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The marine environment is increasingly subject to changes driven by anthropogenic stressors which may alter species’ key behav-
iors and impact phenotypic plasticity. Such stressors rarely occur in isolation, yet our understanding of how simultaneous stresses 
affect marine organisms is limited. Here, we study the combined impacts of a major global stressor, temperature increase, and a 
local stressor, anthropogenic noise, upon key defensive traits of the shore crab, Carcinus maenas. We tested the color change and 
behavioral responses of crabs in relatively colder and warmer water, and in the presence of natural ambient or ship noise. Using 
image analysis and a model of predator vision, we demonstrate that crabs change color, and improve camouflage, fastest in warmer 
water in the absence of anthropogenic noise. When anthropogenic noise was present, it adversely impacted crab color change and 
camouflage, to the extent that the accelerated change due to temperature was negated. In addition, anthropogenic noise affected 
C. maenas’ behavior, reducing the likelihood and increasing the latency of antipredator response to stimuli. This reveals an inter-
action between the 2 stressors, with the combination of temperature and noise eliciting different biological responses compared 
with the effects of each stressor in isolation. Our study demonstrates how such interactions between anthropogenic stressors may 
impact marine life.
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Introduction
Marine species are increasingly subject to complex environ-
mental changes wrought by exposure to multiple stressors, often 
anthropogenic in source (Halpern et al. 2008). The effects of such 
stressors upon organisms may be impacted by biological and en-
vironmental factors, such as the trophic level of species, their 
life-history stage, morphology, distributional range, and habitat 
heterogeneity, making them difficult to predict (Parmesan 2007; 
Sunday et al. 2015). Due to the ever-growing range of anthropo-
genic sources of stress on the natural environment, and the dif-
ficult task of accurately monitoring marine species’ responses, 
particularly in situ, large gaps remain in our knowledge of the 
impacts of multiple stressors. This could give rise to serious cause 
for conservation concern, especially where interactions between 
stressors cause unpredictable consequences and so-called “eco-
logical surprises” (Paine et al. 1998).

Generally, stressor interactions may be classified into one of 
3 groups: synergistic, additive, or antagonistic. The combined ef-
fect of 2 stressors on an organism may be equal to (additive), 
less than (antagonistic), or several magnitudes greater than 
(synergistic) the sum of their individual effects (Folt et al. 1999; 
Crain et al. 2008; Côté et al. 2016). In all scenarios, failure to 
consider stressor interactions may lead to misguided conclu-
sions and ineffective subsequent management actions. For ex-
ample, coral health may be affected by turbidity, UV exposure, 
water temperature, and fishing activity. Corals experiencing 

increased turbidity may have higher rates of disease (Pollock 
et al. 2014), yet when facing high UV exposure, increased tur-
bidity protects corals from the harshest UV conditions, redu-
cing rates of bleaching. As such, managing this stressor could 
lead to overall decline of coral health (Anthony et al. 2007). In 
terrestrial environments, lack of consideration of stressor inter-
action may lead to inaccurate estimates of population declines 
(Didham et al. 2007), poor biodiversity policy planning (Brook et 
al. 2008), or unreliable predictions (Hanson et al. 2005). This is 
particularly true with combinations of local stressors (stressors 
affecting a limited range from their source) and global stressors 
(stressors with global causes such as climate change), where it is 
often most feasible and practical to manage local stressors but 
this may have adverse net impacts if interactions with global 
stressors are not fully considered. In all cases, stressor inter-
action directly impacts management outcomes (Brown et al. 
2013; Crain et al. 2008).

Sea surface temperature is a global stressor, driven by 
increasing and unprecedented rates of climate change and 
leading to alterations in species behavior and physiology (Halpern 
et al. 2015). Increases in temperature have been linked to higher 
susceptibility to disease (Shish and Ducklow 1994), shifts in spe-
cies range (Helmuth et al. 2006), and altered growth and timing of 
reproductive events, potentially leading to temporal mismatches 
between predators and prey (Lawrence and Soame 2004). 
Organisms in intertidal zones may be particularly vulnerable to 
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extreme impacts related to climate change since, although they 
have evolved to cope with a challenging environment, they may 
already be close to their physiological limits in dealing with en-
vironments that fluctuate greatly in temperature, light, salinity, 
and community ecology (Hewitt et al. 2016). Impacts of tempera-
ture may not always be unequivocally positive or negative. In fact, 
whether species respond to raised temperatures with stress may 
vary according to additional factors, including seasonality, com-
munity co-tolerance to other stressors, microhabitats (e.g. high 
versus low shore species in intertidal inhabitants), or acclimation 
period. Positive effects may occur with increasing temperature 
until a thermal threshold is reached, after which stress is exhib-
ited (Brown et al. 2013). Due to this, and conforming to the def-
inition of a stressor as a factor altered outside of a natural range 
by human activity, we refer to rising temperature as a stressor 
throughout this paper.

Noise pollution represents a pervasive local stressor in both ter-
restrial and marine environments, with sound from commercial 
shipping having wide ranging, chronic, impacts upon even spe-
cies relatively isolated from coastal urbanization (Slabbekoorn et 
al. 2010). Shipping noise has caused a global rise in ocean sound 
levels of 1 to 2 dB every year (Ross 2005) and often produces low-
frequency sounds that overlap with the auditory detection ranges 
of a plethora of marine species (Popper et al. 2001; Hughes et al. 
2014; Radford et al. 2022). In invertebrates, ship noise has been as-
sociated with increased stress, reduced reproductive success, and 
altered growth and foraging behaviors, color change and camou-
flage, and mating behavior, resulting in potentially severe impacts 
(Chan et al. 2010; Wale et al. 2013a, b; Nedelec et al. 2017; Carter 
et al. 2020; Rising et al. 2022).

One invertebrate that has been increasingly studied with re-
gards to impacts of noise pollution is the shore crab, Carcinus 
maenas. This intertidal species is native to European coasts, and 
highly invasive in many other locations. Juvenile shore crabs are 
extremely variable in carapace coloration and patterning, and 
demonstrate the ability, when transplanted onto different sub-
strates, to alter their appearance to achieve a better match to the 
background (Stevens et al. 2014a, b; Carter et al. 2020). Exposure 
to anthropogenic noise pollution has been demonstrated to re-
sult in both physiological and behavioral alterations in adult C. 
maenas. When exposed to playback of ship noise, shore crabs in-
creased their oxygen consumption, indicative of a higher meta-
bolic rate and increased cardiovascular activity, and suggestive 
of stress (Wale et al. 2013). In addition, adult shore crabs dis-
play reduced foraging rates, impaired response to a simulated 
predatory attack, and take longer to retreat to shelter under ship 
noise than ambient noise conditions (Wale et al. 2013). Juvenile 
C. maenas have also been shown to respond slower to predatory 
threat under conditions of noise pollution (Hewitt et al. 2016). 
Furthermore, crabs exposed to ship noise had significantly re-
duced levels of color change, and poorer camouflage after several 
weeks compared even to crabs that changed color under ambient 
noise played at the same intensity (Carter et al. 2020). In the same 
study, crabs also molted less often and had reduced size changes 
per molt under ship noise than ambient noise (Carter et al. 2020). 
Furthermore, recent work has shown that male shore crabs dem-
onstrate reduced mating behavior toward dummy crabs soaked 
with female pheromones when in the presence of ship noise 
versus ambient noise (Rising et al. 2022).

C. maenas’ success as an invasive species has previously been 
linked in part to its wide thermal tolerance range (Kelley et al. 
2015), and previous studies have aimed to quantify impacts of 
temperature changes on shore crabs. Larval development occurs 

between 10 °C and 23 °C, with an adult thermal tolerance range 
encompassing 0 °C to 30 °C across the species’ full geographic 
range, with different populations acclimated to higher or lower 
temperatures (Compton et al. 2010; Kelley et al. 2013, 2015). At 
temperatures higher than its typical local range, C. maenas ex-
hibits a stress response, with altered oxidative defense, cellular 
respiration, and phosphorylation (Rodrigues et al. 2015). This may 
depend on specific environments inhabited by populations of 
crabs, with 25 °C close to the thermal limit of crabs in their na-
tive range (Tepolt and Somero 2014; Nancollas and McGaw 2021). 
Studies into impacts of temperature on camouflage ability have 
demonstrated that the rate of crab brightness change (and subse-
quent camouflage ability) increases with increased temperature 
(Powell 1962; Mynott 2019). However, the efficacy of this may be 
affected at higher temperatures, for example, at 25 °C, crabs on 
light substrates did not change brightness to match their back-
ground (Mynott 2019), and at 30 °C white pigment dispersed re-
gardless of background color (potentially due to an attempted 
albedo effect) (Powell 1962). These studies were also relatively 
short term (a few weeks maximum) and additional thermal stress 
(or acclimation) may occur over longer periods.

Here, we study the interaction between these 2 commonly 
occurring stressors, one local and one global: temperature change 
and noise pollution. We present their combined impact on key 
defensive behaviors of juvenile shore crabs. Using a factorial ex-
periment in a laboratory setting, we test how appearance change, 
growth, and behavior is impacted by the individual and combined 
effects of ship noise and raised temperatures, and whether the 
stressors act additively, antagonistically, or synergistically. Our 
study presents the first exploration of the impacts of a com-
bination of local and global stressors upon the camouflage and 
antipredator behavior of an intertidal crustacean.

Methods
Juvenile Carcinus maenas were collected from mudflats alongside 
the tidal Penryn River creek, Penryn, UK (50.168944, −5.097639) 
at low tide, between February and October 2019, and transported 
back to the University of Exeter’s Penryn Campus, Cornwall, UK, 
where all experiments were carried out. Carcinus maenas is not a 
protected species in the United Kingdom and all work was carried 
out in accordance with the University of Exeter’s Ethics policy (ap-
plication no. ECORN001803). Crabs were held in glass aquarium 
tanks filled with dechlorinated saltwater mixed to a salinity of 
between 30 and 35 ppt (Aquarium Systems Instant Ocean Salt, 
Instant Ocean, Blacksburg, Virginia), with filters and temperature 
controlled by chilling units. Initial tank temperatures were main-
tained at 14 ± 1 °C. Tanks were illuminated by 2 aquarium lights 
(TMC Grobeam, Aquaray)—one UV and one natural white light, 
on a 12:12 cycle. Individual crabs were housed within holding 
tanks, in individual black PVC housing units with fine grade 2 mm 
mesh on the base and top, allowing water flow and noise trans-
mission. Crabs were initially kept on black aquarium gravel to 
mimic the dark substrates of the collection location.

Control treatments were based on previous similar experi-
ments (Mynott 2019; Carter et al. 2020), with 14 ± 1 °C considered 
the control temperature, and 24 ± 1 °C the raised, experimental 
treatment, while Ambient noise playback was considered the 
control treatment, and Ship noise playback the experimental, 
giving rise to 4 conditions: (1) “Cold-Ship,” (2) “Hot-Ship,” (3) “Cold-
Ambient,” and (4) “Hot-Ambient.” Total sample sizes for each 
treatment were the following: Hot-Ship: n = 50, Cold-Ship: n = 64, 
Hot-Ambient: n = 52, and Cold-Ambient: n = 56. Both experiments 
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used the same group of crabs and thus the same sample sizes. All 
crabs were held for 1 wk to acclimatize, and while the tempera-
ture in the “hot” treatments was raised, prior to the start of the 
experiment. A low temperature of 14 °C was chosen to resemble 
a yearly average temperature at the collection region, and a high 
temperature that was at the upper end of temperatures experi-
enced by crabs naturally.

For the sound treatments, recordings taken at UK ports were 
provided by (Wale et al. 2013a, b) of ambient background noise 
and the sounds of a ship passing at an approximate distance of 
200 m (SOM). The 6 recorded tracks were individually modified 
in Audacity(R) to play at a comparable amplitude. Throughout 
the ambient treatments, ambient soundtracks played continu-
ously, in an unpredictable order, while ship noise treatments con-
sisted of this same ambient noise playback, with the addition of 
a ship noise track played once every hour, again in an irregular 
order. Sound playback occurred through a UW30 underwater 
speaker (University Sound Diatran Omni-directional Underwater 
Loudspeaker, 100 to 10,000 Hz), suspended above the center of 
the tank, using MP3 players (RUIZU X02 MP3 Player, 8GB) con-
nected via an amplifier (Kemo Electronic; 18W; frequency re-
sponse: 40 to 20,000Hz). Spectral quality of sound playback was 
assessed using recordings of in-tank sound levels. Soundtracks 
were standardized among treatments. Although we do not have 
calibrated sound measurements for in-tank playback, calibrated 
information for the original recordings is available (Wale et al. 
2013b). Furthermore, we note that previous studies have demon-
strated that negative responses to ship noise are exhibited across 
different amplitudes (Carter et al. 2020), and that actual in situ 
noise levels will vary in the wild owing to different ship types, 
passing distances, and additional environmental factors.

Experiment 1: Camouflage and stressor 
interaction
Photography and Image analysis
To monitor change in crab carapace appearance under the 4 
treatments, crabs were photographed for the first time following 
the 1-wk settling period (“starting appearance”), during which 
they were held on dark substrates. At the start of the experi-
ment, crabs were placed in individual white PVC housing units 
(as above) lined with 15 mm depth of white gravel substrate. 
At this point, sound treatments commenced. For their final ap-
pearance, we photographed crabs after 6 wk. Crabs were photo-
graphed alongside a 93% and a 7% photographic reflectance 
standard (Spectralon, Labsphere), and photographs were taken 
using both a UV band-pass filter (Baader U filter, 300 to 400 nm) 
and a human visible filter (Baader UV/IR filter, 400 to 700 nm). 
Photographs of the white substrate were also taken, to be ana-
lyzed for background luminance. Image analysis was carried out 
in Image J (version 1.52k, National Institute of Health, NIH), using 
the MICA toolbox plug-in (version 1.22, Troscianko and Stevens 
2015). UV and human visible images were aligned, linearized, and 
normalized with regards to the reflectance standards (Stevens et 
al. 2007; Troscianko and Stevens 2015).

To understand how changes in carapace luminance (perceived 
lightness) may correspond to real world camouflage against pred-
ators, images were analyzed with respect to an avian predator 
vision model (Peafowl, Pavo christatus). P. christatus has a violet 
shifted visual system (Violet Sensitive, VS) capable of perceiving 
UV light (Hart 2002; Ödeen and Håstad 2003), and provides an 
ecologically relevant visual system model, comparable to many 
avian potential predators of juvenile shore crabs (Crothers 1968). 

Multispectral images were analyzed using the Batch Multispectral 
Image Analysis function in the MICA toolbox, employing a highly 
accurate polynomial mapping technique (Stevens et al. 2007; Pike 
2011; Troscianko and Stevens 2015) to convert the images to pea-
fowl luminance values based on predicted double cone values. 
Background matching was quantified as the absolute difference 
between crab carapace luminance and substrate luminance 
value (Stevens et al. 2014).

Crab growth was monitored throughout the experiment, with 
crab weight, carapace width, and molting being recorded. Size 
and weight data were collected during the photography process 
every 2 wk, to minimize unnecessary stress.

Statistical analyses
Data were analyzed with GLMs (RStudio version 1.2.5042, 
RStudio, Inc.) using the Gamma family (for luminance, back-
ground matching, carapace width, and weight), and the bino-
mial family (for molt data). Data were evaluated for normality 
using the Shapiro-Wilk test (Shapiro and Wilk, 1965), as well as 
by visual inspection of plots, and background match data were 
transformed (square root transformation), in order to meet the 
assumptions of a Gamma GLM. A maximal model was initially 
generated, including temperature, noise, and their interaction, as 
well as week, crab size (carapace width and weight), and molt be-
havior (molt- yes/no; number of molts). Following this, candidate 
models were generated and evaluated using AIC to determine 
minimum adequate model, where lower AIC values corresponded 
with models with the greatest statistical support (Burnham and 
Anderson 2004). Model comparison was used to calculate signifi-
cance of key terms, using χ2 analysis of variance.

Post-hoc testing was carried out using the lsmeans package 
(Lenth 2016) , with P-values adjusted according to the Tukey 
method for comparing a family of 4 estimates.

A Kruskal–Wallis test (Kruskal and Wallis 1952) was used to 
assess differences in carapace luminance, crab weight, or cara-
pace width, between Hot and Cold treatment groups, at Week 0 
of the color change experiment (following the acclimation week, 
and before noise treatments commenced). This test was chosen 
to compare the 2 groups as the data were non-parametric.

Experiment 2: Impact of stressor interaction on 
antipredator response
Retreat from a simulated predatory event
Following the 6-wk color change experiment (described above), 
all crabs remained in their holding tanks at their acclimated tem-
peratures (14 °C or 24 °C) to be studied in a series of behavioral 
trials to measure their antipredator responses under the different 
treatment conditions. On the conclusion of behavioral trials, all 
crabs were released to their original collection location.

To measure responses to a simulated predatory event under 
combined noise and temperature treatments, crabs were moni-
tored in a behavioral trial informed by the work of Wale et al. 
(2013a, b)and Carter et al. (2020). To create a trial arena, holding 
tanks were divided in 2 portions—a larger holding area (measuring 
two thirds of total tank volume) and a smaller trial portion 
(one third), with the division sound-proofed using a fitted poly-
styrene dividing wall lined with bubble wrap. A gray plastic tray 
(100 × 300 × 440 mm) was fitted in the trial portion of the tank as 
a trial arena. Noise treatment playback followed the protocol for 
experiment 1, and sound recordings (see above) confirmed that 
trial soundtracks were not detectable within the holding portion 
of the tank at any point throughout the trials. The trial arena was 
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lined with a fine layer of mixed sand (< 3 mm depth to prevent 
burial) and 2 rocks were arranged as a shelter (measuring ap-
proximately 50 × 80 × 180 mm) in the far-right corner of the tray. 
All crabs were exposed to one trial under ship noise and one trial 
under ambient noise (see above), with a 5-min break in between 
trials. Presentation order and specific track played were alter-
nated between groups of crabs, with approximately half of crabs 
presented with ship noise first and the other with ambient noise 
first. Crabs were placed in the center of the experimental arena 
inside a 60 × 60 × 60 mm white PVC ring, where they were al-
lowed to acclimate for 1 min. After 15 s, the noise treatment was 
started. After 1 min had elapsed, the holding ring was removed, 
releasing the crab. Ten seconds after release, a metal dowel rod 
was plunged into the water three times (once per second, in the 
center of the arena), to simulate a predatory attack. The time 
taken for the crab to respond by retreating to the rock shelter 
was recorded, with retreat having taken place when the crab had 
successfully hidden at least half of its body (carapace and legs) 
underneath the shelter (Wale et al. 2013b; Radford et al. 2022).

Statistical analyses
Following the method described above, GLMs were used to ana-
lyze antipredator data. The initial maximal model for antipredator 
response initially included temperature, noise, and their inter-

action, as well as an interaction between these treatments and 
prior noise exposure, to investigate potential acclimation to ship 
noise. Candidate models were selected as above, and post hoc 
testing carried out using the lsmeans package.

Results
Experiment 1: Impact of stressor interaction on 
camouflage and growth
Background matching (the discrepancy between crab and sub-
strate luminance) was significantly improved in all groups at week 
6 compared with week 0 (glm(SQRT): χ2

1,432 = 0.096, P = <0.001).
Noise and temperature treatments interacted to influence 

background match of crabs at the end of the experimental period 
(χ2

1,430 = 0.004, P = 0.03), Figure 1b). Crabs held at 24 °C and experi-
encing ambient noise playback exhibited faster rates of lumi-
nance change, and a better subsequent background match than 
those experiencing ambient noise at 14 °C (t = 3.23, P = 0.007, 
Figure 1a,c). However, those crabs experiencing ship noise did 
not show improved background match when exposed to warm 
temperatures, with no difference when comparing Hot-Ship and 
Cold-Ship groups (t = − 0.001, P = 0.999).

Crabs grew fastest and attained a greater overall size at 6 wk 
under Hot treatment groups, regardless of noise treatment. 
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As expected, crab molting significantly impacted luminance 
change (molt y/n χ2

1,432 = 1.07, P = 0.052; molt no. χ2
1,432 = 3.29, P 

= <0.001).
There was a small but significant difference in the starting lu-

minance of crabs, which was first recorded following the 1-wk ac-
climation period, with a higher mean luminance of Hot treatment 
crabs (Kruskal Wallace; χ2

1 (1) = 6.28, P = 0.01) (see SOM).

Experiment 2: Impact of stressor interaction on 
antipredator response
Crabs exposed to ship noise were less likely to respond to a 
simulated predatory attack by retreating to shelter than those 
exposed to ambient noise ((glm χ2

1,291 = 4.45, P = 0.035), Figure 
2a). Of those crabs that responded to simulated predatory at-
tack, time to retreat was significantly impacted by the inter-
action between temperature and noise treatment ((χ2

2,118 = 10.3, 
P = 0.002), Figure 2b). Crabs exposed to the combination of cold 
temperatures and ambient noise responded slower than crabs 
exposed to hot temperatures and ambient noise (t = −2.73, 
P = 0.036).

Discussion
We present the first exploration of the impacts of a combination of 
local and global stressors upon the camouflage and antipredator 
behavior of a crustacean. We reveal an interaction between warm 
temperatures and noise pollution on the camouflage ability of the 
shore crab Carcinus maenas and demonstrate that these combined 
stressors also affect the speed and likelihood of response to simu-
lated predatory events.

Crabs in all treatment groups improved their background 
match to experimental substrates, with respect to an avian 
predatory model. However, the rate and magnitude of this 
ability was impacted by the thermal and auditory stressors. 
As expected, those crabs experiencing 24 °C temperatures 
with ambient noise playback exhibited the highest rates of 
luminance change and achieved better overall levels of back-

ground match than crabs in any of the other three treatments. 
Meanwhile crabs exposed to ship noise pollution, regardless of 
temperature, exhibited lower rates of luminance change and 
poorer overall background matching at the end of the 6-wk 
experimental period than those experiencing ambient sounds 
played at the same intensity under warm temperatures. Our 
results represent a potential antagonistic interaction between 
the 2 stressors, with anthropogenic ship noise overriding im-
pacts of temperature when applied in combination in this case, 
although it is difficult to draw conclusions about the strength 
of this interaction without further testing of treatments at dif-
ferent magnitudes.

The significant reduction in rate and efficacy of background 
match in ship noise treatment groups seen here may result in 
severe fitness consequences for juvenile shore crabs. Increased 
predation rates and reduced survival have been recorded in in-
dividuals poorly matched to their backgrounds, including snow-
shoe hares, isopods, and chameleon prawns, and it has been 
suggested that such effects could lead to population level de-
clines without rapid adaptation (Hultgren and Mittlestaedt 2015; 
Zimova et al. 2016, Mynott 2019). Camouflage mismatch may be 
perceived differently by predators with differing visual systems. 
Here, we use an avian visual model to analyze luminance change 
perceptible to a common crab predator. Further studies could in-
corporate a wider range of visual systems to gain an in depth 
understanding of how such mismatches may impact species in 
the wild.

In accordance with findings from previous studies (Wale et 
al. 2013a; Carter et al. 2020) those crabs experiencing ship noise 
playback were less likely to retreat from a simulated predatory 
attack than those exposed to ambient playback at the same 
amplitude. However, retreat times of crabs that did respond 
were slowest in Cold-Ambient treatment groups, suggesting that 
higher temperatures have the potential to decrease response la-
tency.

Although adult and larval thermal tolerance of C. maenas has 
been recorded (Kelley et al. 2013), studies specifically focused on 
the thermal tolerance ranges of settling juveniles have not been 
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performed. However, previous work has suggested that 15 °C to 
20 °C is the optimum range for background matching in this life 
stage (Mynott 2019). In past studies, crabs matched their sub-
strate best at 20 °C on both dark and light substrates but color 
change on white broke down at 25 °C, potentially due to thermal 
stress (Mynott 2019). Powell (1962) also observed impaired match 
of crabs held on dark substrates at 30 °C. Here, we did not find 
a break down in color change at 24 °C under ambient noise, but 
crabs changed more slowly when in the presence of ship noise. 
Noise pollution has been associated with stress in crustaceans 
(e.g. Wale et al. 2013a). Given that chromatophore function is con-
trolled endocrinologically, changes to the endocrine response in 
crabs exposed to ship noise treatments, and resultant alterations 
to hormone regulation, could be responsible for the lower rates 
and efficacy of background match in crabs in these treatments 
(Fingerman 1970; Duarte et al. 2017; Carter et al. 2020). The mag-
nitude of this response to noise pollution appears to be suffi-
cient to negate the improvement in camouflage brought about by 
warm temperatures alone. This occurs at temperatures that are 
just above the current upper limit of summer open water tem-
peratures locally (19 to 21 °C) but within the range reached in 
isolated rock pools at low tide.

As a species with a wide thermal tolerance range, it is possible 
that C. maenas will be less sensitive to thermal stress than spe-
cies of crab with narrower limits, or poorer ability to acclimate to 
changing temperatures (Stillman 2003). However, wide thermal 
ranges are relatively common across intertidal species of crab 
due to regularly fluctuating temperatures in rocky shore envir-
onments (Stillman and Somero 1998, Stillman 2002). It may be 
possible therefore to extrapolate the results here to other species 
with similar known thermal limits. Although auditory percep-
tion and detection mechanisms are less well understood among 
crustaceans (Popper et al. 2001), and frequency ranges of specific 
species vary, crustaceans are generally most sensitive to low fre-
quencies (Radford et al. 2022). It may therefore be expected that 
boat noise falls within auditory detection thresholds of many 
crustacean species, although exact responses may be hard to pre-
dict due to differing sensitivities between species.

Crab growth rate, overall weight, and carapace width were 
highest under raised temperature treatments by the end of the 
6-wk experimental period, with no impact of noise treatment. The 
lack of impact of noise on growth rates could indicate that the 
mechanisms negatively impacted by ship noise when considering 
chromatophore function are not vital for organism growth. This 
may point toward an endocrinological impact of noise pollution, 
as opposed to simply the alteration of metabolic rate (Fuhrmann 
et al. 2011). Alternatively, prioritization of resource allocation 
to growth over camouflage may have occurred, demonstrating 
a potential plasticity in life-history traits under stress. This re-
sponse has been widely recorded in organisms exposed to stress, 
for example, the fall armyworm (Spodoptera frugiperda) may alter 
allocation energy to reproduction or growth under stressful tem-
perature conditions, showing a plasticity of life history strategy 
(Wu et al. 2022). This ability could have several advantages for 
juvenile organisms across taxa, not least in shortening gener-
ation times, intraspecific competition, foraging ability, and de-
velopment of more robust morphological antipredator defenses. 
Future studies exploring the potential for this rapid plasticity 
would be valuable, particularly in light of the shore crab’s global 
impact as an invasive species (Ens et al. 2022). Comparisons of 
shore crab populations in different habitat types (estuarine, rocky 
shore, subtidal) with regards to their response to stress would 
provide more detailed insight into their resilience in the face of 

habitat change. This would also be useful given that crabs from 
different habitats can vary in coloration, camouflage type, and 
variability (Stevens et al. 2014; Price et al. 2019), and such individ-
uals may respond differently to stressors.

Maladaptive responses to stressor exposure are particularly 
concerning when they affect behaviors key to survival. The re-
duced ability of crabs to respond appropriately to predators in the 
presence of ship noise could result in mortality and has now been 
demonstrated across multiple studies (Wale et al. 2013a; Radford 
et al. 2022) and in a range of other species (Siemers and Schaub 
2010; Bruintjes and Radford 2013; Simpson et al. 2015, 2016a,b). It 
has been posited that the physical qualities of ship noise in com-
parison with natural sounds distract attention from antipredator 
vigilance behaviors, which reduces capacity for predator detec-
tion (Chan et al. 2010; Wale et al. 2013a, b; Carter et al. 2020), 
and they could also result in the favoring of vital noise avoidance 
behaviors to preserve sensory systems. Of those crabs that did 
respond, Cold-Ambient treatment crabs retreated significantly 
slower than any other treatment group. It is possible that crabs 
that did detect and respond to the predator were more stressed 
by ship noise, and so responded faster than those crabs experi-
encing only ambient noise. Furthermore, lower temperatures 
are commonly associated with slower movement and reduced 
metabolic rates in crustaceans (Weinstein 1998), and as such this 
could have served to increase response latency. Unpredictable 
consequences of stressor combinations like this demonstrate the 
need for future studies to further explore cross-modal impacts of 
multiple stressors.

Increased stress resultant from noise pollution may incur 
a metabolic cost, and therefore available energy for flight re-
sponse may be reduced (Wale et al. 2013a; Simpson et al. 2015; 
Ruiz-Ruiz et al. 2020). Higher metabolic rates in crabs experien-
cing raised temperatures may prompt increased energy demands 
and foraging necessity, meaning that the trade-off between re-
maining in the open and the possibility of being attacked is more 
heavily weighted in favor of foraging opportunity (Wallace 1972). 
Resource allocation in the trade-off between foraging and preda-
tion risk has been well studied, and stress may alter this relation-
ship (McNamara and Buchanan 2005). For example, plasticity in 
this allocation has been demonstrated in marine intertidal snails 
in response to changes in temperature (Miller et al. 2014). This 
motivation is, however, difficult to extrapolate from our study. 
Although some crabs were observed to be sifting the substrate 
in search of food, no food was provided, and is unclear whether 
crabs given the opportunity to forage successfully within the 
trial period would have prioritized this over predation likelihood 
or not. Mud crabs demonstrate reduced foraging activity during 
playback of predator sounds and respond more strongly to audi-
tory predator cues than to chemical predator cues (Hughes et 
al. 2014). If this dominant role of auditory predator detection is 
shared by shore crabs then masking of these cues by ship noise 
could be even more detrimental to crab survival.

Behavioral plasticity in response to stress has been demon-
strated in many single stressor studies. For example, whales alter 
their call amplitude in response to masking by ship noise (Parks 
et al. 2007, 2011), while long-term exposure to adverse condi-
tions may prompt irreversible shifts in species range. This is a 
behavior particularly evident in the face of climate change, with 
global distributions of marine species shifting by ever larger in-
crements (Mieszkowska et al. 2006; Sorte et al. 2010; Wallingford 
et al. 2020). Stressor interaction may complicate these responses 
and make behaviors more difficult to predict, and to manage. 
In scenarios where multiple stressors have an antagonistic  
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effect, the removal of one stressor may in fact worsen the overall 
impacts of environmental change on an ecosystem (Côté and 
Darling 2010). For example, sedimentation is known to reduce 
coral survival, however, in conditions of extreme UV exposure, 
increased sedimentation may block harmful impacts of UV and 
prevent coral bleaching. Therefore, management of sedimenta-
tion may result in a net negative impact on coral reefs compared 
with no management (Anthony et al. 2007; Brown et al. 2013). It 
is also possible that changes in temperature may directly link 
to other changes in the visual environment itself. For example, 
higher temperatures may impact seaweed growth and survival 
(Harley et al. 2012), changing the visual environment and hence 
camouflage efficacy.

Contemporary studies are increasingly examining the ef-
fects of multiple stressor interactions on study species, with 
the realization that species in natural environments are subject 
to stressors that vary in source, as well as spatially and tem-
porally. This study is one of the few of its kind to combine both 
a local and a global stressor to test their interaction. Future 
stressor interaction studies should continue to combine local 
and global stressors and seek to study their potential impact on 
behaviors not directly related to the stressors in question. In an 
ever-changing world, where anthropogenic drivers of environ-
mental change are fluctuating and complex, ecologically rele-
vant study of stressor interaction and cross-modal impacts is 
crucial.
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