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1. INTRODUCTION

The numerical solution of differential equations is a central
tool in the modeling and analysis of dynamic processes.
Key to these tools are approximations of derivatives as
typified by the first-order Euler approximation Iacchetti
et al. [2011]. The idea of combining Euler approximations
and observers was introduced in Chapelle et al. [2012]
in the context of numerical solution of wave equations.
The idea is to take advantage of available process output
information to improve the numerical solution. Here, we
developed this idea further. Specifically, we switch between
the numerical scheme and the observer to make a hybrid
numerical scheme – using the numerical scheme when
“good enough” and otherwise switching to an observer.
The key point is to avoid excessively small (fine scale)
numerical step sizes if this can be obviated by using read-
ily available (coarse scale) process information. We used
input-to-state stability techniques to establish the stability
of the switched system and analyze error convergence for
the hybrid numerical scheme. Here we further develop this
idea. Specifically, we use an adaptation of the observer
gains and sampling period in the hybrid scheme, resulting
in numerical algorithms akin to well known predictor-
corrector numerical schemes such as Adams-Bashforth Bu-

tusov et al. [2020], Lundberg and Poore [1991].

Following Chapelle et al. [2012], we start with the stan-
dard, continuous-time Luenberger observer Luenberger
[1964]:

ẋ(t) = Ax(t), y = Cx(t)
ẇ(t) = (A−GC)w(t) +Gy(t) ,

(1)

and apply Euler approximations with step length h to the
observer to yield a discrete-time system:

xk+1 = xk + hAxk, yk = Cxk

wk+1 = wk + h(A−GC)wk +Gyk .
(2)

Here, the variables xk and wk are numerical approxi-
mations of the to-be-computed x(kh) and w(kh). Now
replace the numerical xk and yk with their actual sampled
counterparts zk = x(kh) and the measured and sampled
process output vk = y(kh) to yield a Euler-based, sampled
data observer:

zk+1 = ehAzk, vk = Czk (process)
wk+1 = wk + h(A−GC)wk +Gvk . (observer)

(3)

The observer in (3) is driven by the process samples vk =
Czk = y(kh). Crucially, these vk values are not computed
in the numerical scheme, they are samples of the output of
the process to-be-computed numerically. So to enact the
observer we need to sample the process. In applications,
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process sampling may be costly. Moreover, it might be
unnecessary, especially when the Euler scheme is good
enough so that these process values can be approximated
sufficiently well numerically. This observation suggests
an alternative approach whereby we switch between the
observer and the standard Euler scheme as follows. Use
the standard Euler scheme:

xk+1 = (I + hA)xk, (4)

When it would work adequately, switch to the sampled-
data observer (3) otherwise.

The error ek = zk − wk satisfies

ek+1 = ehAzk − (I + h(A−GC))wk − hGCzk

= (I + h(A−GC))︸ ︷︷ ︸
stable

ek +O(h2)zk︸ ︷︷ ︸
small

. (5)

Here, the O(h2)zk arises from the quadratic truncation
error in the Taylor expansion in h of ehAzk. So, when the
Luenberger observer is active, propagated errors are small
with error bounds controllable via the feedback matrix
I+h(A−GC), the choice of G, and the relative smallness
of h. Previous studies have shown how to choose G to
minimise propagation errors. But in this setting h, the
sampling period, is fixed and sufficiently small. While we
find that h is much larger than needed for the stability of
Euler, it could still be quite conservative. Now in standard
numerical schemes, such conservatism can be overcome by
adapting the sampling period, i.e., step size, such as in
Adams-Bashforth Butcher [2016], Choi and Laub [1990],
Kreiss and Ortiz [2014], Peinado et al. [2010].

So, can we use adaptive techniques here for this Hybrid
Euler-observer-based scheme? So, in this case, both G and
h would change with time:

G = Gk; h = hk.

Let, tk+1 = tk + hk and so zk = z(tk) with error ek =
z(tk)− wk. Then, the observer error satisfies:

ek+1 = (I + hk(A−GkC))ek +O
(
h2
k

)
z(tk) . (6)

The error dynamics take the form of a stable system
with state matrix I + hk(A − GkC) driven by a bounded
disturbance – leading to input-to-state stability considera-
tions. In this paper, we explore the use of adaptive control
– choosing the gain and sampling period adaptively to
produce a hybrid “predictor-corrector” numerical scheme.
Because of the input-to-state stability setting, the adaptive
strategies are based on dead zones and so-called λ trackers.

The paper is organized as follows: In Section 2, we for-
mulate the sampled-data observer, the associated Euler
scheme, and the hybrid switching. In Section 3, we study
the related λ-tracking-based sampled-data observer, and
then we develop the hybrid predictor-corrector numerical
scheme with the Lyapunov-based switching and adaptive
dead zone. Section 4 contains illustrative simulations, and
Section 5 provides a conclusion.

2. HYBRID OBSERVER-BASED NUMERICAL
SCHEMES

2.1 A Lyapunov function-based switching condition

Here, we use a Lyapunov-based switching criterion, re-
called briefly here as follows:

• In the Luenberger observer part of (3), choose G
so that I + h(A − GC) is Schur stable, true, for
example, if A−GC is Hurwitz stable and h is small
enough, Mareels [1984]. Notably, the size of h can be
significantly larger than the size of h needed for I+hA
to be Schur stable.

• We then choose P so that V (x) = wTPw is a discrete-
time Lyapunov function for I+h(A−GC). This is the
case, for example, if P is a continuous-time Lyapunov
function for A−GC and h is small enough.

• Then, we use the Euler scheme so long as the “energy”
V decreases along the Euler scheme. More specifically,
for a chosen γ < 1, we use Euler if

(wk)
T (I + hA)TP (I + hA)wk ≤ γ wT

k Pwk, (7)

but switch to the Luenberger observer otherwise.

Here, P is obtained by solving the discrete-time Lyapunov
equation

(I + h(A−GC))TP (I + h(A−GC))− P = −Q (8)

for some chosen Q > 0, for example Q = I, and h is small
enough so that I + h(A − GC) is Schur stable, or G is
suitably chosen.

2.2 The observer switching scheme

This leads to the switched scheme:

If (7) holds, wk+1 = (I + hA)wk .

If (7) fails, wk+1 = wk + h(A−GC)wk + hGvk .

}

(9)
Note that in (9), the observer is driven by vk = Czk =
y(kh). We emphasize that y(kh) is not computed numer-
ically, it is simply the process output y(t) sampled at
t = kh. For stability analysis purposes we note that

vk = Czk with zk+1 = ehAzk .

Theorem 1. [Stability of the hybrid scheme] Assume
that γ < 1. Then, the switched scheme (9) is input-to-state
stable. Specifically,

V (wk+1) ≤ αV (wk) +O(h2), (10)

where
α = max {γ, β} ,

with β < 1.
Remark 1. The input-to-state stability described by (10)
can be used to prove convergence of the scheme.
Remark 2. The choices of fixed G and h are interwoven
and, using various estimation techniques, may be conser-
vative. So it would be advantageous if these parameters
internal to the numerical scheme could be found adaptively,
in analogy to the way step sizes are adjusted in adaptive
numerical schemes like Adams-Bashforth.

3. HYBRID OBSERVER-BASED ADAPTIVE
NUMERICAL SCHEMES

In the spirit of adaptive step size numerical schemes like
Adams-Bashforth, in this section we consider how to ad-
just, that is adapt, the gain G and sampling periods h in
(9). We appeal to adaptive control approaches based on
so-called λ-trackers. We divide the section into two parts.
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First, we consider a sampled-data observer without switch-
ing to the Euler scheme. Then, we combine the resulting
λ-tracking observer, through switching, with the numerical
scheme as in Bullinger and Allgöwer [2005], Ilchmann and
Ryan [1994], Ilchmann and Townley [1999a,b].

3.1 Sampled-data λ-tracking observer

We focus on the observer error equation (6). We choose
G = gkB and still with variable sampling period h = hk.
Then we have an observer error

ek+1 = (I + hk(A− gkBC))ek +O
�
h2
k


z(tk) . (11)

We choose B so that (A,B,C) is the minimum phase,
with a known “sign” of the high-frequency gain – say CB
has only right half plane eigenvalues, Owens [1996]. We
can now appeal to adaptive control techniques to adjust
the gain gk and the sampling period hk to guarantee
convergence of the error, but based only on process output
information. Because of the already discussed input-to-
state stability conditions, we invoke λ-tracking style dead-
zones in the adaptation.

Let, θk = Ce(tk) = y(tk) − Cwk. Note that θk is
determined by the state of the numerical scheme and the
process output – both available for implementation of the
numerical scheme.

The gain gk and sampling period hk are generated by:

hk =
1

gk log gk
, tk+1 = tk + hk, k ∈ N0,

gk+1 = gk + γδ(θk)gkhk ∥θk∥2,

δ(θ) =


1 if ∥θ∥ ≥ λ
0 if ∥θ∥ < λ

(12)

with t0 = 0 , g0 > 1. Then

limk→∞ gk = g∞ < ∞ ,

limk→∞ hk = h∞ > 0 ,

limk→∞ dis {∥θk∥, [0, λ]} = 0 .

Here, for non-negative a and b, dis {a, [0, b]} is the distance
from a to the interval [0, b], that is

dis {a, [0, b]} =


0 if a ≤ b
a− b else .

Remark 3. Here, we ensure the convergence of both gk
and hk, with the output observer error θk converging to a
λ-strip. This adaptive framework enhances the robustness
and adaptability of the observer, making it well-suited for
real-world applications where continuous access to process
measurements may be limited.

3.2 Hybrid predictor-corrector numerical scheme
with adaptive dead-zones

In this sub-section, we develop the hybrid predictor-
corrector numerical scheme with the Lyapunov-based
switching and adaptive dead zone. The key point is that if
we just use the λ tracker, the gain is always increasing, so
h is always decreasing, and we are back into the problem
of having overly conservative small h. To overcome this,
we invoke a second dead zone – a µ strip as follows:

hk =
1

gk log gk
, tk+1 = tk + hk, k ∈ N0,

gk+1 =





gk + ∥θk∥2 if ∥θk∥ ≥ λ

ρgk if ∥θk∥ < µ

gk if µ ≤ ∥θk∥ < λ.

(13)

Here ρ ∈ (0, 1) and µ < λ are additional design parame-
ters.
Remark 4. Outside the λ-strip gk increases, hk decreases.
Inside the µ-strip gk decreases, hk increases. Between the
two strips, gk and hk are held constant. This two-dead-
zone approach ensures that the gain is neither too large
nor too small. The parameter ρ determines how quickly
we reduce gk in the µ-strip.

We now combine the λ-tracking sampled data observer,
also invoking the extra µ-strip, with the Euler scheme. We
need to specify the switching condition via a Lyapunov
function. To do this we assume that coordinates have been
chosen so that:

A =


A11 A12

A21 A22


, C = [CB 0], and B =


I
0


,

with A22 Hurwitz (minimum phase condition) and CB is
totally unstable (relative degree one condition), Mareels
[1984]. Then the Lyapunov function is given by

V (x) = xTPx,

with

P =


βI 0
0 P22


, with P22A22 +AT

22P22 = −I ,

(14)
for any β > 0. Using this Lyapunov function in the
switching condition (7), we can now combine the sampled-
data observer and Euler scheme through a Lyapunov-
based switching condition. If:

(7) holds, wk+1 = (I + hA)wk .

(7) fails,




wk+1 = wk + hk(A− gkBC)wk + hkgkBvk,

hk = 1
gk log gk

,

gk+1 =





gk + ∥θk∥2 if ∥θk∥ ≥ λ,
ρgk if ∥θk∥ < µ,
gk if µ ≤ ∥θk∥ < λ.

(15)
Note that the step size is only adapted when the sampled-
data observer is active. When Euler is active the step size
is held constant.

In (15), the sampled process output vk satisfies:

vk = Czk with zk+1 = ehkAzk .

These formulas are not used in the scheme, but they are
used in stability arguments.

4. SIMULATIONS AND RESULTS

In this section, we illustrate the effectiveness of the hybrid
numerical scheme (7) and (15) based on dead-zone adap-
tive λ tracking. We apply the scheme to 3-dimensional
process with a stiff but stable A matrix and output C and
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Figure 1. Hybrid numerical scheme (7) and (15) with adap-
tive dead-zones. Process output y(tk) and numerical
output Cwk: Euler active (green); Observer active
(blue); Observer start (magenta).

Figure 2. Hybrid numerical scheme (7) and (15) with adap-
tive dead-zones. Output error θk: Euler active (green);
Observer active (blue); Observer start (magenta).

choose B so that the system (A,B,C) is minimum phase
and relative degree one.

Example 1. We consider the specific process as follows

ẋ(t) =

(
10.86 104.08 305.37
−1 −11 −28
0 1 0

)
x(t). (16)

Here, A has one negative eigenvalue and a pair of complex
conjugate eigenvalues:

−0.1022, −0.0189± 3.5519i .

For the stability of Euler we need a step size:

h < hc =
2(0.0189)

0.01892 + 3.55192
= 0.003.

The step size threshold hc is depicted in Figure 4.

We assume a process output:

y(t) = (1 0 0)x(t) . (17)

We choose,

B =

(
1
0
0

)
. (18)

In this case, the triple (A,B,C) is a relative degree one
and minimum-phase system with stable zeros −4 and −7.
We consider (7), (14) and (15) with parameters:

γ = 0.9, λ = 0.5, µ = 0.25, ρ = 0.95, β = 0.01 .

The simulation is given in Figures 1 to 4. We run Euler
alone with the maximum step size h = hc. We observe
the following:

Figure 3. Increasing/decreasing observer gain gk in hybrid
scheme (15).

Figure 4. Increasing/decreasing step size hk in hybrid
scheme (15). The dotted line depicts the maximum
allowed step size hc for stable Euler.

• The error converges to the λ-strip, with fluctuations
in and out of the µ-strip.

• With these parameters, µ = 0.25, at half of λ = 0.5,
is relatively large, whilst the parameter ρ = 0.95 is
relatively large. So the size of the µ strip is the main
driver for increasing the step size h. Notice that with
the increasing step size mechanism provided by the
µ strip, the adaptive step sizes from the λ-tracking
observer are almost all the time much larger than the
maximum step size for stability of Euler alone. This
can be seen in Figure 4. In fact, the adaptive step size
reaches values 20-fold the value hc.

• Notice also that the adaptive step size is held constant
either when the error is between the µ and λ strips,
or when the observer is inactive – see green plots in
Figure 2.

Example 2. We consider another system as follows:

ẋ(t) =

(
8.96 82.74 179.41
−1 −9 −20
0 1 0

)
x(t). (19)

Here, A has one negative eigenvalue and a pair of complex
conjugate imaginary eigenvalues:

−0.0095, −0.0152± 4.7010i.

For stability of Euler we need a step size:

h < hc =
2(0.0152)

0.01522 + 4.70102
= 0.0014.

We assume a process output:

y(t) = (1 0 0)x(t) . (20)

We choose:

B =

(
1
0
0

)
. (21)
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Figure 5. Hybrid numerical scheme (7) and (15) with adap-
tive dead-zones. Process output y(tk) and numerical
output Cwk: Euler active (green); Observer active
(blue); Observer start (magenta).

Figure 6. Hybrid numerical scheme (7) and (15) with adap-
tive dead-zones. Output error θk: Euler active (green);
Observer active (blue); Observer start (magenta).

In this case, the triple (A,B,C) is a relative degree one
and minimum-phase system with stable zeros −5 and −4.

Here we consider (7), (14) and (15) with parameters:

γ = 0.9 λ = 0.1, µ = 0.01, ρ = 0.5, β = 0.01 .

The simulation is given in Figures 5 to 8. We run Euler
alone with the maximum step size h = hc. We observe
the following:

• The error converges to the λ-strip, with fluctuations
in and out of the µ-strip.

• With these parameters, µ = 0.01, at one tenth of
λ = 0.1, is relatively small, whilst the parameter
ρ = 0.5 is relatively small. So the size of ρ is the main
driver for increasing the step size h. Notice that with
the increasing step size mechanism provided by ρ, the
adaptive step sizes from the λ-tracking observer are
almost all the time much larger than the maximum
step size for stability of Euler alone. This can be seen
in Figures 8 and 10. In fact, the adaptive step size
reaches values almost 30 times the value hc.

• Looking at the zoomed Figures 9 and 10 we see that
the adaptive step size is held constant either when
the error is between the µ and λ strips, or when the
observer is inactive (green portions in Figure 9). The
step size decreases if the observer is active and the
error is outside the λ strip (blue portions in Figure
9), and increases if the error is inside the µ strip.

Figure 7. Increasing/decreasing observer gain gk in hybrid
scheme (15).

Figure 8. Increasing/decreasing step size hk in hybrid
scheme (15). The dotted line depicts the maximum
allowed step size hc for stable Euler.

Figure 9. The region is zoomed in for the error in and out
strips, highlighted from 1.5 to 2.4 from Figure 6.

Figure 10. The region is zoomed in for step size h,
highlighted from 1.5 to 2.4 from Figure 8



Aisha Al Hayzea  et al. / IFAC PapersOnLine 58-17 (2024) 190–195 195

5. CONCLUSIONS AND FUTURE WORK

In this work, we have further developed the hybrid
observer-based numerical scheme over existing literature,
by drawing on ideas from adaptive high-gain stabilization
Sontag et al. [1989]. Specifically, we combine a sampled-
data high-gain λ-tracking observer with the Euler scheme
to create a predictor-corrector scheme with adaptive step
sizes. The adaptive step size is derived from an adaptive
observer gain, which acts to counter the potential stiffness
of the observed process to be computed.

The observer based ODE solver may be helpful in numeri-
cal solution of stiff: Byrne and Hindmarsh [1987], unstable,
highly oscillatory: Gurfil and Klein [2007], Wu and Wang
[2021], nonlinear chaotic systems. Development of such
solvers for implicit, differential algebraic equations Hosea
and Shampine [1996], Shampine and Reichelt [1997], using
variable step, variable order: Shampine [2002] and higher
order methods have been of continued research over last
few decades. The current approach shows a potential solu-
tion for flipping between different ODE solvers for initial
value problems (IVPs) and boundary problems (BVPs),
distributed ODEs and coupled partial differential equa-
tions: Wang et al. [2021], although a detailed comparison
with all of these existing solvers are beyond the current
which could be investigated in future research, beyond the
well known Runge Kutta family of solvers of low, medium,
high and variable orders Bogacki and Shampine [1989],
Dormand and Prince [1980], Verner [2010].
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