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Abstract
We show how work can be extracted from number-state coherence in a two-mode Bose–Einstein
condensate. With careful tuning of parameters, a sequence of thermodynamically reversible steps
transforms a Glauber coherent state into a thermal state with the same energy probability
distribution. The work extracted during this process arises entirely from the removal of quantum
coherence. More generally, we characterise quantum (from coherence) and classical (remaining)
contributions to work output, and find that in this system the quantum contribution can be
dominant over a broad range of parameters. The proportion of quantum work output can be
further enhanced by squeezing the initial state. Due to the many-body nature of the system, the
work from coherence can equivalently be understood as work from entanglement.

1. Introduction

Converting disordered energy (heat) into ordered energy (work) is one of the most fundamental processes in
thermodynamics. In a classical system, disorder arises from practical limitations on what can be known
about a large system. Observables in a quantum system may exhibit not only classical uncertainty, but also
quantum uncertainty arising from coherence [1, 2]. Quantum coherence is defined with respect to a
particular basis, and occurs when a system exists in superpositions of eigenstates of that basis. Of particular
relevance to thermodynamics is the quantum uncertainty in a system’s energy, arising from coherence in the
energy eigenbasis [3–5].

It is now well established that coherence in the energy eigenbasis can enhance work extraction if
appropriately utilised. For a sufficiently rapid engine cycle, coherence can enhance power output beyond that
of any classical engine operating with the same resources [6–8]. In single-shot realisations, coherence may
diminish the maximum available work [9], however, a carefully chosen sequence of thermodynamic processes
circumvents this degradation [10–13]. Despite the benefits of coherence in work extraction, protocols to
realise these benefits in experimentally tractable systems are lacking. Such expositions are timely, considering
the relevance to quantum information [14–16] and the growing field of quantum thermal machines [17, 18].

Bose–Einstein condensates (BECs) offer a pristine system in which to explore many-body quantum
physics, due to a high degree of tuneability and isolation from the environment [19, 20]. In the field of
quantum thermal machines, bosonic particle statistics can improve engine performance [21–24] and act as a
fuel in an engine-like cycle [25]. Interactions in a BEC can enhance engine performance [26, 27] or allow
access to energetic degrees of freedom not available classically [28, 29]. However, the role of coherence in
work extraction from a BEC has not been explored. Notably, two-mode BECs can exhibit long-lived
coherence in the number state basis [30]. Incorporating squeezing [31–33], two-mode BECs can exhibit
metrologically useful entanglement, allowing for quantum-enhanced measurement sensitivity [34–36].

In this manuscript we show how number-state coherence in a two-mode BEC can empower work
extraction. To obtain work that is predominantly quantum in origin the initial state must be close to thermal
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when projected onto the energy eigenbasis. This is challenging in a quantum many-body system due to the
exponentially large number of populations and coherences. We show that this challenge can be overcome by
using a Glauber coherent state (GCS) with mean boson number less than a critical value that depends on
temperature. We introduce a formalism to quantify the work directly available from coherence and the work
that would be available classically, and show that squeezing the initial state can substantially increase the
proportion of quantum work extracted. The number-state coherence in our protocol arises from entangling
correlations between the two modes of the BEC. Therefore the work extracted from coherence can
equivalently be interpreted as work from entanglement, thus demonstrating the many-body nature of the
protocol. To our knowledge, our work presents the first proposal showing how work can be extracted from
coherence in a two-mode BEC, paving the way for experimental demonstration and highlighting the utility
of two-mode BECs in thermodynamic applications.

2. Background

2.1. Extracting work from coherence
To see how work can be extracted from quantum coherence generally, consider a Hamiltonian Ĥwith thermal
state ρtherm = e−βĤ/Tre−βĤ at inverse temperature β. Now consider a second quantum state ρ that satisfies

⟨En|ρ|En⟩= ⟨En|ρtherm|En⟩, (1)

with |En⟩ the energy eigenstates of Ĥ. The information entropy associated with energy measurements of state
ρ (termed ‘energy entropy’ in [5]) is

SE =−
∑
n

⟨En|ρ|En⟩ ln⟨En|ρ|En⟩, (2)

which for an isolated system is non-decreasing under time evolution [37, 38]. When equation (1) is satisfied,
the energy entropy of state ρ is identical to that of ρtherm. If ρ is diagonal in the energy eigenbasis then SE is
equal to the von Neumann entropy SV =−Tr [ρ lnρ] and ρ is equal to ρtherm, which is a completely passive
state [39]. If, however, ρ contains coherences (off-diagonal) terms in the energy eigenbasis, SE will differ from
SV [37, 40, 41]. The difference between the two,

SE − SV =
∑

m,n̸=m

⟨Em|ρ|En⟩⟨En| lnρ|Em⟩, (3)

can be extracted in the form of non-classical work [11, 13, 42]

Wquant = β−1
(
SE − SV

)
= β−1D(ρ||ρed) . (4)

Here D(ρ||σ) = tr[ρ lnρ]− tr[ρ lnσ]⩾ 0 is the quantum relative entropy, and ρed =
∑

n⟨En|ρ|En⟩|En⟩⟨En| is
the projection of the density matrix ρ onto the energy eigenstates (the ‘energy diagonal’ density matrix). The
quantity D(ρ||ρed) is a monotonic measure of the quantum coherence of state ρ [43] and hence the work
output, equation (4), is quantum in origin.

A protocol to extract work from coherence was presented in [11]. The efficacy of this protocol depends
on how closely the system’s mean energy and energy entropy match that of the thermal state ρtherm. When
these match, any work extracted during the protocol is entirely from coherence. A sufficient condition for
this matching is that ρed = ρtherm, equation (1). This can always be satisfied in a two-level system by choosing
the temperature of ρtherm to satisfy [44]

kBT=
E1 − E0

ln ⟨E0|ρ|E0⟩
⟨E1|ρ|E1⟩

. (5)

Here E0 and E1 are the two energy levels with E1 > E0.
In many-body systems, it is usually much harder to engineer experimentally a non-thermal state ρ

satisfying ρed = ρtherm. Achieving this requires

rn =
En − En−1

ln ⟨En−1|ρ|En−1⟩
⟨En|ρ|En⟩

(6)

to be insensitive to n, in which case kBT= rn [44, 45]. Engineering this for non-thermal many-body states ρ
is often very difficult, since control of individual energy levels is usually not possible. As a result, the work
output from coherence from such systems will typically be small. As we will show below, the energy-level
structure of an interacting two-mode BEC allows ρed ≈ ρtherm for particular experimentally realisable initial
states, hence allowing for work output with a high contribution from coherence.
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2.2. System setup
We consider a two-mode BEC with fixed total boson number N. The two modes could be hyperfine spin
states or spatial modes [46]. Number states of the system are denoted by |n,k⟩, with n and k= N− n the
number of bosons in the two modes respectively. We denote the annihilation operators for the two modes by
â and b̂, with â|n,k⟩=

√
n|n− 1,k⟩ and b̂|n,k⟩=

√
k|n,k− 1⟩. The Hamiltonian for the system is (h̄≡ 1 here

and throughout) [35]

Ĥ= ω1â
†â+ω2b̂

†b̂+
g11
2
â†â†ââ+

g22
2
b̂†b̂†b̂b̂+ g12â

†b̂†âb̂+ E0

≡∆â†â+ gâ†â†ââ. (7)

Here ωi is the single-particle energy and gii the interaction strength for modes i = 1,2. We have also allowed
for interactions between the two modes of strength g12, for example if the two modes are spin states. The
vacuum energy is E0. The operator N̂= â†â+ b̂†b̂ commutes with Ĥ and hence the total boson number is
conserved. In the second line of equation (7) we replace b̂†b̂ by N̂− â†â and define

∆≡ ω1 −ω2 − (N− 1)(g22 − g12) (8)

and

g≡ g11 + g22 − 2g12
2

. (9)

We choose E0 =−Nω2 −N(N− 1)g22/2 so that Ĥ|0,N⟩= 0 for convenience. The choice of E0 will not affect
the net output of any cyclic process, for example the performance of an engine cycle. The detuning∆ for two
spatial modes can be controlled via tuning the trapping potential [47], and for two spin states via tuning of a
Zeeman field [48, 49]. As will be discussed below, we require thermal states that have a Gaussian (or
approximately Gaussian) distribution over states |n,N− n⟩, which requires g> 0. Hence the interaction
strengths must satisfy g11 + g22 > 2g12, i.e. the average intramode interaction strength (g11 + g22)/2 must
exceed the intermode interaction strength g12. For two spatially separated modes we have g12 = 0 and
therefore g> 0 is ensured as long as the intramode interactions g ii are positive, as realised for example in
87Rb and 23Na condensates [50, 51].

Particle conservation confines the system to the subset of states |n,N− n⟩. Since number states are
eigenstates of equation (7), the number-state coherence realisable in a two-mode BEC [30] is equivalent to
the energy coherence enabling work extraction, equation (3). The thermal state of Ĥ is,

ρtherm =
1

Z
e−βĤ =

N∑
n=0

pthermn |n,N− n⟩⟨n,N− n|, (10)

with

pthermn =
1

Z
e−β(gn(n−1)+∆n) (11)

the thermal occupation of state |n,N− n⟩ and

Z=
N∑

n=0

e−β(gn(n−1)+∆n) (12)

the partition function. Due to particle interactions, the boson number distribution of a thermal state is
approximately Gaussian when βg> 0 and−β∆≫

√
βg, in contrast to the Planck distribution of

non-interacting bosons. This feature will be essential for the efficacy of our protocol as it will enable close
matching between the initial and thermal boson number distributions. We assume βg≪ 1; noting that
gN∼ µ, where µ is the BEC chemical potential, this is ensured when βµ/N≪ 1, a condition satisfied in
most realisations of dilute gaseous BECs [52, 53]. We can then approximate the sum in equation (12) by an
integral. We also assume N≫ 1 and ⟨â†â⟩ ≪ N, i.e. most of the particles are in the b̂mode throughout the
protocol. We can then set N→∞ and approximate |n,N− n⟩ by a harmonic oscillator number state, which
simplifies our calculations [54, 55]. Evaluating equation (12) with these two approximations gives

Z≈
√

π

βg
eβ(g−∆)2/(4g)

1+ erf

(
β(g−∆)

2
√

βg

)
2

 . (13)

3
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We denote the N→∞ approximation of |n,N− n⟩ by |n⟩ below, however it should be kept in mind that this
state is implicitly a two-mode state.

3. Results

Our objective is to find an experimentally realisable density matrix containing coherence in the energy
eigenbasis with the same (or almost the same) energy and energy entropy as a thermal state equation (11). As
we will now argue, a GCS satisfies these criteria. A GCS is,

|α⟩= D̂(α) |0⟩=
∞∑
n=0

cn|n⟩, (14)

with D̂(α) = eαâ
†−α∗â the displacement operator and cn = e−|α|2/2 αn

√
n!
[56]. Such a state can be realised via

coherent rotation of a pure state |0,N⟩ or |N,0⟩ [47, 57–61] or via interference measurements [62–64] (see
also [65]), and gives rise to phase coherence between the two modes of the BEC [47, 66–70]. Note the upper
limit of the sum in equation (14) is set to∞ by assuming |α|2 ≪ N and N≫ 1 (see the discussion above
equation (13)). A GCS is a superposition of energy eigenstates of equation (7) and hence |α⟩⟨α| contains
off-diagonal terms c∗mcn|n⟩⟨m| (m ̸= n); hence a GCS exhibits coherence with respect to the energy
eigenbasis. The GCS number-state distribution pGn = |cn|2 is Poissonian with mean and variance equal to
|α|2. For large |α|2 we have,

pGn =
|α|2ne−|α|2

n!
≈ 1√

2π |α|2
e−(n−|α|2)

2
/(2|α|2). (15)

Choosing

|α|2 = g−∆

2g
, βg=

1

2|α|2
, (16)

we obtain pGn ≈ pthermn , with pthermn given by equation (11). Equivalently, it is easy to show that equation (6) is
independent of n when |α|2 is chosen as in equation (16). Hence with precise tuning of parameters, as given
in equation (16), work can be extracted from coherence as discussed in section 2.1.

For more general parameters, the work output will have both a contribution from coherence and a
‘classical’ contribution. Below we present an explicit protocol to show how work can be extracted from the
coherence of a GCS. We then show how the work output depends on particle number and temperature,
identifying a regime where the work output is dominated by the contribution from coherence. Next we show
how the work output can be improved by squeezing the initial state and finally we discuss the role of
entanglement in the system.

3.1. Protocol to extract work from a GCS
We begin in a GCS, equation (14), with Hamiltonian equation (7) and∆=∆0. The energy of the initial
state is Ui = ⟨α|Ĥ|α⟩=∆0|α|2 + g|α|4. To extract work from the GCS we consider the following
thermodynamically reversible steps [11] (see figure 1):

1. Coherently couple the two modes of the BEC via the Hamiltonian κ(b̂†â+ â†b̂), with κ> 0 the coupling
rate. Evolve the system so that |α⟩ is displaced to |0⟩ and all particles are in the b̂mode. During this step,
coherence is removed and work Ui is exchanged with the coupling field over a time scale κ−1. Turn off the
coupling κ so that the system energy is determined by equation (7).

2. Tune the detuning to∆max > 0. This does not change the system energy since the system is in state |0⟩.
3. Couple the system to a reservoir at inverse temperature β and allow to thermalise. The detuning∆max

and β are chosen to satisfy β∆max ≫ 1. Occupation of modes |n⟩ with n> 0 are therefore thermally
suppressed (see equation (12)) and hence |0⟩ is approximately the thermal state. The energy increase
during thermalisation is≈∆maxe−β∆max and is hence negligible for β∆max ≫ 1.

4. Quasistatically change the detuning back to∆0 such that the system remains in thermal equilibrium with
the reservoir throughout. Work is extracted and heat is absorbed in this step. The final state is thermal
with energy Uf =−∂ lnZ/∂β evaluated from equation (13) with∆=∆0.

The coherent coupling in the first step could be achieved using Josephson oscillations for two spatial
modes [47, 59] or via a Rabi pulse for two spin states [60, 61]. Complete conversion is possible when κ is
much larger than the other energy scales in the problem, which ensures the dynamics is in the Josephson

4
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Figure 1. (a) Protocol to extract work from coherence in a two-mode BEC. Red curves are number state distributions ⟨n|ρ|n⟩ and
black dashed curves are the energy spectrum En, both smoothed over the discrete variable n. (a), (i) The system is initialised in a
Glauber coherent state (GCS) at detuning∆0 with mean boson number |α|2 ≫ 1 and number distribution pGn , equation (15).
The energy spectrum has a minimum at nmin =max(0,(g−∆0)/2); we choose∆0 < 0 in the schematic above so that nmin > 0.
(a,ii) Step 1: Work is exchanged as the system is rotated to the vacuum state via a coherent coupling κ. (a,iii) Step 2: The detuning
is changed to∆max ≫ β−1. The new energy spectrum has a minimum at n= 0 with an energy spacing much larger than β−1.
Hence the vacuum state is approximately thermal. (a,iv) Step 3: The system is coupled to a reservoir at inverse temperature β
(indicated by background colouring). (a), (v) Step 4: Work is extracted isothermally as the detuning is quasistatically adjusted to
its initial value∆0. The closeness of the final thermal distribution pthermn to the initial distribution pGn determines the quantum
and classical contributions to the total work extracted in steps 1–4. The classical contribution can be suppressed with careful
tuning of parameters, in which case the work extracted arises entirely from the initial energy coherence. (b) Detuning (solid line)
and the coherent coupling (dashed line) between the two modes of the BEC during the steps in (a).

regime, rather than the self-trapping regime [46, 57, 58, 71]. Note the effect of changing∆ in steps 2–4 could
also be achieved by manipulating g using a Feshbach resonance [72–74] with∆ fixed: g would be increased
to a value βgmax ≫ 1 in steps 2 and 3 and then quasistatically reduced back to its initial value in step 4. This
alternative protocol would not change the results below.

The total mean work output from the protocol in figure 1 is [11]

W= Ui −Uf −β−1
(
SVi − SVf

)
, (17)

where SVi (S
V
f ) are the initial (final) von Neumann entropies of the system.

For the protocol in figure 1 we have SVi = 0 since the initial state is pure and SVf = SEf since the final state

is thermal. Here SEi (S
E
f ) are the energy entropies for the initial (final) state. The total entropic change S

V
f − SVi

can now be decomposed into a classical contribution SEf − SEi and a quantum contribution SEi − SVi
= D(ρ||ρed) arising from coherence, equation (3). The work then consists of two parts [11, 13, 75], a
quantum part as defined in equation (4), as well as a classical part:

Wquant = β−1
(
SEi − SVi

)
Wclass = Ui −Uf −β−1

(
SEi − SEf

)
. (18)

Note that a projection of the initial state equation (14) onto the energy eigenbasis prior to work extraction,
i.e. ρ→ ρed, would result inWquant = 0, but would not changeWclass. The protocol in figure 1 avoids such
projection, allowingWquant to be extracted.

3.2. Classical and quantum contributions to the work extracted from a GCS
With an initial state (14), the outputsWquant andWclass in equation (18) can be calculated analytically. We
choose |α| so that the GCS has mean boson number equal to the thermal state,

|α|2 = ⟨n̂⟩therm ≡ ⟨n̂⟩. (19)

5
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Here n̂= â†â and a ‘therm’ subscript denotes expectation values for state ρtherm, equation (10). We have
checked that this choice of |α|minimisesWclass to a very good approximation over the parameters explored.
The energetic and entropic terms in equation (18) are

Ui −Uf = g
(
⟨n̂⟩− ⟨δn̂2⟩therm

)
,

SEi =
1

2
+

1

2
ln(2π ⟨n̂⟩)+O

(
1

⟨n̂⟩

)
,

SEf =
1

2
+

1

2
ln
(
2π⟨δn̂2⟩therm

)
+ SNG, (20)

where ⟨δn̂2⟩= ⟨n̂2⟩− ⟨n̂⟩2. We have also introduced

SNG = ln
1+ erfu

2
− uG(u)− ln

[
1− 2uG(u)− 2G(u)2

]
, (21)

with u= β(g−∆0)

2
√

βg
and G(u) = e−u2

√
π(1+erfu)

= O(e−β∆2
0/(4g)). The entropic correction SNG arises since the

thermal distribution is not a perfect Gaussian, and is only important for u≲ 1.
The thermal mean and variance are

⟨n̂⟩therm =
1√
βg

(u+G(u)) , (22)

⟨δn̂2⟩therm =
1

2βg

(
1− 2uG(u)− 2G(u)2

)
. (23)

Again, the G(u) terms are non-Gaussian corrections, which are only important for u≲ 1. Note for u≫ 1 we
have u2 ≈ ⟨n̂⟩2therm/(2⟨δn̂2⟩therm), in which case u−2 is essentially the normalized second-order correlation
function of the thermal bosonic field [76]. The thermal mean, variance and third central moment
⟨δn̂3⟩= ⟨(n̂−⟨n̂⟩)3⟩ are shown in the inset to figure 2(a). We focus on cases ⟨n̂⟩therm ≳ 1, which is ensured
when the initial detuning is less than the reservoir temperature,

−∞< β∆0 ≲ 1. (24)

We hence allow β∆0 to be negative. This is easy to engineer in a two-mode BEC but difficult to engineer in
other bosonic systems that do not have a constrained particle number, e.g. photons.

Analytic expressions forWclass andWquant follow from equations (18)–(23) and are plotted in figure 2(a)
as a function of ⟨n̂⟩. Note ⟨n̂⟩ is itself a function of∆0, according to equation (22), and hence varying ⟨n̂⟩
corresponds to an implicit variation of∆0. The minimum of the classical work occurs when pGn and pthermn are
as close as possible, see figure 2(b). For large ⟨n̂⟩ both distributions are approximately Gaussian and hence
will be equal when their respective means and variances are equal. Since pGn has equal mean and variance, this
requires

|α|2 = ⟨n̂⟩therm = ⟨δn̂2⟩therm. (25)

This occurs when β∆0 ≈−1, at which point ⟨n̂⟩therm = ⟨δn̂2⟩therm ≈ 1/(2βg). At this optimal point,
Wclass = O(⟨n̂⟩−1) and the work output almost exclusively consists ofWquant. (Note our choice of units:
plotting work in units of β−1 is equivalent to plotting the information lost if the work was dissipated as heat,
according to Landauer’s principle [77].)

For ⟨n̂⟩ ̸= ⟨δn̂2⟩therm, the protocol is suboptimal in the sense thatWclass is no longer approximately zero.
Here the thermal bosons are either bunched or anti-bunched, caused by the boson interactions [78]. For
⟨n̂⟩> ⟨δn̂2⟩therm (thermal anti-bunching), large number fluctuations in the initial state result in a large
U i -U f , see figure 2(b). In this regime, u≫ 1 and equations (20)–(23) simplify to give

Wclass ≈ g⟨n̂⟩− 1

2β
− 1

2β
ln(2βg⟨n̂⟩) ,

Wquant ≈
1

2β
+

1

2β
ln(2π⟨n̂⟩) .

(u≫ 1) (26)

Using equation (26), we find thatWquant >Wclass for

⟨n̂⟩≲ 1

βg

[
−Ω−1

(
−

√
βg

4π exp(2)

)]
≡ nG, (27)

6
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Figure 2. (a) Work extracted from a two-mode BEC undergoing the protocol in figure 1 for different mean bosonic numbers ⟨n̂⟩.
Work extracted for an initial GCS (blue curves) divided into quantum βWquant (blue solid curve) and classical βWclass (blue
dotted curve) contributions, see equation (18). The work output is dominated byWquant for ⟨n̂⟩ ≲ nG, with nG given by
equation (27) and marked by a vertical dashed line. The number state distributions for the GCS and thermal states coincide
almost perfectly when ⟨n̂⟩= 1/(2βg), at which pointWclass ≈ 0 is minimised (dip in blue dotted curve). Inset: first three
cumulants of the thermal boson number distribution, with ⟨δn̂k⟩= ⟨(n̂−⟨n̂⟩)k⟩ for k= 2,3. The distribution is Gaussian for
u≫ 1, in which case ⟨n̂⟩therm ≈ u/

√
βg, ⟨δn̂2⟩therm ≈ 1/(2βg) and higher order cumulants are zero. (b) (i)–(iv) Number state

distributions for different mean bosonic numbers (four panel values are marked by crosses in (a)) for a GCS (blue curve) and a
thermal state (black dashed curve). The GCS distribution is narrower (wider) than the thermal distribution for ⟨n̂⟩ smaller
(larger) than ⟨δn̂2⟩therm ≈ 1/(2βg)≈ 501, which results in non-zeroWclass. Pale red curves in (a) and (b): as for the GCS but for a
squeezed state. These are included here for comparison and will be discussed in section 3.3. The GCS and squeezed distributions
coincide in (ii). All results are for βg= 10−3. Different ⟨n̂⟩ correspond to different β∆0, which in (b) are: (i)−β∆0 = 0, (ii)
−β∆0 = 1, (iii)−β∆0 = 50, (iv)−β∆0 = 103.

see figure 2(a). HereΩk is the kth branch of the omega function [79]. The function−Ω−1(−x) satisfies
1⩽−Ω−1(−x)<∞ for x ∈ (0,exp(−1)] and monotonically decreases with increasing x, with
−Ω−1(−x)∼ ln

(
1
x ln

1
x

)
for small x [80]. Hence, ignoring logarithmic corrections, nG decreases with

increasing βg as nG ∼ 1/(βg). For ⟨n̂⟩> nG, the classical work output grows extensively due to the extensive
growth of U i -U f , see equation (26). The quantum work also increases with ⟨n̂⟩ due to increased coherence
in the initial state. The increase, however, is subextensive, withWquant ∼ 1

2β ln⟨n̂⟩. For ⟨n̂⟩< ⟨δn̂2⟩therm
(thermal bunching), the number fluctuations of the initial state are less than the final state, see figure 2(b).
Although this increasesWclass, we still haveWquant >Wclass as long as ⟨n̂⟩ ≫ 1, see figure 2(a).

3.3. Improved protocol using squeezing
The boson number distribution of a GCS is Poissonian, and hence the mean and variance are always equal.
For sufficiently large mean boson number, equation (27), the work output becomes dominated byWclass. The
classical work output can be suppressed much more effectively by using a squeezed initial state. Squeezing of
a two-mode BEC is possible using multiple techniques [35, 81], including time evolution with a one-axis
twisting Hamiltonian [33, 82, 83] and parametric downconversion via spin-changing collisions [84–86].
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Figure 3. (a) Work extracted from an initial squeezed state, divided into quantum βWquant (solid curves) and classical βWclass

(dotted curves) contributions. Colours indicate different values of βg. The work output is dominated byWquant for ⟨n̂⟩ ≲ nS, with
nS given by equation (35) and marked by vertical dashed lines. Lighter-coloured thicker lines give the large ⟨n̂⟩ result forWclass,
equation (33), demonstrating subextensive scaling ofWclass. Grey dashed line gives the large ⟨n̂⟩ result forWquant, equation (34).
(b) Optimised squeezing parameters e−2|ζ| (solid curves, left axis) and cosθ (dotted curves, right axis) for the squeezed state (see
text for details). For ⟨n̂⟩ ⩽ 2(3βg)−3/2 the squeezed variance can be matched to the thermal variance with appropriate choice of
e−2|ζ|. For larger ⟨n̂⟩matching is no longer possible, see equation (32); minimising the squeezed variance then gives
e−2|ζ| = (4⟨n̂⟩)−1/3 (gray line), independent of βg. This results in a discontinuity in the slope of e−2|ζ| andWclass at
⟨n̂⟩= 2(3βg)−3/2 (marked by vertical arrows for βg= 10−5).

A displaced squeezed state is [87–89],

|α,ζ⟩= D̂(α) Ŝ(ζ) |0⟩, (28)

where Ŝ(ζ) = e(ζ
∗ââ−ζâ†â†)/2 is the squeezing operator and ζ = |ζ|eiθ parameterises the squeezing. Without

loss of generality we take α to be real. The distribution pSn = |⟨n|α,ζ⟩|2 is then [90, 91]

pSn =

(
1
2 tanh |ζ|

)n
n!cosh |ζ|

|Hn (λα)|2 e−α2(1+cosθ tanh |ζ|), (29)

with Hn the Hermite polynomials (H0(x) = 1, H1(x) = 2x, etc) and

λ=
e−iθ/2 cosh |ζ|+ eiθ/2 sinh |ζ|√

sinh(2|ζ|)
. (30)

The boson number distribution for a squeezed state can have a variance smaller or larger than its mean,
controllable via the squeezing parameter ζ . This additional control allows the initial number distribution to

8
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be matched more closely to pthermn , see figure 2(b). The work output from an initial squeezed state is
compared with that of a GCS in figure 2(a). Squeezing suppressesWclass over a much larger range of ⟨n̂⟩
compared to the GCS. Note the small but finite minimum ofWclass/⟨n̂⟩ for a GCS, which arises due to the
approximation in equation (15), is reduced even further by squeezing, see figure 2(a). Further squeezed
results are shown in figure 3(a) for different values of βg. For the squeezed state, we choose |α|2 so that the
mean boson number is equal to that of the thermal state and choose ζ to minimise differences in higher
order moments. Details are discussed in appendix A and the values of |ζ| and cosθ obtained are plotted in
figure 3(b). Numerical details to obtain pSn are described in appendix B.

Although squeezing gives much greater control over the initial boson number distribution, its variance is
still constrained by ⟨n̂⟩ [92]. For large ⟨n̂⟩ the minimum variance possible for a squeezed state is (see
appendix C)

min⟨δn̂2⟩ ≈
(
27

32

)1/3

⟨n̂⟩2/3 (31)

Achieving ⟨δn̂2⟩= ⟨δn̂2⟩therm is hence only possible when the mean boson number is not too large,

⟨n̂⟩≲
√

32⟨δn̂2⟩3therm
27

≈
√

4

27(βg)3
. (32)

The constraint (32) should be contrasted with the strict constraint for a GCS, equation (25). Matching the
mean and variances of pSn and pthermn gives Ui = Uf and henceWclass = β−1(SEf − SEi ), see equation (18).

If the mean boson number is too large such that equation (32) is not satisfied, the variance of the
squeezed distribution cannot be made small enough to match ⟨δn̂2⟩therm. We then choose ⟨δn̂2⟩ to take on its
minimum value equation (31) by choosing e−2|ζ| = (4⟨n̂⟩)−1/3 (see appendix C). This results in
subextensive scaling ofWclass for large ⟨n̂⟩,

Wclass ∼ g

(
27

32

)1/3

⟨n̂⟩2/3, (33)

see figure 3(a). Notably, this contrasts the extensive scaling ofWclass for a GCS, which arises from the strict
constraint ⟨n̂⟩= ⟨δn̂2⟩, see figure 2(a) and (26). For large ⟨n̂⟩, we findWquant is well approximated by

Wquant ≈
1

2β
+

1

2β
ln

[
2π

(
27

32

)1/3

⟨n̂⟩2/3
]
, (34)

see figure 3(a). This follows from approximating pSn by a Gaussian distribution and using equation (31).
Equation (34) and the analogous expression forWclass are identical in form to equation (26), but with ⟨n̂⟩
replaced by the variance equation (31). This gives the following criteria forWquant >Wclass,

⟨n̂⟩≲
√

32

27
n3G ≡ nS, (35)

with nG the equivalent bound for a GCS given by equation (27). The estimate equation (35) agrees well with
our numerics, see figure 3(a). Notably, nS ≫ nG for large nG.

For small ⟨n̂⟩, we observe an abrupt drop inWclass, see figure 3(a). At this point, SEi increases above S
E
f and

henceWclass becomes negative (Wclass = SEf − SEi for small ⟨n̂⟩, see equation (32)). We expect that the increase

in SEi above S
E
f is due to oscillations that arise in the squeezed distribution for small ⟨n̂⟩ [93, 94], see

figure 2(b) [95].

3.4. Relation with entanglement
Finally, we show how the work from coherence in this system can equivalently be interpreted as work from
entanglement [96–99]. To see this, we evaluate the entanglement entropy S between the two modes of the
BEC. A sufficient condition for entanglement is then S > 0 [100]. The entanglement entropy of a pure
state ρ is

S =−Tr1 ρ1 logρ1, (36)

9
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where ρ1 = Tr2 ρ and Tri is a partial trace over boson states of modes i = 1,2. The trace Tr2 can be evaluated
in the number state basis for both modes. Due to conservation of total particle number, this projects ρ onto
the number state basis for the first mode,

ρ1 =
N∑

n=0

⟨n,N− n|ρ|n,N− n⟩|n⟩11⟨n⟩ (37)

with |n⟩11⟨n|= Tr2 |n,N− n⟩⟨n,N− n|. The ‘1’ subscript distinguishes |n⟩1 from the implicitly two-mode
state |n⟩. Equations (36) and (37) give

S = SEi = βWquant. (38)

Hence the coherence in this system arises due to entangling correlations between the two modes, which is
subsequently extracted asWquant. The final thermal state is a classical mixture of product states, and hence
does not possess any entanglement. The quantum work output from coherence can therefore equivalently be
interpreted as work from entanglement. Squeezing results in additional entanglement according to the
criteria in [32, 101].

4. Discussion and conclusion

We have shown how work can be extracted from coherence in a two-mode BEC. Work almost entirely from
coherence can be extracted from a GCS with precisely tuned mean boson number. The protocol can be
substantially improved using squeezing, enabling work extraction predominantly from coherence over a
much broader range of parameters. Due to the many-body nature of the system, the work from coherence
can equivalently be interpreted as work from entanglement.

The coherent steps in our protocol can be realised in current experiments with two-mode BECs, which
could be spatial or spin modes [46]. For two spatial modes the detuning can be controlled by varying trap
depth [47] and populations can be coherently controlled using Josephson oscillations [47, 59]. For two spin
states the detuning can be controlled using Zeeman fields [48, 49] and populations can be controlled using a
Rabi pulse [60, 61]. The effect of changing∆ in the protocol could also be achieved by manipulating g using
a Feshbach resonance [72–74]. Squeezing of a two-mode BEC can be realised using a variety of
techniques [33, 35, 81–86]. Our protocol requires βg≪ 1, which is satisfied in most realisations of dilute
gaseous BECs [52, 53].

The experimentally challenging part of the protocol is the thermalisation of the system with a reservoir
(step 3 in figure 1). This could potentially be achieved by immersing the system in a thermal quantum gas of
another species, in analogy with sympathetic cooling [102]. An optical tweezer trap would allow the system
to be moved in and out of the reservoir as needed. Particle exchange between the two modes during
thermalization could occur via tunnelling for two spatial modes [103, 104] or via spin-changing collisions
with the reservoir for two spin states [105–108]. We have assumed decoherence only occurs during the
thermalising step of our protocol. Additional decoherence will likely reduce the work output by a term that
scales linearly with the irreversible entropy production [75].

The Hamiltonian equation (7) also describes a large, fully-connected spin chain [109] and hence could be
realised in other atomic systems [35], including atomic ensembles coupled to light [110, 111], Rydberg
arrays [112, 113] and trapped ions [114, 115]. The Hamiltonian also resembles that of photons in a
non-linear medium [90], with the important difference that we allow the free-photon spectrum to be
negative,∆< 0. To realise this, photon number would need to be conserved [116, 117].

We have limited our analysis to Glauber coherent and squeezed states. Improved operation may be
possible using self-phase modulation of the squeezed state [118] or by using non-Gaussian states [119] at the
expense of more involved state generation. We have also limited our analysis to initial states with zero von
Neumann entropy; relaxing this provides an interesting area for future investigation. Extracting work from
coherence can enhance power output compared to classical systems [6]. Our results provide a starting point
to explore this in a two-mode BEC, and may result in a many-body quantum advantage when incorporated
into an engine cycle.
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Appendix A. Choosing squeezing parameters

We choose α and ζ for the initial squeezed state as follows. The first three cumulants of pSn are evaluated from
the generating function K(s) = ln

∑
n p

S
ne

sn, which can be written in closed form using Mehler’s formula
[120]

∞∑
n=0

Hn (x)Hn (y)

n!

(u
2

)n
=

1√
1− u2

e
2xyu−(x2+y2)u2

1−u2 . (A1)

This gives

⟨n̂⟩= sinh2 |ζ|+ |α|2,
⟨δn̂2⟩=2cosh2 |ζ| sinh2 |ζ|+ |α|2

[
cosh(2|ζ|)− sinh(2|ζ|)cosθ

]
,

⟨δn3⟩=cosh(2|ζ|) sinh2 (2|ζ|)+ 3|α|2

2

[
cosh(4|ζ|)− 1

3
− sinh(4|ζ|)cosθ

]
, (A2)

with ⟨δnk⟩= ⟨(n−⟨n̂⟩)k⟩ for k= 2,3. We set ⟨n̂⟩= ⟨n̂⟩therm by choosing |α|2 = ⟨n̂⟩therm − sinh2 |ζ|. We solve
for |ζ| by minimising |⟨δn2⟩− ⟨δn̂2⟩therm|. Since the Hamiltonian (7) depends only on ⟨n̂⟩ and ⟨δn̂2⟩, this
choice minimises |Uf −Ui|. Additionally, for not-too-large squeezing this minimises |SEf − SEi |. We then

choose cosθ to minimise |⟨δn3⟩|.

Appendix B. Numerical details for extracting squeezed state statistics

Numerical computation of pSn requires care for large n due to numerical overflow and underflow [121]. We

evaluate pSn using the underlying recursion relation [90, 91] cn = ⟨n|α,ζ⟩= α(1+eiθ tanh |ζ|)√
n

cn−1

−eiθ tanh |ζ|
√

n−1
n cn−2. After each iteration we normalise the distribution. Defining∆n= ceil(50

√
⟨δn̂2⟩),

we begin the recursion at n∗ =max(0, round(⟨n̂⟩−∆n/2)) with cn∗ = 1 and cn<n∗ = 0, and evaluate terms

up to n∗ +∆n. In cases where n∗ > 0, we find |α| ≫ 1 and hence cn∗+1 ≈ α(1+eiθ tanh |ζ|)√
n

cn∗ (this is exact for

n∗ = 0). Hence why the values of cn<n∗ are not needed.

Appendix C. Minimum variance of a squeezed state

To a very good approximation cosθ =±1, see figure 3(b). Defining x= e2|ζ| cosθ
(
= e±2|ζ|), the equation for

⟨δn̂2⟩ is (see equation (A2)),

⟨δn̂2⟩= 1

8x2

(
x4 − 4x2 + 8

(
⟨n̂⟩+ 1

2

)
x− 1

)
. (C1)

Stationary points of d⟨δn̂2⟩/dx satisfy the polynomial

x4 − 4

(
⟨n̂⟩+ 1

2

)
x+ 1= 0. (C2)

Equation (C2) can be solved for x using standard methods. For large ⟨n̂⟩ this gives two real roots and two
complex roots. The two real roots are
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x1 ≈
1

4⟨n̂⟩+ 2
,

x2 ≈(4⟨n̂⟩)1/3 , (C3)

with x1 corresponding to a local maximum of equation (C1) and x2 > x1 a local minimum. Substituting
x⩽ x1 into the expression for ⟨n̂⟩ (equation (A2)) would give a negative value for |α|2, hence x> x1.
Therefore x2 gives the global minimum of ⟨δn̂2⟩ for valid values of x. Substituting x2 into equation (C1) gives
equation (31) for large ⟨n̂⟩.
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