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Abstract. Scattering, especially multiple scattering, is a well known problem in

imaging, ranging from astronomy to medicine. In particular it is often desirable to

be able to perform non-invasive imaging through turbid and/or opaque media. Many

different approaches have been proposed and tested through the years, each with their

own advantages, disadvantages, and specific situations in which they work. In this

tutorial we will show how knowledge of the correlations arising from the multiple

scattering of light allows for non-invasive imaging through a strongly scattering layer,

with particular attention on the practicalities of how to make such an experiment work.

1. Introduction

Most objects around us are opaque. Which is good, because otherwise we wouldn’t be

able to see them. But the perk of being visible comes with the disadvantage of occluding

anything behind them. There are many possible ways to deal with this problem, first

and foremost is the option of physically removing the opaque obstacle, thus gaining

direct line of sight to what we actually want to see, but they all come with their own

advantages and disadvantages (for recent reviews of the topic see [1, 2, 3]). In particular,

techniques like optical clarification [4] are invasive, meaning that they strongly modify

the sample. This can be undesirable, so there is a push to develop non-invasive imaging

techniques able to see things through an opaque medium.

In this paper we will focus on one such technique, which exploits the optical memory

effect (which we will discuss in detail later) to reconstruct the image of an object hidden

behind a scattering screen. This technique was originally developed under the name

Stellar speckle interferometry, in the context of ground-based astronomy, where the

Earth’s atmosphere acts as the scattering medium [5], but the same idea was later

successfully applied to x-ray scattering [6, 7] and optical microscopy [8, 9]. This tutorial

aims at providing a self-contained introduction to the technique, and a practical guide

on how to set up an optical experiment and analyze the resulting data.
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2. Light scattering

There are two optical phenomena that make objects visible to us: absorption and scat-

tering. Green glass is mostly transparent (you can see through it), but since the other

colors are largely absorbed by it, we perceive it as green. On the other hand clouds

absorb very little, but they scatter sunlight, thus appearing white and opaque (dark

clouds are still white, just thick enough that most sunlight is scattered back into space

instead of reaching us.) As a rule of thumb absorption will make a signal weaker, while

scattering will scramble it, with the scrambling being a much harder problem to tackle

than the weakening (at least at the conceptual level). Following the time-honored tradi-

tion of breaking a difficult problem into smaller easier problems and tackling them one

at the time, in the following we will forget about absorption and focus on the scrambling

due to scattering.

2.1. Modeling multiple scattering

The theory of wave multiple scattering is now well established, with several reviews [10,

11, 12] and textbooks [13, 14, 15] devoted to it. In the following we will need only a few

results from it, so here we will be content with a simplified intuitive picture. In a uniform

and isotropic scattering medium, the average intensity of the unscattered light will

decay exponentially with the distance x from the source: Iballistic = I0e
−x/ℓs(Lambert-

Beer law), where ℓs is the scattering mean free path, i.e. the typical distance between

two scattering events. We can think of the scattering events to form an extended

source, whose intensity will also decay exponentially, forming a source for twice-scattered

light, etc. After n scattering events, the total average intensity will be a exponential

distribution convolved n times with itself. This is not an easy calculation to do for an

arbitrary n, but if we make the assumption that n ≫ 1, i.e. we are in the multiple

scattering regime, we can invoke the central limit theorem. This tells us that the

nth convolution of identical distributions with finite variance will always converge to

a Gaussian distribution. Using the fact that in three dimensions the variance of the

exponential distribution is σ2 = 6ℓ2s we can write

I(r) =
I(r0)

(2πn6ℓ2s)
3/2

e
− |r−r0|

2

2n6ℓ2s =
I(r0)

(12πℓsvt)
3/2

e−
|r−r0|

2

12ℓsvt =
I(r0)

(4πDt)3/2
e−

|r−r0|
2

4Dt , (1)

where we estimated the number of scattering events as the total path vt (where v is the

speed of light in the medium, and t the elapsed time) divided by the scattering mean free

path ℓs, and defined the diffusion constant as D = vℓs/3. This is the well known bulk

solution of the diffusion equation, which tells us that the propagation of light intensity

in the multiple scattering regime is not very different from heat propagation. Which in

retrospect is not overly surprising, as both can be thought as the average over Brownian

random walks, and thus both satisfy the diffusion equation ∂
∂t
I(r, t) = D∇2I(r, t).
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Figure 1. Left panel: When a coherent beam of light passes through a scattering

medium, it forms a speckle pattern, composed by bright dots (speckles) surrounded by

darker regions. Right panel: If the source spatial coherence is low (but its temporal

coherence is still high) the speckle pattern will not average out, but will take a shape

that depends on the shape of the source (in this case a cluster of dots)

A full discussion of the properties of the diffusion equation is beyond the scope of this

tutorial, but there are a couple of important features that are worth mentioning:

(i) The total amount of light transmitted through a scattering layer decreases with the

layer thickness L as ℓs/L.

(ii) A point source on one side of a scattering slab will produce a bell-shaped intensity

distribution of width ∼ L on the other side. This explains why a thick enough

scattering medium appears opaque.

The first point is good news, as it tells us that some signal can pass through even

relatively thick scattering media. On the other hand the second point is very bad news,

as it makes difficult to form any good image through scattering media thicker than a

few mm.

2.2. Interference and speckle

Thankfully, not everything is lost, as in modeling light propagation in scattering media

we forgot an important point: light is a wave, and thus it interferes. This doesn’t seem

like a big deal at first sight, but it has a number of important consequences. The first one

is that the light transmitted through a scattering slab won’t be a shapeless blob, but will

have a lot of internal structure. To see why, we can think about the field propagation

as entering the scattering medium, performing a random walk, and then exiting the

medium. Light doesn’t actually do that (thinking about photons performing a random

walk is a common misconception [16]), but it turns out that the average over all possible

random walks yields the same result as the proper calculation. Since the amount of phase

accumulated depends on the path length, the average field at each point on the output

surface will be the sum of a lot of random terms. To perform this sum we can invoke

the central limit theorem (again) and find that both the real and imaginary parts of the

field are normally distributed. By making a change of variable from real and imaginary
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Figure 2. The speckle correlation due to the optical memory effect decreases rapidly

if |∆ka|L ≫ 1, but for small values of |∆ka|L there is a perfect correlation.

part, to intensity and phase, we find that the phase is uniformly distributed, and the

intensity follows the exponential distribution p(I) = 1
⟨I⟩e

−I/⟨I⟩ (this is for polarized

light. If the light is not polarized, the result is slightly more complicated [17]), where

⟨.⟩ represents the average. An important property of p(I) is that its standard deviation

is equal to its average, meaning that the intensity pattern after the scattering medium

will fluctuate spatially from a maximum to zero, taking the shape of bright patches

(speckles) surrounded by dark patches (see fig.1). This speckle pattern appears to be

random, but actually encodes a lot of information about both the scattering medium

and the light illuminating it.

2.3. The optical memory effect

Despite how it appears, speckle patterns actually encode a lot of information about

both the scattering medium and the light illuminating it. Teasing out some of this

information will be the goal of the rest of this tutorial paper, and to do so we need

to investigate speckle correlation. The fact that speckle is correlated means that the

intensity at one point is not independent from the intensity at another point, as in the

simplified model we used above. So we need a slightly better model.

We assume our scattering medium is a slab of infinite dimensions in both x and y, and

with a thickness L along z. We then define the correlation between the intensity due to

an incident plane wave with wavevector ka, emerging in the direction kb (Ia,b) and the

intensity due to an incident plane wave with wavevector ka′ , emerging in the direction

kb′ (Ia′,b′) as

CI
a,a′,b,b′ =

⟨δIa,b δIa′,b′⟩
⟨Ia,b⟩ ⟨Ia′,b′⟩

, (2)

where δI = I − ⟨I⟩ represent the fluctuations from the average. The calculation is not

difficult but it is long, so we refer the interested reader to the literature [18, 19] and

simply state the result that, if we are far away from the Anderson localization transition,
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the leading term has the form

C(1)
a,a′,b,b′ = δ(∆ka −∆kb)

(
|∆ka|L

sinh |∆ka|L

)2

, (3)

where ∆ka = ka−ka′ , and δ is a Dirac delta. This formula can be interpreted as follows:

if we illuminate a scattering slab with a plane wave of wavevector ka, we produce a

speckle pattern in transmission (and one in reflection). As shown in Fig. 2, if now we

change the angle of incidence by a small amount |∆ka|, so that
(

|∆ka|L
sinh |∆ka|L

)2
∼ 1, the

resulting speckle pattern will still be highly correlated with the previous one (i.e. they

will look the same), but also rotated by |∆kb| = |∆ka|. This is known as the optical

memory effect. In the other limit, if |∆ka|L ≫ 1, the correlation will be small, and

the two speckle patterns will be very different from each other. As a rule of thumb, the

angular range over which this effect is significant, is of the order of λ/L. If we illuminate

with a finite-sized beam instead of a plane wave, the Kronecker delta in equation 3 must

be replaced with the square of the Fourier transform of the incident beam profile, which

will determine the speckle shape and extension [14]. It is worth noticing that if we look

in reflection instead of in transmission, we get the same correlation term, but instead

of L we need to use ℓs in equation 3, which leads to a much bigger effective range

for the memory effect. Also, if the scattering is not isotropic (e.g. forward scattering is

usually more likely than back scattering in biological systems) we need to use a “effective

thickness” Leff, which is usually smaller than the geometrical thickness L [20].

This is by far not the only correlation that arises from wave scattering through a slab,

but it is the strongest (albeit short-ranged), and it will enable us to perform non-invasive

imaging through a scattering medium.

3. Speckle interferometry theory

Consider an object that either emits or reflects light with an intensity described by the

function O(r0), hidden behind a scattering screen of thickness L. If the light coming from

the object is broadband (i.e. its temporal coherence is too low) the speckle patterns

generated by each frequency will average out, but if the light has a long coherence

length (or, equivalently, if our detection is narrow-band enough), the light coming from

the point r0 on the object will produce a speckle pattern S(r0, rd) at position rd [21].

If the spatial coherence of the source O is low enough, these speckle patterns will not

interfere, but their intensities will sum, resulting in a measured intensity

I(rd) =

∫
O(ro)S(ro, rd) d

2ro, (4)

i.e. the speckle pattern S acts as a point spread function. This intensity I(rd) can

be measured, but doesn’t really resemble the shape of the object we are interested in
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imaging (see fig.1). To proceed we take an autocorrelation of the measured intensity:

[I ⋆ I](∆rd) =

∫
I(rd) I(rd +∆rd)d

2rd =

=

∫ [(∫
O(ro)S(ro, rd)d

2ro

)(∫
O(yo)S(yo, rd +∆rd)d

2yo

)]
d2rd =

=

∫∫
O(ro)O(yo)

(∫
S(ro, rd)S(yo, rd +∆rd) d

2rd

)
d2rod

2yo

=

∫
O(ro)O(yo)

(
[S ⋆ S] (ro,yo,∆rd)

)
d2rod

2yo .

(5)

where y0 is a dummy variable and ⋆ represents the correlation product (notice that all

functions here are real-valued, so we omit any complex conjugate). We would now like

to rewrite S ⋆S in terms of the speckle correlation CI . This can be done in 2 steps: first

we need to specialize eq.2 to our particular case, where the intensities to be correlated

are the speckle patterns generated by two different points (ro and yo ) and measured at

two different points (rd and rd +∆rd):

⟨δIa,b δIa′,b′⟩ → ⟨δS(ro, rd) δS(yo, rd +∆rd)⟩ . (6)

Assuming that spatial and ensemble averaging are equivalent we can then rewrite the

correlation function as

CI(ro,yo,∆rd) =
[δS ⋆ δS] (ro,yo,∆rd)

⟨S⟩2
≃ C(1) . (7)

The second step is to write S ⋆ S in terms of δS ⋆ δS:

δS ⋆ δS = (S − ⟨S⟩) ⋆ (S − ⟨S⟩) = S ⋆ S + ⟨S⟩ ⋆ ⟨S⟩ − 2S ⋆ ⟨S⟩ =

=

∫
S(ro, rd)S(yo, rd +∆rd) d

2rd +

∫
⟨S⟩2 d2rd − 2

∫
S(ro, rd) ⟨S⟩ d2rd =

= S ⋆ S − ⟨S⟩2A ⇒ S ⋆ S = δS ⋆ δS + ⟨S⟩2A ,

(8)

where ⟨S⟩ =
∫
S(ro,rd) d

2rd
A

is the average speckle intensity, and A =
∫
d2rd is the area

covered by the speckle pattern.

We can now put together eq.5, eq.7, and eq.8 to obtain

[I ⋆ I](∆rd) =

∫
O(ro)O(yo)

(
[δS ⋆ δS] (ro,yo,∆rd) + ⟨S⟩2A

)
d2rod

2yo =

= ⟨S⟩2
∫

O(ro)O(yo)CI(ro,yo,∆rd)d
2rod

2yo + A ⟨S⟩2
∫

O(ro)O(yo)d
2rod

2yo .

(9)

To proceed further we make the change of variables yo = ro + ∆ro, we call ∥O∥2 =∫
O(ro)O(yo)d

2rod
2yo, and we approximate CI with its leading term:

CI ≃ C(1) = δ(∆ka −∆kb)

(
|∆ka|L

sinh |∆ka|L

)2

= δ(∆ro −∆rd)

(
2π
λ

|∆ro|
d

L

sinh 2π
λ

|∆ro|
d

L

)2

(10)
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where d is the distance between the object and the scattering layer and we made a small

angle approximation (if the angles are big, the second factor in C(1) goes to zero), so

ka ∼ 2π
λ

∆ro

d
, with λ being the wavelength of the incident beam. We can now rewrite the

autocorrelation of the measured intensity as

[I ⋆ I](∆rd) ≃ ⟨S⟩2
(∫∫

O(ro)O(ro +∆ro)C(1)(∆ro,∆rd)d
2rod

2∆ro + A ∥O∥2
)

=

= ⟨S⟩2
[∫ (∫

O(ro)O(ro +∆ro)d
2ro

)
C(1)(∆ro,∆rd)d

2∆ro + A ∥O∥2
]
=

= ⟨S⟩2
[∫

[O ⋆ O](∆ro)C(1)(∆ro,∆rd)d
2∆ro + A ∥O∥2

]
(11)

where
∫
O(ro)O(ro +∆ro)d

2ro = O ⋆ O. For small values of ∆ro, C(1) is, as discussed

above, approximately the Fourier transform of the incident beam profile, which will only

depend on ∆ro −∆rd and thus we can write

[I ⋆ I](∆rd) ≃ ⟨S⟩2
(
[O ⋆ O]⊗ C(1) + A ∥O∥2

)
, (12)

where ⊗ represents a convolution products, and C(1) only acts as a point spread function

with a width equal to the typical speckle size. On the other hand, when |∆ro|
d

∼ λ
L
, C(1)

stops acting as a simple point spread function and I ⋆ I gradually ceases to be a good

approximation of O ⋆ O, until it goes to zero for large values of ∆ro. This defines a

“memory effect range” (also known as an “isoplanatic patch”) where we can reliably

measure O ⋆O. All information about relative distances larger than that are effectively

lost.

3.1. Phase retrieval and the Gerchberg–Saxton algorithm

Even in the most ideal case, where the object sits comfortably within the optical mem-

ory effect range and our illumination beam is wide enough that we can approximate it

as a plane wave, the best we can directly extract from the intensity we measure is the

autocorrelation of the object, not the shape of the object itself. In a few cases this is

enough, e.g. binary stars seen from a ground-based telescope are usually too blurred

by the atmosphere inhomogeneities to be able to resolve their angular distance, but if

one measures in a sufficiently narrow band and for a sufficiently short time, one gets a

speckly image whose autocorrelation is the autocorrelation of two small dots [22]. And

the autocorrelation of two small dots is 3 small dots, where the distance from the side

ones to the central one is exactly the same as the distance between the two stars. While

this explains why astronomers developed this approach, in many cases the objects to be

imaged are too complex for any useful information to be gained by just looking at the

autocorrelation of the object.

What one would like to do is to invert the autocorrelation and extract O. The

problem here is that autocorrelation is a lossy operation, so it is not an invertible oper-

ator. Thankfully, if we can make assumptions about O (e.g. in our case O is real-valued
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and positive) there are well established techniques to find an approximation to O start-

ing from O ⋆ O. Even better, if O is at least two-dimensional (and since here we are

dealing with images, we satisfy this criterion), the solution found by these techniques

is unique [23]. We are not going to prove why these techniques work here, but we will

discuss how they work and how to implement them.

Thanks to the Wiener–Khinchin theorem we know that the Fourier transform of the

autocorrelation of a function is equal to the modulus squared of the Fourier transform

of the function itself, i.e. F [O⋆O] = |F [O]|2, and thus we can directly extract the mod-

ulus of the Fourier transform from the autocorrelation. What we still need to be able

to reconstruct O is the phase of the Fourier transform, but almost all possible phases

will result in a image that violates our initial assumptions when we perform the inverse

Fourier transform, with the only exception being the correct phase.

To iteratively search for this phase, the Gerchberg–Saxton algorithm starts from a

guess of the true object O (the better the guess the faster the convergence, but even

very bad guesses will eventually converge to the correct solution), Fourier transform

it, substitute the (wrong) amplitude with the one extracted from the autocorrelation,

and Fourier transform back. Since the phase was wrong, what we get is not a real and

positive function, but to nudge the algorithm in the right direction we can set to zero

every pixel in the image that does not satisfy these constraints. We now have a slightly

better guess than we had before, and we can repeat the whole process again and again,

until the autocorrelation we measured and the autocorrelation of our new best guess are

close enough to satisfy us. As one can imagine, setting to zero every pixel that doesn’t

satisfy our constraints is harsh, and while the algorithm works, it converges slowly and

tends to get stuck for long periods of time. A better solution is to nudge slightly the

values of the pixels that don’t satisfy our constraints at each iteration, but of course

there is an innumerable number of ways to do that, and choosing the best one is not

easy. Thankfully, this hard work has already been done, and it is now generally accepted

that the so-called hybrid input-output algorithm is the best practical option. To explain

the difference, in the Gerchberg–Saxton algorithm (also known as the error reduction

algorithm in this context), the guess g at iteration k + 1 is updated to the new guess g′

at all points x that satisfy the constraint γ and set to zero otherwise, i.e.

gk+1(x) =

{
g′(x) x ∈ γ

0 x /∈ γ
, (13)

while in the hybrid input-output algorithm

gk+1(x) =

{
g′(x) x ∈ γ

gk(x)− βg′(x) x /∈ γ
, (14)

where β is a parameter that can be freely adjusted, to optimize the convergence.

Empirically, the hybrid input-output algorithm is more erratic than the error reduction
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one for β ≫ 1, but also tends to get in the vicinity of the desired solution much faster.

On the contrary, the error reduction algorithm tends to stagnate for long periods, but

once it is close to the desired solution, it will converge to it very reliably. There is no

foolproof recipe on how to use these algorithms, but we have found that cycling some

iterations of the hybrid input-output algorithm while gradually decreasing the value of

β tends to work in most cases. Like with most iterative methods, the more iterations

one manages to perform, the better the final result will be (on average), but since these

iterations are computationally expensive, one has to make a judgement call and decide

when to stop. Thankfully, modern GPU acceleration allows one to perform a large

number of Fast Fourier Transforms on large images relatively fast, thus making this

computational approach significantly faster than it was when it was first developed.

One final important point to discuss is what this algorithm can not do: autocorrelations

do not contain any information about absolute position, just relative position between

the various points composing the image, so this algorithm can never retrieve the absolute

position of the imaged object. Furthermore, the autocorrelation of a real function is

always centrosymmetric, so the algorithm can not distinguish between the image of the

object and the same image flipped.

4. A simple experimental implementation

As this is a tutorial, we will focus on a minimal implementation of the experimental

apparatus, which is both cheap and easy to build and run. The main components are:

Light source To satisfy the assumptions of eq.4 we need the temporal coherence of the

signal to be large enough to generate a speckle pattern, but the spatial coherence

to be low enough that the speckle patterns generated by different points will not

interfere. To be more precise, we need the bandwidth of the signal to be smaller than

the speckle spectral correlations of the scattering medium, so that all frequencies

produce the same speckle pattern [24], and a spatial coherence low enough that the

fringe visibility is small [25].

This can be achieved in many ways. One is to have the object itself to be fluorescent,

which automatically gives us low spatial coherence, and detect the signal through a

narrow band filter to increase the temporal coherence [8, 26]. Another, simpler, way

is to start with a coherent light source (e.g. a laser), reduce its spatial coherence

with e.g. a spinning diffuser, and use a mask as the object [9]. Depending on the

specific arrangement, you might need some optics to direct the light in the desired

direction.

Object Depending on your light source you might need a fluorescent sample, or a

mask that simply allows some of the light to pass through. An important, and

often under-appreciated, point is that you want the whole object to fit within the

optical memory effect range (which, if L ≫ λ, can be very small), otherwise you

will be able to measure only a part of the autocorrelation O ⋆ O and the iterative

algorithm will fail to reconstruct the full object.
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Figure 3. Photo of the experimental apparatus with the components highlighted.

a: Light source (1mW CW polarized HeNe laser).

b+c: Beam expander made from two lenses with focal length -25mm and 300mm

respectively.

d: Home-made spinning diffuser to reduce the spatial coherence of the beam.

e: Sample (a piece of aluminum foil with 3 holes).

f: Scattering layer (220 grit ground glass optical diffuser).

g: Camera (Allied Vision Manta G-125B).

Scattering layer To make the experiment simple you want all the incident light to

be scattered, but at the same time the thickness to be small (so that the optical

memory effect range is large). The simplest solution is to use a ground glass diffuser,

which effectively acts as a random phase mask of negligible thickness.

Detection We want to measure the speckle pattern in the far field, so position your

camera such that each speckle spot is bigger than a pixel, but not much bigger.

If you have constraints in where you can put the camera, some optics might be

necessary. Since, as per eq.12, we want to measure a relatively small signal sitting

on a large background, an 8-bit camera is likely to not have enough dynamic range.

We suggest to have at least a 12-bit dynamic range, but otherwise any camera where

you can access the raw data (i.e. many smartphones are excluded) will suffice.

4.1. A practical example

In fig.3 we show a basic implementation of the experiment, that nevertheless contains

all the features of more complex apparatuses. A laser beam with long coherence time is

expanded and roughly collimated using two lenses to form a telescope. A spinning optical

diffuser is used to reduce the spatial coherence of the laser source, and to effectively

provide uniform illumination of the object when a single camera frame integrates over

many realizations of the disorder. The coherence properties of the composite source can

conveniently be checked by measuring the speckle contrast ratio, defined as the ratio of
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the standard deviation of intensity to the mean of intensity over some detection area.

When the laser illuminates the scattering medium directly, the contrast ratio is near

unity. Yet when the spinning diffuser is added the temporally integrated image should

become smooth, with a contrast ratio ≲ 0.05. The diffuser increases the divergence

of the expanded beam, hence perfecting the collimation of the beam expander is not

crucial. One should resist the urge to perfectly collimate the illumination light after the

diffuser, as the light from points on the object may then fall on separate regions of the

scattering layer. Notice that the spinning diffuser is the only piece of this experiment

that is not an off the shelf component. There are a few commercially available speckle

reducers. However, as we are not concerned with mechanical stability and vibrations

here, the simple solution of a ground glass diffuser mounted on a small electric motor is

sufficient (and often more effective) .

The simplest possible choice for an object is a screen that doesn’t let any light pass

through (e.g. a layer of aluminum foil) with a pattern carved into it. Three holes

arranged in a slightly irregular triangle is the simplest non trivial pattern, and thus the

one we use here.

The distance d between the sample and the scattering layer is important because, as

per eq.10, it determines the angular size of the object as seen from the scattering layer,

and thus whether it will fit in the memory effect range. Finally, a camera is placed after

the scattering layer to collect the (scattered) light. This distance, combined with d, will

determine how large the object will appear after the reconstruction [26].

4.2. Data analysis

In fig.1 a typical raw image for both the case when the spinning diffuser is not moving,

and when it is spinning are shown. In the first case we see a very fine-grained but

high-contrast speckle pattern, while in the second case, as per eq.4, we see a relatively

slow-varying but low-contrast image. This is the convolution of the object O (in our

case, three dots arranged in a triangle) and the unknown speckle S. This data needs to

be cleaned before it can be used.

By looking at fig.1 it is immediately visible that the raw data sits on an uneven

background. This is due to an imperfect illumination and collection geometry, and

while it can be ameliorated with a more careful alignment, it can never be completely

removed. To correct for it we can take multiple measurements with different realizations

of the scattering potential, and in this example we took 8 separate measurements of I.

For the setup shown in fig.3 one can obtain it by rotating the diffuser (labelled as f

in the figure) by a few degrees each time. In more realistic experiments the scattering

layer might be dynamic and change in time like a biological tissue, so one can simply

take successive shots with the camera. Since the background is constant but the signal

isn’t, we can estimate the background by taking the average of our measurements Ī,

and subtract it from all the measurements (see fig.4b) , which also helps dealing with

the unknown background A ∥O∥2 in eq.12 . We can now proceed to autocorrelate our
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Figure 4. Data processing: a) Typical raw data measured by the apparatus with

the nonuniform background clearly visible. b) Raw measurement minus the average

measurements, which now sits on a flat background. c) Autocorrelation of the raw

image with the background subtracted. The autocorrelation of the three dots is clearly

visible. d) Average of the autocorrelations.

measurements as in fig.4c. As expected from eq.12 we can clearly see the autocorrelation

of three dots arranged in a triangle, which is given by a central bright spot and six dots

arranged around it in a hexagon. But contrary to what we expected from eq.12 we

can see a lot of unwanted low-intensity structure in the background. This is due to the

fact that we are only measuring a finite part of the signal, and thus the integral that

gives rise to S ⋆ S in eq.5 doesn’t perform a perfect average. Since we have a number

of autocorrelations (I − Ī) ⋆ (I − Ī), we can ameliorate this problem by averaging them

to obtain (I − Ī) ⋆ (I − Ī) (fig.4d). Even after this processing the autocorrelation still

suffer from a few problems, which need to be addressed before we can start the phase

retrieval process to recover the object’s shape. First of all, since the autocorrelation of

white noise is a Dirac delta, and our measurements are unavoidably noisy, fig.4d has a

spike (a single pixel) in the very centre. As we know that this is just an artefact we can

easily remove it by changing the value of that specific pixel to the value of a neighbour

pixel. Another problem is that, since we subtracted the average measurement, now the

autocorrelation can have negative values, which goes against our original assumption

that we are essentially measuring the autocorrelation of a positive object O. The

minimal correction we can make is to set every negative pixel to zero, or to add a

constant background such that the autocorrelation is positive everywhere. Another

option, which leads to an almost identical result, is to calculate (I ⋆ I)/(Ī ⋆ Ī) (i.e.
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Figure 5. Phase retrieval using the Gerchberg–Saxton algorithm. Four runs of

30,000 iterations each, showing the initial guess (in the first three cases random white

noise, and in the last case the measured autocorrelation) , the retrieved patter, the

autocorrelation of the retrieved pattern, and the error as a function of the iteration

number.

to normalize the average autocorrelation of the raw data to the autocorrelation of the

average). This automatically gets rid of the background inhomogeneities without having

to do any explicit subtraction.

4.2.1. Practical phase retrieval In section 3.1 we introduced the Gerchberg–Saxton

algorithm and its variation, the hybrid input-output algorithm. Implementing either of

them as computer code is not exceptionally difficult, but there are a few details that are

worth discussing.

Due to the finite precision of numerical evaluations, it is very likely that the inverse

Fourier transform will produce a small imaginary part even when it should be zero, and

if we implement naively the constraint that O must be real, no element in the matrix

representing the image will satisfy this constraint. One could impose a (arbitrary)

threshold on the imaginary part to check if a given pixel satisfies the constraint or not,

but in most cases it is easier to just set the imaginary part to zero.

The top three rows of Fig.5 shows different runs of 30,000 iterations of the

Gerchberg–Saxton algorithm defined in eq.13 starting from 3 different initial guesses.

For each guess, 30,000 iterations performed in MATLAB R2021a on a dataset
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downsampled to 241 × 323 pixels takes 55 seconds on a modern desktop computer

(Intel Core i9-10900K, 16 GB DDR4 RAM). When performed on a GPU (NVIDIA

GeForce RTX 3080), the run time reduces to 9 seconds. In this case we assumed we

had no information about the object, and used random numbers uniformly distributed

between 0 and 1 as the guesses; a better initial guess (as in the last row of Fig.5) will

result in a faster convergence. We can track how the retrieval is proceeding by comparing

the autocorrelation of the image at the kth iteration with the measured autocorrelation

and define an error function estimate as

error =

∑
pixels

∣∣∣gk ⋆ gk − (I − Ī) ⋆ (I − Ī)
∣∣∣

number of pixels
. (15)

By looking at how this error function decreases with the iterations we can get an idea

about how much progress we are making. From fig.5 we can see that Gerchberg–Saxton

algorithm progresses very quickly in the first few iterations, but then the improvement

becomes negligible for a while, and a successful reconstruction is achieved only when a

second (or third) sharp jump happens to reduce the error further. These long stretches of

no progress are a common feature of this algorithm, and are due to the fact that there are

many very different false solutions that produce almost identical autocorrelations, and

the algorithm can take a long time to jump from one to a better one. A practical trick is

to run the algorithm multiple times with different initial guesses for a reasonable amount

of iterations each time, and then choose the run that resulted in the smallest error,

instead of a single very long run. Another important feature clearly visible in fig.5 is

that, since the autocorrelation of a real and positive function is always centrosymmetric,

the algorithm is not able to distinguish between O and its mirror image. Similarly, an

autocorrelation doesn’t contain information about absolute position, so the position of

the reconstructed image is essentially random. Any prior information one has on the

object shape can be used to speed up convergence. As shown in the bottom row of

Fig.5, even just using the measured autocorrelation as the starting point speeds up the

convergence enormously (as the support of the object must be contained in the support

of the autocorrelation [27]).

The hybrid input-output algorithm, defined in eq.14, is designed to reduce the

convergence time. The parameter β decides how much each iteration is nudged in

the right direction, so a reasonable strategy is to start with a relatively large value of β,

so that the solution space can be sampled faster, and then gradually reduce it to zero.

Fig.6 shows three different runs of 1,000 iterations of the hybrid input-output algorithm

starting from 3 different initial guesses, and with β being linearly decreased from 2 to

0 with the number of iterations. Despite being 30 times shorter than the runs with

the Gerchberg–Saxton algorithm, all three runs correctly converged to the three dots

pattern, and all show a clear transition around 400 iterations (i.e. β ∼ 1.2). There is

no agreed best way to choose β or to combine these algorithms, but what we discussed

here is an approach that tends to work fine for most cases.
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Figure 6. Phase retrieval using the hybrid input-output algorithm while linearly

decreasing β from 2 to 0. Three runs using white noise as the initial guess, and one

using the measured autocorrelation, of 1,000 iterations each, showing the initial random

guess, the retrieved patter, the autocorrelation of the retrieved pattern, and the error

as a function of the iteration number. Contrary to the Gerchberg–Saxton algorithm

case shown in Fig.5, a better choice of starting point does not significantly improve

convergence here, as the algorithm starts with a high value of the β parameter, and

thus explore a large portion of the solution space anyway.

5. Conclusions

Non-invasive imaging in strongly scattering media is unlikely to be a solvable problem

in its generality, but different approaches that work under different conditions and in

different cases are constantly being developed. Here we discussed a technique based

on the optical memory effect, that allows non-invasive imaging through a scattering

layer. The autocorrelation of the object can be measured with a resolution given by the

speckle correlation (CI acts as a point spread function in eq.12), and this autocorrelation

numerically inverted using a phase retrieval algorithm. The main advantages of this

approach is its simplicity, and the fact that it works even for extremely strongly (and/or

dynamic) scattering layers. It can also work in a reflection geometry [9] or to image

a fluorescent medium with a microscope [26]. The phase retrieval is computationally

expensive, but since it largely amounts to Fourier transforms and operations on a matrix

elements, it can be sped up significantly by exploiting modern GPUs.
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The main limitations of this approach is that the angular range of the optical memory

effect is usually very small (see fig.2), and thus the objects to be imaged will need to be

either very small or very far away from the scattering layer, or only the central part of

the autocorrelation will be measured.
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Data availability

The raw data, taken with the setup shown in fig.3, used to generate the figures in this

tutorial is available at https://zenodo.org/doi/10.5281/zenodo.13642167, together

with a code in Mathematica and one in Matlab that perform all the data analysis de-

scribed in the sections above.
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