are presented in Table
I, detailing the results derived from these simulations. When
navigating dynamic obstacles, there are notable differences in
performance between the two approaches. Most notable is the
crash rate; the A* algorithm failed 10 times out of the 20
simulation runs. Based on this data, this means it has a 50%
chance of failing in a dynamic environment populated by 5
obstacles. % probability of failure = é—g x 100 = 50%. On
the other hand, the optimized A* algorithm failed once out
of the 20 simulation runs. This translates to a 5% chance of
failure. So, the % probability of failure = 55 x 100 = 5%. To
deepen the comprehension of the performance of A* algorithm

TABLE I: Sparsely populated dynamic obstacles (obstacle max
velocity = 1, MR max velocity = 1, number of obstacles = 5).

Performance

Simulation_No A_Tterations ~ A_Distance ~ A_Crashed  B_Iterations B_Distance  B_Crashed
1 75 98.0244 1 126 165.8356 0
2 99 137.1787 0 99 137.1787 0
3 69 92.4386 1 222 296.2153 0
4 102 139.3503 0 139 184.2203 0
5 106 141.6934 0 106 141.6934 0
6 32 43.4264 1 199 247.9483 0
7 139 160.6102 0 115 154.0071 0
8 14 17.9706 1 143 192.3625 0
9 24 32.5269 1 179 2184214 0
10 55 75.5391 1 126 169.1493 0
11 99 137.1787 0 99 137.1787 0
12 102 139.3503 0 102 139.3503 0
13 101 138.7645 0 105 142.7645 0
14 67 91.267 1 176 217.4924 0
15 60 82.6102 1 82 1124802 1
16 99 137.1787 0 101 139.5929 0
17 186 188.5563 0 145 197.6762 0
18 62 85.8528 1 145 199.333 0
19 99 137.1787 0 105 143.5929 0

20 42 57.1543 1 113 156.1493 0
MEAN/ AVERAGE 81.6 106.6925 0.5 131.35 174.6321 0.05

variants, a thorough and inclusive comparison was under-
taken, drawing valuable insights from the existing literature
on state-of-the-art path-planning algorithms. The consideration
of notable algorithms extends beyond A* to encompass D*
[24], RRT* (Rapidly Exploring Random Tree) [25], and MPC
(Model Predictive Control) [26]. The widespread recognition
of the A* algorithm for its simplicity and efficiency in static
environments set a foundational drawback for this comparison.
However, its limitations become apparent in dynamic scenar-
ios, exemplified by the 50% probability of failure observed in
algorithm A within our study. This observation underscores
the necessity for innovation to address the challenges posed
by dynamic environments. The introduction of the optimized
A* algorithm (algorithm B) marks a significant departure
from traditional approaches. Drawing inspiration from con-
cepts presented by [1], the algorithm B exhibits a substantial
improvement, dramatically reducing the probability of failure
to 5%. This optimization signifies a noteworthy stride in
enhancing the adaptability and robustness of A* in the face
of dynamic obstacles. In the broader context, comparative
studies, such as the evaluation of D* [24], [27] and the
analysis of RRT* [25] contribute valuable perspectives on
algorithm adaptability in dynamic environments. These studies
emphasize the significance of continuous advancements in
pathfinding algorithms to address the complexities of dynamic
scenarios effectively. Among the 20 simulations conducted,
algorithm B showcased the longest path in navigating the
dynamic environment. As depicted in Fig. 4 on the right,
this scenario highlights one of the limitations of the optimized
approach.



Fig. 4: In the visual representation of the test simulation in
algorithms A and B for sparsely populated dynamic obstacles.
The figure on the left demonstrates that MR did not success-
fully reach the target. However, in the figure on the right, MR
successfully reached the target.

Fig. 5: In the visual representation of the test simulation,
algorithms A and B perform faster than MR in navigating
sparsely populated dynamic obstacles. As evident from both
the figures on the right and left, MR is unable to reach the
target successfully in this particular test scenario.

B. Sparsely Populated Dynamic Obstacles Faster than MR

This test mirrors the one outlined in subsection VILA.
However, in this study, the velocity of the obstacles was
doubled to 2 units per iteration to examine the impact of
the velocity disparity between the MR and the obstacles
on the performance of the path planning algorithms. The
outcomes from 20 simulations conducted in this environment
are depicted in Table II.

In Fig. 5, depicting simulation, both algorithms failed to
establish a collision-free path to the target, despite the repelling
mechanism activated by the optimized algorithm B (high-
lighted by the green shading in the MR’s local scope). This
occurrence underscores a fundamental limitation of reactive
algorithms when contrasted with predictive methodologies
such as velocity obstacles. Notably, due to obstacles moving
at velocities twice that of the mobile robot (MR), the MR
struggles to respond promptly to obstacles on an impending
collision course. This observation gains further significance
when analyzing the outcomes from all twenty simulations con-
ducted under these specific conditions. Algorithm A exhibited
a 65% failure rate, while algorithm B demonstrated a 60%
failure rate. This implies that the optimization integrated into
the original algorithm had a minor impact on performance, ap-
proximately 5%, within this constrained context. Moreover,in
terms of iterations, algorithm B demonstrates a higher average
(mean B = 99.55), as compared to algorithm A (mean A
= 61.65). This suggests that algorithm B requires a more
extensive computational process, involving a greater number of

TABLE II: Faster than MR sparsely populated dynamic obsta-
cles (obstacle max velocity = 2, MR max velocity = 1, number
of obstacles = 5).

Performance

Simulaion_No A_Tterations ~ A_Distance ~ A_Crashed  B_Iterations B_Distance  B_Crashed
1 23 311127 1 127 175.1198 0
2 60 83.0244 1 63 87.6812 1
3 110 144.0366 0 68 92.6812 1
4 99 137.1787 0 9 137.1787 0
5 99 137.1787 0 9 137.1787 0
6 13 16.1421 1 15 19.799 1
7 72 99.5807 1 75 104.6518 1
8 100 137.7645 0 107 146.8356 0
9 68 93.9239 1 86 113.9949 1
10 47 65.0538 1 133 176.1493 0
11 16 20.799 1 190 260.2447 1
12 19 242132 1 145 195.6051 0
13 101 138.7645 0 129 167.5929 0
14 8 9.0711 1 120 164.5635 1
15 36 47.8406 1 85 110.5097 1
16 21 27.0416 1 60 81.7817 1
17 28 37.3553 1 104 143.5929 1
18 185 187.5563 0 85 112.1665 1
19 20 26.4558 1 111 149.1787 0
20 108 143.6934 0 90 120.066 1
MEAN/ AVERAGE 61.65 80.3894 0.65 99.55 134.8286 0.6

Fig. 6: In the visual representation of the test simulation in
algorithms A and B in slower than MR sparsely populated
dynamic obstacles. In both cases, MR successfully reaches
the target. However, in the figure on the right, the path taken
by MR is longer than the one depicted in the figure on the
left.

iterations to navigate the environment. Similarly, the analysis
of the distance metric reveals a substantial disparity between
the two algorithms. Algorithm B covers a significantly greater
distance (mean B = 134.8286), as compared to the algorithm
A (mean A = 80.3894). This implies that algorithm B adopts
a more extensive path in its planning process.

C. Sparsely Populated Dynamic Obstacles Slower than MR

This test replicates the conditions outlined in (A) above.
However, in this study, the mobile robot’s (MR) velocity was
doubled to 2 units per iteration to assess the influence of the
velocity disparity between the MR and the obstacles on the
performance of the path planning algorithms (see Fig. 6). The
results from 20 simulations conducted in this environment are
presented in Table III.



TABLE III: Slower than MR sparsely populated dynamic
obstacles (obstacle max velocity = 1, MR max velocity = 2,
number of obstacles = 5).

TABLE IV: Densely populated with dynamic obstacles (ob-
stacle max velocity = 1, MR max velocity = 1, number of
obstacles = 10).

Performance Performance
Simulaion_No A_Tterations ~ A_Distance ~ A_Crashed  B_Iterations B_Distance ~ B_Crashed Simulaion_No A_Tterations ~ A_Distance ~ A_Crashed  B_Iterations B_Distance  B_Crashed
1 50 135.7645 0 50 135.7645 0 1 106 141.6934 0 127 168.9066 0
2 33 88.0244 1 65 170.5635 0 2 66 91.0955 1 51 70.2965 1
3 50 135.7645 0 52 139.1787 0 3 81 949117 1 113 151.1787 0
4 54 141.2792 0 54 141.2792 0 4 28 36.5269 1 172 225.6762 1
5 52 138.9361 0 144 363.7838 0 5 35 42.2843 1 54 67.4975 1
6 52 138.9361 0 52 138.9361 0 6 22 28.8701 1 158 216.061 0
7 50 135.7645 0 50 135.7645 0 7 10 123137 1 230 295.931 0
8 51 136.9361 0 123 304.3747 0 8 87 120.7939 1 120 163.9777 0
9 50 135.7645 0 50 135.7645 0 9 70 96.7523 1 103 140.5219 1
10 52 138.9361 0 104 247.9066 0 10 37 50.0833 1 90 124.6224 1
11 2 58.5685 1 122 325.328 0 11 37 50.0833 1 104 141.1076 1
12 52 138.9361 0 74 194.7767 0 12 18 24.0416 1 136 179.9777 0
13 14 35.1127 1 138 292.6762 0 13 28 37.3553 1 401 534.2052 0
14 40 108.6518 1 87 238.7595 0 14 56 71.3675 1 86 118.5513 1
15 50 135.7645 0 52 140.5929 0 15 100 138.1787 0 140 186.0488 0
16 21 55.7401 1 93 244.0315 0 16 54 74.9533 1 180 241.5462 1
17 14 35.9411 1 69 182.5341 0 17 30 40.598 1 229 300.0732 1
18 50 135.7645 0 50 135.7645 0 18 25 33.5269 1 86 117.7229 1
19 50 135.7645 0 50 135.7645 0 19 12 147279 1 198 266.1737 1
20 20 40.4853 1 174 400.0315 0 20 54 74.9533 1 188 253.1026 0
MEAN/ AVERAGE 41.35 110.3418 0.35 82.65 210.1788 0 MEAN/ AVERAGE 478 64.0555 0.9 1483 198.1589 0.55

When the MR is set to travel faster than obstacles, there
is an increase in both algorithms’ performance. This is with
respect on the data based on the test (A) results above.
Algorithm A has a failure rate of 35% from 50% while
algorithm B has a 0% failure rate from 5%. This results to
a 15% and 5% decrease in failure rate of the approaches.
However, despite a 15% in the failure rate between the two
algorithms, there is an approximately 50% difference in the
iteration count and distance metrics using the optimized
algorithm B, as shown below:

Algorithm A average iterations

100
Algorithm B average iterations
41.35
——— x 100 =50
8265 %
Algorithm A average distance 100
Algorithm B average distance
110.3418
————— x 100 = 52.5%.
210.1788 %

This indicates that the optimized algorithm B is not tuned for
shorter paths and instead favors success rate over path length.

D. Densely Populated with Dynamic Obstacles

In this scenario, the environment was populated with 10
dynamic obstacles, each possessing relatively similar speeds.
The objective of this test was to assess the influence of the
obstacle population on the algorithm’s performance (see Fig.
7). The outcomes of the simulations conducted for this specific
case study are presented in Table I'V.

The outcomes of this test align with expectations i.e. both
algorithms exhibited reduced performance as compared to the

Fig. 7: In the visual representation of the test simulation for
algorithms A and B in a densely populated environment with
dynamic obstacles, in both figures, MR faces challenges in
reaching the target. In the figure on the right, the magnetic
resonance (MR) feature is activated, which pushes away
obstacles. However, despite this feature, MR was ultimately
unable to successfully reach the target within this particular
environment.

reference data set from test (A) above. This decline in perfor-
mance can be attributed to the higher probability of collisions
with obstacles in densely populated environments as compared
to the sparsely populated ones. This inference is derived from
the failure rate metric. Algorithm A’s failure rate escalated
from 50% to 90%, whereas algorithm B’s failure rate increased
from 5% to 55%. To comprehensively address the scalability
of the proposed algorithms, the findings presented in a densely
populated setting shed light on the intricate challenges faced,
revealing a substantial escalation in failure rates for both
algorithm A and the optimised algorithm B. In the context
of larger and more intricate environments, the scalability of
path-planning algorithms emerges as a critical determinant of
their practical applicability. The observed performance decline
in densely populated scenarios hints at potential limitations in



the scalability, indicating that as the environmental complexity
increases, encompassing larger spatial dimensions and higher
obstacle densities, the algorithms may encounter more chal-
lenges in sustaining efficiency and avoiding collisions. In this
study, increasing the grid size to 200 has some cost associated
with it. One is that the computational efficiency is reduced,
requiring a considerable amount of resources to complete
the simulation. On the upside, there are few collisions with
randomly moving obstacles.

VIII. CONCLUSIONS AND FUTURE WORKS

In conclusion, the comparative analysis of algorithms A
and B, as evaluated through rigorous simulations, provides
a deeper understanding of their performance in dynamic
environments. When subjected to dynamic environments with
moving obstacles, algorithm B displayed a marginal advan-
tage over algorithm A, attributed to its optimized features.
Despite this improvement, both algorithms faced challenges
in densely populated environments, leading to an escalation
in failure rates. Examining the metrics, it is evident that the
introduction of moving obstacles with double the velocity of
the mobile robot significantly impacted the algorithms’ perfor-
mance. While algorithm B showed minor enhancements, it still
grappled with swift-moving obstacles. Notably, algorithm B’s
repelling mechanism occasionally resulted in MR entrapment
between obstacles and boundaries. While both algorithms ex-
hibited commendable performance under specific conditions,
they were not entirely immune to challenges. The identified
metrics emphasize the pressing need for further research, par-
ticularly in the realm of dynamic obstacle avoidance strategies.
Enhancing the algorithms’ adaptability and reliability is crucial
for their practical implementation in real-world scenarios.
Incorporating random movements within the obstacles may
better emulate real-world uncertainties. Additionally, it is
advisable to integrate acceleration and inertia constraints into
the model [28] in future research. This enhancement would
contribute to a more precise representation of motion dynamics
in the physical world, thereby augmenting the accuracy and
realism of the simulation.
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