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ABSTRACT

We construct proper pushforwards for partially proper morphisms of analytic adic spaces. This generalises the 
theory due to van der Put in the case of rigid analytic varieties over a non-Archimedean field. For morphisms 
that are smooth and partially proper in the sense of Kiehl, we furthermore construct the trace map and duality 
pairing.
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1 . I N T R O D U CT I O N
Arguably the most significant early achievement of Huber’s approach to analytic geometry, via his 
theory of adic spaces, was that it enabled the development of a robust theory of étale cohomology with 
compact support for rigid analytic varieties, and in particular, the proof in [10] of a Poincaré duality 
theorem for smooth morphisms. Previously, van der Put in [15] constructed a theory of compactly 
supported cohomology and proper pushforwards for abelian sheaves on rigid analytic varieties over a 
non-Archimedean field and proved a version of Serre duality for smooth and proper morphisms.

Our first goal in this article is to recast van der Put’s definition using Huber’s language of adic spaces, 
thereby generalising it to include analytic adic spaces that are not necessarily defined over a field. In 
fact, the definition is very simple: if f : X → Y  is a partially proper morphism of analytic adic spaces, 
we simply define Rf! to be the derived functor of sections whose support is quasi-compact (and hence 
proper) over Y. The important thing is to show that these compose correctly, and the proof that they 
do so follows the strategy of [10, Chapter 5] very closely.

The main application we envision for the formalism developed here lies in the theory of rigid coho-
mology, which necessitates working not just with adic spaces but also with germs of adic spaces, that 
is, closed subsets of adic spaces with the ‘induced’ analytic structure. (For us, the motivating example 
of a germ is the tube ]X[𝔓 of a locally closed subset X of a formal scheme 𝔓.) This generalisation is 
similar in spirit to the ‘pseudo-adic spaces’ that Huber works with in [10], although far more modest 
in scope.
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2 • T. ABE AND C. LAZDA

Our second goal is to define the trace map for smooth morphisms that are ‘partially proper in the 
sense of Kiehl’ (see Definition 5.4), and where the base is ‘overconvergent’ (that is, closed under 
generalisation inside its ambient adic space). 

Theorem (6.1, 6.9, 6.12)  There exists a unique way to define, for any smooth morphism 
f : X → Y  of relative dimension d, partially proper in the sense of Kiehl, with Y an overconvergent 
and finite-dimensional analytic germ, an 𝒪Y -linear map 

TrX/Y : Rdf!𝜔X/Y → 𝒪Y ,

such that:

(1) TrX/Y  is local on the base Y, and compatible with composition;
(2) when f is an open immersion, TrX/Y  is the canonical map 

f!𝒪X → 𝒪Y ;

(3) when t ∈ Γ(X ,𝒪X ) is such that Z := V (t) is also smooth over Y, u : Z → X denotes the inclusion, 
and 𝛼 : u*𝜔Z/Y → 𝜔X/Y [1] denotes the map classifying the exact sequence 

0 → 𝜔X/Y
×t

⟶ 𝜔X/Y → u*𝜔Z/Y → 0,

the diagram

commutes;
(4) when Y = Spa(R, R+) is affinoid, and X = 𝔻Y (0; 1−) is the relative open unit disc, with coordinate 

z, then, via the identification 

H1
c (X/Y ,Ω1

X/Y )
≅

⟶ R⟨z−1⟩†dlogz,

TrX/Y  is given by 

∑
i≤0

riz
idlogz ↦ r0.

Moreover, TrX/Y  descends uniquely to a map 

Rf!ΩX/Y [2d] → 𝒪Y

in the derived category of 𝒪Y -modules.

Broadly speaking, the construction of TrX/Y  follows the same outline as in [15]. First we work with 
relative open unit polydiscs, then with closed subspaces of relative open unit polydiscs, and finally 
show that the map TrX/Y  constructed does not depend on the choice of embedding and therefore 
globalises.

The question of what form of Serre–Grothendieck duality holds, and in what generality, we do not 
address here at all. Our main motivation for developing a formalism of proper pushforwards, and for 
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PROPER PUSHFORWARDS ON ADIC SPACES • 3

constructing trace morphisms, was to understand particular constructions in rigid cohomology and 
the theory of arithmetic 𝒟-modules [1]. For us, it was enough simply to have the formalism (together 
with an explicit computation for relative open unit polydiscs); a detailed study of duality would there-
fore have distracted us rather too much from our main goal. Another natural question to ask is whether 
or not the formalism of Rf! extends in any reasonable way beyond the partially proper case. We give an 
example in Section 7 to show that this cannot be done, essentially for the same reason as in the case of 
abelian sheaves on the Zariksi site of schemes, namely, the failure of the proper base change theorem. 
We thank B. Le Stum for the main idea behind this example.

Let us now give a brief summary of the contents of this article. In Section 2 we gather together 
various (existing) results in general topology that will be useful in the rest of the article, particularly 
concerning sheaf cohomology on spectral spaces. In Section 3 we introduce the notion of a germ of 
an adic space along a closed subset and define the category in which these live. In Section 4 we define 
proper pushforwards f! and Rf! for partially proper morphisms of germs of adic spaces and show that 
these derived proper pushforwards compose correctly. In Section 5 we prove a result on the coho-
mological dimension of coherent sheaves, which is then used in Section 6 to construct the trace map 
for smooth morphisms that are partially proper in the sense of Kiehl. Finally, in Section 7 we give an 
example to show that there is no satisfactory formalism for Rf! beyond the partially proper case.

Notation and conventions
We will only deal with abelian sheaves. Thus if X is a topological space, a sheaf on X will always mean an 
abelian sheaf. The category of abelian sheaves on X will be denoted by Sh(X), and its derived category 
by D(X). If 𝒜 is a sheaf of rings on X, the derived category of 𝒜-modules will be denoted D(𝒜).

A Huber ring will be a topological ring admitting an open adic subring R0 with finitely generated 
ideal of definition. For such a ring R, we will denote by R∘ ⊂ R the subset of power-bounded elements, 
and by R∘∘ ⊂ R∘ the subset of topologically nilpotent elements. A Huber pair is a pair (R, R+) consist-
ing of a Huber ring R and an open, integrally closed subring R+ ⊂ R∘. A Huber ring R is said to be 
a Tate ring if there exists some 𝜛 ∈ R× ∩ R∘∘, such an element will be called a quasi-uniformiser. A 
Huber pair (R, R+) is said to be a Tate pair if R is a Tate ring. An adic space isomorphic to Spa(R, R+), 
where (R, R+) is a Tate pair, will be called a Tate affinoid.

If X is an adic space and x ∈ X , we will denote by 𝒪X ,x and 𝒪+
X ,x the stalks of the structure sheaf and 

integral structure sheaf of X at x, respectively. The residue field of 𝒪X ,x will be denoted k(x), and the 
image of 𝒪+

X ,x in k(x) by k(x)+. The residue field of k(x)+ will be denoted k̃(x).

2 . G E N E R A L TO P O LO G Y
In this section we will gather together various existing definitions and results that we will need from 
general topology, mostly using either [6] or [10] as references.

2.1. Basic definitions
For the reader’s convenience we recall several definitions that will be used in this article.

Definition 2.1 A topological space X is said to be:

(1) quasi-compact if every open cover has a finite sub-cover;
(2) compact if it is quasi-compact and Hausdorff;
(3) locally compact if every point has a compact neighbourhood;
(4) quasi-separated if the intersection of any two quasi-compact opens is quasi-compact;
(5) coherent if it is quasi-compact and quasi-separated and admits a basis of 

quasi-compact open subsets;
(6) locally coherent if it admits a cover by coherent open subspaces;
(7) sober if every irreducible closed subset has a unique generic point;
(8) spectral if it is coherent and sober;
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4 • T. ABE AND C. LAZDA

(9) locally spectral if it is locally coherent and sober;
(10) valuative if it is locally spectral, and the set of generalisations of any point x ∈ X  is 

totally ordered;
(11) taut if it is locally spectral and quasi-separated, and the closure of any quasi-compact 

open U ⊂ X  is quasi-compact.

If X is a locally spectral space, and x, y ∈ X  we will write y ≻ x if x ∈ {y}, that is, if x is a specialisation 
of y. We will also write G(x) for the set of generalisations of x.

Definition 2.2 A morphism f : X → Y  of locally coherent topological spaces is said to be

(1) quasi-compact if the preimage of every quasi-compact open subset V ⊂ Y  is 
quasi-compact;

(2) quasi-separated if the preimage of every quasi-separated open subset V ⊂ Y  is 
quasi-separated;

(3) coherent if it is quasi-compact and quasi-separated.

A morphism f : X → Y  of locally spectral spaces is said to be

(4) taut if the preimage of every taut open subspace V ⊂ Y  is taut;
(5) spectral if for every quasi-compact and quasi-separated open subsets U ⊂ X , V ⊂ Y

with f (U) ⊂ V , the induced map f : U → V  is quasi-compact.

Definition 2.3 A morphism f : X → Y  of topological spaces is said to be topologically 
proper if for all topological spaces Z, the map X × Z → Y × Z is closed.

Remark 2.4 We use the terminology topologically proper to distinguish this from the analytic 
notion of properness that we will use later on.

If f  is topologically proper, then preimages of quasi-compact sets are quasi-compact [4, 
Section 10.2, Proposition 6], and if X is Hausdorff and Y  is locally compact, then the converse holds 
[4, Section 10.3, Proposition 7].

2.2. Sheaf cohomology on spectral spaces
The following result will be used constantly:

Proposition 2.5 Let X be a topological space, {Ui}i∈I  a filtered diagram of open subsets of X, such 
that each Ui is spectral, and set Z = ∩i∈IUi. Then, for any sheaf ℱ on X, and any q ≥ 0, the 
natural map 

colimi∈IH
q(Ui, ℱ|Ui

) → Hq(Z, ℱ|Z)

is an isomorphism.

Proof. Since the inclusions Ui → Uj are automatically quasi-compact by [6, Chapter 0, 
Proposition 2.2.3], this is a particular case of [6, Chapter 0, Proposition 3.1.19].

Corollary 2.6 Let f : X → Y  be a coherent morphism of locally spectral spaces, ℱ a sheaf on 
X, and y ∈ Y . Let X(y) ⊂ X  denote the inverse image of G(y) ⊂ Y . Then, for any q ≥ 0, the 
natural map 

(Rqf*ℱ)y → Hq(X(y), ℱ|X(y)
)

is an isomorphism.
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PROPER PUSHFORWARDS ON ADIC SPACES • 5

Proof. We may assume that Y  is coherent, thus spectral. Hence X is also spectral. The point y
admits a cofinal system of open neighbourhoods {Ui}i∈I  with each Ui spectral. Therefore 
each f −1(Ui) is spectral, and we have 

(Rqf*ℱ)y = colimi∈IH
q(f −1(Ui), ℱ|f −1(Ui)) = Hq(X(y), ℱ|X(y)

)

since ∩if
−1(Ui) = f −1(∩iUi) = f −1(G(y)) = X(y).

2.3. Dimensions of spectral spaces
The dimension theory of locally spectral spaces works as in the case of schemes.

Definition 2.7 Let X be a locally spectral space. The dimension of X is defined to be 

dimX = sup{n ≥ 0 | ∃ xn ≻ xn−1 ≻ … ≻ x0, xi ≠ xi−1} ∈ ℤ≥0 ∪ {∞, −∞}.

The space X is said to be finite-dimensional if dimX < ∞.

We will need the following generalisation of Grothendieck vanishing:

Theorem 2.8 Let X be a spectral space of dimension d, and ℱ a sheaf on X. Then Hq(X , ℱ) = 0
for all q > d.

Proof. This is the main result of [13].

Definition 2.9 Let f : X → Y  be a spectral morphism between locally spectral spaces. The 
dimension of f  is defined to be 

dim f = sup{dim f −1(y)∣y ∈ Y} ∈ ℤ≥0 ∪ {∞, −∞}.

The map f  is said to be finite-dimensional if dim f < ∞.

2.4. Separated quotients
Let X be a valuative space, and let [X] denote its set of maximal points, that is, points such that 
G(x) = {x}. Since every point of a valuative space admits a maximal generalisation [6, Chapter 0, 
Remark 2.3.2], taking a point to its maximal generalisation induces a surjective map 

𝜈 : X → [X],

and we equip [X] with the quotient topology. Recall that a topological space is T1 if for any two distinct 
points, each has an open neighbourhood not containing the other. 

Proposition 2.10 The space [X] is T1 and is universal for maps from X into T1 topological spaces. 
If X is coherent, then [X] is compact.

Proof. This is [6, Chapter 0, Proposition 2.3.9 and Corollary 2.3.18].

Note that the space [X] is generally no longer valuative, since it does not admit a basis of quasi-
compact opens.

Definition 2.11 An open (resp. closed) subset of a valuative space X is said to be 
overconvergent if it is closed under specialisation (resp. generalisation).
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6 • T. ABE AND C. LAZDA

Equivalently, it is the preimage of an open (resp. closed) subset of [X] under the separation map 𝜈. 
Note that the complement of an overconvergent open subset is an overconvergent closed subset, and 
vice versa.

Lemma 2.12 Let Z ⊂ X be an overconvergent closed subset of a coherent valuative space, and ℱ a 
sheaf on X. Then, for all q ≥ 0, the natural map 

colimZ⊂U
open

Hq(U , ℱ|U ) → Hq(Z, ℱ|Z)

is an isomorphism.

Proof. Since Z is the intersection of its open neighbourhoods, this follows from Proposition 2.5.

3 . G E R M S O F A D I C S PAC E S
In this section we introduce the category of germs of adic spaces. This will be the category in which 
we work for the rest of this article.

3.1. Standing hypotheses
We use Huber’s theory of adic spaces, see either [9] or [10, Chapter 1] for an introduction. We will 
assume that all adic spaces are analytic in the sense of [10, Section 1.1]. That is, each point x ∈ X  will 
have an open affinoid neighbourhood x ∈ Spa(R, R+) ⊂ X  such that R is Tate. This implies that all 
morphisms of adic spaces are adic in the sense of [10, Section 1.2]. We will let Ad denote the category 
of analytic adic spaces. Note in particular the standing assumption [10, (1.1.1)], which implies that 
for all complete Huber pairs (R, R+) we consider, R will be Noetherian.

3.2. Germs of adic spaces
In [10, Section 1.10] Huber introduces the notion of a pseudo-adic space, which roughly speaking 
consists of an adic space X , together with a ‘reasonably nice’ subspace X ⊂ X . We will work instead 
with germs of adic spaces along closed subsets.

Definition 3.1 A germ of an adic space is a pair (X , X) where X is an adic space, and X ⊂ X  is 
a closed subset.

We can construct a category Germ of germs of adic spaces in the usual way. We first consider the 
category of pairs (X , X) as in Definition 3.1, where morphisms are commutative squares. We then 
declare a morphism j : (X , X) → (Y , Y ) to be a strict neighbourhood if j is an open immersion and 
j(X) = Y . Finally, we localise the category of pairs at the class of strict neighbourhoods (it is easy to 
verify that a calculus of right fractions exists). If (X , X) is a pair, we will often abuse notation and write 
X for (X , X), considered as an object in the category Germ.

Example 3.2

(1) The first key example of a germ is any fibre of a morphism of adic spaces f : X → Y  which is 
locally of weakly finite type. Indeed, if y ∈ Y , and G(y) is its set of generalisations, then f −1(y)
is a closed subset of the adic space 

X(y) = f −1(G(y)) = X ×Y Spa(k(y), k(y)+) .

Note that if the point y ∈ Y  in question is not maximal, this fibre f −1(y) will not have any kind 
of ‘natural’ structure as an adic space.

(2) The second key example for us (in particular, in the forthcoming [1]) is inspired by Berthelot’s 
theory of rigid cohomology. Let k∘ be a complete discrete valuation ring, with fraction field k, 
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PROPER PUSHFORWARDS ON ADIC SPACES • 7

𝔓 a formal scheme, flat and of finite type over Spf(k∘), and X ⊂ 𝔓 a locally closed subset. Then 
there is a (continuous) specialisation map 

sp : 𝔓k → 𝔓

from the adic generic fibre of 𝔓 to the formal scheme 𝔓, and if we let Y  denote the closure of X
in 𝔓, then the tube 

]Y [𝔓:= sp−1(Y )∘

is defined to be the interior of the inverse image of Y  under sp. This induces a map 

spY :]Y [𝔓→ Y ,

and the tube 

]X[𝔓:= sp−1
Y (X)

is defined to be the closure of sp−1
Y (X) inside ]Y [𝔓. The pair of tubes (]X[𝔓, ]Y [𝔓) then defines 

a germ, denoted ]X[𝔓.

The assignment X ↦ (X , X) induces a fully faithful functor from Ad to Germ . We can also consider 
any pair (X , X) as in Definition 3.1 as a pseudo-adic space in the sense of Huber [10, Section 1.10], 
thus it makes sense to consider any of the following properties of morphisms of such pairs:

(1) locally of finite type, locally of +weakly finite type and locally of weakly finite type;
(2) quasi-compact, quasi-separated, coherent and taut;
(3) an open immersion, closed immersion and locally closed immersion;
(4) separated, partially proper and proper;
(5) smooth and étale.

For example, a morphism of pairs f : (X , X) → (Y , Y ) is smooth if and only if f : X → Y  is smooth 
in the sense of [10, Section 1.6], and X is open in f −1(Y ). It is easily checked that all of these properties 
descend to the category Germ of germs. While ‘analytic’ properties of a germ X are generally defined 
via the ambient adic space X , ‘topological’ properties are generally defined using the topological space 
X itself. In particular, a point of a germ will be a point of X, and a sheaf on a germ will be a sheaf on X. 
Note that the underlying topological space of any germ X is locally spectral, and morphism of germs 
induces a spectral map between the underlying topological spaces.

Definition 3.3 A germ X is said to be overconvergent if it admits a representative (X , X) such 
that X ⊂ X  is an overconvergent closed subset (that is, is stable under generalisation).

It is perhaps worth carefully recalling the definitions of the different types of immersions for adic 
spaces and germs. Following [10, (1.4.1)] a closed analytic subspace of an adic space X is one defined 
by a coherent sheaf of ideals ℐ ⊂ 𝒪X . A morphism f : X → Y  of adic spaces is a closed immersion if it 
is isomorphic to the inclusion of a closed analytic subspace, and a locally closed immersion if it factors 
as the composition of a closed immersion followed by an open immersion.

A (locally) closed immersion of germs is one that has a representative f : (X , X) → (Y , Y ) as a 
morphism of pairs such that f : X → Y  is a locally closed immersion of adic spaces, and X is (locally) 
closed in Y. Finally, an open immersion of germs is one that has representative f : (X , X) → (Y , Y ) a 
morphism of pairs such that f : X → Y  is an open immersion of adic spaces, and X is open in Y. Note 
that a locally closed immersion of germs, which is an open immersion on the underlying topological 
spaces, need not be an open immersion.
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8 • T. ABE AND C. LAZDA

We will also use the following elementary fact constantly:

Lemma 3.4 Let j : U → X be an open immersion of germs. Then j is partially proper if and only if U 
is an overconvergent open subset of X.

Proof. This follows from the valuative criterion of properness [10, Corollary 1.10.21].

As with adic spaces, or pseudo-adic spaces, fibre products in general are not representable in Germ. 
However, they will be representable if at least one of the morphisms is locally of weakly finite type. If 

X
f

→ Z ← Y  is a diagram of germs, represented by a diagram 

of pairs, with f, say, locally of weakly finite type, then the fibre product X ×Y Z is represented by the 
pair 

(p−1
1 (X) ∩ p−1

2 (Y ), X ×Z Y ).

Example 3.5 Let k∘ be a complete discrete valuation ring, k its fraction field, 𝔓 a formal 
scheme, flat and of finite type over k∘, and X ⊂ 𝔓 a locally closed subset. Set 𝜅 = (k, k∘). 
Then, for any n ≥ 0, we can consider X as a locally closed subset of 𝔸n

𝔓 via the zero section, 
and we have 

]X[�̂�n
𝔓
≅]X[𝔓×𝜅𝔻n

𝜅(0; 1−)

as germs over 𝜅.

If X is a germ with ambient adic space X we will write 𝒪X := 𝒪X ∣X . We can similarly extend the 
notions of local rings, residue fields, et cetera, to germs of spaces. For example, if x ∈ X  is a point of 
a germ, then we may speak of the local ring 𝒪X ,x, the residue field k(x) and the residue valuation ring 
k(x)+ ⊂ k(x).

3.3. Local germs
We recall from [10] the definition of an (analytic) affinoid field. In the theory of analytic adic space, 
these play a role roughly analogous to that played by local rings in algebraic geometry.

Definition 3.6 An affinoid field is an affinoid ring 𝜅 = (k, k+) where k is a field, k+ ⊂ k is a 
valuation ring, and the valuation topology on k can be induced by a height one valuation. We 
define the height of 𝜅 to be the height of the valuation ring k+.

Note that the condition on the topology of k is equivalent to requiring that (k, k+) is a Tate pair.

Definition 3.7 An adic space is called local if it is isomorphic to the spectrum Spa(k, k+) of 
an affinoid field. A germ is called local if it has a representative of the form (X , X) with X a 
local adic space.

Note that the points of a local germ are totally ordered by generalisation.
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PROPER PUSHFORWARDS ON ADIC SPACES • 9

Example 3.8

(1) Let X be an adic space, and x ∈ X  a point. Then 𝜅(x) := (k(x), k(x)+) is an affinoid field, and 
Spa(𝜅(x)) is a local adic space, called the localisation of X at x. There exists a canonical mor-
phism Spa(𝜅(x)) → X , which induces a homeomorphism between Spa(𝜅(x)) and the set 
G(x) of generalisations of x.

(2) We can also do the same with points of germs. Namely, if x ∈ X ⊂ X  is such a point, then 
Spa(𝜅(x)) ∩ X , which is naturally homeomorphic to the set of generalisations of x within X, 
will be a closed subset of the local adic space Spa(𝜅(x)). It is therefore a local germ.

Let f : X → Y  be a morphism of germs, locally of weakly finite type. We may therefore take the 
fibre product of f  with any other morphism g. For any point y ∈ Y , we define 

X(y) := X ×Y (Spa(𝜅(y)) ∩ Y ),

which is locally of weakly finite type over the local germ Spa(𝜅(y)) ∩ Y . Note that the underlying 
topological space of X(y) is equal to f −1(G(y)), and it contains the space f −1(y) as a closed subspace, 
equal to the closed fibre of the natural map 

X(y) → Spa(𝜅(y)) ∩ Y .

The following is then just a rephrasing of Corollary 2.6:

Corollary 3.9 Let f : X → Y  be a coherent morphism of germs, locally of weakly finite type, 
and ℱ a sheaf on X. Then, for all q ≥ 0, the natural map 

(Rqf*ℱ)y → Hq(X(y), ℱ|X(y)
)

is an isomorphism.

4 . P R O P E R P U S H F O RWA R D S O N G E R M S O F A D I C S PAC E S
We can now define proper pushforwards for adic spaces, following Huber.

4.1. Sections with proper support
Let f : X → Y  be a morphism of germs, separated and locally of +weakly finite type. Let ℱ be a sheaf 
on X, V ⊂ Y  an open subset and s ∈ Γ(f −1(V ), ℱ) a section. Then the support 

supp(s) := {x ∈ f −1(V )∣ sx ≠ 0} ⊂ f −1(V )

is a germ of an adic space (as it is a closed subset of f −1(V )), and it therefore makes sense to ask whether 
or not the natural map supp(s) → V  is proper.

Definition 4.1 Define 

f!ℱ ⊂ f*ℱ

to be the subsheaf consisting of sections s ∈ Γ(V , f*ℱ) = Γ(f −1(V ), ℱ) whose support is 
proper over V.

We will sometimes denote H0(Y , f!(−)) by either H0
c (X/Y , −) or Γc(X/Y , −). If f : X → Y  is par-

tially proper, then the support of s ∈ Γ(V , f*ℱ) is proper over V  if and only if it is quasi-compact
over V.
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10 • T. ABE AND C. LAZDA

As a first example, we can show that this definition recovers the usual extension by zero functor for 
open immersions.

Lemma 4.2 Suppose that f is an open immersion. Then f! is isomorphic to the extension by zero 
functor.

Proof. We clearly have (f!ℱ)|X ≅ ℱ, so it suffices to show that (f!ℱ)|Y\X = 0. Let y ∈ Y\X , 
y ∈ V ⊂ Y  an open neighbourhood and s ∈ Γ(V ∩ X , ℱ) a section whose support 
(considered as a closed subset of V ∩ X) is proper over V. Then supp(s) must be a closed 
subset of V, which does not contain y. Hence there exists an open subset y ∈ W ⊂ V  such 
that s|W∩X = 0, in other words s = 0 in (f!ℱ)y. Since s was arbitrary, we see that (f!ℱ)y = 0, 
and since y was arbitrary, we see that (f!ℱ)|Y\X = 0.

4.2. Comparison with van der Put’s definition
Whenever f : X → Y  is a morphism of adic spaces of finite type over a discretely valued affinoid field 
(k, k∘), and the base Y  is affinoid, a definition of H0

c (X/Y , −) has already been given in [15, Defini-
tions 1.4]. In fact, van der Put worked with rigid analytic spaces rather than adic spaces, but since the 
underlying topoi are the same [10, (1.1.11)] we can transport his definition to the adic context.

Recall that if U , V ⊂ X  are open affinoids, we write 

U ⋐Y V

if there exists a closed immersion V → 𝔻n
Y (0; 1) over Y  such that U ⊂ 𝔻n

Y (0; 1−).

Definition 4.3 (van der Put) For any sheaf ℱ on X, the subgroup 

H0
c,vdP(X/Y , ℱ) ⊂ H0(X , ℱ)

is defined to be 

colim
U

H0
U

(X , ℱ),

where the colimit is over all finite unions U of affinoids Ui for which there exist affinoids 
Vi ⊂ X  such that Ui ⋐Y Vi, U  denotes the closure of U in X and H0

U
 denotes sections with 

support in the closed subset U ⊂ X .

Lemma 4.4 Assume that f : X → Y  is a partially proper morphism, locally of finite type between 
adic spaces, such that Y is affinoid and of finite type over a discretely valued affinoid field. Then 
H0

c (X/Y , −) = H0
c,vdP(X/Y , −) as subfunctors of H0(X , −).

Proof. Since any closed subset of X is partially proper over Y, the support of a section s ∈ H0

(X , ℱ) is proper over Y  if and only if it is quasi-compact over Y, and if and only if it is 
quasi-compact. On the other hand, since f  is partially proper, it follows from [10, Remark 
1.3.19] that the collection of open affinoids U ⊂ X , for which there exists an open affinoid 
V ⊂ X  such that U ⋐Y V , forms a basis for the topology of X.

It therefore suffices to show that a closed subset of X is quasi-compact if and only if it is 
contained in the closure of the union of finitely many such open affinoids U. The ‘only if ’ 
direction is clear, and for the ‘if ’ direction, we use the fact that X is taut [10, Lemmas 5.1.3 
and 5.1.4], and so the closure of any quasi-compact open in X is quasi-compact.

Remark 4.5 The result is false without some assumption on f. For example, if Y = Spa(𝜅)
with 𝜅 = (k, k∘) an affinoid field of height one, and X = 𝔻1

𝜅(0; 1) is the closed unit disc, then 
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PROPER PUSHFORWARDS ON ADIC SPACES • 11

H0
c (X , −) is genuinely different from H0

c,vdP(X , −). In this case, van der Put’s definition is 
equivalent to requiring sections to have support quasi-compact and disjoint from the closure 
of the Gauss point, whereas Definition 4.1 only requires this support to be disjoint from the 
Gauss point itself. However, as we shall see, neither definition leads to a satisfactory theory in 
the non-partially proper case.

4.3. Basic properties of proper pushforwards
The following properties of f! and Γc(X/Y , −) can be verified exactly as in [10, Proposition 5.2.2]:

Proposition 4.6 Let f : X → Y  be a morphism of germs, separated and locally of +weakly finite 
type.

(1) The functors Γc(X/Y , −) and f! are left exact.
(2) The functor f! commutes with filtered colimits. If Y is coherent, then so does Γc(X/Y , −).
(3) Let g : Y → Z be a morphism of germs, separated and locally of +weakly finite type. Then the 

canonical identification (g ∘ f )* = g* ∘ f* induces (g ∘ f )! = g! ∘ f!.

4.4. Derived proper pushforwards for partially proper morphisms
For partially proper morphisms only, we now define Rf! as the derived functor of f!.

Definition 4.7 Let f : X → Y  be a partially proper morphism of germs. Define 

Rf! : D+(X) → D+(Y )

to be the total derived functor of f!. For any q ≥ 0, define Rqf! = ℋq(Rf!).

We will also write RΓc(X/Y , −) for the total derived functor of H0
c (X/Y , −), and Hq

c (X/Y , −) for 
the cohomology groups of this complex.

To show that these derived proper pushforwards compose correctly, we can relate them to ordinary 
pushforwards as in [10, Section 5.3].

Lemma 4.8 Let f : X → Y  be a partially proper morphism of germs, with Y coherent.

(1) There exists a cover of X by a cofiltered family of overconvergent open subsets 
{Ui}i∈I ⊂ X, each of which has quasi-compact closure.

(2) For any such family {Ui}, any sheaf ℱ on X, and any q ≥ 0, there is a canonical 
isomorphism 

colimi∈IR
qfi*(ji!ℱ|Ui

)
≅

⟶ Rqf!ℱ,

where ji : Ui → U i denotes the canonical open immersion, and fi : U i → Y  the restriction 
of f.

The first claim was proved in [10, Lemma 5.3.3], and the second part is shown in exactly the same 
way as Huber does in the étale case, using the following lemma:

Lemma 4.9 Let X be a quasi-separated germ of an adic space, U ⊂ X an overconvergent open subset 
with quasi-compact closure, and j : U ↪ U the natural inclusion. Then, for any flasque sheaf ℐ on 
X, and any q > 0, Hq(U , j!(ℐ |U )) = 0.

Proof. Replacing X by U , we may assume that U = X  and that X is coherent. If we let i : Z → X
denote the closed complement to U, then Z is an overconvergent closed subset of X, then 
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12 • T. ABE AND C. LAZDA

taking the long exact sequence in cohomology associated with using the exact
sequence 

0 → j!ℐ |U → ℐ → i*ℐ |Z → 0,

and using the fact that Hq(X , ℐ ) = 0 for q > 0, it is enough to show that

(1) H0(X , ℐ ) → H0(Z, ℐ |Z) is surjective;
(2) Hq(Z, ℐ |Z) = 0 for all q > 0.

Since ℐ is flasque, and Z is overconvergent, this follows from Lemma 2.12.

 Proof of Lemma 4.8(2) Define functors Tq : Sh(X) → Sh(Y ) by 

Tq(ℱ) = colimi∈IR
qfi*(ji!ℱ|Ui

).

The Tq form a 𝛿-functor, with T0 = f!. Moreover, when q > 0, we can deduce from Lemma 4.9 
that Tq is effaceable, hence 

Tq(ℱ)
≅

⟶ Rqf!ℱ

as required.

Corollary 4.10 Let f : X → Y  be partially proper. Then flasque sheaves on X are f!-acyclic.

The following two corollaries of Lemma 4.8 are proved word for word as in their étale counterparts 
[10, Propositions 5.3.7 and 5.3.8]:

Corollary 4.11 Let f : X → Y  be a partially proper morphism of germs. Then, for each 
q ≥ 0, the functor Rqf! commutes with filtered colimits. If Y  is coherent, then so does 
Hq

c (X/Y , −).

Proof. We may assume that Y  is coherent. Let {Ui}i∈I , ji : Ui → U i and fi : U i → Y  be as in 
Lemma 4.8. Then ji! is a left adjoint, hence commutes with filtered colimits, and fi is 
coherent, hence Rqfi* commutes with filtered colimits. Therefore 

Rqf! ≅ colimi∈IR
qfi*(ji!(−)|Ui

)

commutes with filtered colimits. The corresponding claim for Hq
c (X/Y , −) is proved 

similarly.

Corollary 4.12 Let X
f

→ Y
g

→ Z be partially proper morphisms of germs. Then there is a 
canonical isomorphism R(g ∘ f )! ≅ Rg! ∘Rf! of functors D+(X) → D+(Z).

Proof. We may assume that Z is coherent. By Corollary 4.10, it suffices to show that for any 
injective sheaf ℐ on X, the sheaf f!ℐ is flasque on Y. Thus we need to show that, for any 
quasi-compact open subset W ⊂ Y , the map 

H0
c (X/Y , ℐ ) → H0

c (f −1(W )/W , ℐ )

is surjective. So pick a section s ∈ H0(f −1(W )/W , ℐ ) with proper support over W. Let T be 
the closure of supp(s) in X, and let s′ ∈ H0(f −1(W ) ∪ (X\T), ℐ ) be the unique section 
with s′|f −1(W ) = s and s′|X\T = 0. Since ℐ is flasque, we can pick s″ ∈ Γ(X , ℐ ) with 
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PROPER PUSHFORWARDS ON ADIC SPACES • 13

s″|f −1(W )∪X\T = s′. Then supp(s″) ⊂ T, and since f : X → Y  is taut [10, Lemma 5.1.4 ii)], T
is quasi-compact over Y. Thus supp(s″) is proper over Y  and gives a lift of s to H0

c (X/Y , ℐ ).

4.5. Base change theorems
We can also use Lemma 4.8 to describe the fibres of Rf! by combining it with Corollary 3.9.

Corollary 4.13 Let f : X → Y  be a partially proper morphism of germs. Then for each y ∈ Y
the natural map 

(Rqf!ℱ)y → Hq
c (X(y)/G(y), ℱ|X(y)

)

is an isomorphism.

In particular, this says that whenever y is a maximal point, the natural map 

(Rf!ℱ)y → RΓc(f −1(y)/Spa(𝜅(y)) , ℱ|f −1(y))

is an isomorphism. This is not true in general if y is not maximal; we shall give a counterexample in 
Section 7. Nonetheless, we do have the following base change result:

Lemma 4.14 Let f : X → Y  be a partially proper morphism of germs. Let ℱ be a sheaf on X, and 
Z ⊂ Y  a locally closed subspace, which is stable under generalisations. Let fZ : XZ := X×Y
Z → Z be the projection. Then the natural map 

(Rf!ℱ)|Z → RfZ!(ℱ|XZ
)

is an isomorphism.

Proof. By Lemma 4.8 we may assume that f  is proper. In this case, since Z is stable under 
generalisations, the result follows from Corollary 3.9.

4.6. Cohomological amplitude
If f : X → Y  is a partially proper morphism between germs, then we have defined the functor 

Rf! : D+(X) → D+(Y ).

Moreover, if X and Y  are finite-dimensional, then this will extend to a functor on the unbounded 
derived categories.

Proposition 4.15 Let f : X → Y  be a partially proper morphism between finite-dimensional 
germs. Then 

Rf! : D+(X) → D+(Y )

has cohomological amplitude contained in [0,dimX].

Proof. We may assume that Y  is coherent, and thus appeal to Lemma 4.8. Choose open subsets 
Ui ⊂ X  as in the statement of the Lemma, with induced maps fi : U i → Y  and ji : Ui → U i. 
Since we have Rf! ≅ colimi∈IRfi*ji!, it suffices to bound the cohomological dimension of fi. 
But for y ∈ Y  we have (Rfi*ℱi)y ≅ RΓ(U i,(y), ℱi), and the latter vanishes in cohomological 
degrees ≥ dimU i,(y) by Theorem 2.8. It thus suffices to observe that dimU i,(y) ≤ dimX(y)
≤ dimX .
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14 • T. ABE AND C. LAZDA

Corollary 4.16 Let f : X → Y  be a partially proper morphism between finite-dimensional 
germs. Then the functor of proper pushforwards extends canonically to a functor 

Rf! : D(X) → D(Y )

on the unbounded derived categories. This functor sends D− to D− and Db to Db. If 
g : Y → Z is another partially proper morphism, with Z finite-dimensional, then there is a 
canonical isomorphism 

Rg! ∘Rf!
≅

⟶ R(g ∘ f )!

of functors 

D(X) → D(Z).

4.7. Mayer–Vietoris for proper pushforwards
Let f : X → Y  be a partially proper morphism between finite-dimensional germs, and consider an 
open hypercover 

U• → X

of X by overconvergent open subsets. Thus each Un is partially proper over Y  by Lemma 3.4. Let 
jn : Un → X  denote the given morphism (which is a disjoint union of the inclusion of overconvergent 
open subsets of X), and fn : Un → Y  the composition f ∘ jn. Suppose that we have a sheaf ℱ on X. Then 
there is a resolution 

… → j1!ℱ|U1
→ j0!ℱ|U0

→ ℱ → 0

of ℱ, coming from the fact that U• → X  is a hypercover. By Corollary 4.16 we can apply Rf! to this 
resolution, and by Corollary 4.12 we know that Rf! ∘ jn! = Rfn! (note that jn! is exact as it is the exten-
sion by zero along an open immersion). By Proposition 4.15 the cohomological dimension of Rfn! is 
bounded independently of n, and we therefore obtain a convergent second quadrant spectral sequence 

E−n,q
1 = Rqfn!ℱ|Un

⇒ R−n+qf!ℱ

in the category Sh(Y ) of abelian sheaves on Y. The terms Rqfn!ℱ|Un
 can also be made slightly more 

explicit: if Un = ∐m Un,m with each Un,m an open subset of X, and fn,m : Un,m → Y  is the restriction of 
f  to Un,m, then 

Rqfn!ℱ|Un
= ⨁

m
Rqfn,m!ℱ|Un,m

by Corollary 4.11.

Corollary 4.17 Let f : X → Y  be a partially proper morphism between finite-dimensional 
germs, ℱ a sheaf on X and U• → X  a hypercover by overconvergent opens, with Un =
∐m Un,m. Then, setting fn,m = f |Un,m

, there exists a convergent spectral sequence 

E−n,q
1 = ⨁

m
Rqfn,m!ℱ|Un,m

⇒ R−n+qf!ℱ

in the category Sh(Y ) of abelian sheaves on Y.
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PROPER PUSHFORWARDS ON ADIC SPACES • 15

4.8. Module structures on proper pushforwards
Let f : X → Y  be a partially proper morphism of germs, and suppose that we have sheaves of rings 𝒜X
and 𝒜Y  on X and Y, respectively, together with a morphism 𝒜Y → f*𝒜X  making f  into a morphism 
of ringed spaces. The principal example for us will, of course, be the structure sheaves 𝒜X = 𝒪X  and 
𝒜Y = 𝒪Y .

Lemma 4.18 If ℐ is an injective 𝒜X -module, then ℐ is f!-acyclic.

Proof. Since injective 𝒜X -modules are flasque, this follows from Corollary 4.10.

Corollary 4.19 (Projection formula) For any locally free 𝒜Y -module ℰ of finite rank, there 
exists an isomorphism 

ℰ ⊗𝒜Y
Rf!ℱ ≅ Rf!(f *ℰ ⊗𝒜X

ℱ)

in D+(𝒜Y ).

Remark 4.20 Here f *ℰ denotes module pullback f −1ℰ ⊗f −1𝒜Y
𝒜Y . Since ℰ is locally free, the 

functors 

ℰ ⊗𝒜Y
(−) :D+(𝒜Y ) → D+(𝒜Y )

f *ℰ ⊗𝒜X
(−) :D+(𝒜X ) → D+(𝒜X )

are well-defined.

Proof. Let ℐ • be an injective resolution of ℱ as an 𝒜X -module. Then f *ℰ ⊗𝒜X
ℐ • is an 

injective resolution of f *ℰ ⊗𝒜X
ℱ. We can therefore reduce to the case ℱ injective, and we 

must produce a canonical isomorphism 

f!(f *ℰ ⊗𝒜X
ℱ) ≅ ℰ ⊗𝒜Y

f!ℱ.

Note that both sides embed naturally into ℰ ⊗𝒜Y
f*ℱ ≅ f*(f *ℰ ⊗𝒜X

ℱ), and to verify that 
the images are equal, we may argue locally, allowing us to assume that ℰ ≅ 𝒜⊕n

Y . Since all 
functors in sight (f *, f!, f*,⊗) commute with finite direct sums, we may therefore reduce to 
the trivial case ℰ = 𝒜Y .

4.9. Comparison with separated quotients
The next crucial result we need is a comparison between Rf!, as we have defined it here, and the classical 
notion of proper pushforwards for maps between locally compact topological spaces. To prepare for 
this, we note the following property of separated quotients:

Proposition 4.21 Let X be a taut germ. Then [X] is Hausdorff and locally compact, and the 
separation map sepX  is topologically proper.

Proof. This is [6, Chapter 0, Proposition 2.5.5, Theorem 2.5.7, Corollary 2.5.9].
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16 • T. ABE AND C. LAZDA

Now, let f : X → Y  be a partially proper morphism of germs. Then we have a diagram 

relating the separated quotients of X and Y. If Y  is taut, then so is X by [10, Lemma 5.1.4 ii)], and 
hence Proposition 4.21 applies to both X and Y. In this situation, we may consider the usual functor 
[f ]! of sections whose support is topologically proper over [Y ], together with its total derived functor 
R[f ]! : D+([X]) → D+([Y ]).

Lemma 4.22 Let ℱ be a sheaf on X, U⊂Y  an overconvergent open subset, and let s∈Γ(f −1(U), ℱ)
a section. Write [s] for s considered as a section of Γ([f ]−1([U]),sepX*ℱ). Then supp(s) → U
is proper if and only if supp([s]) → [U] is topologically proper.

Remark 4.23 The hypothesis that U is overconvergent is to ensure that [U] is an open subset 
of [Y ].

Proof. Note that since f  is partially proper, supp(s) → U  is proper if and only if it is quasi-
compact. We first claim that supp([s]) = sepX (supp(s)), which can be proved using [10, 
Lemma 8.1.5]. Indeed, this shows that for any x ∈ [X], we have (sepX*ℱ)x ≅ H0

({x}, ℱ|{x}), where the closure is taken inside X (see also the proof of [10, Proposition 
8.1.4]). In particular, we see that [s]x = 0 if and only if s|{x} = 0 if and only if sy = 0 for all 

y ∈ {x} = sep−1
X (x). This implies that supp([s]) = sepX (supp(s)) as claimed.

Now, suppose that supp(s) → U  is quasi-compact, and that K ⊂ [U] is quasi-compact. 
Since [U] is Hausdorff, K is closed, and hence the inverse image sep−1

Y (K) is a closed, 
quasi-compact subset of U.

In particular, sep−1
Y (K) is contained inside a quasi-compact open subset V ⊂ U , whence 

the preimage supp(s) ∩ f −1(sep−1
Y (K)) is a closed subset of the quasi-compact set supp(s)∩

f −1(V ) and is thus quasi-compact. Hence 

supp(s) ∩ sep−1
X ([f ]−1(K)) = supp(s) ∩ f −1(sep−1

Y (K))

is quasi-compact, and so 

sepX (supp(s) ∩ sep−1
X ([f ]−1(K))) = sepX (supp(s)) ∩ [f ]−1(K) = supp([s]) ∩ [f ]−1(K)

is quasi-compact. In other words, preimages of quasi-compact subsets under 
supp([s]) → [U] are quasi-compact. Since [U] is locally compact, and supp([s]) is 
Hausdorff, it follows that supp([s]) → [U] is topologically proper.

On the other hand, suppose that supp([s]) → [U] is topologically proper, and let 
V ⊂ U  be a quasi-compact open subset. Then [V ] ⊂ [Y ] is quasi-compact, and closed in 
[Y ]. Thus V := sep−1

Y ([V ]) is quasi-compact and closed in Y  (and is, in fact, the closure of V
in Y, although we will not need that here). We know that [f ]−1([V ]) ∩ supp([s]) is 
quasi-compact, and since sepX  is topologically proper, we see that 

supp(s) ∩ f −1(V ) ⊂ sep−1
X ([f ]−1([V ]) ∩ supp([s]))

is contained in a quasi-compact closed subset of f −1(V ) and is thus quasi-compact.
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PROPER PUSHFORWARDS ON ADIC SPACES • 17

Now, since Y  is quasi-separated and V  is quasi-compact, the inclusion V → Y  is 
quasi-compact, and hence by [6, Chapter 0, Corollary 2.1.6] the morphism V → V  is 
quasi-compact. Thus by [10, Lemma 1.10.7 c)] the morphism f −1(V ) ∩ supp(s) → f −1(V )
∩supp(s) → f −1(V ) ∩ supp(s) is quasi-compact and hence f −1(V ) ∩ supp(s) is 
quasi-compact. Since V  was arbitrary, we conclude that supp(s) → U  is quasi-compact as 
required.

Corollary 4.24 Let Y  be a taut germ, and f : X → Y  a partially proper morphism. Then 
there is a canonical isomorphism 

RsepY * ∘Rf! ≅ R[f ]! ∘RsepX*

of functors D+(X) → D+([Y ]).

Proof. Note that Lemma 4.22 gives rise to an equality 

sepY * ∘ f! = [f ]! ∘ sepX*

of subfunctors of sepY * ∘ f* = [f ]* ∘ sepX*, so we need to show that 

R(sepY * ∘ f!) ≅ RsepY * ∘Rf!

and 

R([f ]! ∘ sepX*) ≅ R[f ]! ∘RsepX*.

The first follows from the proof of Corollary 4.12, in particular the fact that f! sends injective 
sheaves to flasque sheaves. The second follows from the fact that sepX* preserves injectives.

Corollary 4.25 Let Y  be a local germ, and f : X → Y  a partially proper morphism with 
dim f = d. Then 

Hq
c ([X], ℱ) = 0

for any sheaf ℱ on [X], and any q > d.

Proof. Replacing Y  by its maximal point does not change [X], so we may assume that Y  consists 

of a single point. As in [10, Proof of Proposition 8.1.4 i)] we see that ℱ
≅

⟶ RsepX*sep
−1
X ℱ, 

it therefore suffices to show that 

Hq
c (X/Y ,sep−1

X ℱ) = 0

for q > d. But now, applying Lemma 4.8, this reduces to Theorem 2.8.

5 . K I E H L PA RT I A L P R O P E R N E S S A N D CO H O M O LO G I C A L 
D I M E N S I O N

In this section we will prove a result on the cohomological dimension of coherent sheaves for cer-
tain partially proper morphisms. The condition we require is in fact the original definition of partial 
properness given by Kiehl [11]. Any such morphism has to be locally of finite type, which excludes 
many examples of partially proper morphisms (in particular, Huber’s universal compactifications, con-
structed in [10], are generally not locally of finite type). For morphisms locally of finite type, partial 
properness in the sense of Kiehl coincides with partial properness in many cases of interest, although 
it is still open whether or not the two coincide in general.
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18 • T. ABE AND C. LAZDA

5.1. Polydiscs and affine spaces over germs
To begin with, we recall the definitions of polydiscs and affine spaces over a germ Y. To begin with, 
suppose that Y = Spa(R, R+) is a Tate affinoid adic space, then we have the usual definition 

𝔻d
Y (0; 1) = Spa(R⟨z⟩, R+⟨z⟩)

of the closed unit polydisc over Y, using multi-index notation z = (z1,… , zd). If 𝜛 ∈ R is a quasi-
uniformiser, and q ∈ ℚ≥0, we write q = a

b
 in lowest terms and define 

𝔻d
Y (0; |𝜛|q) := Spa(

R⟨z, t⟩
(𝜛at − zb)

,
R+⟨z, t⟩

(𝜛at − zb)
)

to be the ‘closed disc of radius |𝜛|q’. Similarly, if q < 0, we set n = ⌊q⌋, write q − n = a
b

 in lowest terms 
and set 

𝔻d
Y (0; |𝜛|q) := Spa(

R⟨𝜛−nz, t⟩
(𝜛at − (𝜛−nz)b)

,
R+⟨𝜛−nz, t⟩

(𝜛at − (𝜛−nz)b)
) .

We then define 

𝔻d
Y (0; 1−) := ⋃

n≥1
𝔻d

Y (0; |𝜛|
1
n ), 𝔸d,an

Y := ⋃
n≥1

𝔻d
Y (0; |𝜛|−n)

as well as analogous open discs 

𝔻d
Y (0; |𝜛|q−) := ⋃

q′>q

𝔻d
Y (0; |𝜛|q′

)

‘of radius |𝜛|q’.
More generally, if Y  is an adic space admitting an element 𝜛 ∈ Γ(Y ,𝒪Y ), which is a quasi-

uniformiser locally around every point y ∈ Y , then we can define any of 

𝔻d
Y (0; 1), 𝔻d

Y (0; |𝜛|q), 𝔻d
Y (0; 1−), 𝔸d,an

Y , 𝔻d
Y (0; |𝜛|q−)

by gluing. If Y  is a germ admitting a similar global quasi-uniformiser 𝜛 ∈ Γ(Y ,𝒪Y ), then, locally on 
some ambient adic space Y , we can define analogous spaces over Y  by pulling back from those defined 
over Y , for example, 𝔻d

Y (0; |𝜛|q) is defined by the Cartesian diagram 

Finally, the definitions of 𝔻d
Y (0; 1),𝔻d

Y (0; 1−) and 𝔸d,an
Y  are independent of the choice of quasi-

uniformiser, and hence the definition globalises to give 𝔻d
Y (0; 1),𝔻d

Y (0; 1−) and 𝔸d,an
Y  over an arbitrary 

germ Y. It is straightforward to check that if Y ′ → Y  is any morphism of germs, then there is a natural 
Cartesian diagram 

as well as the obvious analogues for 𝔻d
Y (0; 1−) and 𝔸d,an

Y .
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PROPER PUSHFORWARDS ON ADIC SPACES • 19

Remark 5.1 Alternative constructions of 𝔻d
Y (0; 1),𝔸d,an

Y  and 𝔻d
Y (0; 1−), described in [12], are 

as fibre products 

𝔻d
Y (0; 1) = Y ×Spa(ℤ,ℤ) Spa(ℤ[z],ℤ[z])

𝔸d,an
Y = Y ×Spa(ℤ,ℤ) Spa(ℤ[z],ℤ)

𝔻d
Y (0; 1−) = Y ×Spa(ℤ,ℤ) Spa(ℤ⟦z⟧,ℤ⟦z⟧)

in the category of (not necessarily analytic) adic spaces. Here ℤ and ℤ[z] are given the 
discrete topology, and ℤ⟦z⟧ the z-adic topology. We will not use these constructions in this 
article.

Lemma 5.2 Let Y = Spa(R, R+) be a Tate affinoid adic space, and 𝜛 a quasi-uniformiser on Y. 
Then we have the following identifications of sets of sections: 

𝔻1
Y (0; 1)(Y ) = R+,

𝔻1
Y (0; 1−)(Y ) = {r ∈ R ∣ ∃n ≥ 1s.t. rn ∈ 𝜛R+} = R∘∘,

𝔸1,an
Y (Y ) = {r ∈ R ∣ ∃n ≥ 1s.t. r ∈ 𝜛−nR+} = R.

Proof. Straightforward.

To define Kiehl’s version of partial properness, we use the following result:

Proposition 5.3 Let f : X → Y  be a morphism of germs. The following conditions are equivalent:

(1) Locally on X and Y, there exist a quasi-uniformiser 𝜛 on Y, open covers {Vi}i∈I  and {Ui}i∈I  of X, 
integers Ni ≥ 1, closed immersions Ui ↪ 𝔻Ni

Y (0; 1) over Y and integers mi ≥ 1 such that Vi ⊂ Ui ∩
𝔻Ni

Y (0; |𝜛|
1

mi ).
(2) Locally on X and Y, there exist open covers {Vi}i∈I  and {Ui}i∈I  of X, integers Ni ≥ 1 and closed 

immersions Ui ↪ 𝔻Ni
Y (0; 1) over Y such that Vi ⊂ Ui ∩𝔻Ni

Y (0; 1−).
(3) Locally on X and Y, there exist an open cover {Ui}i∈I  of X, integers Ni ≥ 1 and closed immersions 

Ui ↪ 𝔻Ni
Y (0; 1−) over Y.

Proof. Clearly we have (1) ⟹ (2) and (2) ⟹ (3), it therefore suffices to show that 
(3) ⟹ (1). So suppose that we have such a cover Ui. Localising on Y  we may choose a 
quasi-uniformiser 𝜛 defined on an open neighbourhood of Y  in its ambient adic space. We 
define a new cover {Ui,n}(i,n)∈I×ℕ of X by Ui,n := Ui ∩𝔻Ni

Y (0; |𝜛|
1
n ). Each Ui,n admits a 

closed immersion into 𝔻2Ni
Y (0; 1) defined informally by 

z ∈ Ui,n ⊂ 𝔻Ni
Y (0; |𝜛|

1
n ) ↦ (z,𝜛−1zn) ∈ 𝔻2Ni

Y (0; 1).

We now set Vi,n to be Ui,n ∩𝔻2Ni
Y (0; |𝜛|

1
n−1 ), and we claim that the Vi,n still cover X. But Vi,n is 

defined in Ui,n by the two equivalent conditions 

v(𝜛−1zn−1) ≤ 1

v(𝜛−nzn(n−1)) ≤ 1.

Thus Vi,n = Ui,n−1, and so the Vi,n cover X as required.
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20 • T. ABE AND C. LAZDA

Definition 5.4 We say that f  is partially proper in the sense of Kiehl if it is separated, taut, and 
satisfies the equivalent conditions of Proposition 5.3.

Remark 5.5  

(1) If f  is partially proper in the sense of Kiehl, then it is partially proper.
(2) If f : X → Y  is partially proper in the sense of Kiehl, and g : Z → Y  is any morphism, 

then X ×Y Z → Z is partially proper in the sense of Kiehl.
(3) If f  and g are partially proper in the sense of Kiehl, then so is g ∘ f . If g ∘ f  and g are 

partially proper in the sense of Kiehl, then so is f.
(4) For any Y, the maps 𝔻d

Y (0; 1−) → Y  and 𝔸d
Y → Y  are partially proper in the sense of 

Kiehl.
(5) Any closed immersion is partially proper in the sense of Kiehl.
(6) If X and Y  are quasi-separated adic spaces locally of finite type over a discretely valued 

affinoid field, then any partially proper map f : X → Y  is partially proper in the sense of 
Kiehl [10, Remark 1.3.19].

(7) Any map that is partially proper in the sense of Kiehl is locally of finite type.

The main result of this section is then the following:

Theorem 5.6 Let f : X → Y  be a morphism between finite-dimensional adic spaces, partially 
proper in the sense of Kiehl, and set d = dim f . If ℱ is a coherent sheaf on X, then Rqf!ℱ = 0 for 
q > d.

Note that Theorem 5.6 is stated only for adic spaces, not for more general germs. We will therefore 
be dealing with adic spaces until the end of Section 5.3 below.

5.2. Cohomology of coherent sheaves
Before embarking on the proof of Theorem 5.6, we will need a couple of preliminary results on the 
cohomology of coherent sheaves on certain kinds of adic spaces. The first is the analogue of Theorems 
A and B for suitable ‘quasi-Stein’ adic spaces.

Proposition 5.7 Let Y = Spa(R, R+) be a Tate affinoid adic space, X a closed analytic subspace 
of either 𝔻N

Y (0; 1−) or 𝔸N ,an
Y , and ℱ a coherent sheaf on X. Then ℱ is generated by its global 

sections, and Hq(X , ℱ) = 0 for all q > 0.

Remark 5.8 If N = 0, that is, X itself is Tate affinoid (and hence quasi-compact), it follows in 
the usual way that H0(X , −) induces an equivalence of categories between coherent 
𝒪X -modules and finitely generated H0(X ,𝒪X )-modules. In general, it seems reasonable to 
expect an analogue of the theory of ‘co-admissible modules’ from [14] to hold, although we 
did not think seriously about this question.

Proof. When N = 0, that is, X itself is a Tate affinoid, these claims follow from [6, Chapter II, 
Theorems 6.5.7 and A.4.7]. In general, we write 

X = ⋃
q

X ∩𝔻N
Y (0; |𝜛|q)

for increasing q. Using the already proved case when X is itself a Tate affinoid, it is then 
enough to show that 

lim
q

(1) Γ(X ∩𝔻N
Y (0; |𝜛|q), ℱ) = 0.
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PROPER PUSHFORWARDS ON ADIC SPACES • 21

To do this, we apply [7, Remarques 0.13.2.4, Proposition 0.13.2.2] and [4, Chapter II, 
Section 3.5, Theorem 1]. The facts needed to apply these results are the following:

• each Γ(X ∩𝔻N
Y (0, |𝜛|q), ℱ) has a canonical topology as a finitely generated module over the 

Banach ring Γ(X ∩𝔻N
Y (0, |𝜛|q),𝒪X );

• this topology is metrisable and complete;
• each transition map 

Γ(X ∩𝔻N
Y (0, |𝜛|q′

), ℱ) → Γ(X ∩𝔻N
Y (0, |𝜛|q), ℱ)

for q′ > q is uniformly continuous and has dense image.

All of these can be easily verified.

We will also need a slight generalisation of [2, Proposition 1.3.6], giving conditions for the structure 
sheaf to have vanishing higher direct images along the separation map.

Definition 5.9 Let X be a taut adic space. We say that X is very good if every point x ∈ X
admits a Tate open affinoid neighbourhood U such that {x} ⊂ U .

Thanks to [6, Chapter 0, Corollary 2.3.31], this implies that [U] contains an open neighbourhood 
of sep(x) in [X]. Also note that, by definition, any very good adic space is necessarily taut.

Proposition 5.10 Let X be a very good adic space, sep : X → [X] the separation map and ℱ a 
coherent 𝒪X -module. Then Rqsep*ℱ = 0 for q > 0.

Proof. Let x ∈ [X] be a maximal point, and choose a Tate open affinoid U ⊂ X  such that 
{x} ⊂ U ⊂ X . It then follows from [6, Corollary 0.2.3.31] that x ∈ intX (U) lies in the 
‘overconvergent interior’ of U, in other words, there exists an overconvergent open subset 
x ∈ V ⊂ U . Thus x ∈ [V ] ⊂ [U] is an open neighbourhood of x ∈ [X] contained in [U]. 
Thus to prove that Rqsep*ℱ vanishes at x, we may replace X by U, in other words, we can 
assume that X = Spa(R, R+) is Tate affinoid, with 𝜛 ∈ R a quasi-uniformiser.

In this case, by [6, Chapter II, Proposition C.4.34], we can identify [X] = ℳ(R) with the 
Berkovich spectrum of R. We now choose some 0 < 𝜌 < 1, and for every maximal point 
x ∈ [X] we normalise vx : R → ℝ≥0 so that vx(𝜛) = 𝜌. Then, essentially by definition, 
ℳ(R) has a basis of open subsets of the form 

U(f1,… , fn;𝜆1,… ,𝜆n) = {x ∈ [X] ∣ vx(fi) < 𝜆i ∀i}

for fi ∈ R and 𝜆i ∈ ℝ>0. Of course, it suffices to take 𝜆i ranging over the dense subgroup 
𝜌ℚ ⊂ ℝ>0, and for a maximal point x, the condition vx(fi) < 𝜌

a
b  is equivalent to 

vx(𝜛−af b) < 1. Thus ℳ(R) in fact has a basis of open subsets of the form 

U(f1,… , fn) = {x ∈ [X] ∣ vx(fi) < 1 ∀i}

for fi ∈ R. The preimage of U(f1,… , fn) in Spa(R, R+) therefore admits a closed immersion 
in the open unit polydisc 𝔻n

X (0; 1−) over X, defined by 

x ∈ sep−1(U(f1,… , fn)) ↦ (f1(x),… , fn(x)).

It now follows from Proposition 5.7 that Hq(sep−1(U(f1,… , fn)), ℱ) = 0 for q > 0, which 
completes the proof.
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22 • T. ABE AND C. LAZDA

5.3. Proof of Theorem 5.6
We now return to the proof of Theorem 5.6, and there are two immediate reductions that we can 
make. First of all, we can assume that the base Y  is Tate affinoid, and secondly we can assume (by 
Corollary 4.17) that X admits a closed immersion into some open unit polydisc 𝔻N

Y (0; 1−).
Moreover, using Proposition 5.3 we can assume that X = 𝔻N

Y (0; 1−) ∩ Z for some closed immersion 
Z ↪ 𝔻N

Y (0; 1), and that ℱ extends to Z. This allows us to make one further reduction.

Lemma 5.11 In proving Theorem 5.6, we may assume that ℱ = 𝒪X .

Proof. Suppose that we know Rqf!𝒪X = 0 for all q > d. Since ℱ extends to Z, and Z is affinoid, it 
follows from [6, Chapter II, Theorems 6.5.7 and A.4.7], as in the proof of Proposition 5.7, 
that there exists an exact sequence 

0 → ℱ1 → 𝒪⊕m
X → ℱ → 0

for some m ≥ 0 and some coherent sheaf ℱ1 extending to Z. We therefore deduce that 

Rqf!ℱ
≅

⟶ Rq+1f!ℱ1 for all q > d. Repeating the argument, we find a coherent sheaf ℱm, 

extending to Z, such that Rqf!ℱ
≅

⟶ Rq+mf!ℱm for all q > d. For m large enough we have 
Rq+mf!ℱm = 0 by Proposition 4.15, and hence Rqf!ℱ = 0 as required.

Now, thanks to Corollary 4.13, we have, for any y ∈ Y , an identification 

(Rqf!𝒪X )y
≅

⟶ Hq
c (X(y)/G(y),𝒪X |X(y)

).

If we let sepX(y)
: X(y) → [X(y)] denote the separation map, then Corollary 4.24 gives 

Hq
c (X(y)/G(y),𝒪X |X(y)

)
≅

⟶ Hq
c ([X(y)],RsepX(y)*(𝒪X |X(y)

)).

Now applying Corollary 4.25, it suffices to show that RqsepX(y)*(𝒪X |X(y)
) = 0 for q > 0. Let y ∈ U ⊂ Y

be a Tate open affinoid neighbourhood of y, with preimage f −1(U) ⊂ X  and separation map sepf −1(U) :
f −1(U) → [f −1(U)].

Lemma 5.12 The adic space f −1(U) is very good.

Proof. Since f −1(U) is partially proper over an affinoid, it is taut. To prove that it is very good, 
we note that U is Tate affinoid, so we may choose a quasi-uniformiser 𝜛. Then f −1(U) is 
covered by the affinoid spaces f −1(U) ∩𝔻N

U (0; |𝜛|
1
n ) for n ≥ 1. Now 

f −1(U) ∩𝔻N
U (0; |𝜛|

1
n ) ⊂ f −1(U) ∩𝔻N

U (0; |𝜛|
1

n+1
−) ⊂ f −1(U) ∩𝔻N

U (0; |𝜛|
1

n+1 )

and each f −1(U) ∩𝔻N
U (0; |𝜛|

1
n+1

−) is an overconvergent open subset of f −1(U). Thus, for 
every point x ∈ f −1(U), there is some n such that 

{x} ⊂ f −1(U) ∩𝔻N
U (0; |𝜛|

1
n

−) ⊂ f −1(U) ∩𝔻N
U (0; |𝜛|

1
n ),

and f −1(U) ∩𝔻N
U (0; |𝜛|

1
n ) is a Tate affinoid, since U is.
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PROPER PUSHFORWARDS ON ADIC SPACES • 23

Thus Proposition 5.10 tells us that Rqsepf −1(U)*(𝒪X |f −1(U)) = 0 for q > 0, and Theorem 5.6 reduces 
to the following result:

Proposition 5.13 The natural map 

colimy∈U⊂YRsepf −1(U)*(𝒪X |f −1(U))|[X(y)] → RsepX(y)*(𝒪X |X(y)
)

is an isomorphism.

Proof. We compute the stalks on both sides at an arbitrary point x ∈ [X(y)]. Note that any such 

point is a maximal point of X (not just of X(y)), and we see that {x} ∩ X(y) is the closure of 
{x} inside X(y). Similarly, for any Tate open affinoid neighbourhood y ∈ U ⊂ Y  as above, 

{x} ∩ f −1(U) is the closure of {x} inside f −1(U). If Z is any taut analytic adic space, ℱ any 
sheaf on Z, and z ∈ [Z], then thanks to [10, Lemma 8.1.5] (see also the proof of [10, 
Lemma 8.1.4]), we have the natural base change isomorphism 

(Rqsep*ℱ)z ≅ Hq({z}, ℱ).

Hence by Proposition 2.5 we can compute 

colimy∈U⊂YRsepf −1(U)*(𝒪X |f −1(U)))x = colimy∈U⊂YRΓ({x} ∩ f −1(U),𝒪X )

= RΓ({x} ∩ ⋂
y∈U⊂Y

f −1(U),𝒪X )

= RΓ({x} ∩ X(y),𝒪X )

= RsepX(y)*(𝒪X |X(y)
)x

as required.

5.4. The case of overconvergent germs
We do not know whether Theorem 5.6 holds if Y  is replaced by an arbitrary germ. We do at least have 
the following special case:

Corollary 5.14 Let f : X → Y  be a morphism between finite-dimensional germs, partially 
proper in the sense of Kiehl, and smooth of relative dimension d. Let ℱ be a coherent 
𝒪X -module, which extends to a coherent sheaf on some ambient adic space for X. Then 
Rqf!ℱ = 0 for all q > d.

Remark 5.15  

(1) Recall that a germ is overconvergent if it is stable under generalisation inside its 
ambient adic space.

(2) It is possible that the hypothesis that ℱ extends to some neighbourhood of X is 
automatically satisfied. This will certainly be the case in the situation of Example 3.2(2).

Proof. Choose an ambient adic space Y  of Y. By localising on Y  we may assume that it is Tate 
affinoid, with quasi-uniformiser 𝜛 ∈ Γ(Y ,𝒪Y ). By Corollary 4.17 we may assume that X
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24 • T. ABE AND C. LAZDA

admits a closed immersion u : X ↪ 𝔻N
Y (0; 1−) for some n. We can therefore extend f  to a 

diagram of pairs 

such that:

• f : X → Y  is smooth, and X = f −1(Y );
• ℱ extends to a coherent sheaf on X;
• u : X → 𝔻N

Y (0; 1−) is a locally closed immersion.

Note that X = 𝜋−1(Y ) ∩ X  as subspaces of 𝔻N
Y (0; 1−). Let U ⊂ 𝔻N

Y (0; 1−) be open 
subspace such that X is a closed analytic subspace of U .

Since X is a locally closed analytic subspace of 𝔻N
Y (0; 1−), it is closed under generalisa

tions, and since Y  is an overconvergent closed subset of Y , it follows that 𝜋−1(Y ) is an 
overconvergent closed subset of 𝔻N

Y (0; 1−). Hence X = 𝜋−1(Y ) ∩ X  is closed under 
generalisations inside 𝔻N

Y (0; 1−), that is, it is an overconvergent closed subset of 𝔻N
Y (0; 1−). 

It therefore follows from [6, Chapter 0, Proposition 2.3.17] that each X ∩𝔻N
Y (0; |𝜛|

1
n )

admits a basis of neighbourhoods in 𝔻N
Y (0; |𝜛|

1
n ) consisting of overconvergent open 

subsets. In particular there exist overconvergent open subsets Vn ⊂ 𝔻N
Y (0; |𝜛|

1
n ) such that 

X ∩𝔻N
Y (0; |𝜛|

1
n ) ⊂ Vn ⊂ U ∩𝔻N

Y (0; |𝜛|
1
n ).

Since Vn is overconvergent, it is the preimage of an open subset of [𝔻N
Y (0; |𝜛|

1
n )] via the 

separation map. Thus arguing as in the proof of Proposition 5.10, we see that Vn can be 
covered by open subsets Vn,i admitting closed immersions into 𝔻N

Y (0; |𝜛|
1
n ) ×Y 𝔻

Mn,i
Y (0; 1−)

over 𝔻N
Y (0; |𝜛|

1
n ). It follows that 

V −
n := Vn ∩𝔻N

Y (0; |𝜛|
1
n

−)

admits a covering by open subsets V −
n,i := Vn,i ∩𝔻N

Y (0; |𝜛|
1
n

−), each of which admits a closed 

immersion into 𝔻2N+Mn,i
Y (0; 1−) over Y . Thus the V −

n,i are a collection of open subspaces of 
𝔻N

Y (0; 1−), covering X, and there are closed immersions 

X ∩ V −
n,i → V −

n,i → 𝔻2N+Mn,i
Y (0; 1−)

of adic spaces over Y .
Therefore, by localising on X, and once more appealing to Corollary 4.17, we may reduce 

to the case that f  extends to a diagram of pairs 
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PROPER PUSHFORWARDS ON ADIC SPACES • 25

such that u : X → 𝔻N
Y (0; 1−) is a closed immersion, and ℱ extends to X . In this case, since 

Y ⊂ Y  is overconvergent, and X = f −1(Y ) inside X by smoothness of f, we can combine 
Lemma 4.14 with Theorem 5.6 to conclude.

6 . T H E T R AC E M A P
In this section, we construct a trace map for the class of smooth morphisms that are partially proper 
in the sense of Kiehl, and whose target is an overconvergent and finite-dimensional germ. This is a 
morphism 

TrX/Y : Rf!Ω•
X/Y [2d] → 𝒪Y

in the derived category of 𝒪Y -modules, satisfying the conditions outlined in the introduction. We 
closely follow the argument of [15], see also [3, 5].

6.1. The relative open unit polydisc
We first construct a trace map when X = 𝔻d

Y (0; 1−) is the relative open unit polydisc over a Tate affi-
noid adic space Y = Spa(R, R+). Choose a quasi-uniformiser 𝜛 ∈ R× ∩ R∘∘. Since X = 𝔻d

Y (0; 1−) is 
partially proper over Y, the support of a section of some sheaf ℱ on X is proper over Y  if and only 
if it is quasi-compact over Y, if and only if it is quasi-compact. The closure 𝔻n of 𝔻d

Y (0; |𝜛|
1
n ) inside 

𝔻d
Y (0; 1−) is quasi-compact, and moreover any quasi-compact subset of 𝔻d

Y (0; 1−) has to be contained 
in 𝔻n for some n. Thus, if we let Hq

Z(X , −) denote cohomology groups with support in a closed subset 
Z ⊂ X , we find that 

Hq
c (𝔻d

Y (0; 1−)/Y , ℱ) = colimnH
q

𝔻n
(𝔻d

Y (0; 1−), ℱ)

for any sheaf ℱ on 𝔻d
Y (0; 1−).

Using Proposition 5.7, we can see that Hq(𝔻d
Y (0; 1−), ℱ) = 0 for any coherent 𝒪𝔻d

Y (0;1−)-module ℱ
and any q > 0. Thus we deduce isomorphisms 

Hq
c (𝔻d

Y (0; 1−)/Y , ℱ)
≅

⟶
⎧{
⎨{⎩

ker(H0(𝔻d
Y (0; 1−), ℱ) → colimnH

0(𝔻d
Y (0; 1−)\𝔻n, ℱ)) q = 0

coker(H0(𝔻d
Y (0; 1−), ℱ) → colimnH

0(𝔻d
Y (0; 1−)\𝔻n, ℱ)) q = 1

colimnH
q−1(𝔻d

Y (0; 1−)\𝔻n, ℱ) q > 1.

We can cover 𝔻d
Y (0; 1−)\𝔻n by the spaces 

Ui,n := {x ∈ 𝔻d
Y (0; 1−)∣v[x](𝜛−1zn

i ) > 1} ,

each of which admits a closed immersion into an open polydisc over Y. Again, Proposition 5.7 implies 
that coherent sheaves have vanishing higher cohomology groups on each Ui,n. The same reasoning 
applies to all intersections ∩i∈IUi,n, so we can compute the cohomology of ℱ on 𝔻d

Y (0; 1−)\𝔻n as the 
cohomology of the Čech complex 

d

⨁
i=1

H0(Ui,n, ℱ) → ⨁
i<j

H0(Ui,n ∩ Uj,n, ℱ) → … →
d

⨁
i=1

H0(∩j≠iUj,n, ℱ) → H0(∩iUi,n, ℱ).

In the particular case when ℱ = 𝜔𝔻d
Y (0;1−)/Y , we can therefore give a complete description of the 

cohomology groups Hq
c (𝔻d

Y (0; 1−)/Y , ℱ) as follows. Choose coordinates z1,… , zd on Y  and let 
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26 • T. ABE AND C. LAZDA

R⟨z−1
1 ,… , z−1

d ⟩† denote the set of overconvergent series in z−1
1 ,… , z−1

d , that is, series of the form 

∑
i1,…,id≤0

ri1,…,id
zi1

1 …zid
d , ri1,…,id

∈ R,

for which there exists n ≥ 1 such that rn
i1,…,id

𝜛i1+…+id → 0 as (i1,… , id) → −∞. Then 

Hq
c (𝔻d

Y (0; 1−)/Y ,𝜔𝔻d
Y (0;1−)/Y ) = {R⟨z−1

1 ,… , z−1
d ⟩† ⋅dlogz1 ∧ … ∧ dlogzd q = d

0 q ≠ d.

We can therefore define the trace map 

Trz1,…,zd
: Hd

c (𝔻d
Y (0; 1−)/Y ,𝜔𝔻d

Y (0;1−)/Y ) → H0(Y ,𝒪Y )

∑
i1,…,id≤0

ai1,…,id
zi1

1 …zid
d dlogz1 ∧ …dlogzd ↦ a0,…,0

as in [15, Section 2.4] or [3, Section 2.1]. We can then globalise this construction to define 

Trz1,…,zd
: Rdf!𝜔𝔻d

Y (0;1−)/Y → 𝒪Y

whenever the base Y  is an adic space. When Y  is an overconvergent germ, we pullback to Y  from its 
ambient adic space Y  using Lemma 4.14. Also note that by Corollary 5.14 we may view the trace map 
as a morphism 

Rf!𝜔𝔻d
Y (0;1−)/Y [d] → 𝒪Y

in Db(𝒪Y ). The verification of the following is straightforward:

Proposition 6.1 Let Y be an overconvergent germ.

(1) The trace map 

Trz1,…,zd
: Rdf!𝜔𝔻d

Y (0;1−)/Y → 𝒪Y

vanishes on the image of Rdf!Ωd−1
𝔻d

Y (0;1−)/Y
, and hence induces a map 

Trz1,…,zd
: Rf!Ω•

𝔻d
Y (0;1−)/Y

[2d] → 𝒪Y .

This map is an isomorphism.
(2) The trace map is compatible with composition in the following sense: let (z1,… , zd) be coordinates 

on 𝔻d
Y (0; 1−), let 1 ≤ e ≤ d, and let h : 𝔻d

Y (0; 1−) → 𝔻e
Y (0; 1−) be the projection (z1,… , zd) ↦

(z1,… , ze). Let f : 𝔻d
Y (0; 1−) → Y  and g : 𝔻e

Y (0; 1−) → Y  be the canonical identification 

𝜔𝔻d
Y (0;1−)/Y = h*𝜔𝔻e

Y (0;1−)/Y ⊗ 𝜔𝔻d
Y (0;1−)/𝔻e

Y (0;1−),

and the resulting identification 

Rf! (𝜔𝔻d
Y (0;1−)/Y )[d] = Rg! (𝜔𝔻e

Y (0;1−)/Y ⊗Rh!𝜔𝔻d
Y (0;1−)/𝔻e

Y (0;1−)[d − e])[e],

we have 

Trz1,…,zd
= Trz1,…,ze

∘Rg! (id⊗Trze+1,…,zd
) .

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haae066/7928755 by C

om
m

issioning staff in C
ornw

all user on 07 February 2025



PROPER PUSHFORWARDS ON ADIC SPACES • 27

We will see later on that Trz1,…,zd
 is independent of the choice of coordinates z1,… , zd; for now we 

record a special case of this.

Lemma 6.2 Suppose that Y is an adic space, and let z′
1,… , z′

d be a second set of coordinates on 
𝔻d

Y (0; 1−) defined by 

z′
1 = z1, … , z′

e = ze, z′
e+1 = ze+1 + we+1, … , z′

d = zd + wd

for sections wi : 𝔻e
Y (0; 1−) → 𝔻d

Y (0; 1−) of the natural projection. Then Trz1,…,zd
= Trz′

1 ,…,z′
d
.

Proof. We may assume by localising that Y = Spa(R, R+) is affinoid, by induction that e = d − 1
and by compatibility of the trace map with composition that d = 1. In this case, the claim 
follows from the usual explicit calculation, which is an easy generalisation of a very special 
case of [3, Proposition 2.1.3].

Remark 6.3 As a variant, we can replace f : 𝔻d
Y (0; 1−) → Y  everywhere by the relative 

analytic affine space f : 𝔸d,an
Y → Y . The construction of the trace map 

Trz1,…,zd
: Rf!𝜔𝔸d,an

Y /Y [d] → 𝒪Y

is entirely similar, and the analogues of Proposition 6.1 and Lemma 6.2 hold.

6.2. Duality for regular immersions
To extend the trace map from open polydiscs to more general morphisms, we will need a form of 
duality for regular closed immersions. Luckily, this follows quite quickly from the scheme-theoretic 
case.

Lemma 6.4 Let X = Spa(R, R+) be a Tate affinoid adic space. Then 

RΓ(X , −) : D(𝒪X ) → D(R)

induces a t-exact equivalence of triangulated categories 

D+
coh(𝒪X )

≅
⟶ D+

coh(R)

compatible with internal homs.

Remark 6.5 The t-exactness here refers to the obvious t-structures on either side.

Proof. As noted in Remark 5.8, H0(X , −) is an equivalence of categories between coherent 
𝒪X -modules and coherent (that is, finitely generated) R-modules, and Hq(X , ℱ) = 0 for any 
coherent 𝒪X -module ℱ and any q > 0. It then follows from this that 

RΓ : D+
coh(𝒪X ) → D+

coh(R)

is t-exact. To see that it is an equivalence, we consider the left adjoint 

− ⊗L
R 𝒪X : D+

coh(R) → D+
coh(𝒪X ).

Essential surjectivity now follows from the fact that 𝒪X  is R-flat, and full faithfulness follows 
from the fact that the adjunction map 

𝒪X ⊗L
R RΓ(X , ℱ) → ℱ
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28 • T. ABE AND C. LAZDA

is an isomorphism for any ℱ ∈ D+
coh(𝒪X ). Compatibility with internal homs now follows 

from the fact that the left adjoint − ⊗L
R 𝒪X  is monoidal.

Recall that on a locally ringed space (X ,𝒪X ), a perfect complex of 𝒪X -modules is one that is locally 
quasi-isomorphic to a bounded complex of finite free 𝒪X -modules. Similarly, if A is a ring, then a per-
fect complex of A-modules is a complex quasi-isomorphic to a bounded complex of finite projective 
A-modules. (Thus being a perfect complex of A-modules is a priori stronger than being a perfect com-
plex of 𝒪Spec(A)-modules.) The categories of such objects are viewed as full subcategories of D(𝒪X )
and D(A), respectively.

Definition 6.6 A closed immersion u : X → Y  of adic spaces is called regular of codimension 
c if it is locally the vanishing locus of a regular sequence f1,… , fc ∈ Γ(Y ,𝒪Y ).

Lemma 6.7 Let u : X → Y  be a closed immersion of adic spaces, regular of codimension c, and let 
𝔫X/Y  be the determinant of the normal bundle of X in Y. Then, for any perfect complex ℱ of 
𝒪X -modules, there is a canonical isomorphism 

Tru : u*RHom𝒪X
(ℱ,𝔫X/Y )

≅
⟶ RHom𝒪Y

(u*ℱ,𝒪Y )[c]

in D(𝒪Y ), natural in ℱ. This is compatible with composition, in the sense that if v : Y → Z is a 
regular closed immersion of codimension d, and 𝔫Y /Z (resp. 𝔫X/Z) the determinant of its normal 
bundle (resp. the normal bundle of X in Z), then, via the identification 𝔫X/Z = 𝔫X/Y ⊗𝒪X

u*𝔫Y /Z , 
the diagram 

commutes.

Remark 6.8 Note that pushforward along a regular closed immersion preserves perfect 
complexes, which can be seen, for example by considering the Koszul complex of a regular 
generating sequence of the corresponding ideal sheaf.

Proof. This is essentially a case of carefully combining Lemma 6.4 above with coherent duality 
for schemes treated in [8]. First of all, we define a functor 

u♭ := u−1RHom𝒪Y
(u*𝒪X , −) : D+

coh(𝒪Y ) → D+
coh(𝒪X ),

that this does indeed land in D+
coh(𝒪X ) can be checked locally on Y, whence it follows from 

Lemma 6.4 together with the corresponding result for schemes [8, Chapter III, Proposition 
6.1]. Next, the canonical morphism 

Lu*u*𝒪X → 𝒪X

induces, for any ℱ ∈ D+
coh(𝒪X ), a map 

ℱ = RHom𝒪X
(𝒪X , ℱ) → RHom𝒪X

(Lu*u*𝒪X , ℱ) = u−1RHom𝒪Y
(u*𝒪X , u*ℱ) = u♭u*ℱ,
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PROPER PUSHFORWARDS ON ADIC SPACES • 29

which we claim induces an isomorphism 

RHom𝒪Y
(u*ℱ, 𝒢) → RHom𝒪X

(ℱ, u♭𝒢)

for any 𝒢 ∈ D+
coh(𝒪Y ). Since the map ℱ → u♭u*ℱ is defined globally, the fact that it defines 

such an adjunction can be checked locally, when again it follows from Lemma 6.4 together 
with the analogous result for schemes [8, Chapter III, Theorem 6.7]. Now uniqueness of 
adjoints gives rise to a canonical isomorphism (v ∘ u)♭ ≅ u♭ ∘ v♭ whenever X

u
→ Y

v
→ Z is a 

pair of regular closed immersions between adic spaces, and this isomorphism can, locally, be 
identified with that from [8, Chapter III, Proposition 6.2].

The first claim therefore reduces to constructing a natural isomorphism 

𝜒u : u♭𝒪Y ≅ 𝔫X/Y [−c].

in D+
coh(𝒪X ). Given this, the second claim then boils down to showing that if X

u
→ Y

v
→ Z is 

a pair of regular closed immersions between adic spaces, then the diagram 

commutes. Since the first claim in particular implies that the relative dualising complex u♭𝒪Y
is concentrated in a single degree, they may be jointly checked locally on Z. Thus we may 
assume, in the first case, that X is cut out by a global regular sequence in Y, and in the second 
case, that moreover Y  is also cut out by a global regular sequence in Z. Under these 
assumptions, the claims are a consequence of the analogous results for schemes, in particular 
the calculation of u♭ for a regular closed immersion in [8, Corollary 7.3].

6.3. Closed subspaces of open polydiscs
We will apply the results of Section 6.2 to a closed immersion u : X → 𝔻N

Y (0; 1−) of adic spaces, over 
a finite-dimensional adic space Y, such that the composite f := 𝜋 ∘ u

X
u

↪ 𝔻N
Y (0; 1−)

𝜋
→ Y

of u with the natural projection 𝜋 is smooth of relative dimension d. Since 𝜔X/Y ≅ 𝔫X/𝔻N
Y (0;1−) ⊗𝒪X

u*𝜔𝔻N
Y (0;1−)/Y , by taking ℱ = 𝒪X , tensoring both sides with 𝜔𝔻N

Y (0;1−)/Y , and using the projection 
formula, we obtain an isomorphism 

Tru : u*𝜔X/Y
≅

⟶ RHom𝒪𝔻N
Y (0;1−)

(u*𝒪X ,𝜔𝔻N
Y (0;1−)/Y )[N − d].

Hence applying Rd𝜋! gives an isomorphism 

Rdf!𝜔X/Y
≅

⟶ RN𝜋!RHom𝒪𝔻N
Y (0;1−)

(u*𝒪X ,𝜔𝔻N
Y (0;1−)/Y ).

Restricting along 𝒪𝔻N
Y (0;1−) → u*𝒪X  gives a map 

Rdf!𝜔X/Y → RN𝜋!𝜔𝔻N
Y (0;1−)/Y ,
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30 • T. ABE AND C. LAZDA

and finally composing with Trz1,…,zN
 for a choice of coordinates on 𝔻N

Y (0; 1−) gives a trace map 

TrX/Y : Rdf!𝜔X/Y → 𝒪Y .

Via Theorem 5.6 we may view this as a map 

Rf!𝜔X/Y [d] → 𝒪Y .

Proposition 6.9 Suppose that Y is a finite-dimensional adic space, and f : X → Y  is a smooth 
morphism of relative dimension d, factoring through a closed immersion into an open unit polydisc 
over Y.

(1) The induced map TrX/Y : Rf!𝜔X/Y [d] → 𝒪Y  does not depend on the choice of embedding u : X ↪
𝔻N

Y (0; 1−) over Y.
(2) Suppose that g : Y → Z is a smooth morphism of relative dimension e, factoring through a closed 

embedding into some relative open disc 𝔻M
Z (0; 1−). Then, via the identification 𝜔X/Z = 𝜔X/Y ⊗

f *𝜔Y /Z , the diagram 

commutes.
(3) The trace map vanishes on the image of 

Rdf!Ωd−1
X/Y → Rdf!𝜔X/Y ,

and hence descends to a map 

TrX/Y : Rf!Ω•
X/Y [2d] → 𝒪Y .

Proof. For ease of notation, we will drop (0; 1−) from the notation for open polydiscs during 
the proof. Given Lemma 6.2, part (1) is proved verbatim as in the case of closed subspace of 
analytic affine space over a height one affinoid field treated in [15, Theorem 3.5] (which is, in 
turn, based on [5, Section 5]). For part (2), we can choose a commutative diagram 

with all horizontal arrows closed immersions, all vertical arrows the natural projections and 
the upper right-hand square Cartesian. Writing things out painfully explicitly, we need to 
show that the diagram below is commutative.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haae066/7928755 by C

om
m

issioning staff in C
ornw

all user on 07 February 2025



PROPER PUSHFORWARDS ON ADIC SPACES • 31

Commutativity of the two left-hand triangles follows from Lemma 6.7 and Proposition 6.1, 
respectively, and commutativity of the upper hexagon is straightforward. It therefore suffices 
to prove commutativity of the central octagon (⋆), which essentially expresses the fact that 
the maps Trv and Tr𝔻N  arising from the Cartesian upper right-hand square of (6.1) 
commute.

To prove this commutativity, we may remove R𝜌! from every term appearing in this 
octagon, as well as tensor everything in sight by (an appropriate pullback of) 𝜔⊗−1

𝔻M
Z /Z

, and 

shift by −M. We will also simplify notation slightly and replace 𝔻M
Z  by Z, thus the upper 

right-hand square becomes 

Finally, we can replace u*𝒪X  by 𝒪𝔻N
Y

, which has the effect of removing the right-hand map 
labelled ‘res’, in the diagram, thus turning the octagon into a heptagon. The diagram that we 
need to show commutes is therefore the one below, where c is the codimension of Y  in Z. 

Now, by localising on Z, we can assume that Y  is defined in Z by a regular sequence 
f1,… , fc ∈ Γ(Z,𝒪Z). Choosing coordinates z1,… , zN  on 𝔻N , we may use z1,… , zN  and 
f1,… , fc to trivialise the canonical and normal sheaves appearing in the above diagram. 
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32 • T. ABE AND C. LAZDA

We then consider the Koszul resolution 

𝒦•
Y /Z :=

⎡
⎢
⎢
⎣

𝒪Z ⟶ … ⟶ 𝒪
⊕(

c
2

)

Z ⟶ 𝒪⊕c
Z

(f1,…,fc)
⟶ 𝒪Z

⎤
⎥
⎥
⎦

of v*𝒪Y , viewed as being concentrated in the interval [−c, 0]. Thus the natural map 
𝒪Z → v*𝒪Y  corresponds to the inclusion 

𝜄0 : 𝒪Z → 𝒦•
Y /Z

of the term in degree 0, and the trace morphism Trv corresponds to the canonical 
isomorphism of complexes 

can : 𝒦•
Y /Z

≅
⟶ Hom(𝒦•

Y /Z,𝒪Z)[c]

(see [8, Section 7]). Of course, 𝜋*𝒦•
Y /Z is a resolution of v*𝒪𝔻N

Y
 as a 𝒪𝔻N

Z
-module, with 

similar descriptions of Trv and 𝒪𝔻N
Z

→ v*𝒪𝔻N
Y

. The diagram that we are required to show the 
commutativity of then becomes the following: 

The claim now follows from the explicit description of R𝜋!𝒪𝔻N  and the construction of the 
trace map Trz1,…,zN

 in Section 6.1.
For part (3), the question is local on Y, and on X by Corollary 4.17. Hence we may 

assume that there exists a closed immersion X ↪ 𝔻N
Y (0; 1−) over Y. We may also assume 

that Y  is Tate affinoid, with quasi-uniformiser 𝜛 ∈ Γ(Y ,𝒪Y ).
Since X is smooth over Y, the module of differentials Ω1

X/Y  is locally free. Since Y  is 
affinoid, it follows from Proposition 5.7 that we may choose, for any x ∈ X , functions 
t1,… , td ∈ Γ(X ,𝒪X ) such that dt1,… ,dtd form a basis of Ω1

X/Y ,x ⊗𝒪X ,x
k(x), and thus (by 

Nakayama’s lemma) a basis of Ω1
X/Y ,x. The locus of points x′ where dt1,… ,dtd are not a basis 

of Ω1
X/Y ,x′  is then a closed analytic subspace of X.

We claim that the complement of any such subspace locally admits a closed immersion 
into an open unit polydisc over Y. To see this, let us set Xn := X ∩𝔻N

Y (0; |𝜛|
1
n ) for each 

n ≥ 0. Then, for any f ∈ Γ(Xn,𝒪X ), the Zariski open subset D(f ) := {x ∈ Xn ∣ f (x) ≠ 0} of 
Xn admits a closed immersion into 𝔸2,an

Xn
 via 

(f , 1
f
) : D(f ) → 𝔸2,an

Xn
.
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PROPER PUSHFORWARDS ON ADIC SPACES • 33

Hence, for any m ∈ ℤ≤0, D(f ) ∩𝔻N
Y (0; |𝜛|

1
n

−) ∩𝔻N
Xn

(0; |𝜛|m−) admits a closed immersion 
into a unit polydisc over Y, which proves the claim.

We may therefore reduce to the case where dt1,… ,dtd are a basis of Ω1
X/Y  on the whole of 

X. It then follows from [10, Proposition 1.6.9 iii)] that the morphism t := (t1,… , td) : X
→ 𝔸d,an

Y  is étale. Further localising on X, we may assume that the image of this morphism 
lands inside 𝔻d

Y (0; 1−). But now, by applying part (2) to the composition 

X
t

→ 𝔻d
Y (0; 1−)

𝜋
→ Y ,

we deduce that the diagram 

commutes. Since the diagram 

also commutes, the claim therefore reduces to the case X = 𝔻d
Y (0; 1−) that we have already 

handled.

Corollary 6.10 If X = 𝔻d
Y (0; 1−) then the trace map 

Trz1,…,zd
: Rdf!𝜔X/Y → 𝒪Y

defined above does not depend on the choice of coordinates z1,… , zd.

6.4. Smooth morphisms of adic spaces
As a penultimate case, we construct the trace morphism when Y  is a finite-dimensional adic space, and 
f : X → Y  is a smooth morphism of relative dimension d, which is moreover partially proper in the 
sense of Kiehl. Then, locally on Y, there exists a cover of X by opens Ui admitting closed embeddings 
Ui ↪ 𝔻Ni

Y (0; 1−) over Y. Moreover, each Ui ∩ Uj admits a closed embedding into 𝔻
Ni+Nj

Y (0; 1−) over 
Y. Using the spectral sequence from Corollary 4.17, together with Proposition 6.9, the trace maps 

TrUi/Y : Rdf!𝜔Ui/Y → 𝒪Y

factor uniquely through a map 

TrX/Y : Rdf!𝜔X/Y → 𝒪Y ,

which can be checked not to depend on the choice of the Ui using Proposition 6.9. Since TrX/Y  does 
not depend on the choice of open cover of X, it glues over an open cover of Y, and by Theorem 5.6 this 
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can be viewed as a map 

TrX/Y : Rf!𝜔X/Y [d] → 𝒪Y

in D(𝒪Y ). Moreover, TrX/Y  vanishes on the image of 

Rdf!Ωd−1
X/Y → Rdf!𝜔X/Y ,

since the same is true locally on X and Y, and thus induces a map 

TrX/Y : Rf!Ω•
X/Y [2d] → 𝒪Y

in D(𝒪Y ).

Remark 6.11 When X = 𝔸d,an
Y  there are two candidates for a trace map: one constructed 

immediately above, and the other alluded to in Remark 6.3. The two are easily seen to 
coincide.

6.5. The general case
Finally, we consider again a smooth morphism f : X → Y  of relative dimension d, partially proper in 
the sense of Kiehl, but now with the base Y  allowed to be any overconvergent, finite-dimensional germ. 
Then arguing exactly as in the proof of Corollary 5.14, we see that, locally on X, we can extend f  to a 
diagram of pairs 

such that f : X → Y  is smooth, u : X → 𝔻N
Y (0; 1−) is a closed immersion over Y , and X = 𝜋−1(Y ) ∩ X . 

Using Corollary 5.14, together with Lemma 4.14, we can therefore carry through all the arguments of 
Sections 6.3 and 6.4 to construct a trace morphism 

TrX/Y : Rdf!𝜔X/Y → 𝒪Y ,

which again can be viewed as a map 

TrX/Y : Rf!𝜔X/Y [d] → 𝒪Y .

Proposition 6.12 Let Y be an overconvergent, finite-dimensional germ, and f : X → Y  a smooth 
morphism of relative dimension d, which is partially proper in the sense of Kiehl.

(1) TrX/Y  vanishes on the image of Rdf!Ωd−1
X/Y  and descends to a map 

TrX/Y : Rf!Ω•
X/Y [2d] → 𝒪Y .
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(2) If g : Y → Z is smooth morphism of relative dimension e, partially proper in the sense of Kiehl, with 
Z overconvergent, then the diagram 

commutes.

6.6. Duality morphism
We can now construct the duality morphism. Let f : X → Y  be a partially proper morphism of germs. 
If ℐ, 𝒥 are 𝒪X -modules then the natural map 

H0(X , ℐ ) ×H0(X , 𝒥) → H0(X , ℐ ⊗ 𝒥)

induces 
H0(X , ℐ ) ×H0

c (X/Y , 𝒥) → H0
c (X/Y , ℐ ⊗ 𝒥),

and sheafifying this gives a pairing 

f*ℐ × f!𝒥 → f!(ℐ ⊗ 𝒥).

By taking resolutions, we deduce that if ℰ and ℱ are bounded complexes of 𝒪X -modules, and both X
and Y  are finite-dimensional, then there is a natural pairing 

Rf*ℰ ×Rf!ℱ → Rf! (ℰ ⊗L ℱ)

in D−(𝒪Y ). In particular, if 𝒢 is a third bounded complex, then any pairing 

ℰ × ℱ → 𝒢

induces a corresponding pairing 
Rf*ℰ ×Rf!ℱ → Rf!𝒢

in cohomology. If we now assume, moreover, that:

• f  is smooth of relative dimension d, and partially proper in the sense of Kiehl;
• Y  is overconvergent;
• ℰ is a perfect complex on X,

then, setting ℰ∨ := RHom(ℰ,𝒪X ), we have a natural evaluation pairing 

ℰ × ℰ∨ ⊗ 𝜔X/Y → 𝜔X/Y .

Together with the trace map TrX/Y  this induces a pairing 

Rf*ℰ ×Rf! (ℰ∨ ⊗ 𝜔X/Y ) → 𝒪Y [−d].

There is, of course, a similar pairing 

Rf!ℰ ×Rf* (ℰ∨ ⊗ 𝜔X/Y ) → 𝒪Y [−d].
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7 . A CO U N T E R E X A M P L E
In this section we give a counterexample showing that the formalism of Rf! cannot be extended 
beyond the partially proper case in any reasonable way. Our example also shows that the analogue 
of Lemma 4.14 fails in general if Z is replaced by a non-maximal point of Y. The example is based upon 
a suggestion of B. Le Stum.

Theorem 7.1 There does not exist a way to define, for any morphism f : X → Y  which is separated, 
locally of +weakly finite type, and taut, a functor 

Rf! : D+(X) → D+(Y ),

in such a way that:

(1) Rf! agrees with Definition 4.7 given above whenever f is partially proper;
(2) Rf! = f! is the extension by zero functor whenever f is an open immersion;
(3) R(g ∘ f )! ≅ Rg! ∘Rf! whenever f and g are composable morphisms.

Proof. Let 𝜅 = (k, k∘) be a height one affinoid field, X = 𝔻1
𝜅(0; 1) = Spa(k⟨z⟩, k∘⟨z⟩) the 

(ordinary) closed unit disc over 𝜅. Let jU : U → X  denote the inclusion of the open 
subspace defined by {x ∈ X ∣ vx(z − 1) = 1}, f : X → X  the (finite, thus proper) morphism 
defined by z ↦ z2, and V := f −1(U) ⊂ X . Thus V  is the intersection of U with the open 
subspace defined by {x ∈ X ∣ vx(z + 1) = 1}, we let jV : V → X  denote the inclusion. We 
therefore have a Cartesian square 

To prove the theorem, it suffices to show that Rf! ∘ jV ! ≇ jU! ∘Rf!.
To see this, we take ℱ to be the constant sheaf ℤ on V  and compute the stalks of both 

sides at the Type V apex point 𝜉1 of the open disc {x ∈ X ∣ v[x](z − 1) < 1}. Clearly we have 
that (jU!Rf!ℤ)𝜉1

= 0, and we shall show that (Rf!jV !ℤ)𝜉1
= (Rf*jV !ℤ)𝜉1

≠ 0.
Indeed, we may base change to the set G(𝜉1) of generalisations of 𝜉1, which is a two-point 

space {𝜉1,𝜉} consisting of 𝜉1 together with the Gauss point 𝜉. The fibre X(𝜉1) = f −1(G(𝜉1)) is 
a three-point space {𝜉,𝜉1,𝜉−1} consisting of 𝜉,𝜉1 and the apex point 𝜉−1 of the open disc 
{x ∈ X ∣ v[x](z + 1) < 1}, and the induced map f : X(𝜉1) → G(𝜉1) sends 𝜉±1 to 𝜉1 and 𝜉 to 𝜉. 
We then have 

(Rf*jV !ℤ)𝜉1
= RΓ(X(𝜉1), (jV !ℤ)|X(𝜉1)

),

and we can identify the restriction of jV !ℤ to X(𝜉1) as the extension by zero of the constant 
sheaf ℤ along the open immersion {𝜉} → X(𝜉1). In particular, we have the exact sequence 

0 → (jV !ℤ) |X(𝜉1)
→ ℤ → i1*ℤ⊕ i−1*ℤ → 0

where i±1 is the inclusion of the closed point 𝜉±1 inside X(𝜉1). Taking cohomology then gives 
the exact triangle 

(Rf*jV !ℤ)𝜉1
→ ℤ → ℤ⊕ℤ

+1
→
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where the second map is the diagonal morphism. Thus 

(Rf*jV !ℤ)𝜉1
≅ ℤ[−1]

is non-zero as claimed.
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