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Abstract

This chapter sketches the fundamentals of asymptotic distribution theory, and applies
these speci�cally to questions relating to weak convergence on function spaces. These results
have important applications in the analysis of nonstationary time series models. A simple
case of the functional central limit theorem for processes with independent increments is
stated and proved, after detailing the necessary results relating to the topology of spaces
of functions and of probability measures. The concepts of weak convergence, tightness and
stochastic equicontinuity, and their roles in the derivation of functional central limit theorems,
are de�ned and reviewed. It is also shown how to extend the analysis to the vector case,
and to various functionals of Brownian motion arising in nonstationary regression theory.
The analysis is then widened to consider the problem of dependent increments, contrasting
linear and nonparametric representations of dependence. The properties of Brownian motion
and related Gaussian processes are examined, including variance-transformed processes, the
Ornstein-Uhlenbeck process and fractional Brownian motion. Next, the case of functionals
whose limits are characterized stochastic integrals is considered. This theory is essential to
(for example) the analysis of multiple regression in integrated processes. The derivation of the
Itô integral is summarized, followed by application to the weak convergence of covariances.
The �nal section of the chapter considers increment distributions with in�nite variance, and
shows how weak convergence to a Lévy process generalizes the usual case of the FCLT, having
a Gaussian limit.
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1 Naïve Distribution Theory

We begin this chapter with a brief explanation of why its subject matter is important to econo-
metricians. To make inferences about econometric models and their parameters, something must
be known about the distributions of estimates and test statistics. What range will these random
variables typically fall into when a certain hypothesis is true? How far outside this range should
the statistic fall, before the chance of its realization is so small that we should conclude that the
hypothesis is false?

At the elementary level, these di¢ cult questions are often handled by postulating an idealized
and simpli�ed world satisfying the assumptions of the Classical Regression Model (CRM). In the
CRM world, all the observed economic variables except one (the dependent variable) can be
treated as �xed. That is to say, more precisely, ��xed in repeated samples�. For illustration,
consider the regression model

y =X� + u (1.1)

Were we to have the opportunity to observe this phenomenon (the pair y;X) repeatedly, the
variablesX should assume the same sample values in successive drawings, and only the dependent
variable y should vary. In addition, it is usually assumed that the dependent variable is normally
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and independently distributed with �xed variance, as y � N(X�; �2I). It would then follow that
the least squares estimator �̂ = (X 0X)�1X 0y has the property

�̂ � N(�; �2(X 0X)�1)

and the regression �t ratios�and �F statistics�would exactly follow the Student�s t and F distrib-
utions when the null hypotheses are true. Our questions are then simply answered with reference
to the t and F tables.

Popular as it is, this justi�cation of inference procedures is, of course, dishonest. In economics
(an essentially non-experimental discipline), cases in which a repeated sampling exercise will
throw up the same pattern of explanatory variables are almost unheard of. When a new sample
of �rms or households is drawn, all the variables are randomly replaced, not just the dependent.
However, notwithstanding that the CRM world is a �ction, the theory still yields generally valid
results provided two assumptions hold. First, the sample observations must be independently
distributed. Second, it is required that ujX � N(0; �2I), where ujX denotes the conditional
distribution of u, holding X �xed. It is sometimes thought that all is required is for ut to be
serially independent, implying no more than a notion of correct speci�cation, but this is incorrect.
The rows of X also need to be independent of each other, a condition virtually never attained
in time series data. In time series it is rarely possible to assume that xt+j for j > 0 does not
depend on ut, a shock preceding it in time, and this would invalidate the conditioning exercise.

If the sample were truly independent, as in a randomly drawn cross-section for example,
conditioning u on X is merely equivalent to conditioning ut on xt for each t = 1; : : : ; T (T
denoting sample size). In this case, while the CRM does not hold and �̂ is not normally distributed
(unconditionally), it is still the case that �̂jX is normal. The t and F statistics for the regression
follow the t and F distributions exactly, since their conditional distributions are free of dependence
on X, and hence equivalent to their unconditional distributions. We may �act as if�the CRM
assumptions hold. However, when either the conditional normality assumption fails, or the sample
is in any way dependent (both conditions endemic in econometric data sets), the only recourse
available is to large-sample (asymptotic) approximations.

2 Asymptotic Theory

The asymptotic approach to econometric inference is to derive approximate distributions under
weaker assumptions than in the CRM setup, where the approximation improves with sample size.
These arguments invoke a collection of theorems on stochastic convergence. In this section the
scene is set with a brief resume of the fundamental ideas, starting with the axiomatic probability
model. For further reading on these topics, see for example Davidson (1994). Another accessible
text aimed at nonspecialists is Pollard (2002).

The standard representation of a probability space (a mathematical model of a random exper-
iment) is the triple (
;F ; P ), where 
 is the sample space (the collection of all random objects
under consideration), F is a �-�eld, being the collection of random events (subsets of 
) to which
probabilities are to be assigned, and P is the probability measure, such that P (A) 2 [0; 1] is the
probability of the event A, for each A 2 F . Recall that a �-�eld is a class of subsets of 
 having
the properties

(a) 
 2 F :

(b) if A 2 F then Ac 2 F where Ac = 
�A:

(c) if A1; A2; A3; : : : 2 F (an in�nite collection) then
S1
i=1Ai 2 F .
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If C is any class of subsets of 
 the notation �(C) represents the smallest �-�eld containing C.
This is called the ��-�eld generated by C�. A probability measure (p.m.) P : F 7! [0; 1] is then a
set function having the properties P (
) = 1, and

P
�S1

i=1Ai
�
=
P1
�=1 P (Ai)

for disjoint collections A1; A2; A3; : : : 2 F :
It is worth being reminded of why a probability space is de�ned in this manner. We need

a way to assign probabilities to all sets of interest, but these are usually too numerous to allow
a rule to assign each one individually. Hence, we assign probabilities to a class C of �basic�
events, and then extend these probabilities to elements of �(C) using the rules of set algebra.
The extension theorem is the fundamental result in probability, stating that if the class C is
rich enough, probabilities can be uniquely assigned to all the members of �(C). C is called a
determining class for P . However, to go beyond �(C) is to run the risk of encountering so called
`non-measurable�sets. In in�nite spaces it is not feasible to simply let F be the power set of 

without running into contradictions.

Often, (
;F ; P ) is to be thought of as the `fundamental�probability space for a particular
random experiment, where the outcomes are not necessarily numerical magnitudes. The outcomes
are then mapped into a `derived�space, by the act of measurement. The best known example of
a derived probability space, on which random variables live, is (R;B; �), where R denotes the real
line, and B, called the Borel �eld of R, is the �-�eld generated by the set of the half-lines (�1; x]
for x 2 R. The fact that this is a rich enough collection is evidenced by the fact that B is also the
�-�eld generated by the open sets of R, containing also the intervals, the closed sets, and much
more besides. A random variable (r.v.) can be thought of as a measurable mapping X : 
 7! R
where `measurable�means that X�1(A) 2 F for every A 2 B, and the probabilities are assigned
by the rule �(A) = P (X�1(A)) for each A 2 B. A fundamental result, since the half-lines form
a determining class for this space, is that specifying a cumulative distribution function (c.d.f.)
F (x) = �((�1; x]) is su¢ cient to de�ne �(A) uniquely for every A 2 B.

2.1 Stochastic Convergence

Given this background, we can now describe the basic toolbox of results for asymptotic analysis.
The essential idea is that of a random sequence, X1; X2; : : : ; XT ; : : : = fXtg1t=1, and the essential
problem whether, and how, such a sequence might converge as T increases. The more familiar
case is the sequence of constants fatg1t=1; say, at = t; or at = 1=t. If for every " > 0 there
exists an integer N" such that jaT � aj < " for all T > N", then we say `aT converges to a�, and
write aT ! a. The �rst of our examples does not converge, on this criterion, but the second one
converges to 0.

By contrast, there are several di¤erent ways to capture the notion of the convergence of a
sequence of r.v.s. The basic approach is to de�ne certain associated nonstochastic sequences, and
consider whether these converge. Let �T represent the probability measure associated with XT ,
such that �T (A) = P (XT 2 A), where A is any set of real numbers to which probabilities are to
be assigned. Here are four contrasting convergence concepts.

1. Almost sure convergence

XT (!)! X(!) for every ! 2 C, where C 2 F and P (C) = 1: Write XT
a:s:! X:

2. Convergence in mean square

E(XT �X)2 ! 0: Write XT
ms! X:
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3. Convergence in probability

P (jXT �Xj < ")! 1 for all " > 0. Write XT
pr! X:

4. Convergence in distribution (weak convergence of probability measures)

�T (A) ! �(A) for every A 2 F such that �(�A) = 0, where �A denotes the boundary
points of A. Equivalently, FT (x) ! F (x) at all continuity points of F: Write �T ) � or

XT
d! X, where X � �.

Almost sure convergence and convergence in mean square both imply convergence in proba-
bility, and convergence in probability implies weak convergence, and is equivalent to weak con-
vergence when the limit is a constant. Otherwise, none of the reverse implications hold. There is
an important distinction to be made between weak convergence and the other modes, since this
speci�es a limiting distribution but not a limiting r.v. In other words, if XT

pr! X this implies
that (say) jX2T �XT j

pr! 0, such that when the sample is large enough, the e¤ect of doubling it

is negligible. However, it is not the case that XT
d! X implies jX2T �XT j

d! 0. What converges
in this case is the sequence of probability measures, not a sequence of random variables. The
conventional, rather imprecise, notation implies that the limit is the distribution of of a speci�ed

r.v. X, and sometimes this is written in the more explicit form �XT
d! N(0; �2)�or similar.

The sequence with typical index T that satis�es these convergence criteria is usually a sequence
of sample statistics or estimators, hence functions of T data points. The data points themselves
also constitute real sequences, which we often distinguish with the typical index t: The following
are the most important asymptotic results concerning the sequences generated by constructing
averages of data sequences fU1; U2; : : : ; UT g as T increases. Let

�UT =
1

T

TX
t=1

Ut:

1. The weak (strong) law of large numbers (W(S)LLN)

If EjUtj <1 for each t � 1, then under suitable additional regularity conditions

�UT � E( �UT )
pr! 0 (

a:s:! 0) (2.1)

2. The central limit theorem (CLT)

If EU2t <1 for each t � 1, then under suitable additional regularity conditions

�UT � E( �UT )p
E( �UT � E( �UT ))2

d! N(0; 1) (2.2)

Two points to note. First, (2.1) does not imply that E( �UT ) must be a constant independent of
T , or even that it is a convergent sequence, although of course this is often the case. Second, it
is often the case that

E( �UT � E( �UT ))2 = �2=T

where �2 is the common variance of the data points, and then (2.2) can be restated with the
customary `

p
T�normalization. Our version simply emphasizes that it is the sample average,

re-normalized to have zero mean and unit variance, that is the sequence of interest here.
The laws of large numbers are rather straightforward and intuitive. Few would doubt that

a sample average usually approaches a limiting value as the sample increases, simply because
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the marginal contribution of the last term is inevitably getting smaller relative to the whole. It
is perhaps of more interest to note those situations where the convergence fails, primarily when
EjUtj = 1. The Cauchy distribution is a well-known counter-example, in which new sample
drawings can be large enough, with high enough probability, that the average never settles down
to a �xed value �and is, in fact, just another Cauchy variate.

On the other hand, many people �nd the fact that the normal (or Gaussian) `bell curve�arises
by aggregating many independent zero-mean shocks to be mysterious at an intuitive level, even
though the mathematics is quite simple and transparent. One way to appreciate the mechanism
at work is through the fact that, among those possessing a variance, the Gaussian is the unique
distribution to be invariant under the summation of independent drawings. As is well known,
the characteristic function (ch.f.) of any random variable U , de�ned as

�U (�) = E(e
i�U ) (2.3)

is an equivalent representation of the distribution. If U1; : : : ; UT are independent drawings from
this distribution, and ST = (U1 + � � �+ UT )=aT for some aT > 0, note that

�ST (�) = E(e
i�U1=aT ) � � �E(ei�UT =aT )

= �U1(�=aT ) � � ��UT (�=aT ): (2.4)

This identity raises the interesting question of whether, for some sequence aT , the functional
forms of �ST (�) and �U (�) are the same. As is well known, the Gaussian distribution with mean

0 and variance �2 has ch.f. �U (�) = e��
2�2=2, and in this case it is easily seen that setting

aT =
p
T yields the desired result:

�ST (�) = (e
��2(�=

p
T )2=2)T = e��

2�2=2: (2.5)

This fact helps us to appreciate how the Gaussian distribution acts as an �attractor� for sums
of independent r.v.s, normalized by the square root of the sample size. A formal proof of the
CLT may be obtained by considering the Taylor�s expansion of �ST (�) and showing that the �rst
and second order terms match those of (2.5), while the higher order terms are of small order
in T . Note that the variances of the r.v.s must be �nite, and of course the �

p
T�normalization

corresponds to the familiar summation rule for variances of independent sums.
We will avoid specifying regularity conditions for the LLN and CLT in detail here, since there

are so many di¤erent ways to formulate them. Various speci�c cases are cited in the sequel.
Let it su¢ ce to say two things at this point. First, if the sequence elements are identically
and independently distributed, then no extra conditions are required. However, if the sequence
elements are either heterogeneously distributed, or serially dependent, or both, then a range of
di¤erent su¢ cient restrictions can be demonstrated. A condition that frustrates the CLT is where
a �nite number of terms of the sum are in�uential enough to a¤ect the whole. The well-known
Lindeberg condition for the CLT rules out this possibility. Uniform integrability is a distinct but
related restriction relevant to the LLN, ruling out certain pathological cases where the absolute
moments depend excessively on extreme values in the limit. However, requiring that the order of
existing moments be slightly larger than 1 in the LLNs, or larger than 2 in the CLT, is a simple
way to avoid a failure of either of these weaker but more subtle conditions.

Standard treatments of the CLT assume stationary process increments, but it is an important
fact that this is not a necessary restriction. In particular, conditions of the form

E(U2t ) = t
��2 (2.6)

can be accommodated, for any � > �1. In other words, the variances may diverge to in�nity,
and even converge to 0 provided the variance sequence is not actually summable. This form of
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CLT is especially useful for deriving certain forms of the functional CLT, as explained in Section
6.

Regularity conditions restricting the dependence are of many sorts. Some involve assum-
ing the process is linear (i.e., has an in�nite-order MA representation with independent shocks)
and placing restrictions on the coe¢ cients. Others, such as mixing and near-epoch dependence,
are purely non-parametric conditions imposing `short memory�. The martingale di¤erence as-
sumption is a su¢ cient restriction on dependence for all these results, a very useful fact for
econometric applications in particular. We say more about these cases in the discussion of the
FCLT, see Section 5.

Certain supplementary results, the handmaidens of the LLN and CLT so to speak, are con-
stantly invoked in asymptotic analysis.

1. Slutsky�s Theorem If XT
pr! a, and g(�) is continuous at a, then plim g(XT ) = g(a).

2. Cramér�s Theorem If YT
d�! Y and XT

pr�! a then

(i) XT + YT
d�! a+ Y

(ii) XTYT
d�! aY

(iii)
YT
XT

d�! Y

a
when a 6= 0.

3. Continuous Mapping Theorem (CMT) If XT
d�! X and g(�) is continuous, then g(XT )

d�!
g(X).

Versions of these results for random vectors are easy extensions, using the following result in
particular.

4. Cramér�Wold Theorem Let XT be a sequence of random vectors. Then XT
d�!X if and

only if for all conformable �xed vectors �, �0XT
d�! �0X.

Additional background on all these results, including formal statements, proofs and mathe-
matical details, can be found in a number of specialist texts with an econometric emphasis and
motivation such as McCabe and Tremayne (1993), Davidson (1994) and White (1999).

2.2 Application to Regression

Now, to return to the problem posed in Section 1. Letting T denote sample size, and �̂ the least
squares estimator as before, write

p
T (�̂ � �) =

�
X 0X

T

��1X 0up
T
: (2.7)

Subject to regularity conditions, the matrix T�1X 0X converges in probability to its mean,Mxx,
thanks to the WLLN. This matrix must be nonsingular. Subject to further regularity conditions,
the vector X 0u=

p
T is jointly normally distributed in the limit according to the vector general-

ization of the CLT, making use of the Cramér-Wold theorem. The variance matrix of this vector
under the limiting distribution is shown to equal �2Mxx, making use of the assumed uncorre-
latedness of xt and ut and the result (using the consistency of �̂ and the Slutsky theorem) that
s2

pr! �2.
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The Slutsky Theorem (the result that the plim of the inverse matrix is the inverse of the plim)
and the Cramér Theorem (the result that T (X 0X)�1 can be replaced by M�1

xx in the limiting
distribution) can now be combined with the CLT and WLLN to yield the conclusion

p
T (�̂ � �) d�! N(0; �2M�1

xx ):

Since the limiting covariance matrix �2M�1
xx is consistently estimated by Ts

2(X 0X)�1, as just
indicated, and since the Student�s t family approaches the normal as the degrees of freedom
increase, the spurious �Student�s t�result can therefore be justi�ed as an approximation to the
distribution actually attained by the `t-ratios�in large samples. The discussion must then focus
on the variety of regularity conditions required for this large-sample result to hold.

In independent samples, these conditions are comparatively simple to express. Letting x0t
denote the tth row of X, and ut the corresponding element of u, two basic requirements are

E(xtut) = 0

and
E(xtx

0
tu
2
t ) = �

2Mxx <1:

If it is possible to assume that the data are identically distributed, then both E(u2t ) and E(xtx
0
t),

if they exist, are �nite constants not depending on t. If the data are heterogeneously distributed,
a conveniently stated su¢ cient condition for the CLT is

Ej�0xtutj2+� � B

for all conformable vectors � of unit length, some � > 0, and all t = 1; : : : T , T � 1, where B is a
�nite bound (see Davidson 2000, 3.5.1).

In time series, matters are always more complicated, because serial independence of (xt; ut)
is an improbable restriction, as noted above. We are forced to introduce asymptotic results for
dependent processes. One might do this by assuming that the independent variables follow some
well-known model such as the VAR, so that the amount of dependence depends in a fairly simple
way on the autoregressive root closest to the unit circle. However, such assumptions would often
be heroic, requiring much more detailed knowledge of the generation mechanism of the sample
than we would ever need under serial independence. It is also possible to cite mixing and/or
near-epoch dependence conditions (see Sections 5.4 and 5.5), although when this is done the
conditions are not easily veri�ed without specifying an explicit model. Asymptotics can therefore
be problematic in time series, and there is also the rarely cited fact that dependence must slow
the rate of convergence in the CLT, reducing the e¤ective sample size. Subject to these caveats,
asymptotic theory may provide a workable if imperfect solution to the inference problem.

2.3 Autoregressive and Unit Root Processes

We now examine a particularly well-known example of a time series model in a bit more detail.
We focus on the simple case,

xt = �xt�1 + ut; ut � iid(0; �2u)

where x0 = 0; generalizations with more lags and more variables will not contribute much to
the important insights we seek. If j�j < 1, it is well-known that the autoregressive series is
asymptotically stationary with a �nite variance E(x2t ) = �2u=(1 � �2), and that its dependence
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(serial correlation) declines exponentially. Applying the arguments in the previous section yields
the result

p
T (�̂� �) = T�1=2

PT
t=2 xt�1ut

T�1
PT
t=2 x

2
t�1

�
asy
N(0; 1� �2): (2.8)

However, it is evident that this formula is tending to break down as � approaches 1. It appears
that at that point,

p
T (�̂ � �) is approaching 0 in probability, since the variance is tending to

zero.
To analyze the problem in more detail, consider �rst the denominator of (2.8). With � = 1

we have

xt = xt�1 + ut =
tX
s=1

ut: (2.9)

This is called an integrated or partial sum process. Under the other stated assumptions,

E(x2t�1) = (t� 1)�2u: (2.10)

The sample average of these terms is therefore likely to be diverging, not tending to a constant.
The obvious thing is to consider instead

T�2
TX
t=2

x2t�1: (2.11)

Since it is well-known that
TX
t=2

(t� 1) = T (T � 1)
2

it is evident from (2.10) that (2.11) has a �nite mean in the limit, equal to �2u=2. So far, so good.
However, is there a law of large numbers with this normalization, such that (2.11) converges to
a constant? This is where the conventional arguments start to come unstuck, for the sequence
fx21; :::; x2T g does not satisfy a LLN. Since the mean (and also variance) of these terms grows with
T , at most a �nite number of them at the end of the sequence must dominate the average. The
variable represented in (2.11) is accordingly random even in the limit. Moreover, while we can
show that T�1

PT
t=2 xt�1ut converges to a limiting distribution, this is both non-normal and also

correlated with (2.11). Therefore, the limiting distribution of the appropriately normalized error
of estimate T (�̂ � �) is not normal. The `naïve�distribution theory for least squares estimates
therefore fails, even as an approximation.

The strategy for tackling the problem involves two steps. First, we have to recognize that the
integrated time series fx1; :::; xT g has a limiting distribution itself, after suitable normalization.
Second we make use of this distribution, and of the CMT and some related tools, to derive the
limiting distribution of the sample statistic. To illustrate these developments we continue with
the simple partial-sum process (2.9). Since the time series is a cumulation of independent shocks,
it is immediate from the CLT that

1p
T
xT

d! N(0; �2u): (2.12)

However, if T is an even number then

1p
T=2

xT=2
d! N(0; �2u) (2.13)
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is equally true. Indeed, any �xed fraction of the sample, such that its size increases with T , can
be held to obey the corresponding rule. Therefore, let r denote any point of the interval [0; 1],
and use this to select a part of the sample by de�ning the notation [Tr] to mean the largest
integer not exceeding Tr. Then (2.12) can be generalized to

1p
T
x[Tr]

d! N(0; r�2u):

The next key step is to observe that (for any particular realization fu1; :::; uT g) the equations

XT (r) =
1

�u
p
T
x[Tr]; 0 � r � 1 (2.14)

de�ne a function on the real line. This function is discontinuous, having little jumps at the points
where Tr = [Tr], but it has the interesting property that, regarded a drawing from the underlying
joint distribution of shocks, its values in the intervals (t � 1)=T � r < t=T; for t = 1; :::; T , are
tending to become Gaussian with variance r. Of course, at the same time the intervals are getting
narrower as T increases. The variance of the random �jumps� shrinks by a factor 1=T as the
intervals shrink by a factor of 1=T . It appears that the limiting case is a continuous `Gaussian
function�. In the following section we review the properties of this limiting function in detail, and
then go on to consider the manner of convergence to the limit.

3 Distributions on a Function Space

The �rst major hurdle is to extend distribution theory from comparatively simply objects like
random variables to very complex objects such as random functions. When we say `complex�,
the point to bear in mind is that a function on a real-valued domain, say x(r) for 0 � r � 1,
represents an uncountable in�nity of real numbers. To each of these points, in principle, a
distribution has to be assigned. We are familiar with the idea of a joint distribution of two,
three, or several random variables, that has to specify not just the distribution of each one
standing alone (the marginal distributions), but also the nature of their interactions and the
dependence between them. The extension of these ideas to the case of functions is evidently
fairly heroic, and as we shall see, a number of interesting mathematical problems arise along the
way. The acknowledged primary source for many of the results is Billingsley (1968). Although
a fundamental underpinning of modern asymptotic theory, the material of this section has yet
to make its way into mainstream econometrics texts. The most accessible reference is probably
Davidson (1994). Other useful sources include Pollard (1984) and Jacod and Shiryaev (1987),
and many probability texts devote sections to stochastic processes, see for example Feller (1971),
Billingsley (1986) or Dudley (1989).

3.1 Random Sequences

The sequences considered in this section are not, as a rule, assumed to be converging like the
sequences discussed in Section 2.1. They are typically collections of sequential observations, with
equally spaced dates attached (the indices t). Being an ordered, countably in�nite collection of
real numbers, one may also conveniently think of a sequence as a point in the space R1.

Given the probability space (
;F ; P ), a random sequence may be de�ned as a measurable
mapping from 
 to R1. Note the signi�cance of this de�nition; one drawing ! 2 
 maps into
an in�nite sequence

x(!) = fX1(!); X2(!); : : : ; Xt(!); : : :g:
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Our next task is to construct this derived probability space in which the random elements are
in�nite sequences. For obvious reasons, this is not a trivial undertaking.

Let C denote the collection of �nite-dimensional cylinder sets of R1, that is, the sets of R1 of
which at most a �nite number of sequence coordinates are restricted to sets of B (the Borel �eld
of of R). Thus, the elements of C can be thought of as mapping one-for-one into random vectors,
points in Rk for some k, representing the number of restricted sequence coordinates. Recall that
a Borel �eld of any space is the �-�eld generated by the open sets. In this case, it is possible to
show that B1, the Borel �eld of sets of R1, is identical with �(C), the smallest �-�eld containing
C. It remains to show that distributions can be constructed on the pair (R1;B1).

The fundamental result is Kolmogorov�s consistency theorem. It is di¢ cult to give a formal
statement of the theorem without resorting to technical language, but an informal explanation
goes as follows. First, the distribution of any k coordinates of the sequence can be represented as
a distribution of a random k-vector in the space (Rk;Bk; �k), which is a reasonably straightfor-
ward extension of the one-dimensional case. Even with an in�nite sequence, marginalizing with
respect to all but k coordinates yields such a distribution. These are called the �nite dimensional
distributions (or �dis) of the sequence. Note that, for any choice of k coordinates, the largest of
them is still a �nite number, and so the �dis can always be represented in this way. The consis-
tency theorem then states that, given a family of distributions f�kg speci�ed for every �nite k,
subject to the consistency condition

�k(E) = �m(E � Rm�k) for E 2 Bk and m > k > 0

there exists a unique in�nite random sequence distributed on (R1;B1; �1) such that the col-
lections of the �k, for k = 1; 2; 3; : : :, are the �dis of the sequence. In other words, to specify a
unique distribution for x it is su¢ cient to specify the �dis in a suitable manner. This overcomes
the practical problem of specifying how an in�nite sequence of coordinates is distributed. The
consistency condition says that, if �m is a �di, then the distributions �k for k < m are obtained
in the usual way, by marginalizing with respect to the m � k extra coordinates. Another way
to express the same result is to say that the cylinder sets C form a determining class for x. If
probabilities are assigned to each member of C (a feasible project by standard methods) the whole
distribution of x is given uniquely.

3.2 Spaces of Functions

The number of coordinates of a sequence is countably in�nite. The number of coordinates of a
function is uncountable, which is to say, equipotent with the real continuum, and not capable of
being labelled using the integers as an index set.

Let R[0;1], also denoted as just R when the context is clear, denote the set of all possible
real-valued functions x : [0; 1] 7! R, an element of which associates every point r 2 [0; 1] with a
unique value x(r): If the domain represents time, as it usually does, we call this a process, and
if x is a random drawing from a speci�ed distribution, a stochastic process. To construct such
a distribution, the �rst question to be considered is whether a Borel �eld can be constructed for
R, by analogy with R and R1. Since a Borel �eld is generated by the open sets of a space, this
means being able to de�ne an open set, or equivalently, to de�ne a topology on the space.1 This
is usually done by de�ning a metric, a measure of `closeness�of two elements of the space, and so
making the space into a metric space. The usual metric adopted for R is, of course, the Euclidean

1A topology on a space is a collection of subsets that includes the whole space and the empty set, and is closed
under arbitrary unions and �nite intersections. Such sets are called open. This de�nes an open set, but the usual
characterization of openness in R and other metric spaces derives from this fundamental de�nition.

11



distance jx� yj, for real numbers x and y, although the metric

d0(x; y) =
jx� yj

1 + jx� yj

is topologically equivalent to jx � yj, while being bounded by 1.2 Constructing a topology for
R1 is a formalization that could be avoided, and so was left implicit in the discussion of random
sequences, although note that a valid metric for this purpose (also bounded) is provided by

d1(x; y) =
1X
k=1

2�kd0(xk; yk):

In the case of a space of functions, however, the topological properties of the space are a central
issue. Since we can no longer enumerate the coordinates, a natural alternative is to adopt the
uniform metric, de�ning the distance between elements x; y 2 R as

dU (x; y) = sup
0�t�1

jx(t)� y(t)j:

Armed with this de�nition, we can de�ne the Borel �eld BR of the metric space (R; dU ) as
the smallest �-�eld containing the open spheres of the space, which are de�ned as

B(x; r) = fy 2 R : dU (x; y) < rg for all x 2 R, r > 0:

How, then, to assign probabilities to sets of (R;BR)? One place we might start is with the
�nite dimensional cylinder sets; in other words, sets of functions that are unrestricted except at
a �nite number of coordinates, t1; : : : ; tk. For example, consider a case with k = 2; the open set
A = fx 2 R : x(1=2) < 0; 0 < x(3=4) < 2g. Let H denote the set of all such �nite-dimensional
sets, and let P = �(H). P is called the projection �-�eld, since we can think of H are the set of
projections of the function onto �nite sets of coordinates. If this case were to be comparable to
the sequence case, then we should have P = BR. Alas, it turns out that P � BR. In other words,
BR contains sets that are not countable unions of H sets. The non-countability of the domain
presents a problem.

As a �rst approach to the measurability problem, we might attempt to construct a prob-
ability measure on (R;P). Assuming the fundamental space (
;F ; P ), let x : 
 7! R denote
an F=P-measurable mapping, and so generate a probability measure (p.m.) derived from P .
The �dis associated with this distribution are the joint distributions of �nite sets of coordinates
(xt1 ; : : : ; xtk): The consistency theorem can be extended to identify this p.m. uniquely with the
�dis, provided a second consistency condition is satis�ed. This is as follows:

Permuting the coordinates t1; : : : tk changes the p.m. according to the same rule as
permuting the integers 1; : : : ; k.

2A metric on a space S is a distance measure for pairs of points of the space, having the following properties for
all x; y 2 S:

1. d(x; y) = d(y; x)

2. d(x; y) = 0 if and only if x = y

3. d(x; y) � d(x; z) + d(y; z); z 2 S
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There is no way to represent this distribution by a simple device such as the c.d.f. or characteristic
function. However, the expected values E(f(x)), for all bounded continuous functionals3 f : R 7!
R, are always de�ned uniquely and these values can be used to �ngerprint the distribution.

So far, so good, and if this approach serves, it is the simplest available. However, the problem
is that P may not contain all the cases we are interested in. Our goal should be to assign
probabilities to all the Borel sets. This has proved impossible because the space (R; dU ) is really
too big to handle. It is not a separable space, which means, as we shall see, that it contains Borel
sets that cannot have measures assigned to them without running into inconsistencies. There are
two ways we can attempt to overcome this di¢ culty, both of which, separately or in combination,
have been exploited in the literature. The �rst is to consider a suitable subset of R containing
most of the functions of interest. The second is to adopt a di¤erent topology, so that opens sets
can be de�ned in a more tractable way. The �rst of these methods involves fewer technicalities,
but is mathematically rather clumsy. The second �or strictly, a combination of both approaches
�has been the most favoured technique in recent research

3.3 The Space C[0;1]

One way to view the problem of applying distribution theory to functions is to �nd generalizations
of the commonplace relations between real numbers that we use, often unconsciously, to construct
distributions of random variables on the line. One way to achieve this is by working in the space
of continuous functions on the unit interval, equipped with the uniform metric. This is denoted
C[0;1], properly (C[0;1]; dU ) when it is necessary to specify the choice of metric, but also sometimes
just C, when the context is clear.

The main virtue of C[0;1] is that it is a separable space, which means that it contains a
countable, dense subset.4 The space R is separable, since the rational numbers are countable,
and also dense in the space. To show that C[0;1] is separable, one can exhibit the set of piecewise-
linear functions, which consists of functions constructed from a countable set of points of the
domain joined up with straight lines �the type of construction commonly used to plot discrete
time series on a graph. If the points are assigned rational ordinates, then a countable collection
of numbers de�nes each member of the set, and accordingly the set itself is countable �yet we
can show that every continuous function is arbitrarily close, in dU , to a member of this set.

The second important property of C[0;1] is completeness. This means that every Cauchy
sequence of elements has a limit lying in the set. Recall that a Cauchy sequence is one in which
the successive points are getting arbitrarily close together as we move down it. Although it is
not hard to de�ne sequences in C[0;1] having discontinuous limits, in the uniform metric such
sequences cannot be Cauchy, because going from continuous to discontinuous must involve a
positive jump at some point �and remember that all the points of the sequence must lie in C[0;1]:
Completeness is another property shared with R, for Cauchy sequences of real numbers all have
a real number as the limit.

The cash value of these properties, from the present point of view, is very simply that they
imply PC = BC ; where these are the restrictions to C[0;1] of the projection �-�eld and Borel �eld
of functions respectively.5 The space C[0;1] equipped with dU is from the topological viewpoint
su¢ ciently like R that the construction of a probability space on (C[0;1];BC) can follow similar
lines. The actual procedure is the same as was described in the last section, constructing �dis on

3A functional is a function whose argument is another function. Integrals are well-known examples.
4A set A is dense in a space S if every point of S lies arbitrarily close to a point of A:
5Thus, for example, BC = fA \ C : A 2 BRg
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the cylinder sets, and then extending, using the consistency theorem. The di¤erence is that the
extension takes us to BC , while it failed to take us to BR:

The chief di¢ culty with working in C[0;1] to derive FCLTs is that the functions of chief interest
do not belong to it! These are, of course, of the form XT as de�ned in (2.14). Note that this
function is constant except at points r that satisfy r = [Tr]=T , at which it jumps a distance u[Tr].
A slightly clumsy �x to this problem is provided by the following trick. De�ne

X�
T (r) = XT (r) +

u[Tr]+1(Tr � [Tr])
�u
p
T

: (3.1)

This is a piecewise linear function of the type just described. X�
T is an element of C[0;1] for any T ,

and as we shall see subsequently, the extra term can be shown to be negligible, and hence ignored
in convergence arguments. This is how the simplest proofs of the FCLT are set up, and is the
approach we adopt below. However, recent research has tended to adopt a di¤erent approach,
somewhat more technically advanced, but also more �exible and easy to generalize. We next look
brie�y at the arguments invoked in this approach.

3.4 The Space D[0;1]

We found in Section 3.2 that the space R was `too large�, when endowed with the uniform metric,
to allow construction of a probability distribution without running into problems. Then we
showed that the space C[0;1] was a feasible case, but unfortunately too small for our needs, without
invoking awkward constructions. A compromise is provided by the spaceD[0;1] of cadlag functions
on [0,1]. Cadlag is a French acronym standing for `continue à droit, limites à gauche�, in other
words, functions that may contain jumps, but not isolated points, such as to be discontinuous in
both directions. Cadlag functions are right-continuous, and every point has a limit-point to its
left. XT in (2.14) is a good example. Its value at any point of discontinuity can be represented
as the limit of a decreasing sequence of points to the right of it.

D[0;1] turns out to contain all the functions we are interested in, and there is no loss in
excluding those cases featuring isolated discontinuities. However, D[0;1] is not separable under
the uniform metric. The problem is that functions with discontinuities can have positive uniform
distance from each other in spite of being equal at all but a single point. Consider, for example,
the set of functions fx� : � 2 [0; 1]g, where

x�(t) =

�
0; t < �
1; t � � : (3.2)

There are an uncountable number of these functions, one for each point of the unit interval, and
yet in the uniform metric they are all at a distance dU = 1 from each other. Thus, no subset of
(D[0;1]; dU ) can be dense in (D[0;1]; dU ) yet also countable.

What this means in practice is that BD with the uniform metric still contains too many sets to
de�ne a probability space. Some of its elements are nonmeasurable. As already mentioned, one
possible solution is to work with the projection �-�eld6. However, probably the most commonly
adopted solution in practice is to work with a di¤erent metric, such that D[0;1] becomes separable.
What is popularly called the Skorokhod metric (actually, what Skorokhod (1956) dubbed the J1
metric) is

dS = inf
�2�

�
" > 0 : sup

t
j�(t)� tj � "; sup

t
jx(t)� y(�(t))j � "

�
6See Pollard (1984) for an account of this approach.
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where � denotes the set of all increasing continuous functions � : [0; 1] 7! [0; 1]: When functions
have discontinuities, this is a more natural distance measure than dU , because it allows functions
to be compared by moving them `sideways�as well as vertically. The functions � can be thought
of as representing a choice of little distortions of the time domain, and we choose the one that
makes the distance between x and y as small as possible in both directions. Functions, x� and
x�+�, jumping a distance 1 at times � at � + � respectively and otherwise constant, can now be
considered at a distance � from each other, not 1, which is what the uniform metric would give.

The Skorokhod metric de�nes a topology on D[0;1], and it is this that matters from the point
of view of de�ning the Borel �eld. The key property is that the metric space (D[0;1]; dS) is
separable. Unfortunately, though, it is not a complete space. Consider, for given � > 0, the
function z�� = x��x�+�. This function is equal to 0 on the intervals [0; �) and [�+ �; 1], and to 1
on the interval [�; �+�). Thus, consider the Cauchy sequence of functions z�;1=n, for n = 1; 2; 3; : : :
The limit of this sequence is equal to 1 at point � and zero everywhere else. It has an isolated
discontinuity, and so is not an element of D[0;1].

However, this problem can be remedied by a modi�cation that preserves the same topology.
Billingsley (1968) shows that (D[0;1]; dB) is a separable complete metric space, where

dB = inf
�2�

�
" > 0 : k�k � "; sup

t
jx(t)� y(�(t))j � "

�
with

k�k = sup
t6=s

����log �(t)� �(s)t� s

����
and � is the set of increasing continuous functions � such that k�k <1. Note how Billingsley�s
de�nition imposes some smoothness on the choice of possible transformations of the time domain,
since its slope must be kept as near 1 as possible at each point, to prevent k�k becoming large.
dB also generates the Skorokhod topology. The key consequence is, of course, that the Borel
�eld BD is equal to the projection �-�eld of (D[0;1]; dB). Finite dimensional projections are a
determining class for distributions on (D[0;1];BD) with this metric.

3.5 Brownian Motion

To conclude this discussion of function spaces and distributions de�ned on them, we exhibit
the most important and best known example. As is well-known, the botanist Robert Brown
�rst noted the irregular motion of pollen particles suspended in water in 1827. As we now also
know, thanks to Einstein�s famous 1905 paper,7 these are due to thermal agitation of the water
molecules. The mathematical model of Brownian motion was developed by Norbert Wiener
(1923) and it is sometimes called Wiener measure.

Formally, the standard real-valued Brownian motion (BM) process on the unit interval, de-
noted B, is de�ned by the following three properties:

1. B(r) � N(0; r); 0 � r � 1:

2. Increments B(r1) � B(0); B(r2) � B(r1); : : : ; B(rN ) � B(rN�1) are totally independent of
each other, for any collection 0 < r1 < � � � < rN :

3. Realizations of B are continuous, with B(0) = 0, with probability 1.

7This is not the 1905 paper on special relativity, nor the Nobel-prize winning contribution of the same year on
the photoelectric e¤ect, but the third original product of Einstein�s annus mirabilis.
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This is the natural extension to function spaces of the ordinary Gaussian distribution speci�ed
in the CLT. According to property 3, we may consider it as an element of C[0;1] almost surely.
However, since exceptions of probability zero should not be ruled out in a formal statement, even
if they have no practical consequences, we should strictly treat it as an element of D[0;1]:

BM has a number of well-known attributes following from the de�nition. Independence of the
increments means that E(B(t)B(s)) = min(t; s) and E[(B(t)� B(s))B(s)] = 0 for t > s. BM is
self-similar, meaning that B has the same distribution as B� de�ned by

B�(t) = k�1=2(B(s+ kt)�B(s)); 0 � t � 1

for any s and k such that 0 � s < 1 and 0 < k � 1 � s. As such, realizations of BM belong to
the class of curves known as fractals (Mandelbrot, 1983). While it is almost surely continuous,
observe that for any t 2 [0; 1) and 0 < h < 1� t, B(t+ h)�B(t) � N(0; h) implying

B(t+ h)�B(t)
h

� N(0; h�1): (3.3)

Letting h # 0 results in distributions with in�nite variance. In other words, BM is nowhere
di¤erentiable, with probability 1. Moreover, realizations are almost surely of unbounded variation.
Observe that EjB(t+ h)�B(t)j = O(T�1=2); and hence we can show

T�1X
j=0

jB((j + 1)=T )�B(j=T )j ! 1 as T !1; with probability 1.

4 The Functional Central Limit Theorem

The object of this section is to show that empirical processes such as XT in (2.14) converge
`weakly�to BM, under suitable regularity conditions. The result to be ultimately proved, under
rather simple assumptions, is the following, originally due to Donsker (1951).

Theorem 4.1 Suppose that ut � iid(0; �2u); and the stochastic process XT is de�ned by

XT (r) =
1

�u
p
T

[Tr]X
t=1

ut; 0 � r � 1

Then XT
d! B:

Before proceeding to an actual demonstration, we must �rst de�ne some terms and deal with
various technical preliminaries.

4.1 Weak Convergence

The term `weak convergence of distributions�is probably widely misunderstood. The term �weak�
here has a wholly di¤erent connotation from that in (say) �weak law of large numbers�, and derives
from concepts from topology.

The fundamental problem, worth digressing into brie�y at this point, is to consider what it
means to say that one p.m. is close to another. In the preceding section, we have been addressing
this question in respect of functions on the unit interval. The problem we now consider, while
obviously related, is distinct and somewhat more abstract. We must be careful not to confuse
them. Since a p.m. is, in essence, just a set of rules for assigning probabilities to sets of random
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objects (in the present case functions on [0,1], but they could be completely arbitrary), it is not
at all obvious how to answer this question, and impose a topological structure on the problem.
This is essential, however, if we are to know what we mean by `convergence�.

For a random variable, it turns out that the characteristic function (see (2.3)) acts as a reliable
`�ngerprint� for the distribution, and has a central role in proofs of the CLT. We watch what
happens to the ch.f. as T increases, and see if it approaches the known normal case as in (2.5).
For more general distributions, this neat trick unfortunately does not work. Instead we can
consider a class of functions, for example, the set U of bounded, uniformly continuous functions
whose domain is the set of random objects in question, and whose range is the real line. Note
that, regardless of the underlying probability space, the expectations E(f) =

R
fd�, for f 2 U,

are always just �nite real numbers.
Now, let M denote the space (i.e., the collection) of all the p.m.s � under consideration.

Given f 2 U, note that
R
fd�, � 2 M, de�nes a real-valued function with domain M. We can

work with the idea that two p.m.s are close to each other if these expectations are close (in the
usual Euclidean norm on R) for a number of di¤erent f 2 U. They are considered closer, as the
distances are smaller, and the number of di¤erent f for which they are close is greater. This
trick can be used to show that the p.m.s inhabit a metric space on which standard notions of
convergence are de�ned. The `weak topology�on M, de�ned by these functions, is simply the
minimal collection of subsets of M whose images under the mappings

R
fd� : M 7! R, for all

f 2 U, are open sets of R. When we speak of weak convergence, we simply mean that the
de�nition of closeness implied by the weak topology is used as a criterion for the convergence of
a sequence of p.m.s, such as that de�ned by increasing the sample size for partial sums, in the
standard application.

In practice, weak convergence of a sequence of probability measures f�T ; T = 1; 2; 3; � � � g to
a limit �, written �T ) �, is equivalent to the condition that �T (A) ! �(A) for every set A of
random objects in the probability space, such that �(�A) = 0, where �A denotes the boundary
points of A. This is the de�nition already given in Section 2.1 for the case of real random
variables.

4.2 Tightness

Now, it might appear that, in an informal way, we have already proved the FCLT. That parts
1 and 2 of the de�nition of Brownian motion are satis�ed is immediate from the CLT, and the
construction of the process, and we have even made a good informal case for Part 3. In fact, the
CLT alone is su¢ cient to establish pointwise convergence to B. However, this by itself is not
su¢ cient for all the applications of these results. For example, it is not su¢ cient to establish
such results as

sup
0�r�1

jXT (r)j
d! sup
0�r�1

jB(r)j (4.1)

whereas this does follow from the FCLT, which establishes convergence of the function as a whole,
not just �nite-dimensional projections of it.

Thus, the question to be considered is whether a given sequence of p.m.s on the spaces C[0;1]
or D[0;1] converges weakly to a limit in the same space. This is not a foregone conclusion. There
are familiar examples of sequences within a certain space whose limits lie outside the space.
Consider a sequence of rational numbers (terminating decimals) whose limit is a real number
(a non-terminating decimal). In the present case, the question is whether a sequence of p.m.s
de�ned on a space of functions (C[0;1] or D[0;1]; as the case may be) has as a limit a p.m. on the
same space. This is, in its essence, the issue of uniform tightness of the sequence.

In the CLT, the random elements under consideration (normalized sums) are real-valued
random variables with probability 1, and the fact that the limit random variable is also distributed
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on the real line is something that we take as implicit. However, it is possible to construct sequences
of distributions on the real line, depending on an index T , that are well de�ned for every �nite
T , yet break down in the limit. A simple example is where XT is uniformly distributed on the
interval [�T; T ]: The c.d.f. of this distribution is

FT (x) =

8<:
0 x < �T
(1 + x=T )=2 �T � x � T
1 x > T

However, as T ! 1, FT (x) ! 1
2 for every x 2 R, which does not de�ne a distribution. This is

a distribution that is getting �smeared out�over the whole line and, in the limit, appearing to
assign positive probability mass to in�nite values. Such distributions lack the attribute known
as tightness.8 A distribution on the line is tight if there exists, for every " > 0, a �nite interval
having a probability exceeding 1 � ". Non-tight distributions are regarded as `improper�, and
are not well-de�ned distributions according to the mathematical criteria. Here we have a case of
sequences of distributions that are not uniformly tight, even though tight for all �nite T .

While the only examples of non-tight distributions on the line are obviously pathological
examples like the above, in the world of continuous or cadlag functions on the unit interval, the
uniform tightness property is a real concern. In C[0;1] the issue becomes, in e¤ect, one of whether
the limit distribution assigns a probability arbitrarily close to 1 to some set in C[0;1], such that
discontinuities arise with probability zero. It is not at all di¢ cult to construct examples where
the sample processes are a.s. continuous for all �nite T (like X�

T in (3.1)), yet are almost surely
discontinuous in the limit. Even if the sequences we consider lie in D[0;1] for all �nite T , like XT
in (2.14), we still need to establish that the limit lies in the same space, and is also continuous
a.s., such as to correspond to BM. Proving uniform tightness of the sequence of p.m.s is what
converts the pointwise convergence implied by the CLT to the FCLT proper, allowing conclusions
such as (4.1).

4.3 Stochastic Equicontinuity

To set conditions ensuring that a sequence of distributions on C[0;1], or D[0;1], is uniformly tight,
the natural step is to characterize compact sets of functions in these spaces, the analogues of the
�nite interval of the line. One can then impose tightness by ensuring a high enough probability
is assigned to these compact sets in the limit. In R, a compact set is one that is closed and
bounded, and a �nite interval can contain any such set. Compactness in a general topological
space is a more primitive and abstract concept, but the basic idea is the same; a point cannot
be the limit of a sequence of points of a compact space without itself belonging to the space.
Compactness is not the same thing as completeness, which is the property that Cauchy sequences
always converge in the space. Compactness implies, rather, that all sequences contain convergent
subsequences with limits contained in the space.

To characterize compactness, we conventionally appeal to a well-known result on the topology
of function spaces, the Arzelà-Ascoli theorem. For a function x : [0; 1] 7! R, the modulus of
continuity is de�ned as

wx(�) = sup
js�tj<�

jx(s)� x(t)j: (4.2)

In other words, it is the largest change in the function over an interval of width less than �. In a
uniformly continuous function, we must have that wx(�)! 0 as � ! 0. According to the Arzelà-
Ascoli theorem, a set of functions A � C[0;1] is relatively compact (i.e., its closure is compact) if
the following two conditions hold:

8For another example, consider (3.3).
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(a) sup
x2A

jx(0)j <1

(b) lim
�!0

sup
x2A

wx(�) = 0:

The space C[0;1] of continuous functions inevitably contains elements that are arbitrarily
close to discontinuous functions, which would therefore violate condition (b), but if we con�ne
attention to a set A satisfying the Arzelà-Ascoli conditions, we know that it is relatively compact,
and therefore that its closure contains the cluster points of all sequences in the set.

In the case of D[0;1], the modulus of continuity has to be de�ned di¤erently. It can be shown
that a cadlag function on [0; 1] can have at most a countable set of discontinuity points. Let ��
denote a partition ft1; : : : ; trg of the unit interval with r � [1=�] and minifti � ti�1g > �: Then
de�ne

w0x(�) = inf
��

(
max
1�i�r

(
sup

s;t2[ti�1;ti)
jx(t)� x(s)j

))
This de�nition modi�es (4.2) by allowing the function to jump at up to r points t1; : : : ; tr, so
that w0x(�) ! 0 as � ! 0 when x is cadlag. However, note that right continuity is required for
this to happen, so arbitrary discontinuities are ruled out.

A sequence of functions in C[0;1] or D[0;1] that is contained in a relatively compact set is said to
be uniformly equicontinuous, where �uniformly�refers to uniformity with respect to the domain of
the functions, and �equicontinuous�means continuous in the limit. The Arzelà-Ascoli conditions
ensure functions are uniformly equicontinuous. Stochastic equicontinuity (the �uniform�quali�er
being generally taken as implicit here) is a concept applying to random functions, and refers to
the probability that a particular sequence of functions is relatively compact. There are several
possible de�nitions, but it is typically su¢ cient to specify that this probability approaches 1 �in
the tail�, beyond some �nite point in the sequence.

4.4 Convergence of Probability Measures

The next step in the argument is to make the formal link between compactness of sets of con-
tinuous (or cadlag) functions, and uniform tightness of probability measures on C[0;1] (or D[0;1]).
For reasons of space we examine these arguments, and then go on to give a proof of the FCLT,
only for the case C[0;1]. This means working with version (3.1) of the partial sum function, rather
than (2.14). With certain technical modi�cations, the parallel arguments for D[0;1] are broadly
similar, once stochastic equicontinuity has been de�ned appropriately. For details see Billingsley
(1968) and also Davidson (1994), Chapter 28.

Think of a discontinuous function as having a relationship to C[0;1] analogous to that of the
points �1 in relation to R. A p.m. on C[0;1] that assigned positive probability to functions with
discontinuities would fail to be tight, in just the same way as measures on the line that assigned
probabilities exceeding " > 0 to sets outside some speci�ed �nite interval, depending on ". It will
be su¢ cient for tightness if we can show, using the Arzelà-Ascoli conditions, that the p.m.s in
question assign probabilities arbitrarily close to 1 to a compact set in C[0;1]. This is the object of
a collection of theorems due to Billingsley (1968). Letting f�T ; T = 1; 2; 3; : : :g denote a sequence
of probability measures on C[0;1], Billingsley�s results for this case can be summarized as follows:

Theorem 4.2 The sequence f�T g is uniformly tight if there exists T � � 1 such that, for all
T > T � and all � > 0,

(a) 9 M > 0, such that �T (fx : jx(0)j > Mg) � �;
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(b) for each " > 0, 9 � 2 (0; 1) such that

�T (fx : wx(�) � "g) � �: (4.3)

Moreover, (4.3) holds if

sup
0�t�1��

�T
��
x : sup

t�s�t+�
jx(s)� x(t)j � "

2

	�
� ��

2
: (4.4)

This result formalizes, in the �"-��style of analysis, the �niteness and equicontinuity require-
ments needed to ensure that the limiting measure assigns probabilities at most arbitrarily close
to zero, to sets containing discontinuous functions.

The fact that this is a non-trivial requirement can be appreciated by returning to the example
of X�

T in (3.1). We are depending on the random variables u[Tr]+1=
p
T , for every r 2 [0; 1],

becoming negligible with arbitrarily high probability as T increases. The problem is that even
if the probability of an extreme value of order T is very small, the number of potential `jumps�
increases with the sample size. While it may be the case that u[Tr]+1=

p
T ! 0 in probability, for

any r, there can still be circumstances in which sup0�r�1(u[Tr]+1=
p
T ) vanishes with probability

less than 1. This would lead to a failure of condition (b) in Billingsley�s theorem. However, as
we now show, a condition su¢ cient to avoid this outcome is the existence of the variance or, in
other words, that �2 < 1: Since this is required in any case for the pointwise convergence via
the CLT, no additional restrictions on the setup are necessary.

4.5 Proof of the FCLT

To prove Theorem 4.1, there are broadly two steps involved. The �rst, which we take as already
done, is to prove the CLT for XT (1), and hence also for XT (r) for each r. Since the increments
are independent by assumption, it is an elementary application of the CLT to show that the
�dis of the process � the joint distributions of all the �nite collections of process coordinates
r = r1; r2; : : : rM , for any �nite M �are multivariate Gaussian, with covariance matrix de�ned
according to

E(X(ri)X(rj)) = min(ri; rj):

If the limiting process has these �nite dimensional distributions, and is almost surely continuous,
it ful�ls the de�nition of BM. Note that there is no issue of uniqueness of the limit to worry
about here. If the sequence converges in the space at all, it can only be to BM given the facts
noted above, so it su¢ ces to ensure this happens with probability 1.

Hence, the second step is just to prove uniform tightness of the sequence of p.m.s in C[0;1]. It
is su¢ cient that the processes X�

T satisfy the conditions of Theorem 4.2, being �nite at the origin
(trivial in this case since X�

T (0) = 0 a.s.) and uniformly equicontinuous. This result depends on
a well known maximal inequality for partial sums, which for sums of independent processes is
known as Kolmogorov�s inequality :

Lemma 4.1 If ST = x1 + � � �+ xT , where x1; : : : ; xT are i.i.d. random variables, then for � > 0
and p � 1;

P
�
max
1�k�T

jSkj > �
�
� EjST jp

�p

Clearly, we may use this result to deduce that

P
�
sup

r�s�r+�
jXT (s)�XT (r)j > �

�
� 1

�p
EjXT (r + �)�XT (r)jp
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for any chosen r and �: Note that, since the number of terms in this partial sum is increasing
with T , the pointwise CLT allows us to deduce that, for any r 2 [0; 1� �),

EjXT (r + �)�XT (r)jp ! �p=2�p (4.5)

as T !1, where �p <1 is the pth absolute moment of the standard normal distribution. Given
Lemma 4.1, there is therefore a sample size T large enough (say T �1 ) that

P
�
sup

r�s�r+�
jXT (s)�XT (r)j > �

�
�
�p=2�p
�p

; T > T �1 : (4.6)

Now, given arbitrary " > 0 and � > 0, choose �, p > 2 and 0 < � < 1 to satisfy the inequalities

0 < � � "=4,
�p=2�p
�p

� ��

4
: (4.7)

With p = 3, for example, the requirement is ful�lled by setting � = "=4 and

� < min

(
1;

�
"3�

64�3

�2)
:

Since the same argument holds for every r 2 [0; 1� �], (4.6) and (4.7) imply that

sup
0�r�1��

P
�
sup

r�s�r+�
jXT (s)�XT (r)j >

"

4

�
� ��

4
; T > T �1 : (4.8)

Comparing with (4.4), it can be seen that we are on the way to ful�lling the equicontinuity
requirement for X�

T :
To complete the argument, refer to (3.1) and note that, for all 0 � r < s � 1,

jX�
T (s)�XT (s)�X�

T (r) +XT (r)j �
ju[Tr]+1j+ ju[Ts]+1j

�
p
T

= Op(1=
p
T ):

Therefore, it is certainly true that there exists a T large enough (say T �2 ) that

P
�
jX�

T (s)�XT (s)�X�
T (r) +XT (r)j �

"

4

�
� ��

4
; T > T �2 : (4.9)

For any random variables x and y, we have

P (jx+ yj > "=2) � P (fjxj > "=4g [ fjyj > "=4g)
� P (jxj > "=4) + P ( jyj > "=4)

where the �rst inequality holds because the one event is implied by the other, and the second
is the sub-additive property of probabilities. Therefore, from (4.8) and (4.9) there exists T � =
max(T �1 ; T

�
2 ) such that, for T > T

�,

sup
0�r�1��

P
�
sup

r�s�r+�
jX�

T (s)�X�
T (r)j >

"

2

�
� ��

2
:

Here, P implicitly denotes the probability measure relating to X�
T , and hence inequality (4.4)

is established. The sequence of distributions of the X�
T processes is uniformly tight, and the

functional central limit theorem follows.
Let�s reiterate that this is only one of several possible approaches to proving Donsker�s theo-

rem. The alternative of working directly in D[0;1] is illustrated by the approach of Theorem 8.2
below, among others. Billingsley (1968), Section 16, gives details.
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4.6 The Multivariate Case

For practical applications in econometrics, the basic FCLT for scalar processes will generally
need to be extended to cover convergence of the joint distributions of sequences of vectors xt =
(x1t; : : : ; xmt)

0. For this purpose, it is necessary to consider the topology of the space Cm[0;1], which
can be thought of as the Cartesian product of m copies of C[0;1]. Cm[0;1] can be endowed with a
metric such as

dmU (x;y) = max
1�j�m

fdU (xj ; yj)g

and it can be shown that dmU induces the product topology �that is to say, the weak topology
induced by the coordinate projections. Under the product topology, the coordinate projections
are continuous. For any set A 2 Cm[0;1], let �j(A) 2 C[0;1] be the set containing the jth coordinates
of the elements of A, for 1 � j � m. If �j(A) is open, continuity implies that A is open. The
important implication of this for the present purpose is that (Cm[0;1]; d

m
U ) is a separable space,

inheriting the property from (C[0;1]; dU ).
It follows that the arguments deployed above for distributions on C[0;1] can be generalized

in quite a straightforward way to deal with the vector case. The Cramér-Wold Theorem from
Section 2.1 is applied to generate the �dis of the multivariate distributions, wherever required.
Under suitably generalized regularity conditions for the FCLT, the limit processes are vector
Brownian motions B. These constitute a family of distributions with multivariate Gaussian �dis,
having covariance matrices 
 such that E(B(r)B(r)0) = r
. Essentially, the approach is to
show that XT !d B if �0XT !d �

0B for each �xed � (m� 1) of unit length. Note that if each
of the elements of the vector XT is in C[0;1]; then �

0XT 2 C[0;1] too, and under the FCLT the
limits �0B are scalar BMs with variances �0
�.

One very important feature of the multivariate FCLT is the fact that, because the limit process
is Gaussian, dependence between the coordinates is completely represented by 
 in the limit.
This means that even if the distribution of xt features arbitrary forms of dependence between the
coordinates, linear projections will nonetheless su¢ ce to induce independence in large samples.
Thus, if xt = (yt;z0t)

0 with corresponding limit process Bx = (By;B
0
z)
0, then Bz (m� 1� 1) and

Byjz = By �B0
z


�1
zz 
zy (de�ning the obvious partition of 
) are independent BMs, a property

invariant to the joint distribution of yt and zt in �nite samples.
In principle, the same type of arguments can be adapted to vectors of cadlag processes.

Referring to the de�nitions in Section 3.4, consider the metric space (Dm[0;1]; d
m
B ) where

dmB (x;y) = max
1�j�m

fdB(xj ; yj)g:

This metric induces the Skorokhod topology in suitably generalized form, and the space is separa-
ble and complete. There is just one potential pitfall deserving mention in this case. In the case of
continuous functions, we noted that linear combinations of continuous functions are continuous,
and further that a sequence f�0XT g has its limit in C provided this is true of each coordinate
of XT . However, the analogous property does not hold for elements of (Dm[0;1]; d

m
B ). Consider

for example a vector (X1T ; X2T )0 where X1T = x� as de�ned in (3.2), for every T , whereas
X2T = x�+1=T : Both fX1T g and fX2T g converge in (D[0;1]; dB) (the former, trivially) but the
limit of the sequence fX2T �X1T g is not in D[0;1], featuring an isolated discontinuity at �. Under
the dB metric, this is not a Cauchy sequence. Hence, convergence of the marginal distributions of
individual functions in D[0;1] does not imply their joint convergence, without further restrictions.
However, it su¢ ces for the limit vector to lie in Cm[0;1] with probability 1. Therefore, proofs of the
multivariate FCLT can be set in the cadlag framework, just like their scalar counterparts. More
details on all these issues can be found in Davidson (1994) Chapters 6.5, 27.7 and 29.5
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4.7 Functionals of B

The functional central limit theorem has to be supplemented by the continuous mapping theorem
(CMT) to have useful applications in statistical inference. The CMT was stated for real r.v.s
in Section 2.1, but this is just a case of a much more general result. For present purposes, the
required variant is as follows.

Continuous mapping theorem for random functions.
Let h : D[0;1] 7! R be a measurable mapping from elements of D[0;1] to points of
the real line. If the mapping is continuous except at points of the domain with zero

probability under the distribution of B, and XT
d! B, then h(XT )

d! h(B).

For example, consider the integralZ 1

0
XT (r)dr =

1

T

TX
t=1

1

�u
p
T
xt =

1

�uT 3=2

TX
t=1

tX
s=1

us (4.10)

The FCLT and CMT allow us to conclude that this random variable has a Gaussian limit. One
can easily show (apply the ordinary CLT for heterogeneous sequences after re-arranging the
double sum) that it is distributed as N(0; 1=3). However, the foregoing argument shows that it
can also be written as

R 1
0 B(r)dr.

The same approach allows us to establish thatZ 1

0
XT (r)

2dr =
1

�2uT
2

TX
t=1

x2t
d!
Z 1

0
B(r)2dr

which is, however, a random variable without a representation in terms of known distributions.
The FCLT and CMT simply assure us that all squared partial sum processes with increments
satisfying the regularity conditions converge in distribution to the same limit. This is what we
call an invariance principle, because the limit is invariant to the distribution of the statistic in
�nite samples.

Returning to the original problem of model (2.9), we can now consider the distribution of
T (�̂� 1), which is better known as the Dickey-Fuller statistic of the �rst type. A further result
required is the distribution of

1

T

TX
t=1

xt�1ut (4.11)

but this can be obtained by a neat trick. Note that

2xt�1ut = x
2
t � x2t�1 � u2t (4.12)

and hence, if ut � iid(0; �2u) and x0 = 0, then

1

�2uT

TX
t=1

xt�1ut =
1

2�2uT

 
x2T �

TX
t=1

u2t

!
d! 1

2(B(1)
2 � 1)

� 1
2(�

2(1)� 1): (4.13)

Since the variance cancels in the ratio, the CMT now allows us to conclude that

T (�̂� 1) d! B(1)2 � 1
2
R 1
0 B(r)

2dr
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which is the well known formula for the limiting distribution of the Dickey-Fuller statistic without
mean or trend correction. However, it is important to note that the steps in (4.13) do not
generalize to other models, in particular where the ut are not identical with the increments of xt.
There is no useful vector generalization of (4.12). The problem of general stochastic integrals is
treated in Section 7.

Using the FCLT and CMT, a number of other important processes related to BM are easily
shown to be the weak limits of sample processes. We consider just two simple examples. De�ning

St =
tX
t=1

ut

consider the mean deviation process
xt = St � �S: (4.14)

where �S = T�1
PT
s=1 Ss: If XT (r) = x[Tr]=(�

p
T ), it is easily shown using (4.10) that

XT
d! B �

Z 1

0
Bds

where the limit process is called a de-meaned BM.
However, be careful to note that de-meaning is not the appropriate way to account for an

intercept in the generating equation. Suppose that, instead of (2.9), we have

xt = �+ xt�1 + ut:

= St + t�: (4.15)

The intercept induces a deterministic trend that dominates the stochastic trend in the limit, and
the normalization of T�1=2 is not appropriate. Instead, divide by T to obtain the limit

XT (r) = T
�1x[Tr]

pr! �r:

However, the stochastic component can be isolated by regressing xt onto the trend dummy. Let
the residuals from this regression (including an intercept) be represented as

x�t = xt � �x� (t� �t)
PT
s=1(s� �t)xsPT
s=1(s� �t)2

= St � �S � (t� �t)
PT
s=1(s� �t)SsPT
s=1(s� �t)2

where �t = T�1
PT
t=1 t = (T + 1)=2, and the second equality follows directly on substitution from

(4.15). Noting that ([Tr] � �t)=T ! r � 1
2 and that T

�3PT
t=1(t � �t)2 ! 1=12, we can therefore

use the CMT to show that

XT (r) = x
�
[Tr]=(�u

p
T )

d! B(r)�
Z 1

0
B(s)ds� 12(r � 1

2)

Z 1

0
(s� 1

2)B(s)ds

This process is called a de-trended BM.
Whereas (4.14) puts the partial sum process into mean deviation form, putting the increments

of the partial sums into mean deviation form yields a quite di¤erent limit. Consider the array

xTt =

tX
s=1

(us � �u); t = 1; : : : ; T
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where �u = T�1
PT
s=1 ut. This process has the property that xTT = 0 identically. If XT (r) =

xT;[Tr]=(�u
p
T ), it is again easy to see using the FCLT and CMT that XT

d! Bo, where

Bo(r) = B(r)� rB(1); 0 � r � 1

Bo is called a Brownian bridge, having the property Bo(1) = B0(0) = 0. It does not have
independent increments, and E(Bo(t)Bo(s)) = minft; sg � ts.

5 Dependent Increments

5.1 Martingale Di¤erences

We have assumed for simplicity up to now that the driving sequence futg is independent and
identically distributed. In practice, the same results can be obtained under a variety of weaker
assumptions about the dependence. One easy extension is to allow futg to be a stationary
martingale di¤erence (m.d.) sequence; in other words, an integrable process having the property

E(utjFt�1) = 0 a.s.

where fFtg is a nested sequence of �-�elds such that ut is Ft-measurable (the pairs fut;Ftg are
said to form an adapted sequence). Intuitively, an m.d. is a process that is unpredictable in
mean, one step ahead.

The two main planks in our FCLT proof that used the independence assumption, the CLT and
the Kolmogorov maximal inequality, can both be extended to the m.d. case without additional
assumptions.9 To verify that the �dis are converging to those of BM, we use the martingale CLT
and the fact that m.d.s are uncorrelated sequences. The key assumption that E(XT (r)2) = r
for 0 � r � 1 follows from this property, and the increments of XT are uncorrelated. They
are not independent in �nite samples, in general, but because uncorrelated Gaussian increments
are independent of each other, the increments are asymptotically independent. Hence, the �dis
match all the requirements. With the modi�ed maximal inequality for m.d.s, the FCLT proof
given above goes through otherwise unchanged.

This result is of particular importance in econometrics, since the assumption of independence
is strong, and much less likely to hold in economic data than the m.d. assumption. For example,
considering the case where ut = yt � �0xt, the disturbances in a regression model, the only
assumption needed to make ut an m.d. is that E(ytjIt) = �0xt where Ft�1 � It � Ft and xt is
It-measurable. These assumptions are plausibly ful�lled in a correctly speci�ed regression model,
and they do not rule out such phenomena as stationary ARCH or GARCH (predictability in
variance) provided there is no predictability in mean. By contrast, there are rarely �rm grounds
to assume that the disturbances in a time series regression are truly independent. Moreover,
the m.d. property is inherited by xtut under the assumption given, which is very useful for
establishing asymptotic normality in the general setup described in Section 2.2.

5.2 General Dependence

Of course, we would like the FCLT to hold in more general cases still, where the increments
are autocorrelated, and generally dependent. The reason this is especially important is that the
FCLT is used to construct the distributions of statistics involving observed integrated processes.
In stationary data, it is su¢ cient for the asymptotic normality of regression coe¢ cients if the

9See Davidson (1994), respectively Theorem 24.3 and Theorem 15.14, for these results.

25



disturbances satisfy the m.d. assumption, as detailed in the previous section, since only a LLN is
needed to hold for the regressor variables. By contrast, the FCLT must hold for all the regressors
in an I(1) modelling setup. To illustrate with a familiar case, the Dickey-Fuller test is customarily
used to test whether measured time series are I(1) or I(0). While there is an �augmented�variant
of the test for data with correlated increments, the sole function of the augmenting correction is
to estimate the increment variance consistently. The FCLT is required to hold with correlated
increments, in this case.

In essence the su¢ cient conditions are twofold. First, it is necessary that the increments have
at least �nite variances, with a slightly stronger moment condition in cases when the marginal
distributions are heterogeneous. Second, the processes must satisfy a short-memory condition.
Memory conditions are, �rst and foremost, conditions on the autocorrelation function of the
process. When the increments are covariance stationary, note that

lim
T!1

1

T
E

 
TX
t=1

ut

!2
=

1X
j=�1

E(u1u1�j)

= �2u + 2�uu = !uu (5.1)

where �uu =
P1
j=1E(u1u1�j). Accordingly, !

1=2
uu has to replace �u as the normalization to make

the limit process a standard BM, and !uu must be both �nite and positive. As is well known,
this is equivalent to the condition that the spectral density is bounded away from both in�nity
and zero at the origin. Summability of the autocovariances is the property sometimes called weak
dependence.10

However, limited autocorrelations cannot supply a su¢ cient condition for the CLT and FCLT
to hold unless the process in question is jointly Gaussian, such that the dependence is fully
represented by the autocorrelation function. In non-Gaussian and nonlinear processes (the best-
known examples of the latter are probably ARCH/GARCH processes), there has to be some
limitation on the nonlinear dependence as well. The term `I(0)�11 is sometimes de�ned loosely
to mean a stationary process (such that E(utut�j) is both �nite, and independent of t, for
every j) and also, more properly, to mean a stationary weakly dependent process (such that the
covariances are summable). It would both be more consistent, and avoid complications arising
with nonlinear dependence, to use �I(0)�to refer simply to processes whose normalized partial
sums converge weakly to BM. Then, we should note that non-stationarity (of a local variety)
is not necessary, but also that �weak dependence�is a su¢ cient condition only in Gaussian and
linear cases.

5.3 Linear Processes

Linear processes, including ARMA processes of �nite or in�nite order, are a common assumption
in time series modelling. The one-sided moving average form, which includes (possibly after
solving out) all the cases of interest, is

ut =
1X
j=0

�j"t�j = �(L)"t (5.2)

10This is (unfortunately) the third distinct usage of the word �weak�in this literature, with a di¤erent connotation
from both �weak LLN�and �weak convergence�.
11This is in the familiar context in which I(1) denotes an integrated process, where the argument represents the

order of di¤erence necessary to get I(0).
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where f"tg is the driving process, often assumed i.i.d.(0; �2), f�jg1j=0 is a sequence of constant
coe¢ cients with �0 = 1, and �(L) =

P1
j=0 �jL

j , where L denotes the lag operator. A weaker as-
sumption that will often serve as well as serial independence is that f"tg is a stationary m.d. The
convenience of linear models is that stationarity of ut then holds by construction and, in e¤ect,
the dependence is solely a property of the coe¢ cients �j . The scheme is sometimes justi�ed by
an appeal to Wold�s Theorem (Wold 1938), which states that every stationary nondeterministic
process can be put in the form of (5.2), where the process f"tg is stationary and uncorrelated :
However, this uncorrelatedness is equivalent to neither the i.i.d. nor the stationary m.d. assump-
tions, unless the process is also Gaussian. This is itself a rather strong assumption that fails in
many economic and �nancial data sets.

If the dependence is linear, there is a technically easy way to modify the application of the
FCLT using the Beveridge-Nelson (1981) decomposition. This idea is examined in Phillips and
Solo (1992). Considering again the model xt = xt�1 + ut, where now ut is given by (5.2), the
easily veri�ed identity

�(L) = �(1) + ��(L)(1� L)
where ��j = �

P1
i=j+1 �i, may be used to re-order the summation as

ut = �(1)"t + �
�(L)�"t:

Hence, letting zt =
Pt
s=1 "s,

xt =
tX
s=1

ut = �(1)zt + �
�(L)("t � "0):

Now write the normalized partial sum process as

XT (r) = �(1)ZT (r) +
��(L)("[Tr] � "0)

�u
p
T

:

Provided the second right-hand side term is of small order, it can be neglected in calculations
involving the limit distribution. A su¢ cient condition is that the sequence f��jg be absolutely
summable, implying that the sequence f��(L)"tg is �short memory�. Using elementary results on
summability,12 this is true if ��j = O(j

�1��) for � > 0, and hence if �j = O(j�2��). Sequences
with the latter property are sometimes said to be �1-summable�, since

P1
j=1 jj�j j <1.

5.4 Mixing

When the linear process assumption does not serve, mixing conditions are probably the best-
known type of restriction for limiting serial dependence. There are several variants, of which
the most often cited are probably strong mixing (�-mixing) and uniform mixing (�-mixing). To
de�ne the mixing concept, begin by introducing the notation F t2t1 � F for t1 � t2, for a �-�eld
representing `information dated s 2 [t1;t2]�. If F represents the collection of events relating to
the complete history of a stochastic sequence fxt; �1 < t < +1g, we also sometimes write
F t2t1 = �(xt1 ; :::; xt2) to show that this is the �-�eld `generated by�this segment of the sequence,
although it is also possible for the set to contain additional information relating to these dates.
Then, F t�1 represents `history up to date t�, and F+1t+m `events from date t+m onwards�. With
this notation, the mixing coe¢ cients are de�ned respectively as

�m = sup
t

sup
A2Ft�1;B2F

+1
t+m

jP (A \B)� P (A)P (B)j

12 If �j = O(j�1��) for � > 0, then
P1

j=0 j�ij <1 and
P1

i=j+1 j�ij = O(j
��):
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�m = sup
t

sup
A2Ft�1;B2F

+1
t+m;P (B)>0

jP (AjB)� P (A)j

for m = 1; 2; 3; ::: The sequences f�mg10 and f�mg10 are alternative measures of the rate at which
remote parts of the sequence are becoming independent of each other as the gap increases. A
random sequence is said to be strong (resp. uniform) mixing of size ��0 if �m = O(m��) (resp.
�m = O(m

��)) for � > �0. It is not di¢ cult to show that �m � �m, so that �strong�mixing is
actually the weaker of the two concepts.

This approach to quantifying dependence has the advantage of being completely nonparamet-
ric, and well de�ned whatever the actual dynamic generation mechanism of the data. However, it
has some drawbacks. An obvious one is to be able to actually verify from the structure of a model
that the condition is satis�ed, rather than just assuming it. However, the chief problem is that,
because we are `sup�ing over all possible pairs of remote events, this necessarily embraces any
odd and pathological cases that may exist. It is well-known (Andrews 1984) that even a stable
autoregression (which depends on the whole history of past shocks, albeit with weights converging
to zero exponentially fast) can violate the strong mixing condition. Andrews�counter-example
involves an AR(1) with a discrete (Bernoulli) innovation sequence, but to derive mild su¢ cient
conditions for mixing in linear processes is nonetheless surprisingly di¢ cult. (See Davidson 1994,
Section 14.5). Not merely a continuous shock distribution, but some kind of smoothness condition
on the density, appears unavoidable.

5.5 Near-Epoch Dependence

Because of the limitations of mixing assumptions they can, with advantage, be combined with
or substituted by another condition called near-epoch dependence. This one has slightly more
structure, in that it explicitly represents a random sequence as depending on past and/or future
values of some underlying sequence (that could be mixing, or possibly independent) and also calls
for the existence of moments up to some order such as 2. For a chosen p > 0, the condition takes
the general form

p

q
Ejut � E(utjF t+mt�m )jp � dt�m (5.3)

where dt is a sequence representing scale factors in a heterogeneous sequence (e.g. dt = (Ejutjp)1=p).
We say that the sequence is Lp-NED of size ��0 if �m = O(m��) for � > �0.

E(utjF t+mt�m ) represents the best prediction of ut based on information from the `near epoch�.
If ut is a short-memory process, then it is mainly determined by the near epoch, and �m should
diminish rapidly with m: Note that NED is not a restriction on the process memory as such, but
rather a condition on the mapping from the underlying driving process generating fF tsg to the
observed process. In practice, it is applied by specifying that the underlying process is mixing,
or possibly independent. Its advantage is that it avoids the odd counter-examples that make the
mixing condition over-sensitive in many situations. For example, the AR(1) case with Bernoulli
innovations cited in Section 5.4 is certainly L2-NED on the independent shock process. For
additional background, see Gallant and White (1988) and Davidson (1994).

The way these conditions can be applied is illustrated by the following FCLT for processes with
dependent increments, taken from Davidson (2002). This result also departs from the stationarity
assumption to show how, in particular, processes with heterogeneous variances might be handled.
We might, for example, have a situation where the variances changed according to a seasonal
pattern. Most situations except trending variances (dealt with in Section 6.1) can be handled
in this way. Similarly, it is not assumed that E(ut) = 0 for every t, only that a suitable mean
correction is made to each observation
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Theorem 5.1 Let XT : [0; 1] 7! R be de�ned by

XT (r) = !
�1=2
T

[Tr]X
t=1

(ut � Eut) 0 < r � 1 (5.4)

where !T = Var(
PT
t=1 ut): Let the following assumptions hold:

(a) ut is L2-NED of size �1
2 on a process fvsg with respect to constants dt � E(jutj

r)1=r, where
vs is either �-mixing of size �r=(r�2) for r > 2 or �-mixing of size �r=(2r�2), for r � 2.

(b) suptEjut � Eutjr < 1 for r de�ned in (a), and if r = 2 then f(ut � Eut)2g is uniformly
integrable.

(c)
!T
T
! !u > 0, as T !1:

Then, XT
d! B.

Note that being able to assert �-mixing allows more relaxed size and moment conditions than
otherwise. The special feature of this result, which distinguishes it from su¢ cient conditions
for the CLT, is condition (c). This is su¢ cient to ensure that E(XT (r)2) ! r as T ! 1 for
0 < r � 1, as is required for BM to be the limit process. By contrast, the ordinary CLT speci�es
only the conditions for convergence for r = 1. Various kinds of heterogeneity of the variance
sequence are compatible with this case, including trending variances as in (2.6), but not with
condition (c).

5.6 More on Linear Forms

It is of interest to contrast linearity with the property of near-epoch dependence on an independent
shock process. It is easy to show direct from (5.3) (see Davidson 1994, Example17.3) that, if (5.2)
describes the relationship between ut and a driving process f"tg, then

�m = O
�P1

j=m+1 j�j j
�

in (5.3). The usual summability arguments yield the requirement �j = O(j�3=2��) for � > 0, in
order for the Lp-NED size of a linear process to be �1

2 ; and so satisfy the condition of Theorem
5.1. Note that this is a weaker condition than that obtained for the FCLT using the Beveridge-
Nelson decomposition, without even taking into account that the driving process can itself be
generally dependent in this case. The i.i.d. or m.d. assumptions imposed in (5.2) can be replaced
by a mixing assumption. For example, with Gaussian increments (letting r !1) the �-mixing
size of �1

2 is permitted, and �-mixing size of �1 is compatible with no moments beyond the
variance.

However, the virtue of linear forms, in a more general context, is that the amount of depen-
dence compatible with weak convergence to Brownian motion can be signi�cantly greater than
in the purely nonparametric setting. Moving averages of processes satisfying the conditions of
Theorem 5.1 yield the same limit result, under quite weak restrictions on the coe¢ cients. This
result, from Davidson (2002), goes as follows.

Theorem 5.2 Let XT : [0; 1] 7! R be de�ned by

XT (�) = �
�1
T

[T�]X
t=1

(ut � Eut) 0 < � � 1
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where �2T = Var(
PT
t=1 ut), and let

ut =

1X
j=0

�jvt�j

where

(a) vt satis�es conditions (a), (b) and (c) of Theorem 5.1,

(b) the sequence f�jg is regularly varying at 1 and satis�es the conditions

0 <

�����
1X
j=0

�j

�����<1; (5.5)

1X
k=0

� T+kX
j=1+k

�j

�2
= o(T ): (5.6)

Then, XT
d! B.

The �rst striking thing about this result is that the summability speci�ed in condition (b)
is weaker than absolute summability. If the coe¢ cients change sign, they can take substantially
longer to decay absolutely than if they are all (say) positive. In fact, the only restriction placed
on their absolute rate of decay is (5.6), which enforces square summability. The second striking
feature, as we show in Section 6.3, is that these come close to being necessary conditions. We
exhibit a case where (b) is violated, and show (under supplementary assumptions) that a limit
distribution di¤erent from B is obtained.

6 Processes Related to Brownian Motion

6.1 Variance-Transformed BM

The results given in Sections 5.5 and 5.6 allowed some nonstationarity of the distributions of the
futg sequence, provided this was of a local sort that would be averaged out in the limit. Cases
where the nonstationarity is not averaged out, and therefore a¤ects the limit distribution, are
said to be globally nonstationary.

Thus, suppose the variance of the driving process is growing, or shrinking, with time. Specif-
ically, suppose that E(u2t ) = (1+�)t

��2u as in (2.6), where � > �1: Assume serial independence,
so that !T = Var(

PT
t=1 ut) t T 1+��2u. Then, de�ning

XT (r) =
1

!
1=2
T

[Tr]X
t=1

ut

note that
E(XT (r)

2)! r1+�: (6.1)

Using a version of the CLT for trending-variance processes, as in (2.6), it is possible to show that
the �dis of the limit process are those of

B�(r) = B(r
1+�).
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Stochastic equicontinuity holds for processes of this type, leading to an FCLT. More generally,
if ![Tr]=!T ! �(r), where �(�) is any increasing homeomorphism on [0; 1] and the other FCLT
assumptions hold, the limit process takes the form

B�(r) = B(�(r)):

For these results see White and Wooldridge (1988), Davidson (1994) and de Jong and Davidson
(2000). Note that these processes are not BM, although they are still a.s. continuous Gaussian
processes having independent increments. They can be thought of as BMs that have been sub-
jected to some lateral distortion, through stretching or squeezing of the time domain.

6.2 Ornstein-Uhlenbeck Process

Consider a process X de�ned by

X(r) =
B(e2�r)p
2�e�r

; 0 � r � 1 (6.2)

for � > 0, where if the domain of X is [0; 1] as we have assumed, then the domain of B must
in this case be [0; e2�]. It can be veri�ed that E(X(r)X(s)) = 1=(2�e�jr�sj), depending only
on jr � sj, and hence the process is stationary. It is also easily veri�ed that the increments are
negatively correlated.

Considering a time interval [r; r + �], observe that

E[B(e2�(r+�))�B(e2�r)]2
2�e2�r

=
e2�� � 1
2�

= E[B(r + �)�B(r)]2 + o(�):

Letting B(r + d) � B(r) approach dB(r) as � ! 0, X(r) can evidently be viewed, for r large
enough, as a solution of the stochastic di¤erential equation

dX(r) = ��X(r)dr + dB(r):

The conventional solution of this equation yields the alternative representations

X(r) =

Z r

0
e��(r�s)dB = B(r)� �

Z r

0
e��(r�s)B(s)ds (6.3)

where the second version of the formula is obtained by integration by parts. This is the Ornstein-
Uhlenbeck (OU) process. Letting � tend to 0 yields ordinary BM in the limit according to the
last formula, although note that the stationary representation of (6.2) is accordingly breaking
down as � # 0.

The OU process is the weak limit of an autoregressive process with a root local to unity, that
is,

xt = (1� �=T )xt�1 + ut:
To show this, write for brevity �T = 1� �=T; and using the identity

�kT � 1 = (�T � 1)
k�1X
j=0

�jT

note that

xt =
tX
j=1

�t�jT uj
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=
t�1X
j=1

[�t�jT � 1]uj +
tX
j=1

uj

= (�T � 1)
t�1X
j=1

t�j�1X
k=0

�kTuj +

tX
j=1

uj

= (�T � 1)
t�1X
k=1

�t�k�1T

kX
j=1

uj +

tX
j=1

uj :

Substituting for �T and also noting that (1 � �=T )[T�] = e��� + o(1), the Brownian FCLT and
CMT then yield

1p
T
x[Tr] =

1p
T

[Tr]X
j=1

uj � �
1

T

[Tr]�1X
j=1

e��([Tr]�j)
1p
T

jX
k=1

uj

d! B(r)� �
Z r

0
e��(r�s)B(s)ds

6.3 Fractional Brownian Motion

Consider the fractionally integrated process de�ned by xt = xt�1 + (1� L)�dut for �1
2 < d <

1
2 ,

where

(1� L)�d =
1X
j=0

bjL
j (6.4)

in which

bj =
�(j + d)

�(d)�(j + 1)
:

The justi�cation for the notation (1 � L)�d follows from calculating the in�nite order binomial
expansion and verifying that the coe¢ cients match the bj . For the case d > 0, these increment
processes are called `long memory�because the MA lag weights (and hence the autocorrelations)
are nonsummable. In the case d < 0, the increments are called `anti-persistent� and feature
the special property that the MA lag weights sum to 0, indicating a generalized form of over-
di¤erencing.

The summations may be rearranged to obtain

xt =
tX

k=1

1X
j=0

bjuk�j =
tX

s=�1
atsus (6.5)

where

ats =
t�sX

j=maxf0;1�sg
bj :

From this representation, it can be shown by direct calculation that T�1�2dE(x2T ) ! !uuVd
where Vd is a scale constant, to be de�ned. This suggests de�ning the empirical process

XT (r) =
x[Tr]

!
1=2
uu
p
VdT 1=2+d

:

It can then be further veri�ed that

E(XT (r))
2 ! r1+2d
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and
E(XT (r + �)�XT (r))(XT (r))! 1

2 [(r + �)
1+2d � r1+2d � �1+2d]:

Thus, this process has a di¤erent convergence rate, similar to the trending variance case in (6.1),
but unlike that case, it has dependent increments, even in the limit. It can be veri�ed that the
serial correlation is positive when d > 0 and negative when d < 0:

To establish a weak limit for XT , the �rst step is to identify a candidate limit process.
One sharing the same correlation structure is fractional Brownian motion (fBM) de�ned by
Mandelbrot and Van Ness (1968). Denote fBM by X, where

X(r) =
1

�(d+ 1)

�Z r

�1
(r � s)ddB �

Z 0

�1
(�s)ddB

�
; r � 0 (6.6)

and B is regular BM. It can be veri�ed that

E(X(1)2) =
1

�(d+ 1)2

�
1

2d+ 1
+

Z 1

0
[(1 + �)d � �d)]2d�

�
=

�(1� 2d)
(2d+ 1)�(1� d)�(1 + d)

and this constant13 is equated with Vd de�ned above. To complete the proof that fBM is the
weak limit of the fractionally integrated process, it remains to show that the �dis of XT are
Gaussian, and that the distributions are uniformly tight. These results can be established using
the approach of Davydov (1970). The basic step is to note that the �dis are those of weighted
sums of the driving process futg as in (6.5). The re-ordered summation converts an issue of long
memory into one of heteroscedasticity. The trending variances of the terms of the form atsus
in (6.5) can be handled using variants of the techniques cited in Section 6.1. The stochastic
equicontinuity of the increments is established similarly. Essentially, a result is available for the
case where futg satis�es the assumptions of Theorem 5.1; see Davidson and de Jong (2000) for
the details. However, it may be noted that the conditions on f�jg speci�ed in Theorem 5.2 are
violated by the coe¢ cients in (6.4), and the same argument can be used to show that the limit is
an fBM in that case. Theorem 5.2 can be viewed as a giving a necessary memory condition for
the linear case.

Sometimes, (6.6) is referred to as Type 1 fBM, terminology coined by Marinucci and Robinson
(1999) . Type 2 fBM is the case

X(r) =
1

�(d+ 1)

Z t

0
(r � s)ddB (6.7)

with the integral over the range (�1; 0] omitted. This formula is obtained as the limit of the
process derived from

xt =

tX
k=1

k�1X
j=0

bjuk�j =
tX
s=1

atsus

(compare (6.5)) or, in other words, the process generated from the sequence fI(t � 1)utg, where
I(:) is the indicator function of its argument). A number of studies have used the Type 2
representation of fBM, although arguably the setup is somewhat arti�cial, and it is perhaps
worrying that this model yields di¤erent asymptotics. However, one virtue of formula (6.7) is
that it may be compared directly with the OU process (6.3), in which the hyperbolic weight
function is replaced by an exponential weight function. The two models represent alternative
ways of introducing autocorrelation into a stochastic process.

13The �rst formula appears in Mandelbrot and van Ness (1968) and other references. I am grateful to a referee
for pointing out that the second formula is equivalent.
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7 Stochastic Integrals

There is one result required for asymptotic inference for which the FCLT and CMT do not provide
a general solution. This is the limiting distribution of normalized sums of the form

GT =
1

T
p
!uu!ww

T�1X
t=1

tX
s=1

uswt+1 (7.1)

where wt and ut are I(0) processes. The weak limits of expressions of this type, involving both
integrated processes and their increments, are known as Itô integrals.

7.1 Derivation of the Itô Integral

Let f be a random element of the space D[0;1], and let B be a BM. The Itô integral of f with
respect to B (respectively, integrand and integrator functions) is a random process written

I(t) =

Z t

0
fdB

and satisfying the property

E(I(t)2) = E

�Z t

0
f2ds

�
: (7.2)

Itô�s rule is the generalization of the integration-by-parts formula to objects of this kind. It states
that, if g is a twice-di¤erentiable function of a real variable and g(0) = 0, then

g(B(t)) =

Z t

0
g0(B)dB + 1

2

Z t

0
g00(B)ds; a.s.

For example, the case g(B) = B2 yieldsZ t

0
BdB = 1

2

�
B(t)2 � t

�
(7.3)

which may be noted to correspond to (4.13) with t = 1.
We sketch here the derivation of these processes by a limit argument, omitting many details

and technical excursions. For a fuller account see, for example, Karatzas and Shreve (1988) among
numerous good texts on stochastic calculus, many with applications to �nancial modelling. A
�ltration fF(r); r 2 [0; 1]g is a collection of nested �-�elds indexed by points of the line, and
we assume that f and B are adapted processes, such that f(r) and B(r) are F(r)-measurable.
Choose a partition of [0; 1], �k = fr0; r1; : : : rkg, where r0 = 0, rk = 1 and rj < rj+1, and consider

Ik =
k�1X
j=0

f(rj)(B(rj+1)�B(rj)): (7.4)

Notwithstanding that B is of unbounded variation, we may show that Ik converges to the limitR 1
0 fdB in mean square, as k !1, such that maxj jrj+1 � rj j ! 0 (for example, let rj = j=k).
It is easiest to show this result initially for the case of simple functions, having the form

fk(r) = f(rj); rj � r < rj+1; j = 0; : : : ; k � 1: (7.5)

In these cases, the Itô integral with respect to BM is de�ned by (7.4), since

Ik =

Z 1

0
fkdB =

k�1X
j=0

f(rj)

Z rj+1

rj

dB(r):
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Note the special property that the increments of the integrator function are dated to lead the
integrand, and hence are unpredictable with respect to F(rj), by de�nition of BM.

Now de�ne an increasing sequence fk(n); n = 1; 2; 3; : : :g with a corresponding sequence of
partitions satisfying �k(1) � �k(2) � �k(3) � � � � . For example, take k(n) = 2n. Note that for
m > 0,

Ik(n+m) � Ik(n) =
k(n+m)�1X

j=0

[fk(n+m)(rj)� fk(n)(rj)](B(rj+1)�B(rj))

Also, applying the law of iterated expectations and the fact that f(rj) is measurable with respect
to F(rj), we have the properties

E[f(rj)(B(rj+1)�B(rj))]2 = E[f(rj)2E[(B(rj+1)�B(rj))2jF(rj)]
= E[f(rj)

2](rj+1 � rj)

and
E[f(rj)(B(rj+1)�B(rj))f(rj0)(B(rj0+1)�B(rj0))] = 0

whenever rj 6= rj0 . Hence,

E(I2k) =
k�1X
j=0

Ef(rj)
2(rj+1 � rj) = E

�Z 1

0
f(r)2dr

�
:

Now, every function f on [0; 1] can be associated with a sequence ffk(n)g of simple functions,
by applying de�nition (7.5) for a suitable class of partitions. For the class of square-integrable,
�progressively measurable�functions f on [0; 1],14 it can be shown that there exists a sequence of
simple functions such that, for each m > 0,

E(Ik(m+n) � Ik(n))2 = E
�Z 1

0
(fk(n+m)(r)� fk(n)(r))2dr

�
! 0

as n!1: It follows that
E(Ik(n) � I)2 ! 0

where I =
R 1
0 fdB is de�ned in this mean-square limiting sense. BM is, of course, a candidate

case of f under this de�nition, leading to the class of random variables with the property in (7.3).

7.2 Weak Convergence of Covariances

In functional limit theory, the role of the Itô integral is to characterize the weak limits of random
sequences of type (7.1). The arguments needing to be deployed to show convergence are again
quite involved and technical,15 and it is not possible to do more than just sketch an outline of
the main steps. Let XT (r) be de�ned as in (2.14) and YT (r) de�ned similarly with respect to the

partial sum process yt =
Pt
s=1ws, where wt � iid(0; �2w). We assume that (XT ; YT )

d! (BX ; BY ),
where the notation is intended to indicate joint convergence of the sequence of pairs, and we don�t
rule out the possibility that xt and yt are contemporaneously correlated or, indeed, identical. Let

G�T =

k(T )�1X
j=0

XT (rj)(YT (rj+1)� YT (rj))

14See e.g. Davidson (1994) Chapter 30.2 for the de�nition of progressive measurability.
15Chan and Wei (1988) and Kurtz and Protter (1991) are important references here, and see also Hansen (1992),

Davidson (1994) Section 30.4 and de Jong and Davidson (2000).
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where fr0; : : : ; rk(T )g = �T is a nested sequence of partitions as de�ned previously, and k(T )!1
as T !1; although more slowly, such that k(T )=T ! 0, and

min
0�j<k(T )

jTrj+1 � Trj j ! 1

whereas the condition
max

0�j<k(T )
jrj+1 � rj j ! 0 (7.6)

still holds. G�T is an approximation to GT , constructed from time-aggregated components that ap-
proach independent segments of Brownian motions as T increases, by the FCLT. We accordingly
attempt to show that

G�T
d!
Z 1

0
BXdBY : (7.7)

The FCLT is not su¢ cient alone to let us deduce (7.7). However, a clever result known as the
Skorokhod representation theorem supplies the required step. Roughly speaking, this asserts that
(in the present case), whenever the joint distribution of a sequence (XT ; YT ) converges weakly
to (BX ; BY ), there exists a sequence of random processes (XT ; Y T ) converging almost surely to
limit processes that are jointly distributed as (BX ; BY ). (Since these processes are elements of
D[0;1], the relevant concept of convergence has, in practice, to be carefully speci�ed in terms of the
Skorokhod topology.) It therefore su¢ ces to show that, if a random variable G�T is constructed
like G�T except in terms of the Skorokhod processes (X

T ; Y T ), then����G�T � Z 1

0
BXdBY

���� pr! 0:

Since convergence in probability implies convergence in distribution, and G�T and G�T have the
same distribution by construction, this line of argument su¢ ces to establish (7.7).

It then remains to consider GT �G�T . De�ning Tj = [Trj ], we have

YT (rj+1)� YT (rj) =
1

�wT 1=2

Tj+1�1X
t=Tj

wt+1

and

XT (rj) =
1

�uT 1=2

Tj�1X
m=0

uTj�m:

Therefore,

GT �G�T =
1

�u�wT

k(T )X
j=1

0@ Tj�1X
t=Tj�1

Tj�1X
m=0

ut�mwt+1 �
Tj�1X
m=0

uTj�m

Tj�1X
t=Tj�1

wt+1

1A
=

1

�u�wT

k(T )X
j=1

Tj�1X
t=Tj�1+1

0@t�Tj�1�1X
m=0

ut�m

1Awt+1
Recall our assumption that the processes fut; wtg are serially independent. In this case we may
show convergence in mean square, as follows:

E(GT �G�T )2 =
1

�2u�
2
wT

2

k(T )X
j=1

Tj�1X
t=Tj�1+1

E

0@t�Tj�1�1X
m=0

ut�m

1A2E(wt+1)2
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=
1

T 2

k(T )X
j=1

Tj�1X
t=Tj�1+1

(t� Tj�1)

� 1

T 2

k(T )X
j=1

(Tj � Tj�1)2

= O

�
max

1�j�k(T )
jrj � rj�1j

�
= o(1)

where the �nal order of magnitude holds in view of (7.6). This implies convergence in probability,
as noted.

Showing this convergence in probability for the general case where fut; wtg are serially cor-
related is generally more di¢ cult, and will not be attempted here, although the assumptions
required are comparable with those needed for the FCLT to hold. The main thing to note is that
in these cases the probability limit is not zero, and

plim(GT �G�T ) = �uw =
1

p
!uu!ww

1X
m=1

E(u1�mw1):

It goes without saying that the cross-autocorrelations need to form a summable series, under the
assumptions validating these results. Hence, the full convergence result that is commonly cited
in arguments relating to convergence of regression statistics, for example, is

GT
d!
Z 1

0
BXdBY + �uw:

For reference, let us state here a fairly general stochastic integral convergence theorem (SICT),
adapted from De Jong and Davidson (2000). This is a companion result to Theorem 5.1 with
essentially the same set of assumptions.

Theorem 7.1 Let (XT ; YT ) be de�ned as in (5.4) with respect to increment processes fut; wtg.
Let these processes satisfy conditions (a)-(c) of Theorem 5.1, with long-run variances !uu and
!ww and long-run covariance

!uw = �
2
�w + �uw + �

0
wu

where �uw =
P1
m=1E(u1�mw1) and �

0
wu =

P1
m=1E(w1�mu1): If

GT =
TX
t=1

XT (t=T )(YT ((t+ 1)=T )� YT (t=T ))

then

(XT ; YT ; GT )
d! (BX ; BY ;

Z 1

0
BXdBY + �uw)

Note the importance of specifying the joint convergence of the three components, in this result.
This is mainly a formality as far as the proof is concerned, but it is required to be able to apply
the CMT to functionals of the components.

7.3 Application to Regression

A standard case is a cointegrating regression. In a simpli�ed setup in which there are no deter-
ministic components such as intercepts, consider the model

yt = �xt + "t
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�xt = ut

where fut; "tg are (at worst) stationary short memory processes, such that their normalised partial
sums converge to BM. Let �̂ represent the OLS estimator. Combining the FCLT and SICT with
the CMT, it can be shown that

T (�̂ � �) = T�1
PT
t=1 xt"t

T�2
PT
t=1 x

2
t

d!
p
!uu!""

R 1
0 BxdB" + �u" + �u"

!uu
R 1
0 B

2
xdr

(7.8)

where the quantities !"", �u" and �u" are de�ned by analogy with Theorem 7.1, although be
careful to note that the increments "t are not those of the yt process.

This result embodies all the known asymptotic properties of the cointegrating regression.
First, �superconsistency�, or convergence at the rate T�1. Second, median bias of order O(T�1).16

Third, the limiting distribution is certainly not Gaussian, noting that the numerator and denom-
inator in (7.8) are dependent in general.

However, it is also possible to appreciate the special properties of OLS in the case where the
regressor is strongly exogenous. This is the case when the pairs (ut�j ; "t) are independent, for
all j and all t. This is not an easy assumption to validate in most economic contexts, but if
it holds, much more useful results emerge. Firstly, we can put �u" = �u" = 0, removing this
source of bias. More importantly, however, it is now valid to consider the limiting distribution
of T (�̂ � �) conditional on BX , which in the context of the conditional distribution can be
treated as a deterministic process - e¤ectively, as though it were a type of trend function. It is
straightforward to show that

p
!uu!""

Z 1

0
BxdB"jBx � N

�
0; !uu!""

Z 1

0
B2xdr

�
and hence that

T (�̂ � �)jBx � N
 
0; !""

�
!uu

Z 1

0
B2xdr

��1!
Here the unconditional distribution is mixed Gaussian. This means that it is distributed like a
drawing from a two-stage sampling procedure in which �rst a positive random variable V is drawn

from the distribution of !""
�
!uu

R 1
0 B

2
xdr
��1

, and then a drawing from the N(0; V ) distribution

yields the observed variable. This distribution is distinguished by excess kurtosis, but this is less
important than the fact that the t ratio for the regression, being normalized by an "estimate" of
the random variance, is asymptotically standard normal. Hence, standard asymptotic inference
is available in this model, and the same arguments generalize in a natural way to the multiple
regression case. However, in the case of non-strongly endogenous regressors, di¤erent procedures
are necessary to achieve standard inference. See, for example, Phillips and Hansen (1990) and
Phillips and Loretan (1988) for further discussion of these methods.

8 The In�nite Variance Case

8.1 ��Stable Distributions
An essential property of the driving process in all the foregoing results has been a �nite variance.
Without this, there is no CLT in the usual sense. To understand what might happen instead,

16 It is evident that the numerator does not have a mean of zero, but since it is not straightforward to compute
the moments of the limiting ratio, it is better to comment on its distribution directly without invoking integrability.
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we must de�ne the class of stable distributions. If X has a stable distribution, then for any
T , there exist identically distributed r.v.s U1; : : : ; UT and U , and real sequences faT ; bT g, where
aT > 0, such that ST = U1 + � � �+ UT has the same distribution as aTU + bT . The distribution
is sometimes called strictly stable when this is true for the case bT = 0: A stable distribution is,
by construction, in�nitely divisible, meaning that it can be represented as the distribution of a
T -fold sum of i.i.d. r.v.s, for any T . The leading example is the N(�; �2) distribution, being the
stable case in which ST has the same distribution as

p
TU + (T �

p
T )�. It is clear that, if it

is to act as an attractor for the distribution of a normalized partial sum, a distribution must be
stable.

The normal is the unique stable distribution possessing a variance. However, there exists
an extensive class of stable distributions with in�nite variance, identi�ed by the form of their
characteristic functions. (Except for the normal, the density functions are not generally available
in closed form.) In general, members of the stable class can be positively or negatively skewed
around a point of central tendency. Con�ning attention for simplicity to symmetric distributions
centered on zero, the ch.f.s have the form.

�U (�) = e
��j�j� (8.1)

for 0 < � � 2 (stability parameter) and � > 0 (scale parameter). The N(0; �2) distribution is
the case where � = 2 and � = �2=2. When � < 2, distributions with ch.f. shown in (8.1), having
no variance, are characterized by �fat tails�with a relatively high probability of outlying values.

Considering again identity (2.4), we �nd that, in this case,

[�U (�)]
T = �U (�T

1=�)

and the stability property is obtained with bT = 0 and aT = T 1=�. Distributions having this
property for aT (not necessarily with bT = 0) are called stable with exponent �, or �-stable. If the
ch.f. takes the special form of (8.1) they are called symmetric �-stable or S�S. Another leading
S�S case is the Cauchy distribution, corresponding to � = 1. Since e�j�j

�
= E(ei��

�1=�U ),
one might think by analogy with the standard normal of the �standard�S�S, having � = 1,
obtained by dividing the r.v. by ��1=�. Useful references on the properties of stable distributions
include Breiman (1968), Feller (1971), Ibragimov and Linnik (1971) and Samorodnitsky and
Taqqu (1994).

Every distribution with �nite variance lies in the �domain of attraction of the normal law�.
However, there evidently exists a whole family of stable convergence laws of which the CLT is
only the leading case. The most important question, of course, is what distributions may fall
within the domain of attraction of a stable law associated with given �? The answer to this
more general question relates to the tail behaviour of the distributions in question, and can be
stated in terms of the distribution function F . Breiman (1968, Th. 9.34) gives the necessary and
su¢ cient conditions as follows: that there exist nonnegative constants M+ and M�, of which at
least one is positive, such that

F (�x)
1� F (x) !

M�

M+
as x!1

and for every � > 0, as x!1,

if M+ > 0 then
1� F (�x)
1� F (x) ! ��� (8.2)

if M� > 0 then
F (��x)
F (�x) ! ���: (8.3)
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Note that stable laws can be skewed although, of course, M+ = M� in symmetric cases. This
is one point of di¤erence from the normal CLT, in which normalized sums of skewed r.v.s are
nonetheless symmetric in the limit.

In the symmetric case, properties (8.2) and (8.3) are satis�ed if

P (jU j > x) = x��L(x)

where L is a slowly varying function, having the property that L(ax)=L(x) ! 1 as x ! 1 for
any a > 0. For example, log x is slowly varying. The key property is that there exists B > 0
such that x�� < L(x) < x� for all x > B. We say in this case that the tails of the distribution
obey a power law with exponent �. Note the implication, if the distribution is continuous and
fU denotes the p.d.f., that

fU (x) = O(jxj���1L(x))
as x! �1, such that the tail integrals are of the speci�ed order of magnitude. By contrast, to
ensure that

E(U2) =

Z 1

�1
x2fU (x)dx <1

note that the tails of the p.d.f. must be of O(jxj�3�") for " > 0, and hence need � > 2. In this
case, the attractor p.d.f. has exponentially vanishing tails according to the CLT, regardless of �,
whereas for � < 2 the tail behaviour is shared by the limit distribution, under the stable law.

We summarise these points by noting that there exists a generalization of the CLT of the
following sort.

Theorem 8.1 If ST =
PT
t=1 Ut; and U1; : : : ; UT are i.i.d. random variables in the domain of

attraction of a symmetric stable law with parameter �, there exists a slowly varying function L
such that ST =(T 1=�L(T )) converges weakly to S�S:

Little research appears to have been done to date on the case of dependent increments, one
obvious di¢ culty being that the autocorrelation function is unde�ned. However, it appears a
reasonable conjecture that suitable variants of the arguments deployed for the dependent CLT,
such as Theorem 5.1, might yield generalizations for Lp-NED functions of mixing processes with
p < �.

8.2 Lévy Motion

If convergence to an �-stable law takes the place of the usual CLT, the existence of a corresponding
FCLT must be our next concern. Consider, as before, the normalized partial sum process XT 2
D[0;1] such that

XT (r) =
1

T 1=�L(T )

[Tr]X
t=1

Ut: (8.4)

Consider the behaviour of this process as T increases. Note �rst of all that

P (T�1=�L(T )�1jUtj > x) = O(T�1L(T ))

and, therefore, the normalization ensures that the probability that the process jumps by a positive
amount is converging to zero. However, note too how the proof of tightness in C[0;1], given in
Section 4.5, now fails. With p < 2, the inequality in (4.7) cannot be satis�ed for arbitrary "; � > 0
under the stated conditions. In fact, the limit process does not lie in C[0;1] almost surely.

A more general class of processes in D[0;1] containing these limits is de�ned as follows. A
random function X : [0; 1] 7! R is called a Lévy process if
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(a) it is cadlag, a.s.

(b) it has independent increments,

(c) it is continuous in probability: P (X(r + s)�X(r))! 0 as s! 0,

(d) it is time-homogeneous: the distribution of X(s+ r)�X(r) does not depend on r,

(e) X(0) = 0 a.s.

BM is a Lévy process on this de�nition, although one enjoying additional continuity properties.
On the other hand, if the �dis of a Lévy process are strictly stable distributions with parameter
�, such that X(s+ r)�X(r) is distributed as s1=�X(1) for all 0 < s < 1 and 0 � r < 1� s, it is
called an �-stable motion, or a Lévy motion, denoted �a.

In addition to the �dis converging to those of Lévy motion, the counterpart of the FCLT for
these processes must establish that the sequence of p.m.s associated with XT is uniformly tight,
and the limit process lies in D[0;1] almost surely. The tightness conditions are less stringent than
for the Gaussian case, since it is only necessary to rule out realizations with isolated discontinuities
arising with positive probability. Billingsley (1968, Theorem 15.6) gives a su¢ cient condition for
tightness for processes in D[0;1]. The weak convergence speci�ed in the following result is de�ned
as before with respect to the Skorokhod topology on D[0;1]:

Theorem 8.2 If X and fXT ; T = 1; 2; 3; : : :g are random elements of D[0;1] and

(a) the �dis of XT converge to those of X;

(b) there exist  � 0, � > 1 and a continuous nondecreasing function F on [0; 1] such that

P (minfjXT (r)�XT (r1)j; jXT (r2)�XT (r)jg � �) �
[F (r2)� F (r1)]�

�2

for all T � 1, and r1 � r � r2 whenever r1; r2 2 KX , where KX � [0; 1] is the set of points
r at which P (X(r) 6= X(r�)) = 0, including 0 and 1;

then XT
d! X:

For the case of a Lévy motion we can take KX = [0; 1]. Condition (b) sets the probability of
isolated discontinuities su¢ ciently low to ensure uniform tightness. A su¢ cient condition for (b)
is

E(jXT (r)�XT (r1)j jXT (r2)�XT (r)j) � [F (r2)� F (r1)]�: (8.5)

Suppose the �dis are tending to S�S limits, and that the increments are independent. Then,
choosing  < � such that the moments exist, note that the left-hand side of (8.5) equals

EjXT (r)�XT (r1)jEjXT (r2)�XT (r)j �M
([Tr2]� [Tr])=�([Tr]� [Tr1])=�

T 2=�
(8.6)

for some M <1. If min(r2� r; r� r1) < T�1 then note that the left-hand side of (8.6) vanishes.
Otherwise, the right-hand side is bounded by

M
([Tr2]� [Tr1])2=�

T 2=�
� 4M(r2 � r1)2=�:

Choosing  > 0 to satisfy  < � < 2 shows that condition (b) of Theorem 8.2 is satis�ed, and
the weak limit of such a process is a Lévy motion.
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More research remains to be done before the in�nite variance case is understood as thoroughly
as convergence to Brownian motion, especially under dependence. There are various new issues
to be treated, such as the restrictions on joint convergence to limits in Dm, as described in Section
4.6. However, the prevalence of fat tailed distributions in economic data, especially in �nance, is
not in doubt. See Barndor¤-Nielsen and Shephard (2001), among many recent references, on the
importance of these processes in econometric inference.
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