
Preference Learning of Latent Decision Utilities with a
Human-like Model of Preferential Choice

Sebastiaan De Peuter
Aalto University

sebastiaan.depeuter@aalto.fi

Shibei Zhu
Aalto University

shibei.zhu@aalto.fi

Yujia Guo
Aalto University

yujia.guo@aalto.fi

Andrew Howes
University of Exeter

andrew.howes@exeter.ac.uk

Samuel Kaski
Aalto University

University of Manchester
samuel.kaski@aalto.fi

Abstract

Preference learning methods make use of models of human choice in order to infer
the latent utilities that underlie human behaviour. However, accurate modeling of
human choice behavior is challenging due to a range of context effects that arise
from how humans contrast and evaluate options. Cognitive science has proposed
several models that capture these intricacies but, due to their intractable nature,
work on preference learning has, in practice, had to rely on tractable but simplified
variants of the well-known Bradley-Terry model. In this paper, we take one state-of-
the-art intractable cognitive model and propose a tractable surrogate that is suitable
for deployment in preference learning. We then introduce a mechanism for fitting
the surrogate to human data and it extend it to account for data that cannot be
explained by the original cognitive model. We demonstrate on large-scale human
data that this model produces significantly better inferences on static and actively
elicited data than existing Bradley-Terry variants. We further show in simulation
that when using this model for preference learning, we can significantly improve a
utility in a range of real-world tasks.

1 Introduction

AI systems need exact descriptions of tasks to be performed. However, humans find more complex
tasks hard to describe. In response, preference learning has emerged as one way to learn from human
feedback. It has been used to teach AI systems a variety of tasks from how to hand objects to humans
to how to play Atari games [1–4]. More recently, human feedback has been used to train large
language models to summarize text [5], answer questions in natural language [6], and to train deep
generative models to generate realistic medical images [7].

When learning from human feedback, it is generally assumed that some latent utility function f
guides an individual’s behavior, but that the individual cannot describe this function to the machine.
Thus, preference queries are used to elicit information about f from the user. A preference query
gives a user a set of options x1, . . . , xn and asks the user to select their preferred option, i.e., the one
with the highest utility. Given a model of how people make such choices, the machine can then infer
the underlying function f from the user’s chosen item y. For example, Stiennon et al. [5] learned a
utility function for text summaries by showing users a text with several summaries and asking them
to choose the best summary.

There are several models of choice that have been used for learning preferences from human choices.
Some recent work on Reinforcement Learning from Human Feedback (RLHF), for example, has used

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

a simple binary choice model [5, 6] p(y = x1|x1, x2) = σ(f(x1)− f(x2)), over choices x1 and x2,
though generally, most preference learning approaches have used the Bradley-Terry model [8]

p(y = xi|x1, . . . , xn) =
exp(βf(xi))∑n
j=1 exp(βf(xj))

.

Although these models have proven to be practical, they are not realistic models of human choice
behavior. Specifically, both models make choices between two options without taking into account
the rank orderings of option attributes; a widely observed property of human decision-making [9–11].
As a result, these models fail to predict a number of apparent biases in human choice behavior.
These include contextual choice effects [12, 13], which occur in situations where a decision maker’s
choice between two options is influenced by adding more options to the choice set [14, 12]. Say, for
example, we have two options A and B and a user exhibits a probability of choosing between these.
When a third decoy option C is introduced which is strictly dominated by B, there is a shift in the
probability of choices from A to B.

Though context effects are not certain to appear in preference queries posed to users, they are known
to appear in a wide range of human tasks including risky choice tasks [12], multi-attribute choice tasks
[15] and perceptual judgement tasks [11] and in many other species including jays and honeybees
[16]. These effects point to a potential gap in the accuracy of the models currently used, during
preference learning, to interpret the choices made by users. Moreover, this gap has the potential to
lead to incorrect inferences about the latent preference utilities of observed human decision-makers.

The contribution of this paper is threefold. First, we show that we can improve preference learning
by leveraging computational rationality theory, a general cognitive-scientific theory which posits
that human behavior is rational under cognitive bounds [17, 18]. We learn preferences from human
choice behaviors using a state-of-the-art cognitive model that is based on a computational rational
analysis of context-dependent choice under uncertainty and is backed by substantial empirical support
in the psychology literature [19]. Like all computationally rational models, behavior under this
model emerges from the latent utility function and a latent set of cognitive bounds. This provides
strong inductive biases when inferring these latent factors from human behavior which – as we will
show experimentally – significantly improves learning from preferences. Our second contribution
lies in making this cognitive model amenable to preference learning. To this end, we generalize
it, and make inference practical by approximating intractable calculations with a surrogate we call
the Computationally Rational Choice Surrogate (CRCS) model. Finally, we find experimentally
that CRCS can sometimes perform worse than the Linear Context Logit (LCL) model [20]. We
hypothesize that human context effects are partially a consequence of cross-feature effects. These
are not modeled in CRCS, but can be learnt by LCL. We therefore propose LC-CRCS, which takes
advantage of these effects by combining CRCS with LCL.

We report three sets of experiments. In the first, we show that CRCS matches the original model’s
prediction of human choice behavior. In the second, we compare preference learning with CRCS
to preference learning with recently proposed variants of the Bradley-Terry choice model. Using
existing human data sets, we show that CRCS outperforms these in choice prediction and utility
function inference, but performs worse than LCL on some tasks. We then show that LC-CRCS can
additionally outperform LCL in these tasks. In the third set of experiments, we show the applicability
of CRCS in three real-world use cases and verify its parameter recovery capability

2 Background

2.1 Learning from Preferences

Preference learning methods aim to infer latent utility functions from human choices. Depending
on the type of queries presented, there are two main streams of research: (1) learning from pairwise
comparisons or (2) learning from ranking, where humans rank a set of n options. Popular methods
include Gaussian Process regression that captures the preference relationships of pairwise queries [21,
22]. Other work, such as as [23–25], uses Deep Neural Networks trained on ranked demonstrations
to approximate the underlying reward functions. To reduce the computational burden created by the
necessity for numerous queries, active learning techniques [26–29] have been proposed for efficient
query proposal with maximum information gain. However, these methods typically require consistent
preference order within the ranking and do not consider any contextual effects within the query

2

dataset. Reinforcement Learning approaches include Preference-Based Reinforcement Learning
(PBRL) and Reinforcement Learning with Human Feedback (RLHF), where the reward function is
inferred from the preference feedback. Work using ranking queries and human feedback can reach or
even exceed human-level performance in several RL benchmarks [23, 24].

2.2 Modeling contextual choice

To date, preference learning research has yet to make use of plausible models of human decision-
making such as [30, 31]. These models are inspired by extensive studies of human behavior and give
rise to contextual choice effects. Consider a hypothetical choice between two sightseeing trips, one
to Paris and the other to London. Both trips come with free coffee. Let’s say that 70% of people
prefer Paris and 30% London. Now imagine that we add a third option which is identical to the
London trip but without free coffee. If, for this three-trip choice problem, we observe that 40%
prefer London with free coffee, then we will have observed a contextual choice effect known as a
“preference reversal” [32]. The choice frequency for London with coffee is increased by a context
that includes a dominated choice. This effect has been observed both in sample averages and, more
interestingly, within individuals. It has been taken as evidence that people are irrational [33] and have
no stable preferences [34]. Needless to say, both instability and irrationality pose severe challenges
to the viability of preference learning.

More recent theories, however, demonstrate that contextual choice effects can be consequences of
computationally rational processes that assume stable preferences. These theories explain contextual
choice effects by modeling the fact that people compare attributes and/or utilities under uncertainty.
These include Bayesian theories [35], rational analyses [19], and neurobiological relative encoding
theories [13, 36]. These theories use comparisons between option attributes to compute expected
utilities, such that these expectations are sensitive to the reliability of the comparison as an indicator
of expected utility.

Other work has proposed variations on the Bradley-Terry model to include these contextual effects,
with the same commitment to stable preferences. Bower and Balzano [37] posit that context effects
are the result of humans comparing options only on the k most salient features within a context. They
propose a Bradley-Terry model where utilities are calculated only on the k most salient features,
where saliency is measured by the sample variance of each feature within the current set of options.
Tomlinson and Benson [20] do not propose a specific theory of context effects, but rather propose to
learn them from data. They introduce the Linear Context Logit (LCL) model, a Bradley-Terry model
with a linear utility function, in which context effects are modeled as a context-dependent change
in the (globally stable) weights of the utility function. This change is modeled as a linear function
of the average attribute values of the set of options presented to a user (the context), and is inferred
from human choice data. They further introduce the Decomposed LCL model, in which each feature
induces its own context effect – whereas in LCL the features jointly inducing a single context effect –
and where the final context effect results from a mixture of these individual effects.

In the current paper, we commit to distinguishing behavioral choices, which are observable, from
latent preferences, which are not. When we refer to “preferences” we are referring to the latent utility
function f(x), and not to the observable choice behavior.

3 Modeling computationally rational choice

To learn latent preferences from human choice behavior, we build on a computationally rational
model of choice behaviors by Howes et al. [19] which is sensitive to the aforementioned context
effects. This model assumes that humans make utility-maximizing choices, but that the option
utilities are estimated from noisy observations of the true utilities and noisy comparisons between
the option attributes. Here we will first describe the original model in a general form. We then
extend it to a general space of utility functions and introduce our Computationally Rational Choice
Surrogate (CRCS) model, a model which replaces intractable computations in the original model with
learned surrogates to allow tractable inference of the latent utility function. Finally, we introduce the
LC-CRCS model, an extension of the CRCS model which is able to learn additional context effects
not captured by the CRCS model.

3

3.1 A computationally rational model of choice

Let x1, . . . , xn ∈ Rd be a set of n options, each with d attributes. Let f : Rd → R be a latent utility
function that maps each option to its associated utility. As a shorthand, we will denote the utilities of
a collection of options x = ⟨x1, . . . , xn⟩ as u = ⟨u1, . . . , un⟩ where ui = f(xi).

The cognitive model introduced by Howes et al. [19] assumes that when making choices, humans do
not observe the options x1, . . . , xn nor their utilities directly. Instead humans are assumed to make
utility-maximizing choices based on two sets of noisy observations of the options. The first set are
noisy observations ũ = ⟨ũ1, . . . , ũn⟩ of the true utility of each option. These are modeled as samples
from a Gaussian centered around the true utilities

∀i ∈ 1, . . . , n : ũi ∼ N (f(xi), σ
2
calc)

with noise σ2
calc which we will call the calculation noise. The second set are noisy observations of the

ordinal relation between the values of each attribute for each pair of options. Given an attribute k and
a pair of options (xi, xj), this ordinal relationship is defined by the following observation function:

o(xi,k, xj,k) =

≺ iff xi,k < xj,k − τk
≻ iff xi,k > xj,k + τk
≡ else

with τk an attribute-specific tolerance parameter. Intuitively, a larger τk creates a greater margin
within which attribute values will be considered equal. For binary attributes, we set τk to zero.
Each noisy ordinal observation õ(xi,k, xj,k) is sampled as follows: with probability 1 − ε sample
õ(xi,k, xj,k) = o(xi,k, xj,k), otherwise sample uniformly at random from {≺,≻,≡}. The probability
of ordinal error ε is a parameter, and is the sole source of noise within the ordinal observations. We
will denote the set of noisy ordinal observations as õ = {õ(xi,k, xj,k)}k=1...d,i=1...n,j=i+1...n.

Given these observations ũ and õ for options x1, . . . , xn, and the choice model parameters
θ = (σ2

calc, ε, τ1, . . . , τd), the above model implies a posterior distribution over the options’ true util-
ities p(u|ũ, õ, θ) and associated expected values E[ui|ũ, õ, θ]. As they do not observe true utilities
of the options, humans are assumed to choose the option y with the highest expected utility:

y = argmax
xi∈{x1,...,xn}

E[ui|ũ, õ, θ].

Preference learning requires that we are able to reason about how various utilities lead to different
choice behaviors. Therefore, to make the original cognitive model amenable to preference learning,
we replace the fixed utility function f by a space of utility functions {fw}w∈W parameterized by a
utility parameter w. We assume that the user being modeled makes choices based on some chosen
parameter value w, which is known only to them, and which we represent as an additional observed
random variable in the model. Necessarily, any calculation of utility therefore depends on w. Under
these assumptions the user’s posterior over utilities, and thus their choice y, is:

y = argmax
xi∈{x1,...,xn}

E[ui|ũ, õ, w, θ]. (1)

where this expectation is calculated under the posterior

p(u|ũ, õ, w, θ) ∝ p(ũ|u, θ)
∫

x

p(x,u, õ|w, θ)dx

=

n∏

i=1

p(ũi|ui, θ)

∫

x

p(õ|x, θ)
n∏

i=1

p(xi)p(ui|xi, w)dx. (2)

3.2 Learning from choice behaviors

In our description of the model above, we have taken the point of view of the user making the choices.
However, we now return to a preference learning perspective, i.e. that of an outside observer such
as an AI system trying to infer the utility function that underlies these choices. We assume that the
AI system observes the presented options x1, . . . , xn, as well as the option y the user chooses. The
goal is then to infer the unknown utility parameter w and choice model parameters θ from observed

4

choices (x, y). However, the noisy observations ũ and õ on which the user bases their choice are
part of their internal perception of the options, and are therefore not observable to an AI system. This
means that in evaluating the likelihood of a choice y under the above choice model we must treat the
observations as latent. This yields the following choice policy for the user:

p(y|x, w, θ) =
∫

ũ

∫

õ

p(y|õ, ũ, w, θ)p(õ|x, θ)p(ũ|x, w, θ)dõdũ. (3)

Here, p(y|õ, ũ, w) is a point mass on y following equation (1). Given m pairs (x(l), y(l)), a prior
p(w) over the space of utility parameters and a prior p(θ) over the space of choice model parameters,
we can use the likelihood in equation (3) to infer a posterior over the parameters w and θ:

p(w, θ|{(x(l), y(l))}ml=1) ∝ p(w)p(θ)

m∏

l=1

p(y(l)|x(l), w, θ).

3.3 Tractable inference through surrogates

The issue we face in calculating p(w, θ|{(x(l), y(l))}) is that the likelihood p(y|x, w, θ) is intractable.
First, the calculation of the expected values in equation (1) requires the evaluation of an intractable
integral over x in equation (2). The expected values can be approximated using a Monte Carlo
estimate [19], but many samples are needed to achieve a good approximation. Second, the calculation
of the likelihood itself requires the evaluation of an intractable integral over all possible observations
in equation (3). As before, one could approximate this integral using a Monte Carlo estimate, but this
would again require many samples.

Instead, we propose to train surrogate neural networks to approximate both these quantities. We
introduce a first neural network û(ũ, õ, w, θ) trained to predict a vector of the expected values
E[u|ũ, õ, w, θ] from given observations ũ, õ and parameters w and θ. Then û(·) is trained by
minimizing

Lutil(û) = E
p(w,θ,u,ũ,õ)

[∥û(ũ, õ, w, θ)− u∥2] . (4)

Samples (w, θ,u, ũ, õ) are obtained by (1) sampling w ∼ p(w), θ ∼ p(θ) and x ∼ p(x) from their
respective priors, (2) calculating ui = fw(xi) for each option, and (3) sampling the observations
ũi ∼ p(ũi|ui, θ) and õ ∼ p(õ|x, θ). Note that the minimum of Lutil(û) is exactly the function that
assigns to each tuple (ũ, õ, w, θ) the vector of expectations E[u|ũ, õ, w, θ].
Next, we train a second neural network q̂(y|x,w, θ), which we will refer to as our CRCS model,
to approximate the user’s policy p(y|x, w, θ) over choice behaviors. By using the fact that
û(ũ, õ, w, θ) ≈ E[u|ũ, õ, w, θ] we minimize the cross-entropy loss between q̂ and choices based on
utilities predicted by û. The loss function is thus:

Lpol(q̂) = E
p(w,θ,x,ũ,õ)

[
− ln q̂

(
argmax
{x1,...,xn}

û(ũ, õ, w, θ)

∣∣∣∣∣x, w, θ
)]

.

Samples (w, θ,u, ũ, õ) are obtained as above.

3.4 Modeling cross-feature influence in CRCS

Although our proposed model can predict a range of context effects, it does not yet capture all.
Although CRCS can model how each individual feature influences the expected utility of the options,
it cannot model how features can impact each other. This is something that LCL does do: its utility
weight updating mechanism changes the weight of each feature based on the mean value of all other
features. Thus, features can influence how other features are valued. In the most general sense, LCL’s
fundamental mechanism corresponds to a function g(w,x) which maps the utility weights w and
the set of options x (which make up the context) to a new set of weights w′. We therefore propose
to integrate this same mechanism into CRCS, resulting in a new model q̂(y|x, g(w,x), θ). As q̂ is
differentiable, we can infer g from data using gradient descent. In the experiments that follow, we
will use this approach in settings where fw is a linear function. Thus, like LCL, we will define g as a
linear function of xC : the mean attribute values of the options x. We will refer to the resulting model
q̂
(
y
∣∣x, w + (AxC)

T , θ
)

as LC-CRCS.

5

Table 1: Choice model NLLs on human choice data sets. Bolded digits indicate a significant (p <
0.01) improvement over baselines (BT, BB, LCL).

Dataset Bradley-Terry Bower & Balzano LCL CRCS (ours) LC-CRCS (ours)

Hotels 573 573 553 536 536
District-Smart 3432 3432 3305 3371 3276
Car-Alt 7414 7416 7290 7322 7345
Dumbalska 103669 103711 100683 100450 99147

4 Experiments

We first validate the proposed CRCS model by comparing its results with the original computationally
rational choice model by Howes et al. [19]. Then we compare the proposed CRCS model and our
LC-CRCS variant with three baselines on human choice data, and finally study the performance
of the model on three case studies: car crash structure design, water drainage network design, and
retrosynthesis planning.1

We evaluate our proposed CRCS model on four datasets of human choices. These datasets are
large sets of choices (x(l), y(l)) collected from human participants. The District-Smart dataset [38]
contains pairwise preferences over voting districts, where participants were asked to choose the
district they felt was most compact. The features extracted for each district are six geometric measures
identified by the original authors as good measures of compactness. The Car-Alt dataset [39] contains
choices between six hypothetical alternative fuel cars. Each car has 21 features, including size, range,
operating cost, etc. We also use a dataset collected in [40], which we will call the Hotels dataset,
where in a user study participants were asked which of three hotels they preferred. The hotels were
collected from a booking site and had as features the price per night and average review rating. For
each participant, a choice was collected on one of six sets of options constructed to target three
known context effects: attraction, compromise and similarity. Lastly, we use the data collected by
Dumbalska et al. [36] on a property task, which we will refer to as Dumbalska. Here, participants
ranked three properties in order of best to worst value. For our purposes, we will treat the top-ranked
item as the choice. Value was defined as the given rental cost minus the value participants thought the
house was worth (which had been elicited in an earlier stage). For each participant, responses were
collected on a large collection of choices, specifically engineered to span the entire range of potential
context effects. Thus, unlike the other datasets, we have multiple recorded choices per participant.
This allows us to make inferences per individual, rather than at the population level, and evaluate how
well our choice models fit the preferences and context effects exhibited by individuals.

4.1 Validation of the CRCS model: risky choice tasks with preference reversals

In this experiment, we validate our CRCS model against the original implementation of Howes et al.
[19] on a risky choice task. In this task, a user is presented with a set of three options, each of which is
a pair (pi, vi) consisting of a probability pi and a payoff vi. Upon selecting option i, the user receives
payoff vi with probability pi, meaning that each option has expected payoff f(pi, vi) = pi · vi.
Comparing expected option values predicted by û with the Monte Carlo estimates used in [19], we
find that on sets of three options both generally agreed on the relative magnitude of the utilities, and
that they agreed on the ranking of the utilities in 92.277%± 0.165% (Agresti–Coull) of cases. Next,
we verified q̂’s ability to predict contextual preference reversals. This was tested on Range-Frequency
decoy conditions [19] where two “Pareto-optimal" options with equal utility are presented along
with a decoy option with slightly lower utility which is dominated by one of the other two options.
Preference reversals – specifically, increased likelihood of choosing the Pareto-optimal option that
dominates the decoy – have been observed in humans and are predicted by the original model.
Figure 3 in the appendix shows that q̂ reproduces the range of reversal rates of the original model.

1Implementation available at https://github.com/AaltoPML/Preference-Learning-with-a-
human-like-model-of-choice.

6

https://github.com/AaltoPML/Preference-Learning-with-a-human-like-model-of-choice
https://github.com/AaltoPML/Preference-Learning-with-a-human-like-model-of-choice

Table 2: Consistency of inferred utility function with separately collected rankings on District-Smart.
Bolded digits indicate a significant improvement over baselines (BT, BB, LCL).

Dataset Bradley-Terry Bower & Balzano LCL CRCS (ours) LC-CRCS (ours)

District-Smart 0.162 0.217 0.286 0.622 0.525

4.2 Evaluation on static human choice data

In this set of experiments, we evaluate each models’ ability to generalize to unseen data. We
compare our proposed CRCS model and the LC-CRCS variant against three baselines: vanilla
Bradley-Terry, the variant proposed by[37] (referred to as Bower & Balzano) and LCL [20]. On
four different datasets, we infer the parameters for each model on a training set of observed choices
{(x(l), y(l))}ml=1 and calculate the negative log-likelihood (NLL) of a held-out test set under the
inferred parameters. Inference was done using gradient descent on the NLL of the training set. We
performed cross-validation, and report the sum of the test sets’ NLLs across the folds. For Hotels,
Car-Alt and District-Smart we split the choice data across 50, 20 and 10 folds respectively. By
evaluating each choice model on each test fold, we obtained paired observations (one per condition)
for each test fold, allowing us to perform a Wilcoxon rank test across the folds to test significance.
On Dumbalska, we look at how well the choice models can fit to individuals, and thus perform
cross-validation for each participant individually. We then treated the sum of the NLLs of the test
sets per participants as individual measures, and tested significance using a Wilcoxon test across
the participants. Following prior work, we used a linear utility function in all choice models in all
datasets.

Table 1 shows the total NLL achieved by each model on each dataset. We observe that our proposed
LC-CRCS model achieves the highest NLL on Hotels, District-Smart and Dumbalska. This difference
is significant (p < 0.01) in all three cases. On Car-Alt, we see that LCL performs better than all other
models, with the difference being significant (p < 0.01) for all except the CRCS model (p > 0.2). We
theorize that the poor performance of the CRCS model on Car-Alt is due to insufficient option data to
train û on (see Appendix A.1), leading to poor estimates of expected utility and therefore poor choice
predictions.

4.2.1 Evaluating the inferred utility function

As part of the District-Smart human subject study, Kaufman et al. [38] collected rankings on six
sets of districts from small groups of participants. Ranking such large sets is quite difficult, and we
should expect these rankings to be quite noisy. However, like the binary choices that were collected,
these rankings are indicative of people’s true preferences, and thus should be consistent with any
ranking of the same districts implied by the utility function we infer from the binary choices. To test
this, we use our choice models to infer utility parameters on the entire set of binary choices. For
each of the six sets, we then measure – using Kendall’s τ [41] – how consistent the ranking implied
by the inferred utility parameters is with the ranking collected in the study. We report the average
consistency across all six sets. Because the loglikelihood of CRCS and LC-CRCS is not convex, we
repeat this procedure 25 times, starting from different points, to control for the effect local optima
may have on the inferences. We test significance using a Wilcoxon test across the six sets of rankings.

Unlike the previous experiment, during inference we regularized the choice model parameters of
LCL, CRCS and LC-CRCS. This was essential to infer utility parameters that were consistent with
the collected rankings. For LCL we used the L1 matrix norm of the weight adaptation mechanism’s
parameter matrix as a regularization term. The L1 norm enforces sparsity and thus encourages
LCL to only fit to the most significant context effects [20]. For CRCS and LC-CRCS we used the
probability of the choice model parameters under a chosen prior as the regularization term. Using our
understanding of the model this allowed us to encode specific prior knowledge into the regularization.
More details can be found in Appendix A.3. From the results in Table 2 we observe that both CRCS
and LC-CRCS infer utility parameters that are significantly (p < 0.001) more consistent with the
collected rankings than the baselines. LC-CRCS performs slightly worse than CRCS, though the
difference was not yet significant.

7

4.3 Elicitation on human choice data

We now evaluate how well the choice models perform in a preference learning setting, where we
actively select the queries we put to a user. Whereas in the previous set of experiments we evaluated
how well the choice models perform on large amounts of data, here we are interested in how well
they perform when minimal data is available. We use the wealth of data available per participant
(between 530 and 1060 responses) in the Dumbalska data set to run a user experiment in silico. For
each choice model, we use active learning to infer utility function and choice model parameters for
each participant individually. At each time step of the experiment, we select from the set of queries
recorded for the participant the most informative query using the expected information gain. The
participant’s response to this query is then revealed, and the posterior over the utility and choice
model parameters is updated. We use a particle filter to maintain the posterior beliefs. This elicitation
process is performed for 25 time steps on 75 participants. To evaluate the inferences made by the
choice models, we calculate the expected likelihood of the remaining queries where the choice has
not been revealed yet. As the training data is actively selected for each choice model independently,
the data on which they are evaluated – the remaining queries – will differ, meaning that we cannot
use a paired test as we have done so far. Instead, we test significance using an independent t-test.

Figure 1a shows the mean expected utility calculated over the participants as a function of time for
each choice model. We observe that the two variants of our CRCS model make significantly (p <
0.01) better predictions of the participants’ choices at all time steps (except 0). Where in the previous
experiment (Table 1) we saw that LCL was close in predictive power to our proposed models, we see
that in this low data setting the difference is much more pronounced. This is because a number of
the context effects observed in the Dumbalska data set are built into the CRCS model. While LCL
has shown it can learn some of these effects, it needs much more data to do so. Interestingly, we
also observe that the LC-CRCS model, which can learn some new context effects on top of the ones
built into q̂, shows significant (p < 0.05) improvement on the CRCS model itself, even when very
little data is available. This shows that it provides us with the best of both worlds, showing quick
adaptability in low data settings and good performance when more data is available.

4.4 Simulated case studies

We now test the feasibility of using our model to learn a utility function from simulated choice
behaviors in real-world tasks, and to use the inferred utility function to help a designer solve a task by
recommending design solutions to them. We consider a preference learning setting where we learn
utility and choice model parameters by iteratively eliciting a simulated designer’s preferences over
sets of candidate designs, chosen to maximize the expected information gain. Using q̂, we infer a
posterior over the unknown parameters from the observed choices. To simulate a variety of users, we
run this experiment in silico, using q̂ with utility parameters sampled from a non-informative prior
and choice model parameters sampled from a prior designed to capture a wide range of behaviors
exhibited by the CRCS model. At each time step we measure two things: our ability to recover
the unknown parameters from the observed choices, and the utility of the design recommendations
we make. The inference error is measured by the distance to the true parameters under our current
posterior beliefs. The second is measured using the recommendation regret: the difference in utility
between the designer’s optimal design and the recommended design, which is chosen to be the design
with the highest expected utility under the posterior.

4.4.1 Case study 1: learning from preferences in structural design

The first use case involves the design of the frontal crash structure of a car to optimize three separate
objectives g1(t), g2(t), g3(t) [42]. The design is parameterized by five parameters t = ⟨t1, . . . t5⟩
which determine the thicknesses of various metal elements. We define the utility function as the
Chebyshev scalarization of the original objectives: fw(t) = maxi∈{1,2,3} wi|gi(t)− z∗i | where z∗i
denotes the ideal value of gi() and the weights w sum to one. Different choices of the utility weights
w correspond to different trade-offs between the objectives, and therefore to different solutions on
the Pareto frontier. Figure 1b shows the average recommendation regret as a function of the number
of queries across 300 runs of this experiment. We observe that the recommendation regret reduces
quickly, yielding good recommendations after as few as 10 queries. We attribute this to the utility
inference error, shown in Figure 6a in Appendix B.1, which reduces equally quickly.

8

0 5 10 15 20 25
Number of preference queries

0.4

0.5

0.6

0.7

0.8

ex
pe

ct
ed

 li
ke

lih
oo

d

CRCS
LC-CRCS
Bradley-Terry
LCL
Bower & Balzano

(a) Dumbalska

0 10 20 30 40 50
Number of preference queries.

0.01

0.02

0.03

0.04

0.05

Re
co

m
m

en
da

tio
n

re
gr

et

(b) Crash structure

0 20 40 60
Number of preference queries.

0.005

0.010

0.015

0.020

0.025

Re
co

m
m

en
da

tio
n

re
gr

et

(c) Water drainage

2 4 6 8 10
Number of top k.

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

M
ax

im
um

 tr
ue

 u
til

ity
 sc

or
e

Aizynthfinder (Baseline)
Ours

(d) Retrosynthesis

Figure 1: (a) Mean expected likelihood of unseen choice data as a function of the number of queries
observed for various choice models on the Dumbalska elicitation task. (b-c) Mean recommendation
regret as a function of the number of queries observed for the crash structure design and water
drainage network design respectively. (d) Maximum utility within the top k of routes ranked by
inferred utility as a function of k. All plots show the mean ± twice the standard error around the
mean.

4.4.2 Case study 2: learning from preferences in water drainage network design

Our second use case is a water drainage network design problem [43]. This use case is another multi-
objective problem involving six objectives g1(z), . . . , g6(z). Here, we scalarize the problem using a
weighted sum fw(z) =

∑6
i=1 wigi(z) where the weights w sum to one. As before, different choices

of w correspond to different solutions on the Pareto frontier. We ran 300 runs of this experiment.
Here too we see that recommendation regret (Figure 1c) and utility inference error (Figure 6a in the
appendix) drop quickly as we put more queries to the designer, with the largest reduction within the
first 10 queries. We achieve high-quality recommendations after less than 10 queries.

4.4.3 Case study 3: improving retrosynthesis planning with preference learning

Retrosynthesis planning, the problem of finding feasible reaction pathways to synthesize target
molecules, is a central task of synthetic chemistry. Significant progress has been made in solving it
through end-to-end automatic synthesis planning [44–46]. Existing work has focused on expanding
the search space of feasible reaction plans. Each route may satisfy an additional subset of proper-
ties, and different individuals or organizations may have different preferences over the properties.
Chemists’ preferences over these plans are often highly complex, representing trade-offs between
multiple objectives informed by personal experience and company policy. However, learning their
preferences in a way that can then inform AI-driven synthesis planning has not yet been done. We
designed a chemist-in-the-loop retrosynthesis planning framework to generate routes with an inferred
user model.

9

To build a personalized retrosynthesis planner, we modified one of the state-of-the-art automatic
retrosynthesis platforms Aizynthfinder [45], built on Monte-Carlo Tree Search (MCTS) with a fixed
utility function. Details can be found in Appendix B.2.1. First, we proposed a new utility function as
the weighted combination of five feature properties g1(r), . . . , g5(r), that correspond to reactants
cost, intermediates stability, reaction feasibility, total reaction success rate, poor reaction success
rate, and a route score computed by a data-driven scoring model g5. Given the input routes, this
model predicts the distance between the current route and the (latent) optimal route. We trained this
model on 47,055 synthetic routes extracted from the Journal of Medicinal Chemistry.

We report the inference error during preference learning in Appendix B.2.2. We integrated the inferred
utility weights into our planning system and assessed the consistency of the generated route with the
ground truth user utility preferences. We used inferred weights to synthesize 100 target molecules
for each weight. In order to measure the recommendation quality, we evaluated the top-ranked
routes from both Aizynthfinder and our model under the true utilities. Specifically, we measured the
maximum true utility score among the list of top k recommendations. This is to show how far down
from the recommended options list the user needs to go to find their optimal choice. Figure 7c shows
that within the top k options, the reaction pathways recommended from our model reaches higher
maximum utility score compared to the ones generated by Aizynthfinder. As a significance test, we
use the Wilcoxon rank test across every molecule and every user utility with p < (1.61× 10−53) for
all k.

5 Conclusion

A tractable surrogate model of choice, called CRCS, inspired by theories of human decision-making,
was proposed and shown to be a better basis for preference learning than some, but not all, existing
models. In response, we modified the model so that it could make cross-feature observations of
feature values extending the opportunity for contextual decision-making. We verified against human
data from a range of tasks that the new model, called LC-CRCS, outperforms the tested models both
in terms of its ability to predict choices and in its inferences of the utility function that underlies the
observed choices. Moreover, we find that it corresponds well to previously reported experimental data
demonstrating human susceptibility to contextual choice effects. Feasibility of using the new model
for preference learning and its ability to recover parameters was also demonstrated in three case
studies. Together, the results demonstrate the viability of CRCS and LC-CRCS in high performance
preference learning systems.

Limitations and future work We identify two primary limitations. First, training CRCS requires
sufficiently many choice sets, or a sufficient well-specified task so that new sets can be generated. As
we saw with Car-Alt, when insufficient choice sets are available for training, performance can suffer.
Second, CRCS and CRCS-LC only work on choice sets of fixed size. Extending these surrogates to
variable size choice sets is a promising direction for future work. Another promising direction for
future work is the application of the current choice model to large language model (LLM) fine-tuning.
Currently, given some featurization of LLM responses to a prompt, CRCS could be directly applied.
However, this would ignore the reading and interpreting of these responses that human evaluators
have to do. As such, we see an extension of the current choice model that integrates these cognitive
processes, based on the same computational rationality theory, as potentially transformational future
work.

Societal impact This paper presents work motivated by the goal to advance the field of Machine
Learning. The potential societal impact is in line with the broad body of prior work on learning from
preferences and modeling humans, none of which we feel must be specifically highlighted here.

Acknowledgements This work was supported by the Research Council of Finland (flagship pro-
gramme: Finnish Center for Artificial Intelligence, FCAI; grants 345604, 341763 and 359207),
and the UKRI Turing AI World-Leading Researcher Fellowship, EP/W002973/1. Computational
resources were provided by the Aalto Science-IT Project.

10

References
[1] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of

Preference-Based Reinforcement Learning Methods. Journal of Machine Learning Research,
18(136):1–46, 2017.

[2] Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep Reinforcement Learning from Human Preferences. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, pages 4302–4310, 2017.

[3] Andras Kupcsik, David Hsu, and Wee Sun Lee. Learning dynamic robot-to-human object
handover from human feedback. Robotics Research: Volume 1, pages 161–176, 2018.

[4] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

[5] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[6] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[7] Shenghuan Sun, Gregory M Goldgof, Atul Butte, and Ahmed M Alaa. Aligning synthetic medi-
cal images with clinical knowledge using human feedback. arXiv preprint arXiv:2306.12438,
2023.

[8] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[9] John W Payne, James R Bettman, and Eric J Johnson. Adaptive strategy selection in decision
making. Journal of experimental psychology: Learning, Memory, and Cognition, 14(3):534,
1988.

[10] Takao Noguchi and Neil Stewart. Multialternative decision by sampling: A model of decision
making constrained by process data. Psychological review, 125(4):512, 2018.

[11] Andrea M Cataldo and Andrew L Cohen. The comparison process as an account of variation
in the attraction, compromise, and similarity effects. Psychonomic Bulletin & Review, 26(3):
934–942, 2019.

[12] Douglas H Wedell. Distinguishing among models of contextually induced preference reversals.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(4):767, 1991.

[13] Konstantinos Tsetsos, Rani Moran, James Moreland, Nick Chater, Marius Usher, and Christo-
pher Summerfield. Economic irrationality is optimal during noisy decision making. Proceedings
of the National Academy of Sciences, 113(11):3102–3107, 2016.

[14] Joel Huber, John W Payne, and Christopher Puto. Adding asymmetrically dominated alterna-
tives: Violations of regularity and the similarity hypothesis. Journal of consumer research, 9(1):
90–98, 1982.

[15] Konstantinos Tsetsos, Marius Usher, and Nick Chater. Preference reversal in multiattribute
choice. Psychological review, 117(4):1275, 2010.

[16] Sharoni Shafir, Tom A Waite, and Brian H Smith. Context-dependent violations of rational
choice in honeybees (apis mellifera) and gray jays (perisoreus canadensis). Behavioral Ecology
and Sociobiology, 51:180–187, 2002.

[17] Richard L Lewis, Andrew Howes, and Satinder Singh. Computational rationality: Linking
mechanism and behavior through bounded utility maximization. Topics in cognitive science, 6
(2):279–311, 2014.

11

[18] Falk Lieder and Thomas L Griffiths. Resource-rational analysis: Understanding human cognition
as the optimal use of limited computational resources. Behavioral and brain sciences, 43:e1,
2020.

[19] Andrew Howes, Paul A Warren, George Farmer, Wael El-Deredy, and Richard L Lewis. Why
contextual preference reversals maximize expected value. Psychological review, 123(4):368,
2016.

[20] Kiran Tomlinson and Austin R Benson. Learning interpretable feature context effects in discrete
choice. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 1582–1592, 2021.

[21] Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In Proceedings
of the 22nd international conference on Machine learning, pages 137–144, 2005.

[22] Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Jose Hernández-lobato. Collaborative
gaussian processes for preference learning. Advances in neural information processing systems,
25, 2012.

[23] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[24] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[25] Vivek Myers, Erdem Biyik, Nima Anari, and Dorsa Sadigh. Learning multimodal rewards from
rankings. In Conference on robot learning, pages 342–352. PMLR, 2022.

[26] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with
gaussian processes for object categorization. In 2007 IEEE 11th international conference on
computer vision, pages 1–8. IEEE, 2007.

[27] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning
for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

[28] Kevin G Jamieson and Robert Nowak. Active ranking using pairwise comparisons. Advances
in neural information processing systems, 24, 2011.

[29] Erdem Bıyık, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. Active preference-
based gaussian process regression for reward learning. arXiv preprint arXiv:2005.02575,
2020.

[30] Sudeep Bhatia, Graham Loomes, and Daniel Read. Establishing the laws of preferential choice
behavior. Judgment and Decision Making, 16(6):1324–1369, 2021.

[31] Jerome R Busemeyer, Sebastian Gluth, Jörg Rieskamp, and Brandon M Turner. Cognitive and
neural bases of multi-attribute, multi-alternative, value-based decisions. Trends in cognitive
sciences, 23(3):251–263, 2019.

[32] Amos Tversky, Paul Slovic, and Daniel Kahneman. The causes of preference reversal. The
American Economic Review, pages 204–217, 1990.

[33] Paul W Glimcher. Efficiently irrational: deciphering the riddle of human choice. Trends in
cognitive sciences, 26(8):669–687, 2022.

[34] Petter Johansson, Lars Hall, and Nick Chater. Preference change through choice. In Neuro-
science of preference and choice, pages 121–141. Elsevier, 2012.

[35] Francesco Rigoli, Christoph Mathys, Karl J Friston, and Raymond J Dolan. A unifying bayesian
account of contextual effects in value-based choice. PLoS computational biology, 13(10):
e1005769, 2017.

12

[36] Tsvetomira Dumbalska, Vickie Li, Konstantinos Tsetsos, and Christopher Summerfield. A map
of decoy influence in human multialternative choice. Proceedings of the National Academy of
Sciences, 117(40):25169–25178, 2020.

[37] Amanda Bower and Laura Balzano. Preference modeling with context-dependent salient
features. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 1067–1077. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
bower20a.html.

[38] Aaron R Kaufman, Gary King, and Mayya Komisarchik. How to measure legislative district
compactness if you only know it when you see it. American Journal of Political Science, 65(3):
533–550, 2021.

[39] David Brownstone, David S Bunch, Thomas F Golob, and Weiping Ren. A transactions
choice model for forecasting demand for alternative-fuel vehicles. Research in Transportation
Economics, 4:87–129, 1996.

[40] David Ronayne and Gordon DA Brown. Multi-attribute decision by sampling: An account of
the attraction, compromise and similarity effects. Journal of Mathematical Psychology, 81:
11–27, 2017.

[41] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[42] Xingtao Liao, Qing Li, Xujing Yang, Weigang Zhang, and Wei Li. Multiobjective optimization
for crash safety design of vehicles using stepwise regression model. Structural and multidisci-
plinary optimization, 35:561–569, 2008.

[43] Ryoji Tanabe and Hisao Ishibuchi. An easy-to-use real-world multi-objective optimization
problem suite. Applied Soft Computing, 89:106078, 2020.

[44] Ola Engkvist, Per-Ola Norrby, Nidhal Selmi, Yu-hong Lam, Zhengwei Peng, Edward C Sherer,
Willi Amberg, Thomas Erhard, and Lynette A Smyth. Computational prediction of chemical
reactions: current status and outlook. Drug discovery today, 23(6):1203–1218, 2018.

[45] Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist,
and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosyn-
thetic planning. Journal of cheminformatics, 12(1):70, 2020.

[46] Weihe Zhong, Ziduo Yang, and Calvin Yu-Chian Chen. Retrosynthesis prediction using an
end-to-end graph generative architecture for molecular graph editing. Nature Communications,
14(1):3009, 2023.

13

https://proceedings.mlr.press/v119/bower20a.html
https://proceedings.mlr.press/v119/bower20a.html

uiw

xi

ũi

õ θ

n

(a) Our choice model, originally introduced in [19],
posits that humans make utility-maximizing choices
(for some utility function parameters w and choice
model parameters θ) based only on observations
(ũ, õ). The options x1, . . . , xn and their true utili-
ties u1, . . . , un are not observed.

uiw

x
(l)
i

ũ
(l)
i y(l)

õ(l) θ

n

m

(b) An outside observer observes a set of choices y(l)

made over associated options x
(l)
1 , . . . , x

(l)
n . From

this data set, the objective is to infer the parameters
w and θ. The noisy observations (ũ(l), õ(l)) that are
central to each of the user’s choices are internal to the
user and are therefore unobserved.

Figure 2: Graphical models of (a) our cognitive choice model and (b) the corresponding preference
learning problem.

Figure 3: Reversal rate minus inverse reversal rate as a function of σ2
calc on Range-Frequency

conditions for q̂ ("surrogate") and for the original implementation of Howes et al. [19] ("surrogate").
For q̂, we show the mean ± std. dev. for 10 models trained with different seeds. The “reversal rate"
is measured by calculating the rate at which the Pareto-optimal decoy-dominating option is chosen.
To control for random variation we subtract from this the “inverse reversal rate", the rate at which
the other Pareto-optimal option is chosen. For non-zero values of σ2

calc, we see that though q̂ is less
sensitive to σ2

calc, it reproduces the range of reversal rates of the original model.

A Human data experiments

A.1 Priors

This section provides details on how the CRCS model was trained for the choice tasks corresponding
to the Hotels, District-Smart, Car-Alt and Dumbalska datasets. In order to train our CRCS model on
a new choice task, we need to define three priors: a prior over sets of options p(x), a prior over utility
function weights p(w), and a prior over choice model parameters p(θ).

The prior over sets of options p(x) is by far the most important prior for successfully training the
CRCS model. It is clearly important that this prior matches the distribution of choice sets we expect
to see for the choice task we target. However, it is even more important to ensure that that prior has
proper support across the entire space of option sets. From equation 2 we see that in order to predict
the true utilities of the options x, û essentially has to infer the option set x (which it does not observe)
from the observations ũ and õ. It can only learn to do this well it if during training we can expect it
to encounter all x that could have resulted in ũ and õ.

The priors p(x) for these tasks were defined as follows:

• For Hotels we had access to the set of 200 hotels the original authors had used to build their
study. Thus, we generated options triplets from the prior by uniformly sampling (without
replacement) three hotels from this set.

14

Table 3: Mean ± std. dev. around the mean for averaged NLL per choice pair on human choice data
sets. This table shows the same results as Table 1 but reports averaged as opposed to summed NLLs.

Hotels District-Smart Car-Alt Dumbalska

Bradley-Terry 0.944 ± 0.109 0.638 ± 0.015 1.593 ± 0.022 0.629 ± 0.259
Bower & Balzano 0.944 ± 0.109 0.637 ± 0.015 1.593 ± 0.022 0.629 ± 0.259
LCL 0.910 ± 0.147 0.614 ± 0.021 1.563 ± 0.041 0.613 ± 0.266
CRCS (ours) 0.882 ± 0.104 0.627 ± 0.016 1.573 ± 0.023 0.612 ± 0.266
LC-CRCS (ours) 0.882 ± 0.115 0.610 ± 0.020 1.591 ± 0.029 0.605 ± 0.273

(a) Empirical option distribution (b) Prior p(x)

Figure 4: (a) The distribution of individual options in the choice data on Dumbalska. (b) The prior
p(xi) over individual options we use to generate new option sets.

• For District-Smart we had access to 21778 electoral districts collected by the original
authors. We generated pairs of options by sampling them uniformly from this set without
replacement.

• Options in the Dumbalska task have two features, a property’s rental cost and the partici-
pant’s valuation of it, both of which were bounded between 0 and 2500. The human choice
data suggested that both are strongly correlated. We created a prior over individual choices
that reproduces this correlation by using a multivariate normal distribution, mixed with a
uniform distribution over the entire option space, to ensure sufficient support even on less
frequently encountered options. Figure 4 shows the empirical option distribution within the
choice data, and our engineered prior over individual options. To generate option sets, we
then sampled three options from this prior.

• Car-Alt considers options sets consisting of hypothetical cars. Although we know that the
options were created from a set of 120 cars, the features of each option are determined both
by the Car that corresponds to that option and the participant who makes the choice. For
example, the cost of each car is expressed as a multiple of the participant’s log income.
The inclusion of participant-dependent features creates correlation between the options.
Unfortunately, we did not have enough information to engineer a new prior p(x) that would
faithfully reproduce this correlation, and would faithfully match the empirical distributions
over sets of options encountered in the original user study. Thus, we were forced to train the
CRCS model on the limited number of choice sets that appear in the human choice data.

As all tasks used linear utilities, and as the CRCS model is invariant to scaling of the utility function,
we define p(w) in all cases as a uniform distribution over all vectors of length 1.

The prior over the choice model parameters was set based on choice model parameters reported for
risky choice in [19] after accounting for scale differences of utilities and feature values for each task2

They are listed in table 4. For LC-CRCS, we additionally placed independent standard normal priors
on all entries of A.

2N b
a denotes a normal distribution truncated to the range (a, b). Note that in order to be consistent with other

baselines, within the CRCS model utilities are calculated on z-normalized features, while ordinal observations
are calculated on non-normalized features.

15

Table 4: CRCS model parameter priors for various choice tasks.

p(σcalc) p(ε) Attribute k p(τk)

Hotels U(0, 5) Beta(1, 3)
Price per night: U(0, 100)
Review rating: U(0, 1)

District-Smart N∞
0 (0.0, 2.0) Beta(1, 3)

hull N∞
0 (0.06, 0.12)

bbox: N∞
0 (0.08, 0.16)

reock: N∞
0 (0.05, 0.1)

polsby: N∞
0 (0.08, 0.16)

sym_x: N∞
0 (0.14, 0.28)

sym_y: N∞
0 (0.1, 0.2)

Car-Alt N∞
0 (0.0, 2.0) Beta(1, 3)

Price divided by ln(income): N∞
0 (0.7, 1.4)

Range: N∞
0 (45, 90)

Acceleration: N∞
0 (1, 2)

Top speed: N∞
0 (8.5, 17.0)

Pollution: N∞
0 (0.15, 0.3)

Luggage space: N∞
0 (0.07, 0.15)

Operating cost: N∞
0 (1.8, 3.0)

Station availability: N∞
0 (0.2, 0.4)

Dumbalska N∞
0 (0.0, 2.0) Beta(1, 3)

Rental cost N∞
0 (200, 400)

Participant’s valuation N∞
0 (180, 360)

Table 5: Mean ± std. dev. of averaged NLLs on a randomly selected held-out test set over 20
independent parameter inference runs.

Hotels District-Smart Car-Alt Dumbalska

Bradley-Terry 0.890 ± 8×10−6 0.632 ± 1×10−5 1.575 ± 3×10−5 0.567 ± 3×10−6

Bower & Balzano 0.890 ± 2×10−5 0.631 ± 4×10−6 1.575 ± 5×10−5 0.567 ± 2×10−6

LCL 0.831 ± 2×10−5 0.616 ± 4×10−6 1.560 ± 5×10−5 0.562 ± 2×10−6

CRCS (ours) 0.855 ± 0.014 0.628 ± 0.009 1.620 ± 0.032 0.568 ± 0.007
LC-CRCS (ours) 0.902 ± 0.063 0.616 ± 0.006 1.590 ± 0.013 0.572 ± 0.007

A.2 Additional details on static data experiments

The experiments on static data were run using a cross-validation strategy. For each fold, we inferred
utility parameters and choice model parameters jointly for each choice model by performing vanilla
gradient descent on the train set log-likelihood. For the CRCS and LC-CRCS model the starting
points were sampled from the priors defined in section A.1. For the Bradley-Terry variants the
utility parameters were sampled independently from a standard Gaussian, and for LCL the learnable
parameter matrix A was populated using sampled from N (0, 0.1).

CRCS and LC-CRCS have non-convex likelihood functions, meaning that gradient descent is liable to
get stuck in local optima. To mitigate this, we performed inference multiple times (up to 50), starting
from multiple starting points, and chose the parameters that achieved the best log-likelihood on a
held-out part of the training data. Table 5 shows the variance in average NLL achieved by individual
inference runs on the various choice problems. We can see that there is significantly higher standard
deviation when doing inference with CRCS and LC-CRCS, pointing to the existence of local minima,
and confirming the necessity of repeated inference to address this.

A.3 Additional details on rank consistency experiments

For District-Smart, we used gradient descent to infer the utility and choice model parameters for each
choice model on the entire set of binary choices. For LCL, CRCS, and LC-CRCS we noticed that the
inferred utility functions were highly inconsistent with the rankings that had been collected in the
same user study. As explained in the main paper, we used regularization to address this. We will go
into some more detail on why we think regularization was needed and how we tuned the regularizers

16

0 5 10 15 20 25
Number of preference queries

3.0

2.5

2.0

1.5

1.0

ex
pe

ct
ed

 lo
g-

lik
el

ih
oo

d

CRCS
LC-CRCS
Bradley-Terry
LCL
Bower & Balzano

Figure 5: Mean Expected log-likelihood over unseen queries as a function of the number of queries
seen. Error bars respond to twice the standard error around the mean.

we used. Table 6 below shows the consistency of the ranking implied by the inferred weights for each
of these three choice models with the collected rankings. We can see immediately that compared

Table 6: Consistency between collected rankings and rankings implied by inferred weights with and
without regularization of choice model parameter for LCL, CRCS and LC-CRCS.

LCL CRCS (ours) LC-CRCS (ours)

Without regularization -0.36 -0.17 -0.04
With regularization 0.287 0.622 0.525

to Bradley-Terry and the Bower & Balzano models, the consistency is quite poor, especially for
LCL. We hypothesize that this is caused by heterogeneity in the task utilities different participants
used in making their choices. The intention of Kaufman et al. [38] was to capture humans’ intuitive
understanding of what it means for an electoral district to be compact. Therefore, in the user study,
people were encouraged to make choices "according to your own best judgement" [38]. As it is likely
that the various participants in the study had slightly different intuitions about compactness, we can
therefore expect that the recorded choices have been made with slightly different utility weights w.
To fit a choice model using a single utility to these choices could thus prove problematic. For future
work, it would be interesting to consider a hierarchical approach, where we would model the fact that
any choice has been made according to an unobserved utility function drawn from some unknown
distribution.

For the current work, we resorted to using regularization to ensure the choice models did not overfit
to the noise in the utility function. These regularization strategies were tuned using one of the six
rankings collected, while for evaluating the consistency of the inferred weights with the collected
rankings we used all six. For LCL, we regularized the weight update mechanism w +AxC by using
the norm of A, multiplied by 75 to get the desired regularization strength, as a regularization term.
For the CRCS model, to ensure that we make sensible inferences, we had to ensure that the noise
in the utility function would be explained by the right source of noise in the model. The prior we
placed on the choice model parameters was designed to do just this. We used placed a Beta(1, 1000)
to ensure that ε, which determines the level of noise on the attribute comparisons, would stay close to
0. Attribute comparisons are the primary source of context effects and are necessary to fit to any such
effects in the data. Additionally, we note that in the experiment conducted in [19], ε was fixed to 0.
We then placed a N (25.0, 0.1) prior on σcalc, the noise on the utility observations, to help explain
the heterogeneity of utility functions itself. We also placed a weak prior on τ1, . . . , τd, namely the
prior we also used when training the CRCS model. The same prior was used for LC-CRCS.

17

A.4 Additional details on elicitation experiment

The elicitation experiment on the Dumbalska dataset was performed for each participant in the
original experiment individually. We excluded participants according to the same rule the original
paper had used. For each run, we would select a participant from the dataset and treat the queries to
which responses had been collected for this participant as the queries we could put to the user. In each
time step, we used the posterior at that point to estimate the expected information gain of each query
that had not been used yet, and selected the query with the highest information gain. The recorded
response to this query would then be revealed, and the posterior would be updated with this new
observation using the choice model. To maintain the posterior, we used a particle filter containing
up to five million particles representing combinations of utility and choice model parameters. The
particle filter was not refreshed during the experiment. At each time step we measured the expected
likelihood, where the expectation was taken with regard to the posterior and a uniform distribution
over the remaining set of recorded queries (those which had not yet been selected as part of the
elicitation process). For completeness, we also measured the expected log-likelihood and the entropy
in the marginal utility parameter posterior. Those are shown in Figure 5.

A.5 Additional information on the datasets used

We list below here the sources for the data we use in the human data experiments for Dumbalska [36],
Car-Alt [39], Hotels [40] and District-Smart [38]. We obtained the human choice data for District-
Smart and Car-Alt from the excellent collection of choice data collected by Tomlinson and Benson
[20] for their implementation.

Dataset Location Filename Description License

Dumbalska OSF decoy_233_participants.mat human choice
Data

CC-By 4.0 Attr.

Car-Alt GDrive car-alt.zip human choice
data

-

Hotels OSF data.xls human choice
data and list
of hotels used
to train CRCS
model.

-

District-Smart
GDrive district-smart.pickle human choice

data
MIT

Github training_data.RData human rankings MIT
Github preds.RData district features

used to train
CRCS model

MIT

B Use cases

B.1 Structural design and water drainage network design

Here, we will describe additional details on the crash structure design and water drainage network
design use cases. Both use cases were run with the same priors for the utility parameters and choice
model parameters. The utility parameter prior was a uniform Dirichlet distribution. The choice model
parameters for the CRCS model were chosen to capture the widest possible range of choice behaviors.

In each step, candidate choice queries were generated by sampling 1000 queries of three design
options from a uniform prior over the domain of either use case. The candidate with the highest
expected information gain was chosen. For crash structure design we elicited responses toon 50
preference queries in each run of the experiment and for water drainage network design we elicited
responses to 100 queries, though for space reasons we only show the first 75 on the graphs in this
paper. The recommendations on which we measured the recommendation regret at each step were
selected by maximizing the expected utility under the current posterior over a pre-calculated Pareto

18

https://github.com/tomlinsonk/feature-context-effects
https://doi.org/10.17605/OSF.IO/U6BR3
https://drive.google.com/file/d/1QAr-tCZ4OWRcrsQ0tHYwmTate5ED21PI/view
https://osf.io/vh4xf
https://github.com/aaronrkaufman/compactness/blob/master/data/training_data.RData
https://github.com/aaronrkaufman/compactness/blob/master/data/preds.RData

0 10 20 30 40 50
Number of preference queries.

0.2

0.3

0.4

0.5

M
ea

n
ut

ilit
y

in
fe

re
nc

e
er

ro
r

(a) Crash structure

0 10 20 30 40 50
Number of preference queries.

0.19

0.20

0.21

0.22

0.23

0.24

M
ea

n
m

od
el

 p
ar

am
et

er
 in

fe
re

nc
e

er
ro

r

(b) Crash structure

0 20 40 60
Number of preference queries.

0.30

0.35

0.40

0.45

M
ea

n
ut

ilit
y

in
fe

re
nc

e
er

ro
r

(c) Water drainage

0 20 40 60
Number of preference queries.

0.18

0.20

0.22

0.24

M
ea

n
m

od
el

 p
ar

am
et

er
 in

fe
re

nc
e

er
ro

r

(d) Water drainage

Figure 6: Additional Results for the experiments on car crash structure design and water drainage
network design. (a) Utility parameter inference error on car crash structure design as a function of the
number of queries put to the user. (b) Choice model parameter inference error on car crash structure
design as a function of the number of queries put to the user. (c) Utility parameter inference error
on water drainage network design as a function of the number of queries put to the user. (d) Choice
model parameter inference error on water drainage network design as a function of the number of
queries put to the user. All plots show the mean ± twice the standard error around the mean.

front for the user case. The user’s optimal design was found by optimizing the true utility over this
same front.

Figure 6 shows the utility and choice model parameter inference errors for both use cases.

B.2 Retrosynthesis planning

B.2.1 Aizynthfinder

Here we provide further details about Aizynthfinder [45]. Aizynthfinder3 is an open-source retrosyn-
thesis planner that uses Monte Carlo Tree Search (MCTS) and a template-based expansion policy4

to search for possible reactions and an additional filter policy that discard the infeasible reactions.
The expansion policy is a multi-class classification model that predicts the most probable reaction
templates. In practice, this model produces the top 50 possible templates as the possible action during
the tree expansion process. Then, the infeasible reactions are filtered out with the filter policy. During
the expansion and selection phase of MCTS, it uses the upper confidence bound (UCB) to select and
score routes as defined:

UCB =
Q

n
+ C

√
2
lnn− 1

n
(5)

where n is the visitation times of a node, C is the bias hyperparameter set to 1.4, and Q is the
accumulated reward that is defined as:

Q = 0.95 ∗ Nmolecules in stock

Nmolecules
+ 0.05× depth (6)

3code available: http://www.github.com/MolecularAI/aizynthfinder
4download available: https://doi.org/10.6084/m9.figshare.12334577.v1

19

0 10 20 30 40 50
Number of preference queries

0.15
0.20
0.25
0.30
0.35
0.40
0.45

M
ea

n
in

fe
re

nc
e

er
ro

r utilty parameters
model parameters

Figure 7: Results for the experiments on retrosynthesis planning. We show the mean inference error
for the utility and choice model parameters as a function of the number of queries given to the user.
Results are shown with the mean ± twice the standard error around the mean.

Table 7: Overview of layer sizes and training hyperparameters for û and q̂ for the choice tasks
considered in the experiments.

embedding (3 layers) main (4 layers)
output dims emb. dim output dims batch epochs lr start/end

Risky Choice û 128,64 64 512,256,128,3 1024 35000 1e-3/1e-5
q̂ 128,64 64 1024,256,128,3 1024 50000 1e-3/1e-6

Hotels û 256,256,3 128 512,512,256 8192 10000 1e-3/1e-3
q̂ 256,256 128 512,512,256,3 2048 50000 1e-3/1e-4

District-Smart û 256,256 128 1024,512,128,2 8192 20000 1e-2/1e-4
q̂ 512,256 256 1024,1024,256,2 4096 60000 1e-3/1e-4

Car-Alt û 256,256 256 512,256,128,6 8192 30000 1e-3/1e-3
q̂ 256,256 256 1024,1024,256,6 4096 100000 1e-3/1e-3

Dumbalska û 256,256 128 512,512,256,3 4096 40000 1e-3/1e-4
q̂ 128,128 128 512,256,128,3 8192 25000 1e-3/1e-3

Crash Structure û 128,64 64 512,256,128,3 1024 50000 1e-3/1e-6
q̂ 128,64 64 1024,256,128,3 1024 35000 1e-3/1e-5

Water Drainage û 128,64 64 512,256,128,3 1024 35000 1e-3/1e-5
q̂ 128,64 64 1024,256,128,3 1024 50000 1e-3/1e-6

Retrosynthesis û 128,64 64 512,256,128,3 1024 35000 1e-3/1e-5
q̂ 128,64 64 1024,256,128,3 1024 50000 1e-3/1e-6

where Nmolecules in stock is the current number of molecules in stock according to a given database,
Nmolecules is the total number of the molecules in the current search tree and depth is the depth of
the search tree.

B.2.2 Inference results

Now, we report the inference results over the preference weighs. First, we simulate the synthetic user
weights by sampling 100 different weight combinations from a uniform Dirichlet distribution Dir(α)
with α = (1, 1, 1, 1, 1, 1). Figure 7 shows that both inference error and recommendation regret of the
utility function and choice model parameters reduce during the inference using 50 preference queries.

In addition, we report the average number of solved routes from both Aizynthfinder and our model.
For Aizynthfinder, we synthesize just 100 molecules, while for ours, we collect the statistics over
100 the target molecules for 100 inferred user utilities. The average number of solved routes is
45.62± 28.99 and 42.75± 28.89 for Aizynthfinder and ours respectively. These results are justified,
as the synthetic user utilities are randomly sampled from non-informative prior.

20

Hidden Layer E2 Hidden Layer E3
Input Layer E1

Input Layer M1

Embedding

Embedding Module

x

Hidden M2 Hidden M3

Main Module

Hidden M4

w

Figure 8: Overview of the network architecture of q̂. û has the same architecture but takes observations
(ũ, õ) as input. The outputs of q̂ are additionally transformed by a log-softmax function (not shown).

C Surrogate architecture and training

We provide details here on the architecture of the two neural networks û and q̂. Both networks are
multi-task networks; they make their predictions conditioned on the utility parameters w and the
choice model parameters θ = (σcalc, ε, τ). û takes as input a vector of observations ũ, õ and predicts
the expected utility of each option. q̂ takes as input a set of options x and predicts the likelihood that
each option will be chosen.

The architecture of both networks is virtually identical, differing only in their inputs, and in the fact
that the output of q̂ is transformed with a log-softmax function, while û’s is not. Figure 8 visualizes
the architecture of both networks. The networks consist of two modules. The first in an embedding
module consisting of three layers that takes the utility and choice model parameters and embeds
them into a latent embedding space. The second module, the main module, consists of four layers
and takes as input the set of options (or the observations in the case of û) and transforms these into
log-likelihood predictions (expected utilities for û). To condition the main module on the utility and
choice model parameters, we concatenated the embedding from the embedding module with the input
to layers 2 and 3 of the main module (see Figure 8). We trained û and q̂ using the AdamW optimizer
implemented in pytorch with an exponentially decaying learning rate.

Both networks have a number of hyperparameters such as layer output sizes. Other hyperparameters
include training details such as learning rates and batch sizes. These hyperparameters were selected
using a grid search over a predefined set of possible values for each hyperparameter. We selected
the hyperparameters that minimized the loss of each surrogate neural network on each individual
choice task. Table 7 lists the selected network hyperparameters: the layer output sizes for both the
embedding module and main module, and the size of the embedding produced by the embedding
module. The last three columns list training hyperparameters: the batch size, the number of training
epochs, and the learning rate at the start and end of training.

D Computational resources

In table 8 we report the computational cost of the experiments reported in this paper. We only report
the resources used to obtain the results presented. We estimate that if we were to include all testing
and preliminary runs, the total compute time used would double or triple. We do not report the cost
of validating the CRCS model on risky choice as the runtime was negligible.

All the experiments were run on either CPUs on a cluster or on a MacBook Pro. The cluster CPU
jobs were single core unless otherwise mentioned. MacBook CPU jobs used multiple cores (typically
less than 2.5 cores) with 16GB of memory. We estimate the maximum power consumption of a single
core on our cluster to be around 7.5W, and the power usage of a single core on a MacBook to be
significantly less. Assuming the worst case scenario where all computation was run on the cluster,
the total energy used to obtain the reported experiments would be 146KWh. Given an average carbon

21

Table 8: Runtime for the various experiments reported in this paper. The column "runtime" lists the
average computational resources used by each run of the experiment. The total time column lists the
resources used by all runs combined.

Use case / Dataset Experiment Infrastructure Hardware runtime Total time

Hotel
û training MacBook CPU 1h 1h
q̂ training MacBook CPU 1h 1h

NLL evaluation MacBook CPU 7h 7h

District-Smart
û training cluster CPU 15h 15h
q̂ training cluster CPU 29h 29h

NLL evaluation MacBook CPU 7h 7h

Car-Alt
û training MacBook CPU 3h 3h
q̂ training MacBook CPU 5h 5h

NLL evaluation MacBook CPU 20h 20h

Dumbalska

û training MacBook CPU 1h 1h
q̂ training MacBook CPU 1h 1h

elicitation BT MacBook CPU 8s 10m
elicitation BB MacBook CPU 10s 13m

elicitation LCL cluster CPU 28h 2100h
elicitation CRCS cluster CPU x2 20h 1500h

elicitation LC-CRCS cluster CPU x2 40h 3000h
NLL evaluation cluster CPU 1h 189h

Crash Structure
û training MacBook CPU 1h 1h
q̂ training MacBook CPU 2h 2h
elicitation cluster CPU 9h 4500h

Water Drainage
û training MacBook CPU 2h 2h
q̂ training MacBook CPU 5h 5h
elicitation cluster CPU 10h 3000h

Retrosynthesis

û training MacBook CPU 1h 1h
q̂ training MacBook CPU 1h 1h

generation w/ AIZ cluster CPU 6h 6h
generation w/ CRCS cluster CPU 6h 589h

evaluation cluster CPU 30m 30m

intensity of 94g CO2eq/KWh for the electricity supplied to our cluster in 2023, this means that we
estimate the carbon footprint of these experimental results to be around 14kg CO2eq.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We test our proposed models on a varied set of data sets and use cases.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

23

Justification: The paper includes no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide additional details on the experiments in the appendices, such as
sources for the data used, neural network architectures and priors used. The code for our
experiments is additionally available online.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our implementation of the experiments is available online. We provided direct
links to the data needed to run the experiments, and where processing of the data is needed
the required code is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyperparameters such as the number of experimental runs, number of data
splits and priors are listed in the paper. These hyperparameters are also contained in the
code which is available online.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars suitably and correctly defined, providing appro-
priate information about the statistical significance of the experiments. We ensured that all
reported results include measures of variability, such as standard deviation or confidence
intervals, to accurately represent the reliability and significance of our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All information about compute resources can be found in Appendix D, includ-
ing the type of compute workers, memory, execution time and infrastructure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics in
all respects. We adhered to privacy standards, obtaining explicit consent for data usage where
applicable. Deprecated datasets were avoided, and data licensing terms were respected.
We conducted thorough assessments to prevent biases and considered the societal and
environmental impacts of our research, ensuring it does not facilitate harm, discrimination,
or privacy violations. Detailed documentation and secure data practices were followed to
support transparency, reproducibility, and legal compliance.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

26

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of the paper in the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the data we use we cite the papers which originally introduced those
datasets. We also provide direct links to the data and license information in the appendices.

Guidelines:

27

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper introduces two new models, implementations for which are available
online.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Though the paper uses a number of datasets collected from human subject
experiments, it did not collect any new data itself.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

28

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper performed no new human subject experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Background
	Learning from Preferences
	Modeling contextual choice

	Modeling computationally rational choice
	A computationally rational model of choice
	Learning from choice behaviors
	Tractable inference through surrogates
	Modeling cross-feature influence in CRCS

	Experiments
	Validation of the CRCS model: risky choice tasks with preference reversals
	Evaluation on static human choice data
	Evaluating the inferred utility function

	Elicitation on human choice data
	Simulated case studies
	Case study 1: learning from preferences in structural design
	Case study 2: learning from preferences in water drainage network design
	Case study 3: improving retrosynthesis planning with preference learning

	Conclusion
	Human data experiments
	Priors
	Additional details on static data experiments
	Additional details on rank consistency experiments
	Additional details on elicitation experiment
	Additional information on the datasets used

	Use cases
	Structural design and water drainage network design
	Retrosynthesis planning
	Aizynthfinder
	Inference results

	Surrogate architecture and training
	Computational resources

