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1. Introduction

Braces were introduced by Rump [21] as a generalisation of radical rings in order 
to study set-theoretical solutions of the Yang-Baxter Equation (YBE). Every brace can 
be viewed as a non-degenerate involutive solution of the YBE, and any such solution 
can be embedded in a brace. Braces have since been studied from a number of different 
perspectives, and generalised in a variety of ways. Of particular relevance to this paper 
is the connection with Hopf-Galois theory, first noted by Bachiller in [2].

As reformulated in [10], the definition of a brace may be given as follows.

Definition 1.1. A left brace (B, +, ◦) consists of a set B and two binary operations +, ◦
such that

(i) (B, +) is an abelian group;
(ii) (B, ◦) is a group;
(iii) the brace relation a ◦ (b + c) = a ◦ b − a + a ◦ c holds for all a, b, c ∈ B.

The left brace (B, +, ◦) is trivial if the operations +, ◦ coincide.

There is an analogous notion of right brace, where (iii) is replaced by (a + b) ◦ c =
a ◦ c − c + b ◦ c. In this paper, we only consider left braces, so we will omit the adjective 
“left”.

Guarnieri and Vendramin [16] generalised braces to skew braces by removing the 
requirement that the group (B, +) be abelian. In the same paper, they presented the 
results of computer calculations counting braces (and skew braces) of small order. On 
the basis of these, they formulated a number of conjectures, including the following:

Conjecture 1.2. [16, Conjecture 6.6] Let m ≥ 3 and let q(4m) be the number of braces B
whose multiplicative group (B, ◦) is a generalised quaternion group of order 4m. Then

q(4m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if m is odd,
7 if m ≡ 0 (mod 8),
9 if m ≡ 4 (mod 8),
6 if m ≡ 2 (mod 8) or m ≡ 6 (mod 8).

A partial proof of this conjecture was given by Rump [23], who showed that q(2n) = 7
for all n ≥ 5 using the equivalence between braces and affine structures of groups. We 
note that some other enumerative conjectures from [16] have been proved in [24], [22]
and [11]. For further computational results counting braces and skew braces, see [26], 
[3], [19]. Based on their extensive computations in [3], Bardakov, Neshchadim and Yadav 
made conjectures on the number of braces of order 8p and 12p for large enough primes 
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p. These have recently been proved by Crespo, Gil-Muñoz, Rio and Vela [7,8], and we 
will use similar techniques in this paper; cf. Remark 12.9.

In this paper, we will prove Conjecture 1.2 in full (see Theorem 13.1). Our methods 
are rather different from those used by Rump in [23]. We will also answer Questions 6.7 
and 6.8 of [16] which concern the additive groups (B, +) for these braces (see Table 2). 
At the same time, we give corresponding results for braces where (B, ◦) is a dihedral 
group. We also give enumerative results on the Hopf-Galois structures related to these 
braces. More precisely, given a Galois extension of fields L/K whose Galois group is 
a generalised quaternion or dihedral group of a given order, we count the number of 
Hopf-Galois structures on L/K of each possible abelian type.

The connection between (skew) braces and Hopf-Galois theory, which is fundamental 
to our approach in this paper, comes about because both can be described in terms of 
regular subgroups in the holomorph of a group N . A subgroup M in the group Perm(X)
of permutations of a set X is said to be regular if, given any x, y ∈ X, there is a unique 
π ∈ M with π(x) = y. The conjugate of a regular subgroup by any element of Perm(X) is 
again regular. For any group N , we define the holomorph Hol(N) of N to be N⋊Aut(N), 
and we view Hol(N) as a group of permutations of N (so that the normal subgroup N
of Hol(N) corresponds to left translations). We next explain how regular subgroups are 
related to skew braces and to Hopf-Galois structures.

On the one hand, if (B, +, ◦) is a (skew) brace, then there is a homomorphism of 
groups (B, ◦) → Aut(B, +) given by a �→ λa, where λa(b) = −a + a ◦ b. The map 
a �→ (a, λa) embeds (B, ◦) as a regular subgroup of Hol(B, +). Conversely, every regular 
subgroup G of the holomorph of a group N gives rise to a skew brace (B, +, ◦) with 
additive group N and multiplicative group G [16, §4]. Two regular subgroups G1 and G2
of Hol(N) correspond to isomorphic skew braces if and only if they are conjugate by an 
element of Aut(N) [25, Proposition A.3]. By [3, Lemma 2.1], G1 and G2 are conjugate 
by an element of Aut(N) if and only if they are conjugate by an element of Hol(N), so 
the isomorphism classes of skew braces with additive group N correspond to conjugacy 
classes of regular subgroups in Hol(N).

On the other hand, let L/K be a finite Galois extension of fields with Galois group 
G. Greither and Pareigis [15] showed that Hopf-Galois structures on L/K correspond to 
regular subgroups N in Perm(G) which are normalised by left translations by elements 
of G. We will call the isomorphism class of N the type of the corresponding Hopf-
Galois structure. Starting with an abstract group N , one can determine the Hopf-Galois 
structures of type N on L/K from the regular subgroups of Hol(N) which are isomorphic 
to G. More precisely, if e′(G, N) is the number of these regular subgroups, and e(G, N)
is the number of Hopf-Galois structures of type N on L/K, then from [5] we have the 
formula

e(G,N) = |Aut(G)|
|Aut(N)| e

′(G,N). (1.1)

For further background on Hopf-Galois structures, see [9, Chapter 2].
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In this paper we will be concerned with the case when N is abelian and G is either 
quaternion or dihedral. We will determine the abelian groups N so that Hol(N) contains 
a regular quaternion or dihedral subgroup G, and we will count the number of such 
subgroups for each such N . This is the first step both to determining the number of 
quaternion or dihedral braces with additive group isomorphic to N , and to determining 
the number of Hopf-Galois structures of type N on a Galois extension of fields with 
quaternion or dihedral Galois group. There are two, essentially distinct, parts in our 
calculation of these numbers. Firstly, we consider the case when |G| = |N | = 2n for 
some n ≥ 2. Our method here can be regarded as an extension of the ideas introduced 
in the thesis of Featherstonhaugh [14], and further developed in [13], which show that if 
N is a finite abelian p-group of rank m < p − 1 then any regular abelian subgroup G of 
Hol(N) is isomorphic to N . In the setting of braces, Bachiller [2, Theorem 2.5] removed 
the requirement that G be abelian, showing that the number of elements of any given 
order is the same in G and N . Using a description of Aut(N) due to Hillar and Rhea 
[17], we obtain a similar but weaker relation between the structures of G and N when 
the hypothesis on m is removed (Lemma 2.6). In particular, we show that if |N | = 2n
and Hol(N) contains a regular subgroup G which is a dihedral or quaternion group then 
N contains a cyclic subgroup of index at most 8 (Theorem 3.4). We can then find the 
numbers of braces and Hopf-Galois structures in the 2-power case by examining each 
of the possible groups N in turn. Secondly, we show that the general case, |N | = 2ns
for s odd, can essentially be reduced to the 2-power case. The numbers of braces and 
Hopf-Galois structures are independent of s when s ≥ 3. (The number of braces differs 
from that for s = 1 in some cases.)

In some of our calculations, we use the computer algebra package Magma. All the 
counts we give could in principle be obtained by purely theoretical considerations, but 
to do so would have required the examination of a number of special cases and would 
have significantly increased the length of the paper.

Finally, we emphasize that (despite the occurrence of Conjecture 1.2 in the paper [16]
where skew braces were introduced) in this paper we are considering braces rather than 
skew braces. Thus the additive group N ∼= (B, +) is always assumed to be abelian.

2. The holomorph of a finite abelian p-group

In this section, we recall from [17] a description of the endomorphism ring of a finite 
abelian p-group N , and then use this to bound the order of elements of p-power order in 
Hol(N) in terms of the rank and exponent of N . Although only the case p = 2 is needed 
later in the paper, in this section we allow p to be an arbitrary prime.

Proposition 2.1. Let

N = Z/pa1Z× Z/pa2Z× · · · × Z/parZ

be a finite abelian p-group, with 1 ≤ a1 ≤ · · · ≤ ar.
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For 1 ≤ i, j ≤ r, let

Rij = pmax{0,ai−aj}(Z/parZ),

and let

R := (Rij)1≤i,j≤r,

the set of matrices whose (i, j)-entry is in Rij. Then R has a ring structure with sum 
and multiplication inherited from the ring Matr(Z) of r × r matrices over Z, and there 
exists a surjective ring homomorphism

f : R � End(N).

Moreover,

ker f = (pai(Z/parZ))i,j ⊆ R.

Finally, an element of End(N) represented by (rij)i,j ∈ R is in Aut(N) if and only if 
the reduction of (rij)i,j in Matr(Fp) is invertible.

Proof. By looking at the image of the elements of the canonical basis, one can verify that 
an element of R acts as an endomorphism of N via its matrix representation, and that 
each endomorphism has a representative in R. A complete proof can be found in [17, 
Theorem 3.3]. In [17, Lemma 3.4] the authors show, using adjoint matrices, that ker f
consists of the matrices whose (i, j)-entry is divisible by pai . In [17, Theorem 3.6] they 
show that the elements of Aut(N) are those corresponding to the invertible matrices 
modulo p. It is worth remarking that all the proofs are straightforward, although they 
involve several necessary steps to be verified. �

Proposition 2.1 means that we can identify End(N) with the ring

R = R/ ker f

of r × r matrices whose ith row consists of elements of Z/paiZ, with the condition 
that the (i, j)-entry is divisible by pai−aj when ai > aj . (This condition ensures that 
multiplication of matrices in R is well-defined.) We correspondingly view elements of N
as column vectors with ith entry in Z/paiZ. Then Aut(N) is identified with the group 
R

× of units in R, which consists of elements of R whose reduction in Matr(Fp) lies in 
GLr(Fp).

Corollary 2.2. With the hypotheses and notation of Proposition 2.1, an element of Hol(N)
can be represented as
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(
A v
0 1

)
,

where A is a matrix in R whose reduction is in GLr(Fp), and where v ∈ N . (We view 
the last row as having entries in Z/parZ.)

We next describe a particular Sylow p-subgroup in R
×.

Lemma 2.3. Let U be the subgroup of unipotent upper triangular matrices in GLr(Fp):

(bij) ∈ U ⇔ bii = 1 for all i, and bij = 0 if i > j.

Let P be the subgroup of R× consisting of matrices whose reduction in GLr(Fp) lies in 

U . Then P is a Sylow p-subgroup of R×.

Proof. Let W be the image of R× in GLr(Fp). Then W consists of those invertible 
matrices (bij) with bij = 0 if ai > aj . In particular, U ⊆ W . It is well-known that U is 
a Sylow p-subgroup of GLr(Fp), so it is also a Sylow p-subgroup of W . The kernel K of 
the reduction map R → Matr(Fp) clearly has p-power order. By Proposition 2.1, if A is 
an element of R whose reduction is invertible, then A is invertible in R. Thus the kernel 
of the reduction map on units R× → GLr(Fp) is 1 + K. Since 1 + K is a p-group, it 
follows that the preimage of U in R

× is a Sylow p-subgroup of R×. �
We now seek to relate possible orders of elements of Hol(N) to the exponent of N . 

This is done in Lemma 2.6. We first give two preliminary results.

Proposition 2.4. Let m ≥ 1 and let t = �logp m
. Then, for any X ∈ GLm(Fp) of p-power 
order, we have Xpt = I.

Proof. Replacing X by a conjugate, we may assume that X lies in the Sylow p-subgroup 
U of GLm(Fp) consisting of unipotent upper triangular matrices. By induction on 0 ≤
k ≤ m, we easily see that the (i, j)-entry of (X − I)k is 0 unless i + j > m + k. In 
particular, (X − I)m = 0. Since pt ≥ m we have Xpt − I = (X − I)pt = 0. �
Proposition 2.5. Let m ≥ 1, let t = �logp m
, and let d ≥ 1. Then, for any matrix X of 
p-power (multiplicative) order in Matm(Z/pdZ), we have Xpt+d−1 = I.

Proof. We argue by induction on d. The case d = 1 is Proposition 2.4. Now suppose 
that d > 1 and the assertion holds for d −1. Let X ∈ Matm(Z/pdZ) have p-power order. 
Reducing mod pd−1 and applying the induction hypothesis, we have

Xpc − I ∈ pd−1Matm(Z/pdZ)

where c = t + (d − 1) − 1. Now
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Xpc+1 − I = (Xpc − I)(X(p−1)pc

+ X(p−2)pc

+ · · · + Xpc

+ I).

Since d − 1 ≥ 1, we have Xpc ≡ I (mod p Matm(Z/pdZ)), so that

X(p−1)pc

+ X(p−2)pc

+ · · · + Xpc

+ I ≡ pI ≡ 0 (mod pMatm(Z/pdZ)),

and hence

Xpt+d−1 − I = Xpc+1 − I ∈ (pd−1Matm(Z/pdZ))(pMatm(Z/pdZ)) = {0}.

This completes the induction. �
Lemma 2.6. Let N be a finite abelian p-group of rank r and exponent pd. If Hol(N)
contains an element of order pk then k < �logp(r + 1)
 + d.

Proof. We may represent N as in Proposition 2.1 with ar = d. Let m = r + 1. Then, by 
Corollary 2.2, each element of Hol(N) can be represented as an invertible m ×m matrix 
whose ith row consists of elements of Z/paiZ. Let X be such a matrix representing an 
element of order pk, and let X̂ be any matrix in Matm(Z/pdZ) which reduces to X. Then 
X̂pk−1 �= I in Matm(Z/pdZ), so by Proposition 2.5 we have k−1 < �logp(r+1)
 +d −1. �

In the setting of Lemma 2.6, if Hol(N) contains an element of order pd+1 then r ≥ p. 
Thus if r ≤ p − 1 then the exponent of a p-subgroup of Hol(N) is at most pd. For 
related results on braces and Hopf-Galois structures in the case r ≤ p − 1, see [2] and 
[13] respectively. Our application of Lemma 2.6 will be for p = 2 and r > p.

3. Preliminary results on quaternion and dihedral braces

Notation 3.1. Let n ≥ 2 be an integer and let s be an odd number. We will denote a 
quaternion, respectively dihedral, group G by 〈x, y〉o if

G = Q2ns = 〈x, y : x2n−1s = 1, yx = x−1y, y2 = x2n−2s〉,

respectively

G = D2ns = 〈x, y : x2n−1s = 1, yx = x−1y, y2 = 1〉

where we mean that the order of x in G is exactly 2n−1s, (note that this is stronger than 
simply saying that G is generated by x and y as we are prescribing their roles as elements 
of the group). We include the degenerate case n = 2 and s = 1, so that Q4 ∼= C4 and 
D4 ∼= C2 × C2.
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Lemma 3.2. Let n ≥ 4 be an integer and let G1 = 〈x1, y1〉o and G2 = 〈x2, y2〉o be two 
groups isomorphic to either Q2n or D2n . Let f : G1 → G2 be an isomorphism. Then 
f(x1) is an odd power of x2.

Proof. This follows from the fact that all the elements of the type xa
i yi have order 2 or 

4, so that f can only send 〈x1〉 to 〈x2〉. �
Proposition 3.3. Let G be a finite group of order 2n, which is either quaternion with 
3 �= n ≥ 2 or dihedral with n ≥ 3. Then the number of automorphisms of G is 22n−3.

Proof. See [6] just before Lemma 8.1 for the complete proof. We sketch the proof for the 
convenience of the reader. If G = 〈x, y〉o and f ∈ Aut(G), then f(x) can only be an odd 
power of x and f(y) can only be xiy for a certain i. We can verify that every such choice 
defines an automorphism. �

We now apply Lemma 2.6 to find the possible types of quaternion and dihedral braces 
of 2-power order.

Theorem 3.4. Let n ≥ 2 be an integer. Let N be an abelian group of order 2n with 
exponent 2d. Suppose that there is a regular quaternion or dihedral subgroup of Hol(N). 
Then N must be one of the following groups:

• C2n for n ≥ 2;
• C2 × C2n−1 for n ≥ 2;
• C4 × C2n−2 for n ≥ 3;
• C2 × C2 × C2n−2 for n ≥ 3;
• C2 × C2 × C2 × C2n−3 for n ≥ 4.

Proof. Let r be the rank of N . Since Hol(N) must contain an element of order 2n−1, 
Lemma 2.6 gives n − 1 < �log2(r + 1)
 + d. Also, as N has at least one cyclic factor of 
order 2d, we have r ≤ n − d + 1. Hence

r − 1 ≤ n− d < �log2(r + 1)
 + 1.

Thus r ≤ 4. Moreover, if r = 2 then n − d = 1 or 2; if r = 3 then n − d = 2; if r = 4 then 
n − d = 3. Thus N must be one of the five groups listed. �
4. Strategy for counting braces and Hopf-Galois structures in the 2-power case

Let N be any of the groups listed in Theorem 3.4. In this section, we outline the 
strategy we will use to count the quaternion and dihedral braces and Hopf-Galois struc-
tures corresponding to N . We shall then carry out this strategy for each N in turn in 
the subsequent sections.
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Write N as in Proposition 2.1:

N = Z/2a1Z× Z/2a2Z× · · · × Z/2arZ

with 1 ≤ a1 ≤ · · · ≤ ar, and let R ∼= End(N) be as described after Proposition 2.1. 
Then, by Corollary 2.2, we may view an element of Hol(N) as a matrix(

A v
0 1

)
, (4.1)

with A an invertible element of R and with v ∈ N .
Let G be a quaternion or dihedral regular subgroup of Hol(N) of order 2n = |N |. 

Then G is generated by elements

X =
(
A v
0 1

)
, Y =

(
B w
0 1

)
(4.2)

of the above form, satisfying the relations X2n−1 = I, X2n−2 �= I, Y X = X−1Y and 
either Y 2 = X2n−2 or Y 2 = I (depending on whether we are considering the quaternion 
case or dihedral case). For k ≥ 1, we see inductively that

X2k

=
(
A2k (I + A + · · · + A2k−1)v
0 1

)
.

As X2n−2 �= I and G is regular, we therefore have

(I + A + · · · + A2n−2−1)v �= 0. (4.3)

Since

Y −1 =
(
B−1 −B−1w

0 1

)
,

the remaining relations become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2n−1 = I

(I + A + · · · + A2n−1−1)v = 0
BA = A−1B

w + Bv = −A−1v + A−1w{
B2 = A2n−2 (quaternion)
B2 = I (dihedral){
(I + B)w = (I + A + · · · + A2n−2−1)v (quaternion)
(I + B)w = 0 (dihedral).

(4.4)
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Note that any X and Y as in (4.2) satisfying (4.3) and (4.4) will generate a subgroup 
isomorphic to Q2n or D2n (except in the degenerate case n = 2, Y = I).

We will determine the regular quaternion and dihedral subgroups in Hol(N) by finding 
all solutions of (4.3) and (4.4) and imposing further conditions to ensure regularity. We 
will often simplify this calculation by working up to conjugacy in Hol(N). In particular, 
using Lemma 2.3, we may assume that A and B reduce to invertible upper triangular 
matrices in GLr(F2).

In order to avoid complications from small values of n, we shall carry out the above 
strategy assuming that n ≥ 5 (or n ≥ 4 for N = C2n). When n ≥ 5, we shall find that 
only two of the five groups N of order 2n in Theorem 3.4 give regular quaternion or 
dihedral subgroups (cf. [23, Theorem 1]). In §10 we will treat the omitted small cases 
|N | = 4, 8, 16 using Magma.

5. On the number of quaternion and dihedral braces and Hopf–Galois structures of 
cyclic type

Let N = C2n , with n ≥ 4. We apply the strategy described in §4. In this case, the 
matrices A and B in (4.2) are single elements of (Z/2nZ)×, say α and β respectively, 
and v, w ∈ Z/2nZ. The condition BA = A−1B in (4.4) gives α2 = 1. Then (4.3) and the 
condition (I+A +· · ·+A2n−1−1)v = 0 in (4.4) give 2n−3(1 +α)v �= 0 and 2n−2(1 +α)v = 0
in Z/2nZ. Hence (1 + α)v ≡ 4 (mod 8), and (4.3) and (4.4) reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + α)v ≡ 4 (mod 8)
α2 = 1
(α + β)v = (α− 1)w
β2 = 1{

(1 + β)w = 2n−1 (quaternion)
(1 + β)w = 0 (dihedral).

Note that α2 ≡ 1 (mod 2n) means that α can only be 1, 1 + 2n−1, −1 or −1 + 2n−1

modulo 2n. The third and fourth options are not compatible with the first relation, so 
that α can only be 1 or 1 + 2n−1.

If α ≡ 1 + 2n−1 (mod 2n), then v ≡ 2 (mod 4) and by regularity w is odd. Then the 
last relation tells us that β is −1 + 2n−1 in the quaternion case or −1 in the dihedral 
case. Neither of these cases is compatible with the relation (α + β)v = (α− 1)w.

If α ≡ 1 (mod 2n), then again v ≡ 2 (mod 4) and w is odd. The last relation tells us 
that β is −1 +2n−1 in the quaternion case or −1 in the dihedral case. We can see that the 
relation (α + β)v = (α− 1)w is automatically satisfied. Hence α and β are fixed, which 
means we have at most 2n−2 choices for X. This corresponds to at most one choice for 
〈X〉 ⊆ Hol(N). In a similar fashion, we have at most 2n−1 different choices for Y . Hence 
there is at most one possible subset of Hol(N) of the form {XiY }0≤i≤2n−1−1. This implies 
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that there is at most one regular quaternion, respectively dihedral, subgroup. Now note 
that the subgroups of Hol(N) generated by

X =
(

1 2
0 1

)
, Y =

(
−1 + 2n−1 1

0 1

)
or

X =
(

1 2
0 1

)
, Y =

(
−1 1
0 1

)
are regular.

Proposition 5.1. Let n ≥ 4 be an integer. Then there is one regular quaternion subgroup 
and one regular dihedral subgroup of Hol(C2n).

Corollary 5.2. Let n ≥ 4 be an integer. Then there is only one quaternion brace and one 
dihedral brace of type C2n .

Using Proposition 3.3 and (1.1), we finally obtain the following.

Corollary 5.3. Let n ≥ 4 be an integer. Any Galois extension of degree 2n with quaternion 
or dihedral Galois group admits 2n−2 Hopf–Galois structures of type C2n .

6. On the number of quaternion and dihedral braces and Hopf–Galois structures of 
type C2 × C2n−1

We will now assume n ≥ 5. Let N = C2×C2n−1 . We look for elements X, Y in Hol(N)
as in (4.2). The matrices A and B are in(

Z/2Z Z/2Z
2n−2Z/2n−1Z Z/2n−1Z

)
and are invertible modulo 2, so they lie in(

1 Z/2Z
2n−2Z/2n−1Z (Z/2n−1Z)×

)
.

We will write

A =
(

1 a
2n−2b α

)
, B =

(
1 r

2n−2s β

)
with a, b, r, s ∈ Z/2Z and α, β ∈ (Z/2n−1Z)×. We also write

v =
(
v1
v

)
, w =

(
w1
w

)
,

2 2
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with v1, w1 ∈ Z/2Z and v2, w2 ∈ Z/2n−1Z.
We now express the conditions (4.3) and (4.4) in terms of a, b, α, r, s, β. First note 

that

A−1 =
(

1 a
2n−2b 2n−2ab + α−1

)
,

so that the condition BA = A−1B is equivalent to

α− α−1 = 2n−2(ab + as + br).

This translates into α2 = 1 or α2 = 1 + 2n−2, according as ab + as + br = 0 or 1. In 
particular, note that A4 = I. Then the first condition in (4.4) is automatically satisfied 
and the second condition, together with (4.3), becomes α ≡ 1 (mod 4) and v2 odd. 
In particular B2 has to be the identity in both the quaternion and dihedral case, or 
equivalently we must have 2n−2rs +β2 = 1. Expressing the conditions w+Bv = −A−1v+
A−1w and those on (I + B)w explicitly, we now rewrite (4.3) and (4.4) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2 ≡ 1 + 2n−2(ab + as + br) (mod 2n−1)
α ≡ 1 (mod 4)
v2 ≡ 1 (mod 2)
aw2 ≡ (a + r)v2 (mod 2)
β ≡ 2n−2(s + b)v1v

−1
2 + 2n−2ab− α−1 + 2n−2bw1v

−1
2

+(2n−2ab + α−1 − 1)w2v
−1
2 (mod 2n−1)

rw2 ≡ 0 (mod 2)
2n−2rs + β2 ≡ 1 (mod 2n−1){

2n−2sw1 + (1 + β)w2 ≡ 2n−2 (mod 2n−1) (quaternion)
2n−2sw1 + (1 + β)w2 ≡ 0 (mod 2n−1) (dihedral).

(6.1)

Recall that

X =
( 1 a v1

2n−2b α v2
0 0 1

)
.

We now show that we can make a convenient choice of v1 and v2 by replacing our 
quaternion or dihedral subgroup by a conjugate. Observe that

(1 1 0
0 1 0
0 0 1

)v1
⎛⎝1 0 0

0 v−1
2 0

0 0 1

⎞⎠( 1 a v1
2n−2b α v2

0 0 1

)⎛⎝1 0 0
0 v−1

2 0
0 0 1

⎞⎠−1 (1 1 0
0 1 0
0 0 1

)−v1

=

(6.2)
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=
( 1 a 0

2n−2b α + 2n−2bv1 1
0 0 1

)
.

This means that, up to conjugacy, we can assume v1 = 0 and v2 = 1.
We now impose further conditions on a, b, r, s, α, β to ensure that our subgroup 

is regular. First note that X4 ≡ 1 (mod 4), so that the entries of {Xi(0, 0, 1)�

(mod 4)}i=0,...,2n−1−1 are

(0
0
1

)
,

(0
1
1

)
,

(
a
2
1

)
,

(
a
3
1

)
.

Since, by regularity, there exist integers 0 ≤ i ≤ 2n−1 − 1 and 0 ≤ j ≤ 1 such that

XiY j

(0
0
1

)
=

(1
0
1

)

and j cannot be 0 (else the equality could not hold modulo 4), we may replace X by 
XiY for a suitable i and so assume that w1 = 1 and w2 = 0. (This change of generators 
does not affect the relations satisfied by X and Y .)

We now rewrite the system (6.1) with the information we have on v and w.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = 0
v2 = 1
w1 = 1
w2 = 0
α2 ≡ 1 + 2n−2as (mod 2n−1)
α ≡ 1 (mod 4)
r = a

β ≡ 2n−2b(1 + a) − α−1 (mod 2n−1){
s = 1 (quaternion)
s = 0 (dihedral).

Conversely, these conditions ensure that the orbit of 0 ∈ N under the subgroup 〈X〉
of G has cardinality 2n−1 (since they force (4.3) to hold), and our choice of w means 
that the orbit of 0 under G is strictly larger than this. As |G| = |N | = 2n, it follows 
that the above conditions are sufficient to guarantee the regularity of G. Moreover, they 
ensure that Y is completely determined by X and the isomorphism class (quaternion or 
dihedral) of G. Hence we have the following result.
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Proposition 6.1. Let 〈X, Y 〉o be a quaternion or dihedral regular subgroup of Hol(N). Let 
Y ′ ∈ Hol(N) be such that 〈X, Y ′〉o is also a quaternion, respectively dihedral, regular 
subgroup of Hol(N). Then 〈X, Y 〉o = 〈X, Y ′〉o.

Once we fix s (hence the isomorphism class), a and b, there are two possible values of 
α, whose difference is 2n−2. Then everything else is completely determined. This proves 
that, up to conjugation, we have 8 quaternion regular subgroups and 8 dihedral regular 
subgroups of Hol(N): we will call these subgroups the fundamental subgroups. As an 
aside note the following.

Corollary 6.2. Let

X =
( 1 a v1

2n−2b α v2
0 0 1

)
,

be a matrix such that a, b, v1 ∈ Z/2Z, v2 ∈ (Z/2n−1Z)×, α ≡ 1 (mod 4) and either 
α2 ≡ 1 (mod 2n−1) or α2 ≡ 1 + 2n−2 (mod 2n−1). Then there exists Y ∈ Hol(N) such 
that 〈X, Y 〉o is a quaternion, respectively dihedral, regular subgroup of Hol(N).

Proof. By (6.2), X can be conjugated via Aut(N) to a matrix X ′ such that 〈X ′, Y ′〉o
is a fundamental subgroup for some Y ′ ∈ Hol(N), where a = a′, b = b′ and α′ is either 
α or α + 2n−2. If g ∈ Hol(N) is such that gXg−1 = X ′, then 〈X, g−1Y ′g〉o is a regular 
subgroup of Hol(N). �

We now show that the fundamental subgroups represent six conjugacy classes for ei-
ther possibility for s. As noted in the introduction, if two regular subgroups are conjugate 
in Hol(N) then they are conjugate by an element of Aut(N). Thus we only need to check 
for conjugation by elements of the form

M =
( 1 p 0

2n−2q γ 0
0 0 1

)

with p, q ∈ Z/2Z and γ ∈ (Z/2n−1Z)×. By Lemma 3.2, a necessary condition for 〈X, Y 〉o
to be conjugate to 〈X∗, Y∗〉o (with parameters denoted by a∗, b∗ etc) is that, for a certain 
odd exponent d, we have MXM−1 = Xd

∗ . Moreover, by (6.2) we may assume v1∗ = 0, 
v2∗ = 1. We calculate

MXM−1 =
( 1 p 0

2n−2q γ 0
0 0 1

)( 1 a 0
2n−2b α 1

0 0 1

)( 1 p 0
2n−2q γ−1 + 2n−2pq 0

0 0 1

)

=
( 1 a p

2n−2b α + 2n−2(aq + bp) γ

)
.

0 0 1
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Note that

X−1
∗ =

(
A−1

∗ −A−1
∗ v∗

0 1

)
=

( 1 a∗ a∗
2n−2b∗ 2n−2a∗b∗ + α−1

∗ 2n−2a∗b∗ − α−1
∗

0 0 1

)
.

Since A4
∗ = I, for every positive integer k we have

X4k
∗ =

(1 0 0
0 1 k(1 + α∗)(1 + α2

∗)
0 0 1

)
.

(Recall that (1 + α∗)(1 + α2
∗) ≡ 4 (mod 8).) Thus, depending on d modulo 4, we find 

that Xd
∗ is either of the form

Xd
∗ = X4k+1

∗ =
( 1 a∗ 0

2n−2b∗ α∗ kα∗(1 + α∗)(1 + α2
∗) + 1

0 0 1

)
(6.3)

or of the form

Xd
∗ = X4k−1

∗ =
( 1 a∗ a∗

2n−2b∗ 2n−2a∗b∗ + α−1
∗ k(1 + α∗)(1 + α2

∗) − α−1
∗ + 2n−2a∗b∗

0 0 1

)
.

(6.4)
Since MXM−1 = Xd

∗ , it follows that a = a∗ and b = b∗ (therefore also r = r∗ and, for 
isomorphism class reasons, s = s∗) and either p = 0 or p = a, depending on d (mod 4). 
Looking at the central entry, this means that either

α + 2n−2aq = α∗, or α + 2n−2aq = α−1
∗ .

If a = 0 then the above, together with the fact that in this case α2 = 1, implies that 
α = α∗. If a = 1, then we always find a choice for q (and possibly γ) such that α∗ �= α. 
By Proposition 6.1 and Corollary 6.2, there is only one possible choice for Y such that 
〈X, Y 〉o is a quaternion, respectively dihedral, regular subgroup. This means that the 
conjugations we found when a = 1 actually pair fundamental groups. We have therefore 
shown the following result:

Proposition 6.3. Let n ≥ 5 be an integer. Then there are 6 quaternion braces and 6
dihedral braces of type C2 × C2n−1 .

We now count the number of Hopf–Galois structures. We first note that the eight 
fundamental subgroups are distinct from each other. Suppose that 〈X1, Y1〉o = 〈X2, Y2〉o. 
We will denote by ai, bi etc. their respective parameters for i = 1, 2. Then, by Lemma 3.2, 
〈X1〉 = 〈X2〉. By (6.3) and (6.4), we must have that a1 = a2 and b1 = b2. Note that in 
X4k−1

1 the (2, 3)-entry is 3 modulo 4, so that we cannot have X4k−1
1 = X2. If X4k+1

1 = X2, 
then also α1 = α2.
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Proposition 6.4. Let n ≥ 5 be an integer. Then any Galois extension of degree 2n with 
quaternion or dihedral Galois group admits 2n+1 Hopf–Galois structures of type C2 ×
C2n−1 .

Proof. We first count the number of regular subgroups of Hol(N). Let 〈X, Y 〉o be a 
quaternion or dihedral regular subgroup of Hol(N). Then X is of the form

( 1 a v1
2n−2b α v2

0 0 1

)
,

where a, b ∈ Z/2Z, v2 ∈ (Z/2n−1Z)×, α ≡ 1 (mod 4) and either α2 ≡ 1 (mod 2n−1) or 
α2 ≡ 1 + 2n−2 (mod 2n−1), v1 = 0, 1. Note that we have two choices for a, two choices 
for b, two choices for α, two for v1 and 2n−2 for v2 (as we proved v2 has to be odd), 
for a total of 2n+2. By Proposition 6.1 and Corollary 6.2, each such matrix belongs to 
a unique regular subgroup of Hol(N). As the number of generators in 〈X〉 is 2n−2, this 
implies that there are 16 regular subgroups in each isomorphism case.

By Proposition 3.3, G has 22n−3 automorphisms in both cases. From the matrix 
description, we also easily see that N has 2n automorphisms. Hence in both cases, by 
(1.1) the number of Hopf–Galois structures is

22n−3

2n · 16 = 2n+1. �

7. On the number of quaternion and dihedral braces and Hopf–Galois structures of 
type C4 × C2n−2

Using Magma (or by a direct calculation) we easily verify the following:

Lemma 7.1. Hol(C4 × C8) has no elements of order 16.

Lemma 7.1 tells us that there are no quaternion or dihedral regular subgroups of 
Hol(C4 ×C8). This implies that we cannot find any brace or Hopf–Galois structure with 
additive group C4 × C8 and quaternion or dihedral multiplicative group.

Now let n ≥ 6. Let N = C4 × C2n−2 . Let G be a quaternion or dihedral regular 
subgroup of Hol(N). Then G acts transitively on N . Note that the 2n−5-th powers 
generate a characteristic subgroup M of N such that N/M ∼= C4 ×C8, so that we find a 
transitive action of G on C4×C8. The image of G in Perm(C4×C8) lies in Hol(C4×C8)
as G is a subgroup of Hol(N). The kernel of the map f : G → Hol(C4 × C8) we just 
obtained has index at least 32, as the action of G on C4 × C8 is transitive. Therefore 
G/ ker f , and hence also Hol(C4×C8), must have an element of order 16. This contradicts 
Lemma 7.1.
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Proposition 7.2. Let n ≥ 5 be an integer. Then there are no quaternion or dihedral braces 
type C4×C2n−2 . A Galois extension of degree 2n with quaternion or dihedral Galois group 
does not admit any Hopf-Galois structures of type C4 × C2n−2 .

8. On the number of quaternion and dihedral braces and Hopf–Galois structures of 
type C2 × C2 × C2n−2

Let n ≥ 5 be an integer, let N = C2×C2×C2n−2 , and let G = 〈X, Y 〉o be a quaternion 
or dihedral regular subgroup of Hol(N). Then, using Corollary 2.2, and conjugating to 
ensure that G lies in the Sylow 2-subgroup of Hol(N) described in Lemma 2.3, we can 
write

X =

⎛⎜⎝ 1 a b v1
0 1 c v2

2n−3d 2n−3e α v3
0 0 0 1

⎞⎟⎠
where α ∈ (Z/2n−2Z)×, a, b, c, d, e, v1, v2 ∈ Z/2Z, v3 ∈ Z/2n−2. We now compute X2

and X4:

X2 =

⎛⎜⎝1 0 ac av2 + bv3
0 1 0 cv3
0 2n−3ad 2n−3(bd + ce) + α2 2n−3dv1 + 2n−3ev2 + (1 + α)v3
0 0 0 1

⎞⎟⎠ ,

X4 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 α4 2n−3acdv3 + (1 + α)(1 + α2)v3
0 0 0 1

⎞⎟⎠ .

Note that 2n−3acdv3 + (1 + α)(1 + α2)v3 is divisible by 4 since n ≥ 5, and that α4 ≡ 1
(mod 4). So X4 ≡ I (mod 4), and an easy induction shows that X2k ≡ I (mod 2k) for 
k ≥ 2. Thus X2n−2 = I in Hol(N), contradicting the relations defining G.

Proposition 8.1. Let n ≥ 5 be an integer. Then there are no quaternion or dihedral braces 
of type C2 × C2 × C2n−2 . A Galois extension of degree 2n with quaternion or dihedral 
Galois group does not admit any Hopf-Galois structures of type C2 × C2 × C2n−2 .

9. On the number of quaternion and dihedral braces and Hopf–Galois structures of 
type C2 × C2 × C2 × C2n−3

Let n ≥ 5 be an integer, let N = C2×C2×C2×C2n−3 and let 〈X, Y 〉o be a quaternion 
or dihedral regular subgroup of Hol(N). Then, using Corollary 2.2 and Lemma 2.3 as 
before, we can write
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X =

⎛⎜⎜⎜⎝
1 a b c v1
0 1 d e v2
0 0 1 f v3

2n−4g 2n−4h 2n−4i α v4
0 0 0 0 1

⎞⎟⎟⎟⎠
where α ∈ (Z/2n−3Z)×, a, b, c, d, e, f, g, h, i, v1, v2, v3 ∈ Z/2Z, v4 ∈ Z/2n−3. Now note 
that

X2 =

⎛⎜⎜⎝
1 0 ad ae + bf av2 + bv3 + cv4
0 1 0 df dv3 + ev4
0 0 1 0 fv4
0 2n−4ga 2n−4(gb + hd) α2 + 2n−4(gc + he + if) (1 + α)v4 + 2n−4(gv1 + hv2 + iv3)
0 0 0 0 1

⎞⎟⎟⎠ ,

and

X4 =

⎛⎜⎜⎜⎝
1 0 0 0 adfv4
0 1 0 0 0
0 0 1 0 0
0 0 0 α4 + 2n−4gadf (1 + α)(1 + α2)v4 + 2n−4k
0 0 0 0 1

⎞⎟⎟⎟⎠
for a certain integer k. If n ≥ 6 then X8 ≡ I (mod 8) and, analogously to §8, we obtain 
X2n−2 = I in Hol(N). If n = 5 then 2n−3 = 4 and we already have X4 = I in Hol(N). 
In both cases, we have a contradiction.

Proposition 9.1. Let n ≥ 5 be an integer. Then there are no quaternion or dihedral braces 
or Hopf–Galois structures of type C2 × C2 × C2 × C2n−3 . A Galois extension of degree 
2n with quaternion or dihedral Galois group does not admit any Hopf-Galois structures 
of type C2 × C2 × C2 × C2n−3 .

10. On quaternion and dihedral braces and Hopf–Galois structures of order 4, 8
and 16

For each quaternion or dihedral group G of order m = 4, 8, 16, we will use Theorem 3.4
to read off all the possible isomorphism classes of N . Suppose that in the standard 
labelling notation we write N as SmallGroup(m,j) and G as SmallGroup(m,k). We will 
implement the following Magma code.

N:=SmallGroup(m,j);
G:=SmallGroup(m,k);
H:=Holomorph(N);
R:=RegularSubgroups(H);
R;
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Table 1
Numbers of braces c(j, k), regular subgroups r(j, k) and Hopf-Galois structures 
h(j, k) for m = 4, 8, 16.
N G j k l c(j, k) r(j, k) h(j, k)
C4 C4 1 1 2 1 1 1
C2 × C2 C4 2 1 2 1 3 1

C4 C2 × C2 1 2 2 1 1 3
C2 × C2 C2 × C2 2 2 2 1 1 1

C8 Q8 1 4 5 1 1 6
C2 × C4 Q8 2 4 14 1 2 6
C2 × C2 × C2 Q8 5 4 8 1 14 2

C8 D8 1 3 5 1 1 2
C2 × C4 D8 2 3 14 5 14 14
C2 × C2 × C2 D8 5 3 8 2 126 6

C16 Q16 1 9 8 1 1 4
C2 × C8 Q16 5 9 66 4 8 16
C4 × C4 Q16 2 9 83 2 48 16
C2 × C2 × C4 Q16 10 9 161 1 48 8
C2 × C2 × C2 × C2 Q16 14 9 39 1 5040 8

C16 D16 1 7 8 1 1 4
C2 × C8 D16 5 7 66 6 16 32
C4 × C4 D16 2 7 83 0 0 0
C2 × C2 × C4 D16 10 7 161 0 0 0
C2 × C2 × C2 × C2 D16 14 7 39 0 0 0

The last command will list all the conjugacy classes of the regular subgroups of Hol(N), 
labelling them and displaying their length. The last label will be the total number of 
conjugacy classes, which we denote by l. Then we run the following.

for i in [1..l] do
if IsIsomorphic(R[i]‘subgroup,G) eq true then

print i;
end if;

end for;

The number of lines in the output will tell us the number of conjugacy classes of regular 
subgroups of Hol(N), hence the number c(j, k) of isomorphism classes of braces with 
additive group N and multiplicative group G. The sum of the lengths will count the 
number r(j, k) of regular subgroups of Hol(N), which multiplied by |Aut(G)|

|Aut(N)| will give the 
number h(j, k) of Hopf–Galois structures with Galois group G and type N . The results 
are shown in Table 1. The reader can refer to [12] for the ‘Small Group’ labelling as well 
the automorphism groups of specific groups and other general group properties.

For m = 4 and m = 8, the number of braces c(j, k) and the number of Hopf-Galois 
structures h(j, k) are already known, but we include them here for completeness. For 
m = 4, see [1, Proposition 2.4] for braces and [5,4] for Hopf-Galois structures. For 
m = 8, see [20, §5.1] for both.
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11. Summary of the 2-power case

Recall that q(2n) denotes the number of isomorphism classes of quaternion braces 
of order 2n. Let d(2n) denote the number of isomorphism classes of dihedral braces of 
order 2n. Summarising the information contained in Corollaries 5.2, 5.3, Propositions 6.3, 
6.4, 7.2, 8.1, 9.1 and Table 1, we obtain the following values for q(n) and d(n), as well 
as corresponding totals for the number of Hopf-Galois structures of abelian type on a 
quaternion or dihedral Galois extension of degree 2n.

Theorem 11.1. For n ≥ 5, we have q(2n) = d(2n) = 7; also q(16) = 9, q(8) = 3, q(4) = 2
and d(16) = 7, d(8) = 8, d(4) = 2.

If n ≥ 5, then there are 9 · 2n−2 Hopf-Galois structures of abelian type on any Galois 
extension of degree 2n whose Galois group is quaternion (respectively dihedral). On a 
quaternion (respectively, dihedral) extension of degree 16 there are 52 (respectively 36) 
Hopf-Galois structures of abelian type. On a quaternion (respectively dihedral) extension 
of degree 8 there are 14 (respectively, 22) Hopf-Galois structures of abelian type. On a 
cyclic (respectively, elementary abelian) extension of degree 4 there are 2 (respectively 4) 
Hopf-Galois structures.

When n ≥ 5, the only possible additive groups for a quaternion or dihedral brace 
of order 2n (or abelian types for a Hopf-Galois structure on a quaternion or dihedral 
field extension of degree 2n) are C2n and C2 × C2n−1 . The same is true for n = 4 in the 
dihedral case, but all 5 abelian groups of order 16 may occur in the quaternion case. For 
n = 3, all 3 abelian groups of order 8 may occur in either case.

12. The non 2-power case

Let G be a quaternion or dihedral group of order 2ns, where n ≥ 2, s is odd and 
s ≥ 3. We recall that this means that either

G = 〈x, y : x2n−1s = 1, yx = x−1y, y2 = x2n−2s〉 ∼= Q2ns

or

G = 〈x, y : x2n−1s = 1, yx = x−1y, y2 = 1〉 ∼= D2ns.

The following result is immediate.

Lemma 12.1. The subgroup C = 〈x2n−1〉 is the unique subgroup of G of order s.

Corollary 12.2. If G2 is any Sylow 2-subgroup of G, we can write G = C⋊G2. Moreover 
G2 is quaternion or dihedral, respectively.
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Proof. The first statement is clear as C is normal in G. For the second, note that one 
Sylow 2-subgroup is 〈xs, y〉. (Recall from Notation 3.1 that we allow the groups of order 
4 as quaternion or dihedral.) �
Lemma 12.3. The commutator G′ of G is generated by x2.

Proof. We note that x2 = xyx−1y−1, so that x2 lies in G′. Also G/〈x2〉 is abelian: it is 
isomorphic to C4 if n = 2 and G is quaternion, and to C2 × C2 in all other cases. This 
shows that G′ = 〈x2〉. �

Now let N be a finite abelian group of order 2ns and let G be a quaternion or dihedral 
regular subgroup of Hol(N). This corresponds to giving the set N an operation ◦ such 
that (N, +, ◦) is a brace with (N, ◦) ∼= G. Thus we have G = {ga : a ∈ N} where 
ga = (a, λa) with λa ∈ Aut(N) given by λa(b) = −a + a ◦ b. We have a canonical 
isomorphism G → (N, ◦) given by ga �→ a, so that gagb = ga◦b and the action of G on N
is given by ga · b = a ◦ b.

For any characteristic subgroup M of (N, +), we have λa(M) = M for all a ∈ N , 
so that M is also a subgroup of (M, ◦) and the brace structure of N restricts to make 
(M, +, ◦) into a subbrace. In particular, for each prime p dividing 2ns, this applies to 
the (unique) Sylow p-subgroup Np of N . It also applies to the unique subgroup Ns of 
order s (this being the direct product of the Np over the primes p dividing s).

Let Gs = {(a, λa) : a ∈ Ns} and let G2 = {(b, λb) : b ∈ N2}. Thus Gs is the unique 
subgroup C of order s in G, as in Lemma 12.1, and G2 is a specific Sylow 2-subgroup of 
G distinguished by the inclusion G ⊆ Hol(N). The regular action of G on N restricts to 
a regular action of Gs on Ns (respectively, of G2 on N2), via which we obtain a group 
operation ◦s on Ns (respectively ◦2 on N2), which is simply the restriction of ◦. We then 
have canonical isomorphisms Gs → (Ns, ◦s) and G2 → (N2, ◦2).

Our goal is now to reconstruct the brace structure on N from more fundamental 
components. For the additive group, we have the canonical decomposition N = Ns×N2, 
and from now on we will write elements of N in the form (a, b) with a ∈ Ns and 
b ∈ N2. Since Ns and N2 are both characteristic in N , we have canonical isomorphisms 
Aut(N) → Aut(Ns) ×Aut(N2) and Hol(N) → Hol(Ns) ×Hol(N2). We seek to determine 
the operation ◦ on N , or equivalently, the function λ : N → Aut(N, +) such that

(a, b) ◦ (a′, b′) = (a, b) + λ(a,b)(a′, b′) for a, a′ ∈ Ns and b, b′ ∈ N2.

We first evaluate λ on the summands Ns, N2 separately.

Proposition 12.4. For a, a′ ∈ Ns we have λ(a,0)(a′, 0) = (a′, 0). Thus (Ns, +, ◦s) is a 
trivial brace.

Proof. For each prime p dividing s, let Gp = {(b, λb) : b ∈ Np}. Then Gp is a Sylow p-
subgroup of G. As p is odd, it follows that Gp is cyclic. Moreover, the image of Gp under 
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the projection Hol(Ns) → Hol(Np) is a regular subgroup of Hol(Np). By [18, Theorem 
4.4], Np must then also be cyclic. Hence Ns is cyclic, and therefore Aut(Ns) is abelian. 
By Lemma 12.3, the canonical homomorphism G → Aut(N) � Aut(Ns) is then trivial 
on Gs. Thus λ(a,0)(a′, 0) = (a′, 0), and (a, 0) ◦ (a′, 0) = (a + a′, 0). �
Proposition 12.5. For a ∈ Ns and b′ ∈ N2 we have λ(a,0)(0, b′) = (0, b′).

Proof. The action of G on N induces a transitive action of G on N2 via the projection 
Hol(N) → Hol(N2). The stabiliser of any element b′ of N2 is a subgroup of G of order 
s, and by Lemma 12.1 this can only be Gs. Hence for any a ∈ Ns and b′ ∈ N2, the 
image of ga · b′ = (a, 0) ◦ (0, b′) under the projection N → N2 must coincide with b′. But 
(a, 0) ◦ (0, b′) = (a, 0) + λ(a,0)(0, b′), and λ(a,0)(N2) = N2 as N2 is characteristic in N . 
Hence λ(a,0)(0, b′) = (0, b′). �

By Lemma 12.1, the group Gs is normal in G. The subgroup G2 is a complement to 
Gs. Hence (Ns, ◦) is normal in (N, ◦) with complement (N2, ◦), so conjugation in (N, ◦)
gives an action τ : (N2, ◦2) → Aut(Ns, ◦s) making (N, ◦) into the semidirect product 
(Ns, ◦s) ⋊τ (N2, ◦2). We write τb for the image of b ∈ N2 under τ , so in (N, ◦) we have 
the relation

b ◦ a = τb(a) ◦ b for a ∈ Ns and b ∈ N2. (12.1)

Proposition 12.6. For b ∈ N2 and a′ ∈ Ns we have λ(0,b)(a′, 0) = (τb(a′), 0).

Proof.
(0, b) + λ(0,b)(a′, 0) = (0, b) ◦ (a′, 0)

= (τb(a′), 0) ◦ (0, b)

= (τb(a′), b),

where the second equality is a restatement of (12.1) and the third follows from Proposi-
tion 12.5. �

The brace (N2, +, ◦2) of order 2n is one of those listed in Theorem 11.1, so is not a 
trivial brace except possibly when n = 2. Let λ(2) : (N2, ◦2) → Aut(N2, +) be given by 
λ

(2)
b (b′) = −b + b ◦ b′ for b, b′ ∈ N2. Then we have

λ(0,b)(0, b′) = (0, λ(2)
b (b′)) for b, b′ ∈ N2. (12.2)

Putting these pieces together, we can reconstruct the brace N from the (trivial) brace 
Ns, the brace N2 and the homomorphism τ : (N2, ◦) → Aut(Ns, ◦). In fact, the brace N
is the semidirect product of the braces Ns and N2, cf. [25, Corollary 2.36].
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Lemma 12.7. The operations in the brace (N, +, ◦) are given by

(a, b) + (a′, b′) = (a + a′, b + b′),

(a, b) ◦ (a′, b′) = (a ◦ τ(a′), b ◦2 b
′) = (a + τ(a′), b ◦2 b

′)

for all a, a′ ∈ Ns and b, b′ ∈ N2.

Proof. The first equation is immediate from the direct product decomposition N =
Ns ×N2 of the additive group.

As for the multiplicative group, we have from Proposition 12.5 that (a, b) = (a, 0) +
(0, b) = (a, 0) ◦ (0, b). Since λ : (N, ◦) → Aut(N, +) is a group homomorphism, it follows 
that

λ(a,b)(a′, b′) = λ(a,0)λ(0,b)(a′, b′) = λ(a,0)λ(0,b)(a′, 0) + λ(a,0)λ(0,b)(0, b′)

where

λ(a,0)λ(0,b)(a′, 0) = (τb(a′), 0)

by Propositions 12.6 and 12.4, and

λ(a,0)λ(0,b)(0, b′) = (0, λ(2)
b (b′))

by (12.2) and Proposition 12.5. Thus

(a, b) ◦ (a′, b′) = (a, b) + (τb(a′), 0) + (0, λ(2)
b (b′))

= (a + τb(a′), b + λ(2)(b′))

= (a ◦ τb(a′), b ◦2 b
′),

as a ◦ τb(a′) = a + τb(a′) by Proposition 12.4. This completes the proof. �
Keeping the abelian group N = Ns × N2 fixed, we now allow G to vary amongst 

the regular quaternion (respectively dihedral) subgroups of Hol(N). We will describe 
these groups G in terms of the regular quaternion (respectively dihedral) subgroups H
of Hol(N2). Any such H determines a group operation ◦H on N2 making (N2, +, ◦H)
into a quaternion (respectively dihedral) brace. Let λH : (N2, ◦H) → Aut(Ns) be the 
corresponding homomorphism, so λH

b (b′) = −b + b ◦H b′ for b, b′ ∈ N2. We denote by 
TH the set of homomorphisms τ : (N2, ◦H) → Aut(Ns) for which Ns ⋊τ (N2, ◦H) is a 
quaternion (respectively dihedral) group.

There is an action of the group Aut(N2) on the set of all functions σ : N2 → Aut(Ns)
by (β · σ)b = σβ−1(b) for β ∈ Aut(N2) and b ∈ N2.
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Theorem 12.8. Let n ≥ 2, let s ≥ 3 be odd, and let N = Ns×N2 be a finite abelian group of 
order 2ns, where Ns is cyclic of order s. Then there is a bijective correspondence between 
regular quaternion (respectively, dihedral) subgroups G in Hol(N) and pairs (H, τ) where 
H is a regular quaternion (respectively, dihedral) subgroup of Hol(N2) and τ ∈ TH . 
Moreover, if G corresponds to the pair (H, τ), then, for α ∈ Aut(Ns), β ∈ Aut(N2), the 
group (α, β)G(α, β)−1 corresponds to the pair (βHβ−1, β · τ).

Proof. Let G be a regular quaternion (respectively, dihedral) subgroup of Hol(N). As 
above, G determines a group operation ◦ on N and also determines subgroups Gs, G2 of 
Hol(N). Let H be the image of G2 under the projection Hol(N) = Hol(Ns) ×Hol(N2) →
Hol(N2). Then H is a regular quaternion (respectively, dihedral) subgroup of Hol(N2), 
and the group operation ◦H on N2 determined by H is just the restriction ◦2 of ◦ to N2. 
Moreover, by Proposition 12.4, the restriction of ◦ to Ns makes Ns into a trivial brace, 
and, as explained just before Proposition 12.6, there is a homomorphism τ : (N2, ◦2) →
Aut(Ns, ◦) = Aut(Ns, +) so that Ns ⋊τ (N2, ◦2) = (N, ◦) ∼= G. Since ◦2 coincides with 
◦H , we have τ ∈ TH . We associate the pair (H, τ) to G. Conversely, let (H, τ) be a pair 
as in the statement of the theorem. Then H gives rise to a group operation ◦H on N2
and a canonical isomorphism (N2, ◦H) ∼= H. Using ◦H and τ , we define an operation ◦
on N by

(a, b) ◦ (a′, b′) = (a + τ(a′), b ◦H b′)

for all a, a′ ∈ Ns and b, b′ ∈ N2. It is straightforward to check that this makes N
into a quaternion (respectively, dihedral) brace which therefore corresponds to a regular 
quaternion (respectively, dihedral) subgroup G of Hol(N). It is clear that these two 
constructions are mutually inverse. This establishes the bijective correspondence in the 
theorem.

Now let (H, τ) correspond to G. We will write elements of Hol(N) = (Ns⋊Aut(Ns)) ×
Hol(N2) as triples (a, α, h) with a ∈ Ns, α ∈ Aut(Ns), h ∈ Hol(N2). Then

G = {(a, τb, hb) : a ∈ Ns, b ∈ N2}

where hb = (b, λH
b ) ∈ H. For α ∈ Aut(Ns) and β ∈ Aut(N2) ⊂ Hol(N2), we have

(0, α, β)(a, τb, hb)(0, α, β)−1 = (α(a), τb, βhbβ
−1),

where we have again used the fact that Aut(Ns) is abelian. Moreover in Hol(N2) we have

βhbβ
−1 = (0, β)(b, λH

b )(0, β−1) = (β(b), βλH
b β−1).

Writing H ′ = βHβ−1 = {h′
b : b ∈ N2} with h′

b = (b, λH′

b ), we therefore have βhbβ
−1 =

h′ . Hence
β(b)
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(α, β)G(α, β)−1 = {(α(a), τb, h′
β(b)) : a ∈ Ns, b ∈ N2}

= {(a, (β · τ)β(b), h
′
β(b)) : a ∈ Ns, b ∈ N2}

= {(a, (β · τ)b, h′
b) : a ∈ Ns, b ∈ N2}

which is the regular subgroup of Hol(N) corresponding to the pair (βHβ−1, β · τ). �
Remark 12.9. The proof of Theorem 12.8 is inspired by [7, Proposition 4]. Note in fact 
that their proposition holds under the general assumptions (satisfied in both cases) 
that the braces we are studying are semidirect products of braces such that the normal 
component is a trivial brace.

We next investigate the sets TH .

Proposition 12.10. Let H be a regular quaternion (respectively dihedral) subgroup of 
Hol(N2). If H ∼= Q2n with n �= 3, or H ∼= D2n with n �= 2, then |TH | = 1. If H ∼= Q8 or 
D4 then |TH | = 3. In particular, TH does not depend on s.

Proof. A homomorphism τ : (N2, ◦H) → Aut(Ns) belongs to TH if and only if Ns ⋊τ

(N2, ◦H) is a quaternion (respectively dihedral) group. This occurs precisely when the 
image of τ is the subgroup of order 2 in Aut(Ns) generated by inversion. Thus τ is 
completely determined by its kernel, which may be any subgroup of index 2 in (N2, ◦H) ∼=
H. If H ∼= Q2n with n �= 3, or H ∼= D2n with n �= 2, then H has a unique subgroup 
of index 2. Thus |TH | = 1. In the remaining cases, H has 3 subgroups of index 2, so 
|TH | = 3. �

We now modify the notation used in Table 1 to remove the dependence on the ‘Small 
Group’ labelling. For an abelian group N and a group J with |N | = |J | = 2ns, let c(N, J)
denote the number of isomorphism classes of braces with additive group isomorphic to 
N and with multiplicative group isomorphic to J . This is just the number of orbits of 
regular subgroups in Hol(N) isomorphic to J under conjugation by Aut(N). Similarly, 
let r(N, J) be the total number of regular subgroups in Hol(N) isomorphic to J , and let 
h(N, J) denote the number of Hopf-Galois structures of type N on a Galois extension 
whose Galois group is isomorphic to J .

The next result shows that, when J is a quaternion or dihedral group, the quantities 
r(N, J) and c(N, J) almost always coincide with the corresponding quantities for the 
Sylow 2-subgroups of N and J .

Theorem 12.11. Let N = Ns ×N2 be as in Theorem 12.8, let J ∼= Q2ns or D2ns, and let 
J2 be a Sylow 2-subgroup of J .

If J ∼= Q2ns with n �= 3, or J ∼= D2ns with n �= 2, then r(N, J) = r(N2, J2) and 
c(N, J) = c(N2, J2).
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If J ∼= Q8s or D4s then r(N, J) = 3r(N2, J2). Also for n = 3 we have c(N, Q8s) =
c(C3 ×N2, Q24), and for n = 2 we have c(N, D4s) = c(C3 ×N2, D12).

Proof. If J ∼= Q2ns with n �= 3, or J ∼= D2ns with n �= 2, then |TH | = 1 by Proposi-
tion 12.10. Thus Theorem 12.8 gives a bijection between regular quaternion (respectively 
dihedral) subgroups G of Hol(N) and regular quaternion (respectively dihedral) sub-
groups H of Hol(N2). Hence r(N, J) = r(N2, J2). Writing SH = {β ∈ Aut(N2) :
βHβ−1 = H} for the stabiliser of H in Aut(N2), we see that the stabiliser of G in 
Aut(N) = Aut(Ns) × Aut(N2) is Aut(Ns) × SH . Thus the length of the conjugacy class 
of G in Aut(N2) is

|Aut(Ns) × Aut(N2)|
|Aut(Ns) × SH | = |Aut(N2)|

|SH | ,

which coincides with the length of the conjugacy class of H in Aut(N2). Thus we also 
have c(N, J) = c(N2, J2).

In the two remaining cases, we have |TH | = 3 for each H. Thus each regular quaternion 
(respectively dihedral) subgroup H in Hol(N) occurs in 3 pairs (H, τ) in Theorem 12.8, 
so r(N, J) = 3r(N2, J2). We consider the conjugacy class of the regular subgroup G of 
Hol(N) corresponding to the pair (H, τ). Now (α, β) ∈ Aut(N) is in the stabiliser of 
G if and only if βHβ−1 and β · τ = τ (with no condition on α). Then β must belong 
firstly to SH , and further to the stabiliser SH,τ of τ in SH . Here the action of SH on 
TH corresponds to its action on the subgroups of index 2 in H. Thus SH,τ may depend 
on the subgroup H, but is independent of s. The lengths of the conjugacy classes of the 
groups G are therefore the same for arbitrary odd s ≥ 3 as for s = 3. Hence c(N, J) is 
as stated. �

To complete the evaluation of c(N, J) in all cases, it only remains to handle J ∼= Q24
and J ∼= D12. We do this using Magma. We start with the case N = C24 and J = Q24. 
As in §10, we run the following code. We omit the output of ‘R;’ which we use to count 
the number of conjugacy classes of regular subgroups. In this case, there are 14 conjugacy 
classes.

N:=SmallGroup(24,2);
G:=SmallGroup(24,4);
H:=Holomorph(N);
R:=RegularSubgroups(H);
R;
for i in [1..14] do

if IsIsomorphic(R[i]‘subgroup,G) eq true then
print i;

end if;
end for;
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6
14

There are therefore two conjugacy classes of regular subgroups isomorphic to Q24. Hence 
there are two isomorphism classes of braces of order 24 with cyclic additive group and 
quaternion multiplicative group. Repeating the calculation with N = C3 × C2 × C4

(SmallGroup(24,9)) and N = C3 × C3
2 (SmallGroup(24,15)), we find three conjugacy 

classes and one conjugacy class of regular subgroups isomorphic to Q24, respectively.

Corollary 12.12. Let s ≥ 3 be an odd number. Then there are 6 isomorphism classes of 
braces with multiplicative group isomorphic to Q8s.

Analogously, we can analyse the D12 case, starting from N = C12.

N:=SmallGroup(12,2);
G:=SmallGroup(12,4);
H:=Holomorph(N);
R:=RegularSubgroups(H);
R;
for i in [1..5] do

if IsIsomorphic(R[i]‘subgroup,G) eq true then
print i;

end if;
end for;
2
5

In this case there are two conjugacy classes. Hence there are two isomorphism classes 
of braces with cyclic additive group and quaternion multiplicative group. Repeating the 
calculation with N = C3 × C2 × C2 (SmallGroup(12,5)), we find one conjugacy class of 
regular subgroups of Hol(N) isomorphic to D12.

Corollary 12.13. Let s ≥ 3 be an odd number. Then there are 3 isomorphism classes of 
braces with multiplicative group isomorphic to D4s.

13. Final statement about braces

Putting together Theorem 11.1 and the conclusions in §12, we have now proved Con-
jecture 6.6 of [16] which we stated as Conjecture 1.2.

Theorem 13.1. Let m ≥ 3 be an integer and let q(4m) be the number of isomorphism 
classes of braces with multiplicative group isomorphic to Q4m. Then
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Table 2
Number of isomorphism classes of quaternion or dihedral braces for each possible 
additive group N .

N Conditions Quaternion braces Dihedral braces
Cs × C2n n ≥ 5, s odd 1 1
Cs × C2 × C2n−1 n ≥ 5, s odd 6 6

Cs × C16 s odd 1 1
Cs × C2 × C8 s odd 4 6
Cs × C4 × C4 s odd 2 0
Cs × C2 × C2 × C4 s odd 1 0
Cs × C2 × C2 × C2 × C2 s odd 1 0

Cs × C8 s ≥ 3 odd 2 1
Cs × C2 × C4 s ≥ 3 odd 3 5
Cs × C2 × C2 × C2 s ≥ 3 odd 1 2

C8 1 1
C4 × C2 1 5
C2 × C2 × C2 1 2

Cs × C4 s ≥ 3 odd 1 2
Cs × C2 × C2 s ≥ 3 odd 1 1

C4 1 1
C2 × C2 1 1

q(4m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if m is odd;
6 if m ≡ 2 (mod 4);
9 if m ≡ 4 (mod 8);
7 if m ≡ 0 (mod 8).

We also have the analogue of Theorem 13.1 for dihedral braces.

Theorem 13.2. Let m ≥ 3 be an integer and let d(4m) be the number of isomorphism 
classes of braces with multiplicative group isomorphic to D4m. Then

d(4m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 if m is odd;
8 if m ≡ 2 (mod 4);
7 if m ≡ 4 (mod 8);
7 if m ≡ 0 (mod 8).

Question 6.7 of [16] asks which finite abelian groups A appear as the additive group 
of a quaternion brace, and Question 6.8 asks for the number of isomorphism classes of 
quaternion braces for each such A. The answers to these questions, and the corresponding 
answers for dihedral braces, are given in Table 2.

14. Final statement about Hopf–Galois structures

We start by generalising Proposition 3.3.
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Proposition 14.1. Let s ≥ 3 be an odd integer and let n ≥ 2 be an integer. Then 
|Aut(Q2ns)| = |Aut(D2ns)| = 22n−3sϕ(s).

Proof. Let G = 〈x, y〉o be Q2ns or D2ns. The cyclic group 〈x〉 of order 2n−1s is char-
acteristic in G, so that every automorphism can only send x to ϕ(2n−1s) other possible 
elements. Moreover, y can only go to a power of x times y. We can verify that each of 
these possibilities defines an automorphism. �

Using the notation h(N, J) introduced before Theorem 12.11, we can now reduce 
the enumeration of Hopf-Galois structures on quaternion or dihedral extensions to the 
2-power case.

Proposition 14.2. Let s ≥ 3 be odd and let n ≥ 2. Let J ∼= Q2ns or J ∼= D2ns, let J2 be a 
Sylow 2-subgroup of J , and let N = Ns ×N2 be an abelian group of order 2ns with Ns

cyclic of order s. Then h(N, J) = h(N2, J2)s in all cases.

Proof. By (1.1) we have

h(N, J) = |Aut(J)|
|Aut(N)| r(N, J) and h(N2, J2) = |Aut(J2)|

|Aut(N2)|
r(N2, J2).

As Aut(N) = Aut(Ns) × Aut(N2) and |Aut(Ns)| = ϕ(s), we deduce that

h(N, J) = |Aut(J)|
|Aut(J2)|

· 1
ϕ(s) · r(N, J)

r(N2, J2)
· h(N2, J2). (14.1)

If J ∼= Q2ns with n �= 3, or J ∼= D2ns with n �= 2, then from Propositions 3.3 and 14.1
we have |Aut(J)| = sϕ(s)|Aut(J2)|. Also r(N, J) = r(N2, J2) by Theorem 12.11. Then 
(14.1) gives h(N, J) = h(N2, J2)s.

In the remaining cases J ∼= Q8s and J ∼= D4s, we have |Aut(J2)| = 3 ·22n−3. (The extra 
factor 3 arises since there are 3 subgroups of index 2 in Q8 and D4.) Thus |Aut(J)| =
1
3sϕ(s)|Aut(J2)|. But by Theorem 12.11, r(N, J) = 3r(N2, J2) in these cases, so again 
(14.1) yields h(N, J) = h(N2, J2)s. �

Combining Proposition 14.2 and Table 1, we obtain our final result.

Theorem 14.3. Let n ≥ 2 be an integer and let s ≥ 3 be an odd integer. If n ≥ 5, then 
there are 2n−2 · 9s Hopf-Galois structures of abelian type on a Galois extension of degree 
2ns with quaternion or dihedral Galois group. There are 2s, respectively 14s, respectively 
52s, Hopf-Galois structures of abelian type on a quaternion Galois extension of degree 4s, 
respectively 8s, respectively 16s. There are 4s, respectively 22s, respectively 36s, Hopf-
Galois structures of abelian type on a dihedral Galois extension of degree 4s, respectively 
8s, respectively 16s. The numbers of Hopf-Galois structures of each possible abelian type 
are as shown in Table 3.
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Table 3
Number of Hopf-Galois structures of each possible abelian type N on a 
Galois extension of degree 2ns (s ≥ 1, odd) with quaternionic or dihedral 
Galois group G.

N Conditions G quaternion G dihedral

Cs × C2n n ≥ 5 2n−2s 2n−2s
Cs × C2 × C2n−1 n ≥ 5 2n+1s 2n+1s

Cs × C16 4s 4s
Cs × C2 × C8 16s 32s
Cs × C4 × C4 16s 0
Cs × C2 × C2 × C4 8s 0
Cs × C2 × C2 × C2 × C2 8s 0

Cs × C8 6s 2s
Cs × C2 × C4 6s 14s
Cs × C2 × C2 × C2 2s 6s

Cs × C4 s 3s
Cs × C2 × C2 s s
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