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ABSTRACT 

Penetrance is the probability that an individual with a pathogenic genetic variant develops a 

specific disease. Knowing the penetrance of variants for monogenic disorders is important for 

counselling of individuals. Until recently, estimates of penetrance have largely relied on 

affected individuals and their at-risk family members being clinically referred for genetic 

testing – a “phenotype-first” approach. This approach substantially overestimates the 

penetrance of variants because of ascertainment bias. The recent availability of whole genome 

sequencing data in individuals from very large-scale population-based cohorts now allows 

“genotype-first” estimates of penetrance for many conditions. Although this type of 

population-based study can underestimate penetrance due to recruitment biases, it provides 

more accurate estimates of penetrance for secondary or incidental findings. Here, we provide 

guidance for the conduct of penetrance studies to ensure that robust genotypes and 

phenotypes are used to accurately estimate penetrance of variants and groups of similarly 

annotated variants from population-based studies.  
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Main  

Understanding the cause of disease enables accurate diagnosis and targeted treatment and is 

the cornerstone of good medical practice. Genome-wide sequencing has hugely increased the 

number of genetic diagnoses in rare diseases, and there are now thousands of monogenic 

diseases linked to variants in >4000 individual genes1. Within this group of rare monogenic 

conditions, there is a large subset where just a single rare genotype in a specific gene causes 

disease. However, despite this apparent simplicity, the reality is often more complex, due to 

genetic and allelic heterogeneity, incomplete penetrance and variable expressivity, pleiotropy, 

multi-system phenotypes, and gene-environment interactions. In some cases, a specific 

genetic variant is both necessary and sufficient to cause the disease, and individuals who carry 

the variant always have or will develop the disease (complete penetrance). However, in other 

cases, while a single genotype may be the major cause of disease, other genetic or 

environmental factors are also required for the disease to manifest, and some individuals who 

carry the pathogenic genotype may never develop the disease (incomplete penetrance) or 

may present with a less severe form (variable expressivity)2. Penetrance is typically quantified 

for a particular disease or phenotype with respect to a particular age3.  

 

Historically, studies of penetrance have relied on large family pedigrees, where the disease 

(mostly) segregates with the causal genetic variant, and small clinical cohorts where every 

individual is affected by the disease in question. This “phenotype-first” approach to 

ascertainment suffers from bias towards individuals and families that have at least one and 

often multiple affected individuals, often with shared genetic and environmental backgrounds, 

resulting in inflated estimates of penetrance for many genetic variants4. More recently, thanks 

to next-generation sequencing technologies, it has become possible to study penetrance in 

https://sciwheel.com/work/citation?ids=8047382&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13376428&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14674254&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11627890&pre=&suf=&sa=0&dbf=0
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large population cohorts where individuals are not ascertained based on disease state. In 

comparison to the traditional clinical approach, this “genotype-first” approach to 

ascertainment may suffer from an opposing bias towards healthy individuals5, resulting in 

deflated estimates of penetrance due to depletion of severe or early-onset phenotypes and 

enrichment of mild or late-onset phenotypes6–9. In principle, the two approaches should 

complement each other, enabling quantitative estimates of the upper and lower bounds of 

penetrance, and facilitating studies into the molecular mechanisms underlying monogenic 

disease and incomplete penetrance. However, in practice, both types of studies may be poorly 

executed, resulting in erroneous gene-disease associations, spurious assertions of variant 

pathogenicity, and inaccurate estimates of penetrance. Once made, errors in the literature can 

permeate through citations and genetic databases to diagnostic laboratories, clinicians, and 

ultimately patients, who may be wrongly diagnosed or inappropriately counselled or treated.  

 

As genomic medicine becomes embedded into healthcare, it is ever more important to be 

judicious when evaluating disease penetrance. Accurate estimates of penetrance in the 

population are particularly crucial for reporting of secondary or incidental findings, where 

there may be no clinical presentation or family history of disease10. Since most pathogenic 

disease-causing variants are extremely rare, population-based estimates of penetrance often 

group similarly annotated variants together, which can make comparison with penetrance of 

individual familial variants more challenging. Moreover, consideration of modifying factors 

beyond the gene of interest is important for understanding penetrance. Clinical cohorts are 

generally enriched for etiologic co-factors that are either more heterogeneous or depleted in 

large population cohorts11, including both genetic factors (e.g. epistasis, 

https://sciwheel.com/work/citation?ids=5048907&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6294427,13805372,5725505,5935022&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15350753&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15865277&pre=&suf=&sa=0&dbf=0
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digenic/oligogenic/polygenic contribution, genetic ancestry, chromosomal sex) and 

environmental exposures.  

 

Here, we highlight a number of key problems that have resulted in substantial errors in 

published penetrance estimates, and use an exemplar trait to evaluate the effect of taking a 

more stringent approach to curation. 

 

Avoidable errors that can substantially influence penetrance estimates 

Penetrance is generally understood to apply in the context of monogenic disease-causing 

variants. It is defined simply as the probability of developing a particular disease given the 

presence of a particular pathogenic genotype. With the availability of increasingly large 

population-based studies, including individual electronic health records linked to exome or 

genome sequencing data, assessment of penetrance is becoming increasingly common. These 

studies are often gene-specific12–14 or disease-specific15–17, but there have also been efforts to 

perform more comprehensive surveys of penetrance18. For example, a recent study estimated 

the median penetrance across 157 autosomal dominant monogenic diseases in two large 

biobanks to be 0%19, which is highly surprising. 

 

Whilst large-scale approaches have the advantage of maximising numbers of individuals in 

whom penetrance can be assessed, it is easy to include more variants than the evidence 

supports and to group together variants with different effects. Such a highly permissive 

approach can overlook important aspects of biology, particularly where numerous different 

variants/genes/diseases are being evaluated simultaneously, based on database annotations 

https://sciwheel.com/work/citation?ids=15130829,14746527,1170690&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15134685,15028966,11656343&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11172187&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
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or bioinformatic predictions. This aggregate approach can thus result in the erroneous 

inclusion of variants that are benign, caused by a number of avoidable errors outlined below. 

 

1. Inclusion of variants with inappropriately high allele frequency 

Pathogenic variants for rare diseases are rare, and it has been shown that excluding common 

alleles is justified for most rare disease phenotypes (>5% is considered benign in standard 

variant classification guidelines)20, with a few notable exceptions21, such as founder variants in 

particular populations and hypomorphic variants in specific autosomal recessive diseases22,23. 

Even modestly common variants with appreciable penetrance will be easily observed to have 

higher frequency in cases than controls24, and widely used variant classification guidelines 

state that “in general, an allele frequency in a control population that is greater than expected 

for the disorder is considered strong support for a benign interpretation for a rare Mendelian 

disorder”20. However, older studies that described novel pathogenic variants in genes 

previously unlinked with monogenic diseases generally only tested a few hundred controls. 

Now, with publicly available cohorts of 100,000’s of sequenced individuals, many of these 

previously “pathogenic” variants have turned out to be relatively common variants, either in 

the same or another ancestral group14,25–27, and are actually benign or low-risk variants28,29. 

Nonetheless, these benign variants and common risk alleles have polluted the monogenic 

disease literature and can be difficult to redress. Including common-risk alleles in penetrance 

estimates leads to artificially low estimates of the true penetrance of pathogenic variants for a 

monogenic condition, especially as these variants will contribute more to penetrance 

estimates as common variants will be given most weight in penetrance calculations.  

 

https://sciwheel.com/work/citation?ids=632413&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6683227&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6170251,15039611&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15536066&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=632413&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1170690,12706479,12410075,5290578&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5262517,7701333&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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2. Errors in genotype calling  

Whilst great technological advancements have been made in genomics, false-positive variant 

calls still occur at a relatively high rate and some variant types remain particularly difficult to 

detect. This is a particular problem for penetrance studies of rare disorders, because in general 

the more deleterious a variant, the more likely it is to be a false-positive caused by a technical 

artefact30. Including these technical false-positive pathogenic variants can substantially reduce 

estimates of penetrance. For example, very rare variants are poorly assayed using most 

genotyping arrays31,32. Short-read next-generation sequencing technologies are more reliable 

for genotyping single-nucleotide variants, but they may be unreliable for genotyping complex 

variants, such as insertions and deletions. For example, a 32bp complex insertion-deletion in 

UMOD was initially called as six different variants from exome sequencing data in UK 

Biobank33; one of these occurred in 11 individuals and was incorrectly annotated as a 

nonsense variant and found to strongly associate with renal failure through 

haploinsufficiency34. In reality, the variant results in an in-frame change that causes monogenic 

renal failure through a well-characterised gain-of-function mechanism33. As a result, care must 

be exercised when evaluating the effect of variants without further validation with an 

orthogonal technique. Although additional laboratory confirmation is often not practicable, 

applying stringent quality control metrics to the selection of variants, as well as algorithms to 

address multi-nucleotide variants (MNVs) and other complex variants, coupled with 

visualisation of the underlying data using tools such as the Integrative Genomics Viewer 

(IGV)35, can be helpful for excluding false- positive calls that will otherwise result in a lower 

estimate of penetrance. It is also essential to distinguish somatic mosaic variation (with low 

allele balance) from germline variation to enable the penetrance of germline variants to be 

evaluated36. The role of somatic mutations in normal ageing as well as disease is increasingly 

https://sciwheel.com/work/citation?ids=111674&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7174414,11422459&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14730613&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11514734&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14730613&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=148503&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5099763&pre=&suf=&sa=0&dbf=0
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being realised37,38 and may confound genotype-phenotype evaluations, particularly in 

population biobanks comprising older individuals.  

 

3. Refuted gene-disease assertion 

Candidate gene studies and under-powered studies, which pre-date the availability of large 

population datasets, suffer from incorrect gene-disease associations. There are an increasing 

number of examples of refuted gene-disease associations, where the availability of larger 

datasets has proven beyond doubt that an earlier association was incorrect. For example, 

SCN9A was previously included on diagnostic panels for monogenic epilepsy conditions, but 

has since been shown not to be associated with the condition39. Associations between three 

genes and maturity onset diabetes of the young (MODY)40, and all but one of 21 genes 

previously linked with Brugada syndrome41, have also been refuted. Refuted gene-disease 

associations can nonetheless persist in case-reports, small case series, genetic testing panels, 

and variant databases, even following refutation. Evaluating the penetrance of variants in 

genes whose association with disease has not been proven will thus perpetuate the error and 

bias penetrance estimates downwards. International expert gene curation efforts, such as 

ClinGen42 and the Gene Curation Coalition (GenCC)43, are curating appraisals and reappraisals 

of the validity of gene-disease associations across thousands of monogenic conditions, and 

should be consulted when conducting large-scale studies of penetrance.  

 

4. Inaccurate or outdated variant pathogenicity assertion 

Even where a gene-disease association has been robustly proven, the interpretation of 

individual genetic variants can change as new evidence comes to light44–46. Although variant 

classification guidelines have standardised and improved variant classification20,47, 

https://sciwheel.com/work/citation?ids=5633302,13992797&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10076368&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12631027&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5538353&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4208800&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12932540&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12792571,7348945,5048954&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=632413,12446670&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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unfortunately attempting to dichotomise all variants in genes associated with a monogenic 

disease into “pathogenic” or “benign” does not reflect the complexities of all classes of 

functional variant effects that may determine differences in phenotype manifestations. As a 

result, some variants have been misclassified as pathogenic without robust evidence linking 

them to a particular phenotype. It has been estimated that >10% of entries in commonly used 

databases of disease genes are incorrect, with most of the curation errors owing to a benign 

variant having been erroneously claimed to be pathogenic48. Historically, far more variants in 

the ClinVar database have been reclassified down (i.e. from pathogenic, likely pathogenic or 

uncertain to likely benign or benign) than up (i.e. from benign, likely benign or uncertain to 

likely pathogenic or pathogenic)44, so any errors that persist in the database will likely bias 

subsequent penetrance estimates downwards. When evaluating penetrance, it is therefore 

advisable to treat variants of uncertain significance or with conflicting interpretations 

separately, or exclude them altogether. Variants labelled as likely pathogenic or pathogenic 

must be assessed according to an evidence framework, particularly when there are limited or 

old ClinVar submissions or the variants appear multiple times in the cohort, to ensure that 

variant classifications are as robust as possible. Expertise in the particular gene and disease 

can help ensure that only genuinely pathogenic variants are included.  

 

5. Erroneous variant annotation or effect prediction 

Predicting the effect of a genetic variant is important for determining whether it is likely to 

cause disease. Although many genes have been robustly associated with monogenic diseases, 

in practice, the evidence will be based on specific variants in specific locations with specific 

consequences. When evaluating penetrance, it is important to ensure that only variants with 

functionally similar consequences to those reported to cause disease are included, which may 

https://sciwheel.com/work/citation?ids=652643&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12792571&pre=&suf=&sa=0&dbf=0
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depend upon transcript selection as well as effect prediction. For example, a missense variant 

that is predicted to code for an alternative amino acid in one transcript may be non-coding in 

all biologically relevant transcripts and thus have no effect on the protein, or result in a splicing 

change in specific tissues. Although nonsense and frameshifting variants are usually predicted 

to result in truncated or absent protein products, in practice many of these variants evade 

nonsense-mediated decay and may still produce a functional protein30,49. Another complexity 

is where a variant overlaps more than one transcript, or more than one gene, resulting in 

different predicted effects in different transcripts or different genes. It is important to ensure 

that variant effects are selected based on the MANE Select or MANE Plus Clinical transcript50 

(or other biologically relevant alternative transcripts) that may exclude or alter the impact of 

the variant in question50,51, as well as confirm that the predicted effect relates to the gene of 

interest not an incidentally overlapping or nearby gene19,52. Including variants in penetrance 

calculations, whose functional effect in the gene of interest is inconsistent with the mechanism 

of disease, will necessarily bias the estimates downwards.  

 

6. Inappropriate mode of inheritance  

Most high-quality population studies of penetrance focus on autosomal dominant conditions, 

where the disease manifests in heterozygotes. It is also possible to evaluate penetrance in 

autosomal recessive conditions, where the disease manifests in homozygotes and compound 

heterozygotes (where phasing is known)53,54. However, although it may be interesting to 

evaluate whether the phenotype manifests in heterozygous carriers of autosomal recessive 

conditions, this should not be considered a measure of penetrance of the recessive 

condition55. Thus, it is important to ensure that the zygosity of the variants being evaluated is 

appropriate to the disease in question56. For example, Stargardt disease and other 

https://sciwheel.com/work/citation?ids=111674,8969305&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14000119&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12763597,14000119&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8813548,12352883&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13129014,15992290&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14230989&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13279463&pre=&suf=&sa=0&dbf=0
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retinopathies are caused by biallelic variants in ABCA4, some of which are relatively common 

in the population, but heterozygous carriers are unaffected57,58 and should not be included in 

penetrance estimates for the disease. Another complication of studying penetrance of 

autosomal recessive conditions is the alternative clinical manifestations of different variant 

combinations, and in particular the challenge of evaluating hypomorphic variants with reduced 

function that are only pathogenic when seen in trans with a complete loss-of-function 

variant59. Digenic or oligogenic contributions caused by the combined effects of rare 

heterozygous variants in two or more disease genes may further complicate the evaluation of 

penetrance60. 

 

7. Incorrect mechanism of disease 

Linked to variant consequence is the mechanism by which a variant causes disease, often 

broadly categorised into loss-of-function (LoF), gain-of-function (GoF) or dominant negative. 

Conditions caused by GoF and dominant-negative mechanisms require even greater caution 

than LoF, as typically a restricted repertoire of variants cause disease61,62. Moreover, GoF 

encompasses a wide range of functional mechanisms that may be variant and/or tissue-

specific, including loss of gene silencing63, toxic RNA or protein accumulation, and increased or 

novel protein function59. Importantly, predicted LoF variants often do not cause disease where 

the mechanism is GoF, and vice-versa, so evaluating their penetrance in such conditions is 

misleading. For example, frameshift variants in the last exon of the gene PLIN1 result in 

lipodystrophy through a GoF mechanism64, whilst haploinsufficiency is not associated with the 

disease65. In contrast, LoF variants in PLIN1 actually cause a favourable metabolic profile, 

opposite to the lipodystrophy phenotype66. Curation of disease mechanisms and ensuring 

predicted variant consequences are consistent with that mechanism is important3, particularly 

https://sciwheel.com/work/citation?ids=12752109,10800747&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14422391&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13765254&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12814004,13394914&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13886199&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14422391&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15441797&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13446434&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15242978&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14674254&pre=&suf=&sa=0&dbf=0
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where the disease is not caused by LoF or where different diseases or disease severities are 

caused by different variants in the same gene operating through different mechanisms. 

Hypomorphic variants with differing levels of residual function may also explain attenuated 

disease phenotypes in some cases and, where possible, constructing allelic series to evaluate 

genotype-phenotype correlations may be more informative than grouping variants59,67. 

 

8. Incorrect phenotype and case definition 

Defining the phenotype associated with a disease can be extremely challenging, particularly 

based on Electronic Healthcare Records (EHR) or hospital episode statistics, which may be 

incomplete and can vary between providers. Ontologies are not always comprehensive for 

rare disease entities, and defining which individuals have a disease can vary based on self-

report or EHR-derived data68. More robust ways to define individuals with a condition should 

be used where possible, such as detailed clinical phenotyping, questionnaires, activity 

monitoring, imaging, and biomarker data69. For example, diseases such as diabetes are 

particularly well captured in UK Biobank because self-report, EHR and diagnostic biomarkers 

are measured7, whereas other conditions, such as intellectual disability and other conditions 

that lack robust biomarkers and do not routinely require hospitalisation, are not. Failure to 

correctly identify cases and controls may substantially bias penetrance estimates. 

Consideration of manifestation at different phenotype levels is also important when defining 

cases; for example, pathogenic variants in the gene GCK cause mild fasting hyperglycemia, 

elevated hemoglobin A1C (HbA1c) and mean fasting blood glucose, but individuals often do 

not get a diagnosis of diabetes unless incidentally detected and they do not get diabetes-

related complications7. Another important factor to consider when appropriately defining 

phenotypes is pleiotropy70,71. Even where a gene-disease association has been robustly proven 

https://sciwheel.com/work/citation?ids=14422391,15914786&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8624129&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5861440&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13805372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13805372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4730804,12054002&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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and numerous variants have strong evidence robustly linking them to a phenotype, different 

variants in the same gene may result in very different phenotypes that present at different 

ages. Therefore, using a variant database such as ClinVar to define a list of pathogenic variants 

in a particular gene, without due regard for the associated phenotype (which unfortunately 

may not be well defined or annotated) can result in the penetrance of variants being assessed 

against the wrong disease.  

 

9. Inappropriate accounting for age of individuals 

The concept of penetrance is largely meaningless without defining the age by which a disease 

or associated phenotype is observed, and many monogenic conditions display age-dependent 

penetrance72,73. The penetrance of late-onset diseases cannot be accurately evaluated in 

younger individuals who have not yet had the chance to develop a late-onset condition, 

although related biochemical or functional phenotypes may be observable prior to clinical 

disease manifestation. Conversely, for some diseases the opposite is true; for example, 

variants in the gene MC4R appear to have higher penetrance for obesity in childhood than 

adulthood74, where diet and other interventions can reduce the apparent penetrance. Some 

variants cause conditions that occur at birth or shortly after and will not occur in population-

based studies, either because they are successfully treated or because they are terminal in 

childhood. For example, neonatal diabetes is a severe form of diabetes diagnosed <6 months 

that is unlikely to be present in adult population cohorts (e.g. UK Biobank has a lower age at 

recruitment of 40 years). This limits the ability to perform penetrance studies on this type of 

variant and condition outside of birth cohorts. 

 

https://sciwheel.com/work/citation?ids=6288423,4351654&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11117797&pre=&suf=&sa=0&dbf=0
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10. Inappropriate calculation of penetrance 

The concept of penetrance can be used and calculated in different ways. The simplest 

definition, based on rare monogenic disease, is the probability of a variant carrier developing 

the related disease by a specific age, or the proportion of variant carriers who have manifest 

disease by a specific age. This definition works well for well-defined rare conditions, such as 

cystic fibrosis. For monogenic forms of common diseases, the background occurrence rate of 

the disease should also be considered when giving an estimate of risk difference19. Risk 

difference is defined as the difference between penetrance in individuals with and without the 

genotype of interest75, and can be estimated as the difference in disease prevalence between 

individuals with variant alleles and individuals with normal alleles19. However, for sufficiently 

common diseases (or insufficiently penetrant alleles), the disease may be more prevalent in 

non-carriers, resulting in a negative risk difference and falsely implying that variant alleles are 

protective. Therefore, an appropriately adjusted Kaplan-Meier curve may be a more 

appropriate way to present and analyse the data76,77, as it allows for a range of penetrance 

values to be calculated to different ages, whilst also estimating the uncertainty around the 

estimates and showing the background disease risk. Nonetheless, regardless of the 

methodology, common risk alleles found through genome wide association studies (GWAS) 

should not be evaluated for penetrance, since its definition does not apply to low-risk alleles. 

Although there is likely to be a continuous spectrum of effect size in reality, with no clear 

distinction between these categories, a conceptual debate remains over when a low-

penetrance pathogenic variant becomes a risk allele, and a ClinGen Working Group has 

released recommendations for the reporting of such variants78. In many cases, factors beyond 

the gene of interest are likely to explain instances of incomplete penetrance and variable 

https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15702396&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4950904,15382616&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15702150&pre=&suf=&sa=0&dbf=0
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expressivity59, underlining the importance of evaluating pathogenicity in different contexts and 

explicitly assessing modifiers (such sex and genetic ancestry)11 where possible. 

 

Insufficient stringency in variant and case selection affects penetrance estimates  

To illustrate the effect of these issues on penetrance estimates, we use an example from a 

recent large-scale attempt to estimate penetrance across a wide range of autosomal dominant 

monogenic conditions19. Amongst numerous diseases, the study included three subtypes of 

diabetes: neonatal diabetes (NDM), maturity onset diabetes of the young (MODY) and type 2 

diabetes (T2D). Using diabetes traits and specific variants in UK Biobank as an example, we 

illustrate some of the errors that can occur – particularly in grouped-variant penetrance 

studies through the use of outdated or incorrect annotations – resulting in erroneous 

conclusions (see Box 1).  

 

Including and grouping all variants asserted to be pathogenic or likely pathogenic in ClinVar or 

annotated as predicted loss-of-function within the disease-associated gene of interest, without 

due regard for these different issues highlighted above, is likely to lead to erroneous and 

uninformative penetrance estimates. An estimated median penetrance of zero19  is likely the 

result of including numerous benign variants that are not linked with the disease in question, 

and does not represent the penetrance of true pathogenic variants. Addressing these issues 

and including only variants that are known to be pathogenic for monogenic disease – with the 

correct zygosity and mechanism – will increase the accuracy of penetrance estimates.  

 

Starting with 74 variants linked with MODY that were included by Forrest et al. in analyses of 

the first 50,000 exome sequences released by UK Biobank19, we found just 9 variants that the 

https://sciwheel.com/work/citation?ids=14422391&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15865277&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
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national referral centre for monogenic diabetes testing would classify as pathogenic 

(https://www.diabetesgenes.org/). The number of individuals in the cohort with these MODY 

variants thus decreases from around 14,000 (28%) to fewer than 50 (<0.1%), and the mean 

diabetes risk difference between individuals with and without MODY variants increases from 

~0% (Fig. 1A) to up to 64% (Fig. 1B), suggesting  that the former is a gross under-estimate 

caused by the inclusion of  large numbers of benign variants that do not cause MODY. A larger 

list of expertly curated pathogenic MODY variants suggests that the true MODY penetrance in 

UK Biobank is likely to be around 25-30% (Fig. 1C)7, and that genuine variants of uncertain 

significance (VUS) also have a non-zero though substantially lower penetrance (Fig. 1D). Whilst 

our estimates are still lower than penetrance estimates from clinically-ascertained cohorts7, 

they are significantly higher than suggested by Forrest et al. in this population cohort19. It 

should be noted that for genes such as KCNJ11, in which a limited repertoire of activating 

variants cause NDM79, it is not possible to determine the population penetrance of specific 

pathogenic GoF variants as there are none present in UK Biobank, potentially because they are 

highly penetrant and depleted from the cohort.  

 

Conclusions  

Estimates of penetrance of monogenic disease are becoming increasingly common with the 

availability of whole genome sequencing data in large-scale population-based cohorts. These 

“genotype-first” estimates provide one important estimate of the true risk of disease for 

people with pathogenic variants. While there are important issues around ascertainment and 

survivor bias that can affect penetrance estimates from any study, these nonetheless provide a 

lower bound to disease risk and will be important for counselling patients, particularly those 

with secondary or incidental findings. Often population-based estimates are lower than those 

https://www.diabetesgenes.org/
https://sciwheel.com/work/citation?ids=13805372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13805372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14001191&pre=&suf=&sa=0&dbf=0
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based on clinically selected cohorts, but these estimates must be based on robust data for 

both genotype and phenotype. Important resources, such as automated annotation tools and 

variant databases, should be applied with care and following critical evaluation of the outputs 

to ensure that variants included in penetrance estimates are truly pathogenic and relevant to 

the disease in question. Our guidance provides an attempt to highlight some of the common 

issues that can occur to ensure more studies meet these requirements. We hope that this 

guidance serves as a catalyst for advancing the discourse on genetic variant interpretation, and 

encourages the community towards more precise and scientifically robust practices. 
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Box 1. Examples of curation errors leading to erroneous penetrance estimates 

Some classes of errors can be minimised through a judicious bioinformatics approach (1, 2, 5) 

and using regularly updated or curated databases (3, 4, 6, 7), whilst other classes may require 

detailed evaluation of individual variants (2, 7) and disease phenotypes (7, 8, 9, 10). Example 

variants taken from Forrest et al. JAMA 202219.  

1. Inclusion of high frequency variants 

e.g. rs2074308 (NM_000352.6:c.1672-74G>A) in ABCC8 has a population allele 

frequency of ~12% but was linked with Neonatal Diabetes Mellitus (NDM), a condition 

that affects fewer than 1 in 2 million people. Variants with an allele frequency far in 

excess of the disease in question should generally be excluded unless there is robust 

evidence of a strong association with disease14.  

2. Inclusion of technical false positives 

e.g. the commonest cause of maturity onset diabetes of the young (MODY) is a 

frameshifting C-insertion in a poly-C tract of HNF1A. This variant rs766191969 

(NM_000545.8:c.863_864insC HNF1A:p.(Pro289AlafsTer28)) is challenging to sequence 

accurately, but was apparently present in 330 individuals and included with no 

suggestion that genotyping accuracy was evaluated7.  

3. Inclusion of variants from refuted genes  

e.g. variants in PAX4 were included, presumably due to the presence of a pathogenic 

variant in ClinVar linked with MODY dating from 2007, despite the fact that the gene 

has since been refuted as a cause of MODY40. Notably, variants in other genes robustly 

linked with MODY, such as RFX6, were not included22. 

4. Inclusion of variants with conflicting or uncertain evidence 

https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1170690&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13805372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12631027&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6170251&pre=&suf=&sa=0&dbf=0
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e.g. a missense variant rs1131691259 in WFS1 (NM_006005.3:c.2074C>T p.(His692Tyr)) 

formerly classified as likely pathogenic that is now classified as uncertain significance or 

uncertain risk allele in ClinVar. Other included variants, such as rs397518475 

(NM_006208.3:c.530G>A p.(Cys177Tyr)) in ENPP1 have “no assertion criteria” in 

ClinVar but were still labelled pathogenic despite the gene ENPP1 only being associated 

with diabetes through a refuted common GWAS variant80. 

5. Inclusion of variants with incorrect annotations 

e.g. four predicted LoF variants in MYL7 were included as causes of NDM, despite the 

gene never having been linked to the condition. Since MYL7 is a nearby neighbour of 

GCK, in which numerous variants have been shown to cause NDM81,82, these variants 

were presumably included due to a bioinformatics error based on their predicted 

consequences across both genes (e.g. stop-gain variant in MYL7 but downstream gene 

variant in GCK). 

6. Inclusion of variants with incorrect zygosity for the mode of inheritance of the 

disease 

e.g. heterozygous LoF variants in SLC2A2 have no phenotype although homozygous 

pathogenic variants in SLC2A2 cause NDM; despite this, numerous heterozygous LoF 

variants of SLC2A2 were included in the penetrance evaluation. 

7. Inclusion of pathogenic variants with the wrong mechanism 

e.g. heterozygous GoF missense variants in ABCC8 and KCNJ11 cause NDM <6 months, 

whilst homozygous LoF variants in these genes cause the opposite phenotype of 

familial hyperinsulinism79. Importantly, heterozygous LoF variants in ABCC8 and KCNJ11 

have no phenotype, but were nonetheless included in diabetes penetrance estimates. 

8. Sub-optimal phenotype and case definition 

https://sciwheel.com/work/citation?ids=15210862&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15211440,3569271&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14001191&pre=&suf=&sa=0&dbf=0
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e.g. the same ICD10 code was used for T2D and MODY. The definition of diabetes could 

be substantially improved, for example by the inclusion of HbA1c, glucose, the self-

reported questionnaire, and primary care data – all of which are available in UK 

Biobank. Failure to identify these individuals as cases rather than controls would bias 

penetrance estimates downwards83. 

9. Inappropriate age of individuals 

e.g. NDM occurs <6 months and, because of its severity and rarity, there is likely a 

substantial bias away from pathogenic variants for these genes in population based 

studies with recruitment >40 years.  

10. Inappropriate calculation of penetrance 

e.g. as a result of calculating the risk difference versus the background rate of diabetes 

in the UK Biobank, some variants appear artifactually to be protective (i.e. lower 

disease prevalence than background), which further biases the penetrance estimate 

downwards by including negative point estimates in calculations of averages.  

https://sciwheel.com/work/citation?ids=13128574&pre=&suf=&sa=0&dbf=0
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Figure legend 

Fig. 1. Comparison of penetrance estimates in diabetes, calculated using risk difference of 

groups of variants purportedly linked with MODY in 50,000 individuals from UK Biobank with 

exome sequencing data.  

The complete penetrance dataset from Forrest et al. JAMA 2022 was downloaded from 

Mendeley Data (accessed 4 July 2022, as outlined in Data Sharing Statement in Supplement)19. 

Variants from that dataset in UK Biobank linked with the disease “Maturity-onset diabetes of 

the young” and annotated as pathogenic or likely pathogenic in ClinVar or predicted to result 

in loss-of-function (frameshift, stop-gain, splice acceptor, splice donor) were retained. Variants 

were then re-annotated using Ensembl VEP84 and their presence confirmed in the UK Biobank 

50K exome release and curated. Additional pathogenic MODY variants were obtained from the 

Exeter clinical database (https://www.diabetesgenes.org/). Diabetes was defined either 

narrowly using ICD10 code E11x only (red), or broadly using ICD10 coding with self-reported 

questionnaire and HbA1C ≥48 mmol/mol7 (blue). Risk difference was calculated as the 

difference in disease prevalence between individuals with variant alleles and individuals with 

normal alleles for each variant and analysed for each of the individual variants included in each 

group (left), where the height of the points reflects the number of variants at a specific risk 

difference, as well as for all pathogenic MODY variants grouped together with 95% confidence 

intervals (right). Results are presented in four groups: the first group (A) includes 74 variants 

previously annotated as causative19; the second group (B) contains 9 variants from the initial 

dataset19 that were judged to be pathogenic for MODY following expert curation and is an 

extremely conservative estimate of penetrance; the third group (C) contains an additional 27 

clinically-reported pathogenic variants (not included in the previous set), judged to be 

pathogenic for MODY following expert curation and likely representing the most accurate 

https://sciwheel.com/work/citation?ids=12352883&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2708181&pre=&suf=&sa=0&dbf=0
https://www.diabetesgenes.org/
https://sciwheel.com/work/citation?ids=13805372&pre=&suf=&sa=0&dbf=0


 

23 
 

estimate of MODY penetrance in this cohort; the fourth group (D) contains variants of 

uncertain significance (VUS), defined as rare (gnomADv2.1 minor allele count <2)85 missense 

variants predicted to be damaging (REVEL >0.7)86 with ClinVar classifications of “uncertain”, 

“conflicting” or “unknown”87. Numbers in brackets = number of variants included in each 

group, followed by the number of heterozygotes in 50,000 individuals in UK Biobank.  
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