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Abstract

The so-called type I and type II fractional Brownian motions are limit distributions asso-
ciated with the fractional integration model in which pre-sample shocks are either included
in the lag structure, or suppressed. There can be substantial di¤erences between the distri-
butions of these two processes and of functionals derived from them, so that it becomes an
important issue to decide which model to use as a basis for inference. Alternative methods for
simulating the type I case are contrasted, and for models close to the nonstationarity bound-
ary, truncating in�nite sums is shown to result in a signi�cant distortion of the distribution.
A simple simulation method that overcomes this problem is described and implemented. The
approach also has implications for the estimation of type I ARFIMA models, and a new
conditional ML estimator is proposed, using the annual Nile minima series for illustration.

1 Introduction

The literature on long memory processes in econometrics (for recent examples, see inter alia Jo-
hansen and Nielsen (2008), Caporale and Gil-Alana (2008), Coakley, Dollery and Kellard (2008),
Haldrup and Nielsen (2007)) has adopted two distinct models as a basis for the asymptotic
analysis, the limit processes speci�ed being known respectively as type I and type II fractional
Brownian motion (fBM). These processes have been carefully examined and contrasted by Mar-
inucci and Robinson (1999). When considered as real continuous processes on the unit interval,
they can be de�ned respectively by

X(r) =
1

�(d+ 1)

Z r

0
(r � s)ddB(s) + 1

�(d+ 1)

Z 0

�1
[(r � s)d � (�s)d]dB(s) (1.1)

and

X�(r) =
1

�(d+ 1)

Z r

0
(r � s)ddB(s) (1.2)

where �1
2 < d <

1
2 and B denotes regular Brownian motion. In other words, in the type II case

the second term in (1.1) is omitted. It will be convenient to write the decomposition

X = X� +X�� (1.3)
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where X��(r) is de�ned as the second of the two terms in (1.1). The processes X� and X�� are
Gaussian, and independent of each other, so we know that the variance of (1.1) will exceed that
of (1.2). As shown by Marinucci and Robinson (1999), the increments of (1.1) are stationary,
whereas those of (1.2) are not.

These processes are commonly motivated by postulating realizations of size n of discrete
processes and considering the weak limits of normalized partial sums, as n!1: De�ne

xt = (1� L)�dut (1.4)

where we assume for the sake of exposition that futg1�1 is an i.i.d. process with mean 0 and
variance �2, and

(1� L)�d =
1
X

j=0

bjL
j (1.5)

where, letting �(�) denote the gamma function,

bj =
�(d+ j)

�(d)�(1 + j)
: (1.6)

De�ning the partial sum process

Xn(r) =
1

�n1=2+d

[nr]
X

t=1

xt (1.7)

it is known that Xn
d! X, where

d! denotes weak convergence in the space of measures on D[0;1],
the space of cadlag functions of the unit interval equipped with the Skorokhod topology. (See for
example Davidson and de Jong 2000). On the other hand, de�ning

u�t = 1(t > 0)ut (1.8)

and x�t as the case corresponding to xt in (1.4) when u
�
t replaces ut, and then de�ning X

�
n like

(1.7) with x�t replacing xt, it is known that X
�
n
d! X� (Marinucci and Robinson 2000).

The model in (1.8) is one that is often used in simulation exercises to generate fractionally
integrated processes, as an alternative to the procedure of setting a �xed, �nite truncation of the
lag distribution in (1.4), common to every t. However, from the point of view of modelling real
economic or �nancial time series, model (1.8) is obviously problematic. There is, in most cases,
nothing about the date when we start to observe a series which suggests that we ought to set all
shocks preceding it to 0. Such truncation procedures are common in time series modelling, but
are usually justi�ed by the assumption that the e¤ect is asymptotically negligible. In this case,
however, where the e¤ect is manifestly not negligible in the limit, the choice of model becomes a
critical issue.

The setting for this choice is the case where a Monte Carlo simulation is to be used to construct
the null distribution of a test statistic postulated to be a functional of fBM. If model (1.8) is
used to generate the arti�cial data, then the distribution so simulated will be the Type II case.
However, if the observed data ought to be treated as drawn from (1.4), then the estimated critical
values will be incorrect even in large samples. It then becomes of importance to know how large
this error is.

Section 2 of the paper reviews and contrasts the main properties of these models. A leading
di¢culty in working with the type I model is to simulate it e¤ectively, and as we show in Section
3, the �xed lag truncation strategy is not generally e¤ective, except by expending a dramatically
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large amount of computing resources. Since type I fBM has a harmonizable representation,
another suggestion has been to use this to simulate the model, and then use a fast Fourier
transform to recover the data in the time domain. However, we also show that this method
cannot function e¤ectively without large resources. Methods for generating type I processes
do exist, for example circulant embedding and wavelet aproximations, but these are relatively
di¢cult to implement in an econometric context. In Section 4 we suggest a new simulation
method for type I processes, whose computational demands are trivial, and being implemented
in the time domain adapts naturally to econometric modelling applications. The method is highly
accurate when the data are Gaussian, and is always asymptotically valid.

Finally, we point out in Section 5 how the same approximation technique can be used to
estimate ARFIMA time series models under the assumption that the true processes are of type I.
This is in contrast to the usual time domain estimation by least squares, or conditional maximum
likelihood, where the necessity of truncating lag distributions to match the observed data series
implicitly (and perhaps inappropriately) imposes restrictions appropriate to the type II case.
The method entails �tting some constructed regressors, whose omission will potentially bias the
estimates in �nite samples. The technique is illustrated with an application to the well-known
series of annual Nile minima. Section 6 concludes the paper. Proofs are contained in Appendix
A, and Appendix B exhibits some simulations of representative fractional Brownian functionals,
under the two de�nitions.

The computations in this paper were carried out using the package Time Series Modelling 4
(Davidson 2008) which runs under the Ox 4/5 matrix programming system (Doornik 2006).

2 Properties of Fractional Brownian Motions

Our �rst task is to identify and contrast the distributions represented by (1.1) and (1.2). Since
these are Gaussian with means of zero, this is simply a matter of determining variances and
covariances of increments, and since

X(r1)X(r2) =
1
2

�

X(r1)
2 +X(r2)

2 � (X(r2)�X(r1))2
�

a formula for the variance of an increment X(r2) � X(r1) is su¢cient to identify the complete
covariance structure. It will further su¢ce, to motivate our discussion, to consider just the cases
r1 = 0 and r2 = r 2 (0; 1]. The formula

EX(r)2 = V (d)r2d+1

where

V (d) =
1

�(d+ 1)2

�

1

2d+ 1
+

Z 1

0
((1 + �)d � �d)2d�

�

(2.1)

is given by Mandelbrot and Van Ness (1968). However, for this formula to be operational a closed
form for the integral in the second term is necessary. As we remark in the sequel, conventional
numerical evaluations may su¤er major inaccuracies. A proof of the closed-form representation

V (d) =
�(1� 2d)

(2d+ 1)�(1 + d)�(1� d) (2.2)

is given in Davidson and Hashimzade (2008). By contrast, the variance in the type II case is
found by elementary arguments as

EX�(r)2 = V �(d)r2d+1
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Figure 1: Plots of V (solid line) and V � (dashed line) over (�0:5; 0:5)

where

V �(d) =
1

(2d+ 1)�(d+ 1)2
:

Plotting these formulae as functions of d (Figure 1) is the easiest way to see their relationship,
and it is clear that, particularly for values of d close to 0.5, the di¤erences can be substantial.
While V diverges as d ! 0:5, V � is declining monotonically over the same range, so that the
variance of the second term in (1.1) comes to dominate that of the �rst term to an arbitrary
degree.

It is easy to see how the distributions of functionals such as
R 1
0 Xdr and

R 1
0 X

2dr will di¤er
correspondingly for these two models. The other important random variables arising in the
asymptotic theory of estimators are stochastic integrals. Expressions of the form

R 1
0 X1dX2 arise

in the limit distributions of regression errors-of-estimate in models involving nonstationary series
and possible long-memory error terms. The location parameter of this random variable is an
important contributor to the degree of bias in the regression. The distribution theory for these
random variables is studied in Davidson and Hashimzade (2008, 2009). For type I processes, the
expected value is given in Davidson and Hashimzade (2008) Proposition 4.1 as

E

Z 1

0
X1dX2 = �12

�(1� d1 � d2) sin�d2
�(d1 + d2)(1 + d1 + d2)

;

where �12 = E(X1(1)X2(1)). On the other hand, by constructing the expectation as the limit of
the normalized �nite sum, we can quite easily show the following for type II processes X�

1 and
X�
2 ; where �12 is de�ned analogously.

Proposition 2.1 E
R 1
0 X

�
1dX

�
2 =

�12d2
(1 + d1 + d2)(d1 + d2)�(1 + d1)�(1 + d2)

:

In Figure 2 we show plots of these expressions, as d2 varies over the interval [0;
1
2), for �12 = 1

and �xed d1 = 0:4:
These large discrepancies clearly pose a very important issue - which of these models is the

more appropriate for use in econometric inference? Marinucci and Robinson (1999) remark:
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Figure 2: E
R 1
0 X1dX2 (solid line) and E

R 1
0 X

�
1dX

�
2 (dashed line) as functions of d2, with �12 = 1,

d1 = 0:4

�It is of some interest to note that [type II fBM] is taken for granted as the proper
de�nition of fractional Brownian motion in the bulk of the econometric time series
literature, whereas the probabilistic literature focuses on [type I fBM] This dichotomy
mirrors di¤ering de�nitions of nonstationary fractionally integrated processes...�

The feature of the type II model this last remark evidently refers to is that it incorporates the
conventional integer integration models (I(1), I(2), etc.) neatly into a general framework. Letting
d increase from 0 up to 1, and then 2 and beyond, yields a continuum of models, all nonstationary,
but with continuously increasing �memory�. An I(1) model cannot be allowed to have an in�nitely
remote starting date, but must be conceived as a cumulation of increments initiated at date t = 1,
with an initial condition x0 that must be generated by a di¤erent mechanism. The view that
this construction should apply seamlessly to the whole class of I(d) models leads naturally to the
type II framework.

On the other hand, the type I framework requires us to keep cumulation (integer integration)
and stationary long memory in conceptually separate compartments. In this view, a cumulation
process must be assigned a �nite start date, but its increments should then form a stationary
sequence. In any autoregressive process, whether weakly or strongly dependent, stationarity
combined with the assumption that the distribution is generated from i.i.d. shocks imposes a de-
pendence on all past shocks, and in the case of long memory it implies non-negligible dependence
on the �in�nite� past. This might appear unrealistic. However, we should not lose sight of the
fact that this simple mathematical model is not necessarily the actual mechanism that �nature�
chooses to create sequences of data. The shocks are no more than the �ctional concomitant of
writing a stationary generation process in linear form. In practice, all we have to account for is
the joint distribution of the �nite sequence of sample increments. Stationarity of this distribution,
in the linear fractional framework, implies the type I model.

By contrast, the type II model implies nonstationary increments of which the marginal dis-
tributions are dependent on the date relative to the start of the observed sample. This gives rise
to a much less appealing data description. All realizations of the process would have to be found
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at, or very close to, the unconditional mean of the process (i.e., 0) whenever we start to observe
them. The obvious counterfactual is provided by discarding some initial observations from any
process so generated which, obviously, produces a process requiring a description di¤erent from
type 2. In practice there are plenty of nonlinear mechanisms that might generate stationary frac-
tional processes well described by models of the ARFIMA class, of which the leading examples all
involve some type of aggregation across units/agents. See for example Davidson and Sibbertsen
(2004), Granger (1981), and also Byers, Davidson and Peel (1996, 2001) for an application.

The considerations we discuss here are a universal feature of time series modelling, but it has
generally been possible to neglect them because the e¤ects are of small order relative to sample
size. This is true both in weakly dependent processes and in simple integrated processes. Long
memory models are di¤erent, since choosing the wrong descriptive framework has asymptotic
consequences, and exposes us to the hazard of incorrect inferences even in large samples. The
practical value of asymptotic theory for fractionally integrated processes can only be to derive test
statistics that must, in practice, be tabulated by simulation. This e¤ort is of course compromised
if the distributions we tabulate are di¤erent from those generated by �nature�. If it is believed
that the latter should realistically be treated as of type I, a suitable simulation algorithm becomes
an essential prerequisite of useful research in this area. In the next section we review existing
simulation methods, considering in particular the type of processes that they generate, and then
go on to propose a new strategy which is simple to implement and appears very e¤ective in
practice.

3 Simulation Strategies For Type I Processes

Beran (1994) o¤ers a number of suggestions for simulating long memory processes, in such a way
as to reproduce the correct autocorrelation structure. However, he does not address the issues of
stationarity and the role of presample in�uences. In this section we examine these methods, and
others, with these issues in mind.

3.1 Using Presample Lags

A general procedure for generating a fractionally integrated series of length n is to apply, for
t = 1; : : : ; n and some �xed m, the formula

xt =
m+t�1
X

j=0

bjut�j ; (3.1)

where fu�m; : : : ; ung is a random sequence of suitable type, and fbj ; j = 0; : : : ;mg is de�ned
by (1.6). In the experiments reported in this paper, futg is always i.i.d. standard Gaussian.
Choosing m = 0 and taking the formula in (1.7) to the limit will yield a type II process, as
noted above. On the other hand, by choosing m large enough we should be able to approximate
the type I process to any desired degree of accuracy. Note that the �xed lag length strategy of
replacing m + t � 1 by m as the upper limit in (3.1) yields a stationary process, which might
be viewed as desirable when attempting to approximate the true case m = 1: However, it is
clear that when m is large enough to achieve a good approximation, it is also large enough that
the di¤erence between the two cases is negligible. Therefore we do not consider this latter case
explicitly.

Table 1 shows the standard deviations in 10,000 replications of the terminal points Xn(1) of
the process in (1.7) where xt is generated by the model in (3.1) where d = 0:4, and n = 1000.
For comparison, note the theoretical values:

p

V (0:4) = 1: 389 and
p

V �(0:4) = 0:8401. The
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m 0 1000 3000 6000 9000

SD 0.843 0.996 1.036 1.108 1.137

Table 1: SDs of Terminal Values: Extended Lag Representation

coe¢cients converge so slowly, for values of d in this region, that the length of the presample
needed for a close approximation to the type I process is infeasibly large.

3.2 Harmonic Representation

When ut is i.i.d. Gaussian, the process xt de�ned by (1.4) has the harmonic representation

xt =
�p
2�

Z �

��
ei�t

�

1� e�i�
��d

W (d�); (3.2)

where i is the imaginary unit and W is a complex-valued Gaussian random measure with the
properties

W (�d�) =W (d�)
E(W (d�)) = 0

E(W (d�)W (d�)) =

�

d�; � = �
0; otherwise.

This process is stationary by construction. It is also shown in Davidson and Hashimzade (2007,
Theorem 2.2) that the weak limit de�ned by (1.7) applied to the process (3.2) is type I fractional
Brownian motion.

Therefore, we investigate a discrete form of (3.2) as a framework for simulation. Letting

g(�) =
�

1� e�i�
��d

(3.4)

denote the transfer (frequency response) function of the process, de�ne a sequence gk by evaluating
g at �k = �k=m , where m � n is a suitably chosen power of 2. In principle, we can use the fast
Fourier transform (FFT) to evaluate

xt =
�p
2�m

m�1
X

k=1�m

ei�ktgkWk; t = 0; : : : ;m� 1 (3.5)

after setting

Wk =

�

Uk + iVk; k � 0
Uk � iVk; k < 0

where (Uk; Vk; k = 0; : : : ;m � 1) are independent standard Gaussian pairs. Then take xt for
t = m� n; : : : ;m� 1 to provide the generated sample of length n. Note that the model is easily
generalized to include (e.g.) ARMA components, by simply augmenting g with multiplicative
factors. While the sequence gk from (3.4) can be evaluated in closed form as

gk =

�

2 sin
�k
2

��d �

cos

�

(� � �k)d
2

�

� i sin
�

(� � �k)d
2

��

(3.6)

for jkj > 0, there is an evident di¢culty due to the singularity at zero. A natural way to achieve
a discrete approximation is to replace (3.4) with its series expansion

g(�) =
1
X

j=0

bje
�i�j ;
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where bj is de�ned by (1.6). Evaluating (3.5) by replacing this in�nite sum with the sum truncated
at m terms will approach the limit (3.2) in just the right way, and the FFT can be used here
too, for speedy evaluation. By taking m large enough we should, in principle, be able to compute
type I fBM to any desired degree of accuracy.

However, Table 2 shows the standard deviation of Xn(1) in 10,000 replications of this simu-
lation method for the case d = 0:4, also setting �2 = 1 and n = 1000. As before, we �nd that

m 1000 5000 10,000 20,000

SD 1.106 1.128 1.166 1.200

Table 2: SDs of Terminal Values, Harmonic Representation

the increase in the SD as m is increased is extremely slow, and remains a long way from the type
1 SD of 1:389, even with infeasibly large m. This method evidently su¤ers from an essentially
similar problem to the time domain moving average method.

3.3 Choleski Method and Circulant Embedding

Another approach is to base the simulation on reproducing the known autocorrelation structure
of the increments. Let 
n denote the covariance matrix of the vector xn = (x1; : : : xn)

0. Given
formulae for 
(k) = E(xtxt�k) for k = 0; :::; n � 1, 
n is easily constructed as the Toeplitz
matrix with kth diagonals set to 
(k). If Kn represents the Choleski decomposition, such that

n = KnK

0
n, and zn = (z1; : : : zn)

0 is a standard normal vector, then Knzn is a stationary
sequence having the same distribution as xn (exactly) in the case that ut is Gaussian. The
process (1.7) must therefore converge to type I fBM.

For the case where xt is generated by (1.4) where ut is i.i.d(0; �
2), we have the well-known

formula:


(k) = �2
� (1� 2d) � (k + d)
� (k + 1� d)

sin (�d)

�
: (3.7)

see e.g. Granger and Joyeux (1980), Sowell (1992). It is straightforward to extend this calculation
to the ARFIMA(p; d; q) case using the formulae given by Sowell (1992). It could even be extended
to the multivariate case by computing the block-Toeplitz matrix of the cross-autocorrelations,
but for large samples this procedure would be computationally challenging.

An alternative way to base the simulation on the covariances is by the circulant embedding
method, as described in Davies and Harte (1987) for example. Let v (2n + 1 � 1) denote the
discrete Fourier transform (DFT) of the sequence


(0); : : : ; 
(n� 1); 
(n); 
(n� 1); : : : ; 
(1):

The generated data are then taken as the �rst n elements of the inverse DFT of the vector
generated as diag(v)z, where z is a complex-valued Gaussian vector, scaled by n1=2 � see Davies
and Harte (1987) or Beran (1994) for the complete details of the algorithm. Davies and Harte
simulate the so-called fractional Gaussian noise, which has a di¤erent autocorrelation structure
from (1.4) except in the tail, but the method is easily adapted as described. By use of the
fast Fourier transform, this method is substantially more economical of time and memory than
the Choleski method, and once again it yields type I fBM in the limit. We have checked the
properties of both of these algorithms by simulation of the (1.4) model with d = 0:4 (n = 1000,
and 10,000 replications). For comparison with the theoretical value (1.389, from above) the
standard deviation obtained for the Choleski replicates in these experiments was 1.394, and for
the circulant embedding method, 1.396.
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It is striking that these successful methods of simulating type I work by reproducing the
characteristics of the observed data directly, not by invoking the linear representation as is done
explicitly in 3.1 and implicitly in 3.2. However, while they can be generalized to any stationary
process whose covariance sequence is known, such as the ARFIMA class, or fractional Gaussian
noise, and can in principle be generalized to the multivariate case, they will have di¢culty
in accommodating non-Gaussianity, nonlinear short-run dependence and other important data
features. They are generally too in�exible for implementation in econometric models, which tend
to rely heavily on the �independent shock� paradigm for their construction.

3.4 Wavelets

Simulation of fractional processes using wavelet methods has been quite extensively researched,
see among other references Abry and Sellan (1996), Meyer, Sellan and Taqqu (1999), and Pipiras
(2004, 2005). While many variants of the method are possible, the basic algorithm described by
Meyer, Sellan and Taqqu (1999) is representative. De�ning the Hurst coe¢cient H = d+ 1

2 , they
show that fractional Brownan motion BH(t); t 2 R can be represented almost surely on compact
intervals in the form

BH(t) =
1
X

k=�1

�H(t� k)S(H)k +
1
X

j=0

1
X

k=�1

2�jH	H(2
jt� k)"jk � b0;

where "jk s iidN(0; 1), b0 is the initial condition to ensure BH(0) = 0, 	H is the chosen wavelet
function, and �H is a described as a biorthogonal scaling function satisfying �H(t) = O(jtj�2�2H).
The key component is S

(H)
k , a discrete time fractionally integrated Gaussian process such as an

ARFIMA(0;H� 1
2 ; 0), independent of f"jkg, and designed to capture the low frequency variations.

The wavelets �ll in the high frequency �details�, at successively smaller scales as j increases. See
the above-cited references for the details.

On a compact interval such as t 2 [0; 1], replacing the in�nite sums in j and k by �nite

sums is shown to provide a highly accurate approximation to fBM. The sequence S
(H)
k can of

course be generated by the Choleski or circulant embedding algorithms. Exploiting the self-
similarity of the fractional process allows relatively short realizations to e¤ectively mimic the
�large� deviations in fBM. Therefore, we can view the wavelet method as exploiting the bene�ts
of the Choleski and related methods. In particular, it should reproduce the type I distribution at
reduced computational cost. (We have not been able to check this assertion ourselves by direct
calculation, but the belief that the method should inherit the properties of the approximating
ARFIMA appears a reasonable one.) However, it su¤ers the same disadvantages as those methods
in having no straightforward extension to the multivariate framework, and also being di¢cult to
adapt to the context of econometric modelling in the time domain.

3.5 Simulation by Aggregation

Beran (1994) also suggests using the Granger (1981) aggregation scheme. Summing a large num-
ber of independently generated stable AR(1) processes, whose coe¢cients are randomly generated
in the interval [0; 1) as

p
�, where � is a drawing from the Beta(a; b) distribution, Granger showed

that the resulting aggregate series xt would possess the attributes of a fractional sequence with
d = 1� b; for example, with d < 1

2 the autocovariances E(xtxt�k) will decrease at the rate k
2d�1.

The �long memory� attribute can be identi�ed with the incidence, in a suitable proportion of the
aggregate, of AR roots close to 1. A related method is proposed by Enriquez (2004), in which
discrete processes are drawn repeatedly from a distribution inducing the required persistence
structure, and aggregated.
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These procedures certainly generate processes with the correct autocorrelation structure in
the limit, but this alone is not su¢cient to ensure that the normalized partial sums converge to
fBM. For a further discussion of related issues see Davidson and Sibbertsen (2004). These authors
prove convergence to type I fBM under a di¤erent aggregation procedure, that of micro-processes
undergoing random regime shifts following a power law. However, in this result the aggregated
micro-series are stationary processes, with implicitly remote starting dates. Although this issue is
not dealt with explicitly in the cited paper, it is a plausible conjecture that aggregating truncated
processes, with presample shocks suppressed, would yield the type II case.

A formal proof of weak convergence to fBM still appears wanting for the Granger aggregation
case. Enriquez (2004) provides a proof that his limit process is Gaussian and a.s. continuous,
and that its increments possesses the requisite correlation structure. However, the issue of type
I versus type II is not addressed, and neither of the formulae (1.1) and (1.2) are cited as limit
processes. We can plausibly conjecture that, in either case, the limit is of type I or type II de-
pending on the treatment of the presample shocks. In the Granger aggregation case, note that
for a type I limit the AR series components need to be stationary, an attribute only attained
asymptotically as they advance from their starting points. This approach to stationarity will be
rapid in most cases, but the long memory attribute of the aggregate depends upon the incidence
of components with roots close to 1. These may have low probability, but they are correspond-
ingly in�uential in the aggregate, and require a large number of steps to attain their stationary
distributions. In other words, the problem that arose in Sections 3.1 and 3.2 recurs here. One
might also consider simply drawing x0 from the relevant marginal distributions, as an alternative
to long lead-ins, but here there is the di¢culty that the variances are tending to diverge in those
in�uential cases with � close to 1; a phenomenon not unrelated to the singularity at the origin
in (3.6).

4 An Alternative Simulation Strategy

The last section considered a number of methods of generating discrete time series with frac-
tional characteristics. It is noteworthy that while some yield approximations closer to the type
I distribution, and others closer to the type II distribution, this distinction is not signi�cantly
discussed in the literature we have cited, despite its obvious importance in applications. For
econometric modelling, the need to simulate complex and often multivariate processes with pos-
sibly nonlinear features strongly favours the the pre-sample lag method, for its evident �exibility
and adaptability. The question we consider is whether these bene�ts can be reconciled with the
need to simulate the type I model. The method we describe in this section is designed to meet
these requirements, and is also computationally very economical.

4.1 The Univariate Case

Consider the MA(1) representation (i.e. Wold representation) of the linear time series process
xt with weight sequence fbjg, given for example by (1.6) in the case of (1.4). For t = 1; : : : ; n,
write xt = x

�
t + x

��
t where

x�t =
t�1
X

j=1

bjut�j ; x��t =
1
X

j=t

bjut�j : (4.1)

In the representation (1.1), X� and X�� are the weak limits of the partial sum processes X�
n and

X��
n derived from x�t and x

��
t respectively. As such, each is Gaussian, and they are independent

of each other. The problem noted is that to approximate X��
n adequately by a �nite sum may

require taking the x��t to an infeasibly large number of terms.

10



Assume at this point that the ut process is i.i.d. Gaussian. Then, x
�
t and x

��
t are independent

of one another, and the vector x�� = (x��1 ; : : : ; x
��
n )

0 is Gaussian with a known covariance matrix.
A convenient fact is that the autocovariance formula has the alternative representation

E(x0x�k) = �
2
1
X

j=0

bjbj+k: (4.2)

Therefore, for any t; s > 0;

E(x��t x
��
s ) = E

1
X

j=0

bj+tu�j

1
X

k=0

bk+su�k

= �2
1
X

j=0

bj+tbj+s

= E(x0x�jt�sj))� �2
min(t;s)�1
X

j=0

bjbj+jt�sj: (4.3)

Assuming that the sequence fbjg is easily constructed, the n� n covariance matrix

Cn = E(x
��
x
��0)

can therefore be constructed with minimal computational e¤ort.
This suggests an easy way to simulate the distribution of x��, by simply making an appro-

priate collection of Gaussian drawings. Let x�� by constructed, by any means whatever, to be
independent of x� and Gaussian with the correct covariance structure. If

X��
n (r) =

1

n1=2+d

[nr]
X

t=1

x��t

denotes the corresponding partial sum process, the following result is easily established

Theorem 4.1 X��
n

d! X��:

Thus, let the vector x� = (x�1; : : : ; x
�
n)
0 be computed by the usual moving truncation method so

that, by standard arguments, X�
n
d! X�: It then follows by the continuous mapping theorem that

Xn = X
�
n +X

��
n

d! X, in other words, Type I fBM.
If ut is either not Gaussian, or is weakly dependent but not i.i.d., this simulation strategy will

be inexact in small samples. However, it will still be asymptotically valid under the usual condi-
tions for the invariance principle, noting that the limiting Gaussianity is here induced directly in
the simulation, not by a limit argument. Note, incidentally, that it would be perfectly possible
to simulate the vector x� in the same manner, instead of using (1.4) and (1.8) in conjunction
with the random generation of u1; : : : ; un. This approach would lead us, in a roundabout fashion,
to the Choleski simulation method. The asymptotic distributions would be the same, but there
are of course numerous advantages in terms of modelling �exibility with the dynamic simulation
approach and little is lost, in this case, in terms of computing resources.

It turns out that Cn tends rapidly to singularity as n increases, which is not surprising in view
of the fact that x�� basically combines the common set of random components fut; t < 1g with
changing weights. This means that in practice only a comparative handful of Gaussian drawings
are needed to generate the complete sequence. If n is small enough that Cn can be diagonalized

11
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Figure 3: Columns of Vn, n = 150: Actual (solid line); interpolated from p = 50 (dashed line).

numerically (in practice, this appears to set n � 150 approximately, using the requisite Ox
function) then it is a simple matter to obtain the decomposition

Cn = V nV
0
n (4.4)

where V n is a n�s matrix, and s is chosen as the rank of the smallest positive eigenvalue. Then,
it is only necessary to draw an independent standard Gaussian vector z (s � 1), and compute
x
�� = V nz. Note that in a Monte Carlo experiment, V n only has to be computed once, and
can then be stored for use in each replication. This means that generating a type I series has
virtually the same computational cost as that of a type II series.

So much is straightforward, but we also need to deal with the case where n is too large to
perform the required diagonalization. In practice, we treat n = 150 as a convenient cut-o¤ point.
To construct a suitable V n matrix for cases with n > 150, we note the fact that the squared
length of its tth row is E(x��2t ), which we can obtain from (4.3) as before. We also have the
fact that the columns of V n are orthogonal and accordingly have a characteristic structure. We
combine these pieces of information by constructing and diagonalizing Cp, where p is chosen as
the largest whole divisor of n not exceeding 150. V n matrices are now constructed as follows:
for t = 1; [n=p]; 2[n=p]; : : : ; p[n=p], set the tth row of V n by taking the [pt=n]th row of V p,
renormalized to have squared norm equal to E(x��2t ). Then, the missing rows are then �lled in
by linear interpolation, followed by renormalization such that v0ntvnt = E(x

��2
t ). This procedure

is fast and ensures that, at least, the variances and covariances are diminishing as t increases at
the correct rate.

To illustrate the performance of the interpolation procedure, Figure 3 plots, for the case
d = 0:4 and n = 150, the �rst 4 columns of V n by exact calculation (solid lines) and also by
interpolation from p = 50 (dashed lines). The di¤erences are apparently negligible. This is
the largest n for which this direct comparison is possible, but our simulation results suggest the
method also works well in cases up to n = 1000. Table 3 shows the theoretical standard deviations
of the random variables X(1) and X�(1), with the same quantities estimated by Monte Carlo
from samples of size n = 1000 for comparison. The table indicates that the proposed simulation
strategy replicates the distribution very accurately, in general. Only for the extreme negative
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values of d1 does the approximation prove poor, the approach to the asymptote as n ! 1
appearing to be very slow in this region. However, note that this phenomenon e¤ects the type I
and type II models equally.

Type I Type II

d Theoretical Monte Carlo Theoretical Monte Carlo

0:4 1:389 1:383 0:840 0:842
0:2 0:997 0:993 0:920 0:917
0 1 1:0085 1 1:0085

�0:2 1:176 1:167 1:109 1:104
�0:4 1:877 1:76 1:501 1:41

Table 3: Standard Deviations of Type I and II Processes. Monte Carlo estimates for n=1000,
from 10,000 replications

Now consider the application of this method to general fractional processes. In the case of
the ARFIMA(0; d; 0), as was used in the construction of Table 3, the autocovariance formula is
taken from (3.7). The sequence fbjg is easily constructed by the recursion bj = bj�1(j + d� 1)=j
for j > 0 with b0 = 1. It would be possible to extend the method directly to the ARFIMA(p; d; q)

�(L)�dxt = �(L)ut; ut s iid(0; �
2) (4.5)

by taking the required covariance formulae from Sowell (1992). In practice, however, there is
little need for this elaboration. To see why, note that de�ning zt = �(L)xt we may write

zt = z
�
t + z

��
t

= ��d�(L)ut1(t � 1) + ��d�(L)ut1(t � 0):

The �rst term can be simulated in the usual manner as a partial sum from zero initial values,
whereas the second term is well approximated, by

P1
j=0 bt+jv�j where vt s iid(0; �(1)

2�2), and
fbjg is obtained by the recursion just described. The autoregressive component is now easily
added, given initial values z1�p; : : : ; z0, by the recursion

xt = zt �
p
X

j=1

�jxt�j :

4.2 The Multivariate Case

To generalize this method to generate vectors of two or more type I processes, say xt = (x1t; : : : ; xmt)
for any m > 1, we need to write the model in �nal (Wold) form as

xt =
1
X

j=0

Bjut�j ;

where the Bj (m�m) are matrices of lag coe¢cients, and futg (m� 1) is the vector of shocks
with covariance matrix �: The autocovariance matrices accordingly take the form

�(k) = E(x0x
0
0�k) =

1
X

j=0

Bj�B
0
j+k:

13



It easily follows by the preceding arguments that

E(x��t x
��0
s ) =

1
X

j=0

Bj+t�B
0
j+s

= �(s� t)�
t�1
X

j=0

Bj�B
0
j+s�t

for t � s, and take the transpose of this matrix for the case t � s.
Accordingly, stack the components x��1 ; : : : ;x

��
m into a vector x�� = (x��01 ; : : : ;x

��0
m )

0 (mn� 1)
having covariance matrix

E(x��x��0) =

2

6

4

C11;n � � � C1m;n
...

. . .
...

Cm1;n � � � Cmm;n

3

7

5
= Cn:

Letting b0k;j represent the kth row of Bj , note that the cross-covariance matrices Ckh;n for
k; h = 1; : : : ;m have elements of the form

E(x��ktx
��
hs) =

1
X

j=0

b
0
k;j+t�bh;j+s

= 
kh(s� t)�
t�1
X

j=0

b
0
k;j�bh;j+s�t:

for the cases s � t; and with E(x��ktx��hs) = E(x��ksx��ht) for the cases t � s, such that Ckh;n = C
0
hk;n.

The decomposition (4.4) can now be computed as before, for this stacked matrix, to yield
V n = (V

0
1n; : : : ;V

0
mn)

0. The blocks V jn (n�s) for j = 1; : : : ;m are used to generate replications
of each process, from the formula x��j = V jnz where, in this case, as before, z is a standard normal
drawing of conformable dimension. Given that we are limited by mn � 150, this method has
to be modi�ed by the extrapolation step described above, for cases with n > [150=m]. Hence,
large-dimensional systems potentially entail an additional compromise in terms of approximation
error, relative to the univariate case. However, for the reasons stated above we would not expect
this to be a critical issue for most purposes; thus, the case m = 3 and n = 150 will yield an
approximation comparable to that illustrated in Figure 3.

For the case where Bj = diag(b1j ; : : : ; bmj) and bkj = �(j+dk)=(�(dk)�(j+1)), the following
generalization of (3.7) provides the cross-autocovariances. Without loss of generality, consider
the bivariate case, as follows.

Theorem 4.2 For x1t and x2t de�ned by (1.4) with respect to i.i.d. shock processes u1t and u2t
with covariance E(u1tuh2) = �12,

E(x10x2;�k) = �12
sin�d1
�

� (1� d1 � d2) � (d1 + k)
� (1� d2 + k)

:

Note that this formula yields (3.7) in the case x1t = x2t: Extending the procedure to the
simulation of vector ARFIMA systems is a simple matter of replacing � by �(1)��(1)0 to cope
with a vector moving average contribution �(L) (m�m), and then applying the autoregressive
recursion to the augmented series in the manner described in the previous section.
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5 Estimation of Type I ARFIMA Models

Compare the stationary fractional noise model

(1� L)dYt = ut, t = 1; : : : ; n (5.1)

where futg1�1 is i.i.d.(0; �2) and jdj < 1
2 with its feasible counterpart

(1� L)dY �t = u�t , t = 1; : : : ; n (5.2)

where u�t is de�ned by (1.8) and Y
�
t is de�ned by the equation. In other words, if the sequence

fajg repesents the coe¢cients in the expansion of (1� L)d,

Y �1 = u1

Y �2 = u2 � a1Y �1
� � �

Y �n = uT � a1Y �t�1 � � � � � an�1Y �1 :

In the standard time domain estimation framework, we will normally maximize the likelihood
implied by (5.2), although using the data Y1; : : : ; Yn; generated by (5.1) by hypothesis.

Write

�t(L; d) =
t�1
X

j=0

ajL
j

to represent the truncation of the expansion of (1 � L)�d at the tth term. This operator is
sometimes written (1 � L)�d+ , but we choose in this context to emphasize the dependence on t.
Note that

�t(L;�d) = �t(L; d)�1

follows immediately from matching terms in the identity (1�L)d(1�L)�d = 1:With this notation,
we can write the solution of (5.2) as

Y �t = (1� L)�du�t = �t(L;�d)ut.

However, notice that the solution of (5.1) has the approximate form

Yt = (1� L)�dut
� �t(L;�d)ut + vt(d; �)0z

where vt(d; �)
0 is row t of the n� s matrix de�ned by (4.4), and z (s� 1) is a standard normal

vector. Therefore consider the approximate form of (5.1) taking the form

�t(L; d)Yt = �t(L; d)vt(d; �)
0
z + ut

= v�t (d; �)
0
z + ut (5.3)

where the second equality de�nes v�t . The vectors v
�
t (d; �) can be computed, given values for d

and �, and the elements of z can be treated as s additional unknown parameters. Therefore, the
true model (5.1) can be estimated, in principle, by inserting the �regressors� v�t into the equation
and estimating the parameters (d; �; z) jointly, by conditional maximum likelihood.

The same technique is straightforwardly extended to estimating the ARFIMA(p; d; q) model,
with the form

�(L)(1� L)d(Yt � �) = �(L)ut, t = 1 +max(p; q); : : : ; n
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where � = E(Yt). The approximate model in this case takes the form

�(L)�t(L; d)(Yt � �) = v�t (d; �j�(1)j)0z + �(L)ut, t = 1 +max(p; q); : : : ; n: (5.4)

Notice that in this case the variance of the presample shocks must be calculated as �2�(1)2, and
hence the v�t depend additionally on the moving average parameters. Be careful to distinguish
between this model and that having the form

�(L)�t(L; d)Yt = �+ v
�
t (d; �j�(1)j)0z + �(L)ut:

This latter model has a solution of the form

Yt =
�

�(1)
�t(1;�d) + Y �t

where Y �t is a zero-mean ARFIMA and �t(1;�d) = O(td), and hence contains a deterministic
fractional trend.

Note that this modi�cation of the conditional ML estimator is of small order and irrelevant
to the asymptotic distribution. Since v�t ! 0 as t ! 1, the estimator of z is not consistent.
However, under the distribution conditional on the presample realization of the process, the
omission of the terms in z is a potential source of �nite-sample estimation bias. Including these
terms implies a bias-e¢ciency trade-o¤ depending on sample size, and whether it is desirable
on balance is a question needing to be considered in context. The method is best understood
by contrasting the exact maximum likelihood estimator (MLE) with the conditional MLE. The
former estimator was derived by Sowell (1992) for the Gaussian case, while the latter is equivalent
to least squares with presample values set to 0. The question we pose is whether introducing the
extra parameters allows a �nite sample correction comparable to that provided by doing exact
rather than conditional ML.

With these issues in mind, we considered the well-known series for annual minima of the
Nile, as studied by Hurst (1951) and reproduced in Beran (1994). This series of 663 annual
observations (622�1284AD) appears as a stationary process, having a sample mean of 1148.16.
The time plot is reproduced (in mean deviation form) in Figure 4.

The natural linear representation of such a process is (5.4) where � represents the uncon-
ditional mean. The fact that the true � is unknown is a complicating factor for our analysis,
which to date has implicity considered zero mean processes. Ideally we should like to �t � econo-
metrically, in the context of the type I model. However, preliminary attempts revealed a very
substantial loss of e¢ciency. The di¢culty of �tting the mean of fractional models is a well known
problem, documented for example by Cheung and Diebold (1994). There proves to be too little
information in this sample to allow � and z to be estimated jointly, so for the purposes of the
exercise we subtract o¤ the sample mean at the outset. For the centred series, � is �xed at 0.

A second important question is the choice of s, the number of elements of z to be �tted. The
elements of v�t depend on the magnitude of d but, beyond the �rst element, get very rapidly small
from the outset, even when d is large (see Figure 3). A practical limit for s of at most one or two
emerges from this and other cases examined.

In Table 1, we report estimates for the cases s = 0; 1 and 2, the �rst of these corresponding
to the usual type II model. In view of the leptokurtic shock distribution evident from Figure
4, we also opted to maximize the Student t likelihood, which allows the degrees of freedom of
the distribution to be estimated as an additional parameter. The columns headed MLE show
for comparison the Sowell (1992) exact Gaussian maximium likelihood estimator. This is the Ox
implementation ARFIMA 1.04, due to Doornik and Ooms (2006). The fact that the available
implementations do not allow for non-Gaussian disturbances is one advantage of our approximate
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Figure 4: Annual Nile minima (mean deviations)

622�1284AD 784�1284AD

s = 0 s = 1 s = 2 MLE s = 0 s = 1 s = 2 MLE

ARFIMA d 0:4182
(0:0316)

0:4187
(0:0315)

0:4185
(0:0310)

0:3932
(0:0299)

0:4504
(0:0383)

0:4398
(0:0377)

0:4289
(0:0315)

0:4374
(0:0336)

type I Frac.,Z1 � �0:465
(0:516)

�0:908
(0:679)

� � �0:9841
(0:672)

�0:5301
(0:554)

�

type I Frac., Z2 � � 1:894
(1:771)

� � � �3:485
(1:842)

�

Shock SD 70:547
(2:946)

70:665
(3:004)

70:865
(3:075)

69:90 66:981
(3:757)

66:958
(3:891)

66:542
(3:825)

65:37

Student t DF 2:345
(0:245)

2:314
(0:239)

2:273
(0:234)

� 2:1248
(0:214)

2:088
(0:206)

2:1248
(0:214)

�
Log-likelihood �3738 �3737 �3737 �3757 �2786 �2783 �2782 �2806
Residual Q(12) 7:6426 7:524 7:027 � 5:250 5:686 5:897 �

Table 4: Annual Nile minima: ARFIMA(0,d,0) estimated by Student t conditional ML (robust
standard errors in parentheses) and Sowell (1992) exact ML.
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method over exact ML. ARFIMA(0,d,0) models are �tted, and the residual Box-PierceQ statistics
indicate that these models account adequately for the autocorrelation in the series.

The �rst four columns of the table show the estimates for the complete sample of 633 years.
It is apparent from the time plot that the initial observations are quite close to the mean of the
series. Presample components happen to cancel out here, and have a small net in�uence on the
initial observations. In other words, the �type II� assumption that the pre-sample shocks are zero
is not too implausible at this date. However, moving forward in time to the late 700s places us in
the middle of a prolonged dry period. Observe that the Nile�s �ow was substantially lower than
average, in every year except one, between 758AD and 806AD. Of course, it is climatic variations
of this type that give rise to the �long memory� characterization of the series. If our sample had
happened to start in (say) the year 784AD, instead of 622AD, the pre-sample shocks would have
been relatively in�uential, and the �type II� assumption correspondingly inadequate to account
for them.

Columns 4-6 of the table show the results of estimating the model from the observations
from 784AD onwards (marked with the dotted line in Figure 7). Note the substantial di¤erence
between the �type I� and �type II� estimates in this case. If we take as a benchmark the estimate
of the memory parameter d for the whole period (0:418), note that in the shorter sample the
conventional type II model (s = 0) appears to overstate d signi�cantly. Also, �tting the type I
components applies a much more substantial correction than before. The estimate 0:429, while
still a little larger than the full-sample benchmark, is a great deal closer to it than the estimate
0:450 obtained from the �type II� model.

The estimates of the z components are evidently ine¢cient, especially when two are �tted.
Thus, since we know that these coe¢cients are standard normal drawings, the estimate of �3:48
is clearly excessive, a result that can be understood as due to a trading-o¤ of two highly collinear
components. However, it is also clear that neglecting the presample shocks can in certain cir-
cumstances induce bias with respect to the conditional distribution. The ability to correct for
these e¤ects may in some circumstances provide a useful addition to the modeller�s armoury.

6 Conclusion

In this paper, we have considered the issue of modelling fractionally integrated processes for
econometric applications. Since inference in these models will generally depend on teaming an
invariance principle with a scheme for numerical simulation of the assumed asymptotic distrib-
ution, it is of some importance to make an appropriate choice of data generation process. We
show that simulating the more natural type I representation of fractional Brownian motion can
be achieved with as little computational cost as the type II model often used in practice, although
conventional simulation methods work poorly. Our �rm recommendation to practitioners is to
use type I simulations wherever this di¤erence is likely to be crucial, unless there are particular
reasons for doing otherwise.

We note the existence of important exceptions to this rule, such as the unit root test against
fractional alternatives proposed by Dolado, Gonzalo and Mayoral (2002). Here, the statistic is
computed using the fractional di¤erence of the observed series, where since this is naturally trun-
cated to the observation period, the induced asymptotic distribution is of type II by construction.
Hence the tables reported by these authors for this case of the null hypothesis are correct. How-
ever, they also propose, although do not analyse in any detail, a test for the null hypothesis of a
fractional process with parameter d0 against an alternative d1. For these cases, the tables would
need to be generated according to the assumed type of the observed data, and the test outcomes
could depend on this decision in a crucial manner. We would recommend the methods proposed
here in such a case.
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A Appendix: Proofs

Proof of Proposition 2.1 We derive this expectation as the limit of the expression

1

n1+d1+d2

n�1
X

t=1

t
X

s=1

Ex�1sx
�
2;t+1

where x�pt =
Pt�1
j=0 bpjup;t�j for p = 1; 2, and u1t and u2t are i.i.d. with E(u1tu2s) = �12 if t = s,

and 0 otherwise. Note that
t
X

s=1

x�1s =
t�1
X

s=0

 

s
X

k=0

b1k

!

u1;t�s

and hence

E
t
X

s=1

x�1sx
�
2;t+1 = �12

t�1
X

s=0

 

s
X

k=0

b1k

!

b2;s+1:

Applying Stirling�s approximation formula, note that

s
X

k=0

b1k �
1

�(d1)

Z s

0
�d1�1d� =

sd1

�(d1 + 1)
;

where ��� denotes that the ratio of the two sides converges to 1 (see Davidson and de Jong 2000,
Lemma 3.1). Hence, by a similar argument

1

n1+d1+d2

n�1
X

t=1

t
X

s=1

Ex�1sx
�
2;t+1 =

�12
n1+d1+d2

n�1
X

t=1

t�1
X

s=0

 

s
X

k=0

b1k

!

b2;s+1

� �12d2
�(d1 + 1)�(d2 + 1)

Z 1

0

Z �

0
�d1+d2�1d�d�

and the stated result follows directly.

Proof of Theorem 4.1

Note that X��
n (r); 0 � r � 1 is Gaussian with covariance structure converging to that of the limit

process X��, by construction. It therefore remains to show that the sequence is uniformly tight,
which we demonstrate by establishing the criterion of Theorem 15.6 of Billingsley (1968). In the
present case, this is easily shown to be implied by

E(X��
n (r + �)�X��

n (r))
2 � C�2�

for � > 1
2 and all 0 � r � 1� �, and C <1 represents a generic positive constant. However,

X��
n (r + �)�X��

n (r) =
1

n1=2+d

[n(r+�)]
X

t=[nr]+1

x��t :

It follows from (4.3) that for k � 0,

E(x��t x
��
t+k) = O(t

2d�1)

Hence, the proof is completed by noting that

E(X��
n (r + �)�X��

n (r))
2 � C (n�)

2(nr)2d�1

n1+2d
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= C�2r2d�1:

Proof of Theorem 4.2

To compute the cross-covariance use the harmonizable representation:


12 (k) = E (x1tx2;t�k) =
�12
2�

Z �

��

�

1� e�i�
��d1

eit�
�

1� ei�
��d2

e�i(t�k)�d�

=
�12
2�

Z �

��

�

1� e�i�
��d1 �

1� ei�
��d2

eik�d�: (A-1)

Denoting the integrand in (A-1) by F (�) observe that
Z �

��
F (�) d� =

Z �

0

h

F (�) + F (�)
i

d� (A-2)

where the upper bar denotes complex conjugate. Further, using

1� e�i� = �e�i�=2
�

ei�=2 � e�i�=2
�

= �2ie�i�=2 sin �
2

= 2e�i(���)=2 sin
�

2

and noting that sin(�=2) is non-negative for 0 � � � �, rewrite the integral in (A-2) as
Z �

0

h

F (�) + F (�)
i

d�

=

Z �

0

"

�

2ei(���)=2 sin
�

2

��d1 �

2e�i(���)=2 sin
�

2

��d2

eik�

+

�

2e�i(���)=2 sin
�

2

��d1 �

2ei(���)=2 sin
�

2

��d2

e�ik�

#

d�

= 2�d1�d2
Z �

0
sin�d1�d2

�

2

h

ei[�(d1�d2)�=2+(d1�d2+2k)�=2] + e�i[�(d1�d2)�=2+(d1�d2+2k)�=2]
i

d�

= 21�d1�d2
Z �

0
sin�d1�d2

�

2
cos [� (d1 � d2)�=2 + (d1 � d2 + 2k)�=2] d�: (A-3)

The integral in (A-3) can be transformed, using the change of variable x = (� � �) =2, into
Z �

0
sin�d1�d2

�

2
cos [� (d1 � d2)�=2 + (d1 � d2 + 2k)�=2] d�

= 2

Z �=2

0
cos�d1�d2x cos [� (d1 � d2)�=2 + (d1 � d2 + 2k) (�=2� x)] dx

= 2

Z �=2

0
cos�d1�d2x cos [�k � (d1 � d2 + 2k)x] dx

= (�1)k 2
Z �=2

0
cos�d1�d2x cos (d1 � d2 + 2k)x dx:

Using Relation 3.631.9 of Gradshteyn and Ryzhik (2000) and the properties of beta and gamma
functions,

Z �=2

0
cos�d1�d2x cos (d1 � d2 + 2k)x dx =

2�(1�d1�d2)�

(1� d1 � d2)B (1� d2 + k; 1� d1 � k)
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=
2�(1�d1�d2)�

1� d1 � d2
� (2� d1 � d2)

� (1� d2 + k) � (1� d1 � k)

=
� (1� d1 � d2)
21�d1�d2

� (d1 + k)

� (1� d2 + k)
sin� (d1 + k)

= (�1)k � (1� d1 � d2)
21�d1�d2

� (d1 + k)

� (1� d2 + k)
sin�d1:

Finally,


12 (k) = �12
sin�d1
�

� (1� d1 � d2) � (d1 + k)
� (1� d2 + k)

:

B Appendix: Distributions of Fractional Brownian Functionals

The following simulations of familiar statistics associated with nonstationary regression analysis
are each based on 100,000 Monte Carlo replications. Although these statistics have an established
role in hypothesis testing, we are abstracting here from any speci�c testing problem. The object
is solely to investigate how far these representative fractional Brownian functionals di¤er, under
the alternative de�nitions.

In the following formulae, the expression on the left of the �t� symbol is evaluated from
data in each case and the expression on the right is the random variable whose distribution we
seek to estimate. The model in (1.4) with independent Gaussian(0,1) shocks is used to generate
the data with a sample size n = 1000 in each case. For the "type I" model, xt = x

�
t + x

��
t where

x�t is generated as in (4.1), and x
��
t is constructed as detailed in Section 4. These kernel densities

are plotted with solid lines in the �gures. The corresponding expressions for the "type II" case
are obtained by simply setting xt = x�t and X = X� throughout. These densities are plotted
with broken lines in the �gures.

1. Dickey-Fuller statistics.

n�̂ = n

Pn�1
t=1 Stxt+1
Pn�1
t=1 S

2
t

t

R 1
0 XdX
R 1
0 X

2ds

and

n�̂� = n

Pn�1
t=1

�

St � �S
�

x+1
Pn�1
t=1

�

St � �S
�2 t

R 1
0 XdX �X(1)

R 1
0 Xds

R 1
0 X

2ds�
�

R 1
0 Xds

�2 :

These are the normalized coe¢cients of the regression of xt+1 on St =
Pt
s=1 xs, with and

without intercept. Note that these statistics are Op(1) for d � 0. The corresponding
Dickey-Fuller t statistics diverge at the rate Op(n

d) in the same case (see Davidson 2006).
Table 5 shows some leading quantiles, and Figure 5 plots the kernel densities.

2. Bivariate Stochastic Integrals

Pn
t=1 S1tx2t
n1+d1+d2

t

Z 1

0
X1dX2;

and
Pn
t=1(S1t � �S1)x2t
n1+d1+d2

t

Z 1

0
X1dX2 �X2(1)

Z 1

0
X1ds;
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P (�) 0:01 0:05 0:1 0:9 0:95 0:99

no intercept Type I �0:12 0:04 0:28 2:39 2:88 4:17
Type II �0:24 �0:04 0:16 2:71 3:30 4:68

with intercept Type I �4:51 �2:75 �2:05 1:97 2:67 4:25
Type II �4:02 �2:45 �1:78 2:47 3:15 4:94

Table 5: Quantiles of the Dickey-Fuller statistics, d = 0.4.

Figure 5: Simulation of unit root autoregression: d = 0.4, 1000 observations, 100,000 replications

where S1t =
Pt
s=1 x1s and the pair fx1t; x2tg are fractional noise processes where fu1t; u2tg

are Gaussian(0,1) and contemporaneously correlated with correlation coe¢cient 0.5. Figure
6 shows kernel densities for the cases where either X2 is fBM with d = 0:4 and X1 is a
regular Brownian motion (and hence the di¤erence in the distributions depends wholly X2)
or both processes are fBM with the same d of 0:4.

3. Fractional cointegrating regression � t statistics�

n1=2�d2
Pn
t=1 S1tx2t

q

Pn
t=1 S

2
1t

Pn
t=1 x

2
2t � (

Pn
t=1 S1tx2t)

2
t

R 1
0 X1dX2

�2

q

R 1
0 X

2
1ds

and

n1=2�d2
Pn
t=1(S1t � �S1)x2t

q

Pn
t=1(S1t � �S1)2

Pn
t=1 x

2
2t �

�
Pn
t=1(S1t � �S1)x2t

�2
t

R 1
0 X1dX2 �X2(1)

R 1
0 X1ds

�2

r

R 1
0 X

2
1 �

�

R 1
0 X1

�2

where S1t =
Pt
s=1 x1s, �

2
2 = plimn

�1
Pn
t=1 x

2
2t. In these expressions the stochastic integrals

from 2. appear in the numerator. These statistics are normalized to be Op(1) using the facts
that

Pn
t=1 S1tx2t = Op(n

1+d1+d2) and
Pn
t=1 S

2
1t = O(n

2+2d1). Quantiles of the distributions
are given in Table 6 and the kernel densities are plotted in Figure 7.
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Figure 6: Simulations of a bivariate distribution with correlation 0.5. Integrand has parameter
d1, integrator has parameter d2. 1000 observations, 100,000 replications.

P (�) 0:01 0:05 0:1 0:9 0:95 0:99

no intercept d1 = 0 Type I �1:711 �1:135 �0:879 0:977 1:297 1:810
Type II �0:672 �0:322 �0:172 1:125 1:375 1:774

d1 = 0:4 Type I �1:913 �1:353 �1:033 1:206 1:526 2:086
Type II �0:986 �0:643 �0:446 0:977 1:173 1:566

with intercept d1 = 0 Type I �0:868 �0:570 �0:437 0:523 0:689 0:954
Type II �0:381 �0:175 �0:056 0:770 0:888 1:124

d1 = 0:4 Type I �0:885 �0:623 �0:460 0:487 0:650 0:912
Type II �0:778 �0:550 �0:387 0:525 0:655 0:916

Table 6: Quantiles of the cointegrating regression "t statistics"
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Figure 7: Simulations of regression t-ratios. 1000 observations, 100,000 replications.
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