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1. Introduction

Auxetic materials[1] display a negative Poisson’s ratio,[2]

expanding laterally when stretched and contracting laterally
when compressed (Figure 1a,b). As Poisson’s ratio is scale-
independent, negative values can arise either from atomic
properties,[1,3–5] microstructures,[6–13] or at larger length scales
(Figure 1c–e), provided the Poisson’s ratio is measured over
length scales larger than the geometry causing it.

Mechanisms of auxeticity can be observed across both 2D
and 3D structural models that exhibit negative Poisson’s ratio,
including reentrant or concave honeycombs (Figure 1c), chiral
(Figure 1d) and antichiral lattices, rotating rigid units composed
of squares (Figure 1e), rectangles, or triangles, along with liquid
crystalline polymers, dilating triangles, egg-rack structures, sinu-
soidal ligaments, metamaterials, and periodic microstructures

(such as square arrays of circular or
elliptical holes in an elastomeric matrix),
among other systems.[14,15] Auxetic materi-
als exhibit unique and enhanced mechani-
cal properties such as synclastic curvature
during bending, deformation-dependent
permeability, certain hard-body beha-
viors,[16–18] high shear stiffness,[19] thermal
expansion,[20–22] refractive index,[23] excep-
tional indentation resistance, enhanced
fracture resistance capabilities, negative
compressibility,[24–27] improved fracture
toughness and permittivity,[28] alongside
high sound absorption,[29,30] superior
damping,[31] and energy absorption.[32,33]

Although the concept of materials with a
negative Poisson’s ratio has existed for a
century,[34] simple mechanical[35–37] and
thermodynamical[3,38] models show auxetic

behavior was realized in the 1980s. Research into auxetics grew
rapidly after the nascent works of Evans[1] (who coined the word
“auxetic” from the ancient Greek “auxetos”) and Lakes[10]

brought them to the forefront of modern engineering in the
early 1990s. Research on auxetic metamaterials spans multiple
fields, including acoustics,[39,40] seismology,[41,42] classical
mechanics,[43–45] and damping.[46,47] They are increasingly
researched and integrated into engineering applications, offering
innovative solutions in areas such as vibration damping response
of auxetic structures (auxetic and nonauxetic structures show dif-
ferent static and dynamic properties),[29,30,48–50] blast resistance
of sandwich panels with auxetic core,[30,48,49,51] compressive
behavior of the auxetic cellular structure,[52,53] acoustic,[40,54]

defense,[32] sports equipment,[55] medical devices,[56] clothing,[33]

packing materials and shock absorption,[57] and piezoelectric
devices.[58–61]

Despite significant advancements in modeling[62] and experi-
mental studies of auxetic metamaterials,[63] understanding their
damping characteristics loss factors is in its early stages.[64]

Studies show that auxetic materials exhibit enhanced vibration
damping capabilities compared to conventional materials.
Research on auxetic honeycomb sandwich panels with polyurea-
metal laminate face sheets revealed that including an auxetic
layer significantly increased the damping loss factor.[65] This
includes viscoelastic layers within the honeycomb cell walls, where
the overall damping performance of the structure improved.[66]

Analyses of auxetic beams have also shown superior vibration
isolation behavior and frequency response over a wide range of
frequencies compared to traditional beam structures.[67]

Finite element analysis has been used in studies with
high accuracy to experimental results,[68] including to show a
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significant influence of Poisson’s ratio on contact pressure and
indentation for the impact behavior of structures,[69] especially
for extremely negative values close to�1. Finite element analysis
can also be used to obtain structures with nonintuitive character-
istics through material topology optimization.[70]

The dynamic bulk modulus, Kd, and shear modulus, Gd,
of a viscoelastic solid can both be expressed in terms of its
dynamic elastic (Young’s) modulus, Ed, and dynamic Poisson’s
ratio, νd,

[71,72]

Kd ¼
Ed

3 1� 2νdð Þ (1)

Gd ¼
Ed

2 1þ νdð Þ (2)

As Poisson’s ratio approaches 0.5, as observed in rubbery
solids, the dynamic bulk modulus significantly exceeds the

dynamic shear modulus, rendering the material effectively
incompressible (Figure 2a). As νd approaches �1.0, the material
becomes highly compressible yet resistant to shear, maintaining
structural integrity under load. While the relationship between
mechanical properties and Poisson’s ratio is well documented
for materials with positive Poisson’s ratios, there is compara-
tively less exploration and understanding of this relationship
in the context of auxetic viscoelastic materials.[73–77]

Using the standard notion for complex shear and bulk moduli,
and complex Poisson’s ratio,

K iωð Þ ¼ Kd ωð Þ 1þ iηK ωð Þð Þ (3)

G iωð Þ ¼ Gd ωð Þ 1þ iηG ωð Þð Þ (4)

ν iωð Þ ¼ νd ωð Þ 1þ iην ωð Þð Þ (5)

where K is the complex bulk modulus, G is the complex shear
modulus, ν is the complex Poisson’s ratio, νd is the dynamic
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Figure 1. a) Conventional (adapted from ref. [6]) and b) auxetic material behavior (adapted from ref. [6]); auxetic structure type: c) bowtie, d) chiral, and
e) rotating squares/kirigami.
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Figure 2. a) Dynamic bulk and shear storage moduli (log) change over dynamic Poisson’s ratio range �1.0< ν< 0.5 (for high-density polyethylene
(HDPE)) from Equation (1) and (2) and b) bulk/shear (Kd=GdÞstorage ratio (log) variation with dynamic Poisson’s ratio (�1.0< νd < 0.5) for
HDPE using Equation (6).
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Poisson’s ratio, i=
ffiffiffiffiffiffiffi�1

p
, ω ¼ 2πf (where f is the frequency

in Hz), and ηK , ηG, and ην are the loss factors for bulk, shear,
and Poisson’s ratio, respectively.

The concept of Poisson’s ratio is typically defined for static or
quasistatic loading and represents the ratio of lateral strain-to-
axial strain in response to an applied stress. The dynamic
Poisson’s ratio (νd) extends this concept to dynamic or
oscillatory conditions, capturing frequency-dependent behavior
(Equation 3–5) due to viscoelastic effects, internal damping,
and inertia. These deformation mechanisms significantly affect
dynamic moduli and energy dissipation. While the static
Poisson’s ratio is a scalar and constant for a linear elastic mate-
rial, the dynamic Poisson’s ratio is often expressed as a complex
quantity (Equation 5).

The bulk and shear loss factors (ηK and ηG) reflect energy
dissipation (including attenuation of bulk and shear wave prop-
agation) through deformation and quantify the amount of energy
dissipated per cycle of volumetric or shear deformation due to
internal friction. Generally, ηK or ηG ≈ 0 indicates that the mate-
rial exhibits very low bulk or shear damping and behaves elasti-
cally, with negligible energy dissipation. When ηK or ηG ! 1, it
suggests significant energy dissipation, where the imaginary part
of the complex modulus is comparable to its real part, which
reflects the material’s capacity to store energy. A higher loss fac-
tor, ηK or ηG > 1, implies very high energy dissipation during
deformation, often as heat or internal friction. The loss factors
ηK , ηG, and ην are influenced by several mechanical and geomet-
rical parameters, including material composition, frequency of
loading, temperature, microstructure, density and porosity,
geometry and dimensions, and prestrain or recompression.
By considering these parameters, the relationship between the
loss factors and the physical behavior of the material under
dynamic loading can be better understood and tailored for
specific applications.

Notice that the dynamic bulk-to-shear storage ratio can be
derived from Equation (1) and (2) as a function of the material
dynamic Poisson’s ratio only[78] to get

Kd

Gd
¼ 2 1þ νdð Þ

3 1� 2νdð Þ (6)

This expression highlights how dynamic Poisson’s ratio
affects the material’s ability to store energy in volumetric versus
shear deformation. Equation (6) also shows how this storage ratio
is dominated by bulk dynamic storage at νd ¼ 0.5 and shear
dynamic storage at νd ¼ �1.0 (see Figure 2b).

The bulk-to-shear loss factor ratio (ηK=ηG) of solid viscoelastic
materials is an insightful measure of how energy is dissipated
within the material under mechanical stress. Section 2 will elab-
orate on defining this ratio. From a physical meaning, a ratio of
0 < ηK=ηG < 1 indicates that the material dissipates more energy
in shear deformation compared to bulk deformation. This is typ-
ical for viscoelastic materials with a positive Poisson’s ratio. A
ratio of ηK=ηG ≈ 1 is rare but can occur under specific conditions
or in specially engineered materials. Conversely, ηK=ηG > 1 indi-
cates materials where volumetric effects, such as compression or
expansion, dominate over shear deformations. This can occur in
isotropic loading in soft materials (foams), cyclic compression,
and hydrostatic loading conditions where bulk deformation

mechanisms, rather than shear, are the primary contributors
to the overall viscoelastic response.

Experiments since the 1960s[79–81] have demonstrated that,
while independent of each other, the bulk loss factor is smaller
than the shear loss factor in the positive Poisson’s ratio range.
These experimental observations have informed the develop-
ment of models for viscoelastic solids, particularly regarding
projections between the Poisson’s to shear and bulk-to-shear loss
factors, which are further elaborated in Section 2.1. It is impor-
tant to note that previous studies[32,46,71,82–86] have primarily
focused on viscoelastic solids with positive dynamic Poisson’s
ratios.

This article investigates Poisson’s to shear and bulk-to-shear
loss factors as a measure of the energy dissipated in a system
relative to the energy stored within it,[7,9,78,79] comparing these
loss factors over a negative Poisson’s ratio range using funda-
mental equations derived by Tschoegl and Pritz.[82,85,87] The
investigation will be limited to isotropic viscoelastic auxetic
materials.[88]

2. Experimental Section

2.1. Poisson to Shear Loss Factor Ratio

Pritz[82] initially investigated the link between Poisson and
shear loss factors as a function of dynamic Poisson’s ratio.
This relationship, where n is an empirical fit to experimental
data, is expressed as[87]

ην
ηG

¼ 2
3
νn�1
d 1þ νdð Þ 1� 2νdð Þ (7)

At a dynamic Poisson’s ratio of 0.5, the material is incom-
pressible, meaning that during compression, the axial and lateral
strains adjust to maintain a constant volume (as K ¼ ∞). In this
case, the Poisson’s loss factor (ην) becomes zero, reflecting purely
elastic behavior without energy dissipation. Similarly, as the
dynamic Poisson’s ratio approaches zero, the material exhibits
no lateral deformation, and the Poisson’s loss factor approaches
zero, indicating no phase lag.

Equation (7) was developed[82] to illustrate how this loss factor
ratio varies over positive dynamic Poisson’s ratios. Figure 3
extends this concept to auxetic isotropic viscoelastic materials.
At a dynamic Poisson’s ratio of �1, the loss factor ratio returns
to zero due to the unique deformation behavior of auxetic mate-
rials, where lateral and longitudinal strains mirror the applied
load. This results in no phase lag and, consequently, no energy
dissipation through transverse deformation, reflecting the
theoretical limits of energy storage without loss.

For Equation (7) to hold true, the following five key
assumptions must be met:[82] 1) the solid material is homoge-
neous and isotropic, 2) the dynamic behavior is linear, 3) the
dynamic Poisson’s ratio is positive, 4) the shear damping is
low, namely, ηG < 0.3, and 5) the ratio of the bulk loss factor
to the shear loss factor obeys a power law of the dynamic
Poisson’s ratio.

Assumptions (1) and (2) hold. Assumption (3) is the focus
of our investigation in this article, where we are testing
its applicability beyond its initial constraints. Assumption
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(4) remains unverified due to limited data on shear loss factor
thresholds in auxetic isotropic viscoelastic materials. However,
assumption (5), regarding the ratio of the bulk loss factor to
the shear loss factor obeying a power law of the dynamic
Poisson’s ratio, needs further attention and will be discussed
in detail in Section 2.

The Poisson to shear loss factor ratio, as illustrated in Figure 3,
can exhibit both negative and positive values, reflecting the com-
plex energy dissipation mechanisms in viscoelastic materials.[89]

Physically, a negative ratio does not imply that the system gains
energy but indicates an imbalance in how energy is dissipated
through different deformation modes. Negative values occur
when n is even, due to the νn�1

d component, which results in
a negative contribution when the dynamic Poisson’s ratio is neg-
ative. When n is even, energy dissipation through transverse
deformation is less effective, indicating that auxetic behavior
has limited influence on shear loss compared to longitudinal
strain. This suggests that auxetic effects, while beneficial for
certain bulk properties, may not enhance shear damping in these
specific cases.

While the shear loss factor remains finite and positive, it gen-
erally dominates the Poisson loss factor (ην=ηG < 0.5 for
Figure 3), which reflects dissipation related to lateral strain
induced by axial strain. A negative dynamic Poisson’s ratio
results in unconventional dissipation behavior, where the
Poisson loss factor appears negative due to atypical phase char-
acteristics. Figure 3 shows that the Poisson’s loss factor has a
greater impact on the loss factor ratio in the auxetic range than
in the positive Poisson’s ratio range, returning to zero at vd of�1,
0, and 0.5 for all values of n.

2.2. Bound Limits for ηK=ηG

Previous works[87] established theoretical upper and lower
bounds for the loss factor ratio, ηK=ηG, in isotropic viscoelastic
materials with positive dynamic Poisson’s ratio. The upper
bound was found at νd ¼ 0, where the bulk-to-shear loss factor
ratio must be ≤ 1, while the lower bound is reproduced in
Equation (8). The reader is referred to ref. [87] for further details
on their derivation.

ηK
ηG

>
1� 2νd
1þ νd

(8)

In what follows, we will use a similar approach to derive the
bounds of ηK=ηG for negative Poisson’s ratios. Notably, the lower
bound of this ratio is ηK=ηG > 1 when bulk deformation domi-
nates energy dissipation. In such a case, the material exhibits a
low bulk modulus but a nonzero shear modulus, as seen in
auxetic materials (Figure 2a,b).

As for the upper bound, we consider the complex form of
the first Lamé’s constant,[71,85,89] λ, where Equation (5) can be
recast as[87]

λ iωð Þ ¼ λd ωð Þ 1þ iηλ ωð Þð Þ (9)

Equation (9) can be expressed as an isotropic viscoelastic
material under dynamic conditions, considering the relation
between the complex bulk and complex shear moduli as derived
by Tschoegl:[85]

Poisson's Ratio (v)

Values of n: 
n = 2 
n = 3 
n = 4 
n = 5 
n = 6 
n = 7

Figure 3. Poisson to shear loss factor ratio as a function of dynamic Poisson’s ratio (�1.0< νd < 0.5) (for values of n= 2, 3, 4, 5, 6, and 7) for
Equation (7).
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K iωð Þ ¼ 2
3
G iωð Þ 1þ ν iωð Þ

1� 2ν iωð Þ (10)

It follows that at νd ¼ 0 ¼ ν iωð Þ, Equation (9) and (10) can be
written as

λ iωð Þ ¼ K iωð Þ � 2
3
G iωð Þ ¼ Kd �

2
3
Gd

� �
þ i ηKKd �

2
3
ηGGd

� �

(11)

Using Equation (3) and (4), Equation (11) can be rewritten
using the imaginary parts only:[78]

i ηλλdð Þ ¼ i ηKKd �
2
3
ηGGd

� �
(12)

Using Equation (12), the Lamé’s loss factor (ηλ) can be
expressed as a function of the bulk and shear loss factors, ηK
and ηG, along with their corresponding dynamic storage moduli,
Kd and Gd. Theocaris

[89] suggests that for viscoelastic materials,
the shear modulus is greater than the bulk modulus (G > K),
implying that both the real and imaginary parts of the shear mod-
ulus exceed those of the bulk modulus. This relationship leads to
the conditions that the dynamic storage and loss moduli:[89]

Gd > Kd (13)

ηGGd > ηKKd (14)

Which, in turn, implies that the ratio Kd=Gd is less than 1.
Consequently, this directly supports the inequality in
Equation (15), as the left-hand side, ηK

ηG

Kd
Gd
, becomes smaller

due to the Kd=Gd term. Given that the ratio of loss factors
ηK=ηG depends on the material, the inequality will hold if the
product of these terms remains less than 2=3 which is supported
by Theocaris’ observation of the relative magnitudes of the
moduli.[47]

ηK
ηG

Kd

Gd
<

2
3

(15)

Combining Equation (15) with Equation (6), we obtain the
upper bound as a function of dynamic Poisson’s ratio when
νd < 0:

ηK
ηG

<
1� 2νd
1þ νd

(16)

Equation (16) now represents the upper bound for dynamic
Poisson’s ratio from 0 to �1.0. These bounds are detailed in
Figure 4a,b and 5 as dashed red lines.

2.3. Bulk-to-Shear Loss Factor Ratio

The ratio of the bulk to the shear loss factor ratio, ηK=ηG, can be
expressed as follows for isotropic, positive Poisson’s ratio
viscoelastic solids:[82]

ηK
ηG

¼ 1� 2νdð Þn (17)

where n> 1, within the bounds discussed in Section 2.3. To
determine whether Equation (17) remains valid for negative
dynamic Poisson’s ratios, we must revisit and modify the
assumptions underlying its derivation.

When extending this analysis to auxetic materials, we assume
that the viscoelastic mechanisms influencing loss factors remain
consistent, even as the Poisson’s ratio approaches �1.0. For
Equation (17) to remain valid, the viscoelastic behavior should
not drastically alter due to auxetic characteristics. Typically, as
the Poisson’s ratio decreases (i.e., νd ! 0), and we observe that
ηK
ηG

Kd
Gd

< 2=3, it indicates that the dynamic shear modulus domi-

nates the dynamic bulk modulus, as illustrated in Figure 2b
(Kd=Gd < 1). If auxetic materials conform to these conditions,
Equation (17) remains applicable.

Next, we consider the validity of Equation (17) in the negative
dynamic Poisson’s ratio range, specifically as νd approaches 0 or
�0.5. Between these limits, we assume the bulk loss factor
exceeds the shear loss factor (ηK=ηG > 1). As the dynamic
Poisson’s ratio nears zero, the Poisson’s loss factor also tends
to zero, indicating a lack of transverse motion or phase
lag. While the expression ην ¼ νl=νd ¼ 0=0 is mathematically
undefined, we can approximate that the ην ! 0 as νd ! 0, as
shown in Figure 3. In the case of νd ¼ �0.5, the material expe-
riences a unique balance between lateral and axial deformations,
resulting in enhanced volumetric stability and energy dissipation
characteristics. The relationship between the bulk and shear
moduli leads to a specific condition where the bulk loss factor
becomes exactly twice that of the shear loss factor (ηK=ηG ¼ 2)
as shown in Figure 4a, indicating that the material exhibits a sig-
nificant response in bulk loss compared to shear loss, reflecting
its auxetic nature. Therefore, for dynamic Poisson’s ratios near
�0.5, the Poisson to shear loss factor ratio can be approximated
by the following equation:[87]

ην
ηG

≈ 1� ηK
ηG

� �
1þ νdð Þ 1� 2νdð Þ

3νd
(18)

assuming ηK=ηG > 1 for auxetic isotropic viscoelastic
materials.

For the case where the dynamic Poisson’s ratio approaches�0.5,
Figure 4a shows that ηK=ηG is equal to 2 and we can approximate
part of Equation (18) as:

1� ηK
ηG

� �
1þ νdð Þ
3νd

≈
1
3

(19)

This implies that the Poisson’s loss factor compared to the
shear loss factor can still depend only on the dynamic
Poisson’s ratio, as approximated by developing Equation (18)
and (19) into

ην
ηG

≈
1
3

1� 2νdð Þ (20)

For Equation (18), when dynamic Poisson’s ratio approaches
zero, it can be approximated to

ην
ηG

≈ 1� ηK
ηG

� �
1
3νd

(21)
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Here, the bulk loss factor converges to the shear loss factor
(ηK ! ηG) as the dynamic Poisson ratio tends to zero
(νd ! 0), resulting in the Poisson’s loss factor approaching zero.
Equation (17) holds true if 1� ηK=ηGð Þ can be expressed as a
function of its dynamic Poisson’s ratio, such as the development
of Equation (21) below:[41]

1� ηK
ηG

¼ aνdn (22)

where a> 0 and n> 1 under the assumption that auxetic
isotropic viscoelastic materials maintain the dominance of the

1

0.5

0.1 0.2 0.3 0.4 0.5

(b)

oita
R rotcaF ssoL

Lo
ss

 F
ac

to
r R

at
io

(a)

Poisson's Ratio (v)

Poisson's Ratio (v)
Values of n: 
n = 1.5 
n = 2.3 
n = 3 
n = 5 
n = 7 
n = 9

Lower Bound
Upper Bound

Upper Bound

Figure 4. Bulk-to-shear loss factor ratio as a function of dynamic Poisson’s ratio of Equation (17)[87] for a) dynamic Poisson’s range (�1.0< νd < 0.5)
for values of n= 3, 5, 7, and 9 and b) positive Poisson’s ratio relationship (0.0< νd < 0.5) for values of n= 1.5, 2.3, and 3.0 alongside experimental data
for SBR,[81] PMMA,[90] and P4OCHMA.[80]

2

oita
R rot caF ssoL

Poisson's Ratio (v)

Values of n: 
n = 3 
n = 5 
n = 7 
n = 9

Lower Bound

Figure 5. Bulk-to-shear loss factor ratio (Log) (0.1 < ηK=ηG < 100) as a function of dynamic Poisson’s ratio (�1.0< νd < 0) of Equation (17) showing
values of n= 3, 5, 7, and 9 and upper and lower bound limits.
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bulk loss factor over the shear loss factor, and then Equation (20)
and (22) confirm that Equation (17) remains valid.

The exponent n> 1 reflects an empirical fit to data and can
vary between materials and ranges of dynamic Poisson’s ratio.
While n can be adjusted to fit experimental data, even for auxetic
materials, values of n must be odd integers under the assump-
tions outlined in this study. This constraint ensures that this loss
factor remains physically meaningful (i.e., nonnegative) over the
full range of dynamic Poisson’s ratios, particularly below
νd ¼ �0.5. If n were even, the loss factor would become negative
for dynamic Poisson’s ratios below this threshold. n must remain
an integer to maintain the validity of Equation (22) when
dynamic Poisson’s ratio is less than zero, ensuring the model
applies consistently across both positive and negative
Poisson’s ratio ranges (Figure 4a). Experimental data from
Pritz’s 2007[82] study support the variability in n across different
materials such as styrene-butadiene rubber (SBR),[81] poly
(methyl methacrylate) (PMMA),[90] and poly(4-thiacyclohexyl
methacrylate) (P4OCHMA),[80] suggesting a broader applicability
beyond strictly positive Poisson’s ratios. Figure 4b illustrates how
variations in n (n= 1.5, 2.3, and 3.0) affect the bulk-to-shear loss
factor ratio, with n= 2.3 offering the best fit to the provided data
over a positive dynamic Poisson’s ratio. This emphasizes the
need to adjust n to account for specific material behavior,
especially in auxetic cases.

In conclusion, it is reasonable to extend the application of
Equation (17) to auxetic materials, provided the assumptions
about viscoelastic response, the bulk-to-shear loss factor con-
straints, and the appropriate value of n are satisfied. However,
deviations from these assumptions may require experimental
validation or adjustments to the equation.

3. Results and Discussion

The relationship between the dynamic shear and bulk moduli
across both auxetic and positive dynamic Poisson’s ratios is well
established (Equation 1 and 2). As Poisson’s ratio approaches�1,
the dynamic shear storage modulus increases, indicating height-
ened stiffness in shear deformation (Figure 2a). In contrast, the
dynamic bulk storage modulus decreases, suggesting a reduced
capacity for the viscoelastic solid to resist volumetric changes and
store elastic energy. This is illustrated by the ratio of dynamic
bulk-to-shear storage moduli (Kd=Gd) in Figure 2b, derived from
Equation (6). The figure shows that below a Poisson’s ratio of 0.1,
the dynamic shear modulus dominates, while above 0.1, the
dynamic bulk modulus becomes more dominant.

This work examines the relationship between dynamic
Poisson’s ratio and the ratios of both the Poisson to shear loss
factors (ην=ηG) and the bulk-to-shear loss factors (ηK=ηG), extend-
ing the work of Pritz in the positive dynamic Poisson’s ratio
range (0 < νd < 0.5).[82,87] Pritz demonstrated that there was a
link over 0 < νd < 0.5, distinct-bound limits and at vd ¼ 0.5
the bulk-to-shear loss factor ratio can be wide ranging compared
to those a νd ≈ 0 (Figure 2b).

Equation (17), which predicts the bulk-to-shear loss factor
ratio, can be extended into the auxetic range for isotropic visco-
elastic materials, provided the assumptions in Section 2 are met.
Although the bulk-to-shear loss factor ratio for auxetic materials

can vary widely, most results likely lie within the upper and lower
bounds discussed in Section 2. The exponent n is essential for
tailoring the equation to different materials, but it may not pre-
dict material behavior across the entire dynamic Poisson’s ratio
range. In the positive Poisson range, power factors of 1.5, 2.3,
and 3.0 are shown in Figure 4b, while Figure 4a presents the
results for auxetic materials (1 < ηK=ηG < 1�2νd

1þνd
). Power factors

of 3, 5, 7, and 9 are considered for auxetic materials, but
Equation (17) is only likely to predict behavior over a narrow
range of Poisson’s ratios for certain materials. Further experi-
mental work on auxetic viscoelastic solids is needed to validate
these findings.

All lines intersect at three key points within the dynamic
Poisson’s ratio range shown in Figure 4. The intersections at
νd of 0 and 0.5, previously identified for positive Poisson’s ratios,
represent incompressibility (νd ¼ 0.5) and no lateral strain
(νd ¼ 0). A notable feature is the new intersection at
νd ¼ �0.5, observed for all odd integer values of n, with a
bulk-to-shear loss factor ratio of 2 (ηK=ηG ¼ 2). This indicates
that bulk deformation contributes twice as much to energy
dissipation as shear deformation at this Poisson’s ratio. The
relationship between volumetric strain (εV ) and axial strain
(εaxial) is given by

εV ¼ εaxial 1� 2νdð Þ (23)

At νd ¼ 0.5, εV becomes zero, confirming incompressibility,
while at νd ¼ �0.5, εV ¼ 2, showing an apparent volume
increase under uniaxial deformation despite the lateral and
transverse strains counteracting the axial deformation.

The wide range of bulk-to-shear loss factor values as the
dynamic Poisson’s ratio approaches �1.0 (shown in Figure 5)
depends on the energy dissipation mechanisms, which are com-
plex in auxetic materials. These materials depend on their micro-
structure, influencing how bulk and shear deformations occur.
The loss factors, which are frequency-dependent, show that at
certain frequencies, bulk viscosity dominates energy dissipation
in isotropic viscoelastic materials, especially as Poisson’s ratio
becomes negative. Equation (17) can predict behavior for a lim-
ited range of viscoelastic materials when an appropriate power
factor n is chosen. It does not hold true across the entire dynamic
Poisson’s ratio range, particularly for larger values of n (exceed-
ing n= 7) as they may extend outside the suggested bound
limits.

Auxetic (by microstructure) metamaterials can exhibit change-
able density for certain viscoelastic materials (such as polymers,
foams, or composites); the bulk modulus could be designed or
tuned to have higher internal friction or more significant energy
loss mechanisms than the shear modulus under dynamic con-
ditions. The density of these foams is not constant but varies with
the amount of applied stress or strain. Under rapid loading, the
internal microstructure of the foam might exhibit enhanced
reentrant behavior or chiral cell deformation, which could result
in different damping characteristics than under static or slow
loading conditions. This ability to be able to tailor their density
would play a crucial role in determining their bulk modulus at
lower Poisson’s ratios. The density of these foams is not constant
but varies with the amount of applied stress or strain. This
variability in density is a key property, as it directly impacts
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the mechanical characteristics of the material, particularly the
bulk modulus. The bulk modulus, which defines a material’s
resistance to uniform compression, will change as the density
changes, making auxetic foams highly adaptable to different
loading conditions. The unique way the internal structure
responds to localized deformation especially around dynamic
Poisson’s ratio around �1 and the bulk-to-shear loss factor ratio
leads to unique damping characteristics. The ability to tailor the
density and microstructure of auxetic foams opens new possibil-
ities for designing materials with specific mechanical properties.
For instance, in applications like protective gear, vibration
isolation, or acoustic dampening, where a high bulk-to-shear loss
factor ratio is desirable, auxetic foams could be designed to
perform better than traditional materials. Although this work
is theoretical, auxetic materials such as reentrant polyurethane
foams,[10,63,91] though not strictly isotropic, are often considered
quasi-isotropic in their auxetic behavior and are representative
examples of auxetic materials. These foams exhibit properties
such as a high bulk-to-shear loss factor ratio,[92] making them
ideal for applications like protective gear, vibration isolation,
or acoustic dampening.

4. Conclusion

In this article, we investigated the dynamic behavior, limited
to isotropic auxetic viscoelastic solids, focusing on the relation-
ships between dynamic bulk and shear storage moduli, Poisson’s
ratio, and energy dissipation characteristics. Building on
Pritz’s work from 2007[82] and 2009,[87] we confirmed that the
bulk-to-shear loss factor ratio can be effectively predicted for
auxetic materials using modified assumptions of Equation (17).
Our findings show that the bulk loss factor dominates over the
shear loss factor when the exponent n in the equation is a positive
odd integer, and we established the bound limits for auxetic
materials.

We extended existing theories by demonstrating that the
relationships linking the bulk and shear moduli to Poisson’s
ratio remain valid in the negative Poisson’s ratio range.
Specifically, we analyzed how these relationships influence
energy dissipation through Poisson to shear loss factor ratios
and bulk-to-shear loss factor ratios, including their bound
limits. The analysis within the auxetic range, limited to isotropic
viscoelastic materials, is valid as long as the following five key
assumptions were satisfied: the solid material is homogeneous
and isotropic, its dynamic behavior is linear, the dynamic
Poisson’s ratio is positive, the shear damping is low (ηG < 0.3),
and the ratio of the bulk loss factor to the shear loss factor follows
a power law relationship with the dynamic Poisson’s ratio, as
described in Equation (7).

Future research should extend Pritz and Tschoegl’s work to
accommodate orthotropic or anisotropic auxetic viscoelastic
materials. Experimental data across a wider range of materials
are needed to validate and refine these predictive models.
Insights would benefit applications in defense, sports, and
devices experiencing dynamic nonlinear vibrations, where
enhanced damping and energy absorption properties are
crucial.
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J. N. Grima-Cornish, M. R. Dudek, Materials 2021, 14, 7837.
[17] J. W. Narojczyk, M. Bilski, J. N. Grima, P. Kędziora, D. Morozow,

M. Rucki, K. W. Wojciechowski, Materials 2022, 15, 1134.
[18] K. V. Tretiakov, K. W. Wojciechowski, Phys. Status Solidi B 2005, 242,

730.
[19] R. Lakes, Nature 2001, 410, 565.
[20] G. Hartwig, in Nonmetallic Materials and Composites at Low

Temperatures, Springer US, Boston 1979.
[21] J. Grima, P. S. Farrugia, R. Gatt, V. Zammit, J. Phys. Soc. Jpn. 2007, 76,

025001.
[22] J. Grima, R. Gatt, V. Zammi, R. Cauchi, in Industrial Applications of

Molecular Simulations, Vol. 1, CRC Press, Boca Raton 2012.
[23] Z. F. Sang, Z. Y. Li, Phys. Lett. 2005, 334, 422.
[24] R. Lakes, K. W. Wojciechowski, Phys. Status Solidi B 2008, 245, 545.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2025, 2400512 2400512 (8 of 9) © 2025 The Author(s). physica status solidi (b) basic solid state physics
published by Wiley-VCH GmbH

 15213951, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pssb.202400512 by U

niversity O
f E

xeter, W
iley O

nline L
ibrary on [13/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.pss-b.com


[25] T. Strek, B. Maruszewski, J. W. Narojczyk, K. W. Wojciechowski,
J. Non-Cryst. Solids 2008, 354, 4475.
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