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[1] Uncertainty analysis is widely applied in water system modeling to quantify prediction
uncertainty from models and data. Conventional methods typically handle various kinds of
uncertainty using a single characterizing approach, be it probability theory or fuzzy set
theory. However, using a single approach may not be appropriate, particularly when
uncertainties are of different types. For example, in sewer flood estimation problems,
random rainfall variables are used as model inputs and imprecise or subjective information
is used to define model parameters. This paper presents a general framework for sewer flood
estimation that enables simultaneous consideration of two types of uncertainty: randomness
from rainfall data represented using imprecise probabilities and imprecision from model
parameters represented by fuzzy numbers. These two types of uncertainties are combined
using random set theory and then propagated through a hydrodynamic urban drainage
model. Two propagation methods, i.e., discretization and Monte Carlo based methods, are
presented and compared, with the latter shown to be much more computationally efficient
and hence recommended for high-dimensional problems. The model output (flood depth) is
generated in the form of lower and upper cumulative probabilities, which are best estimates
given the various stochastic and epistemic uncertainties considered and which embrace the
unknown true cumulative probability. The distance between the cumulative probabilities
represents the extent of imprecise, incomplete, or conflicting information and can be
reduced only when more knowledge is available. The proposed methodology has a more
complete and thus more accurate representation of uncertainty in data and models and can
effectively handle different uncertainty characterizations in a single, integrated framework
for sewer flood estimation.
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1. Introduction
[2] Sewer flooding caused by overloaded urban drainage

systems is an unwelcome reality in many parts of the
world, producing significant adverse economic, social, and
environmental impacts. In the UK, for example, sewer
flooding is considered to be the second most serious issue
(after drinking water quality) facing water companies, with
an estimated cost of 270 million GBP a year in England
and Wales alone [Parliamentary Office of Science and
Technology (POST), 2007]. Further, there is an increasing
probability of sewer flooding due to the expansion of urban
areas and the likely adverse impacts of global climate
change [Ryu, 2008].

[3] Most sewer systems have been designed on the basis
of simple deterministic methods, such as the rational
method or time-area method [Butler and Davies, 2004;
Thorndahl and Willems, 2008]. These methods commonly

use a design storm with a typical return period from 1 to 10
years to determine the maximum (minor) system capacity.
However, the return period of sewer flooding is certainly
not equivalent to that of the design storm, as the system
capacity is increased so that sewers can accommodate a
considerable surcharge before surface flooding occurs [But-
ler and Davies, 2004]. For existing sewer systems, flood
frequency estimation can be further complicated with the
issues of pipe deterioration and network expansion to new
developments. Thus, the estimation of sewer flood fre-
quency statistics for an urban catchment is of great interest
in practice, as it provides direct assessment of hydraulic
performance of the sewer system and supports decision
making for sewer flood risk management [Schmitt et al.,
2004; Ryu, 2008].

[4] Handling uncertainty is a major issue in modeling
water systems, including sewer systems, given the complexity
and extent of uncertainty sources involved. This uncertainty
has received increasing attention in recent years [e.g., Guo
and Adams, 1998; Adams and Papa, 2000; Matott et al.,
2009]. Uncertainty can be broadly classified as stochastic or
epistemic. Stochastic uncertainty refers to the randomness
observed in nature, which is normally irreducible due to the
inherent variation of physical systems. Epistemic uncertainty
arises from incomplete knowledge about a physical system,
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which can be reduced with improved understanding of the
system. Various approaches to characterize uncertainty are
available, such as probability distributions, fuzzy sets, and
random sets. Selecting an appropriate characterizing approach
is essentially subjective as, in general, it is difficult to recom-
mend one over another.

[5] Classical probability theory (Bayesian methods) has
most often been used to quantify uncertainties in, for exam-
ple, rainfall [Guo and Adams, 1998; Thorndahl and Wil-
lems, 2008], model parameters [Lei and Schilling, 1994],
model structures [Freni et al., 2009], and system dimen-
sions such as storage volume and runoff basins [Korving
et al., 2002]. However, it is increasingly recognized that
the concept of uncertainty is too broad to be captured by
probability measures alone [Ross et al., 2009]. So, for
example, the theory of fuzzy sets [Zadeh, 1965] has also
been increasingly applied, albeit in an attempt to describe
imprecision and vagueness arising from the modeling pro-
cess. Numerous applications can be found in hydrologic
and hydraulic engineering [e.g., Revelli and Ridolfi, 2002;
Jacquin and Shamseldin, 2007], including applications in
the decision-making context of urban water management
[e.g., Makropoulos et al., 2003].

[6] It is not uncommon to have to address different
uncertainty types simultaneously in the modeling and deci-
sion making processes. For example, some uncertainties
are represented by probability distributions when sufficient
data is available, while others are better represented by
fuzzy sets to capture linguistic expert knowledge (qualita-
tive data). Effort has been made to accommodate both
probabilistic and fuzzy uncertainties in a unified framework
of uncertainty analysis. The straightforward way is to trans-
form one type of uncertainty into another, for example,
probability distributions can be transformed into fuzzy sets
or vice versa with little difficulty [Zhang et al., 2009].
Guyonnet et al. [2003] proposed a hybrid method by embed-
ding the �-cut propagation method for fuzzy variables
within each sample simulation of the Monte Carlo (MC)
technique for random variables, and as a result a large num-
ber of fuzzy sets were obtained for output variables. How-
ever, these methods cannot effectively handle imprecise
probabilities in which only probability bounds (rather than
one precise probability) can be defined as a result of scarce,
vague, or conflicting information [Walley, 1991].

[7] Random set theory [Kendall, 1974; Matheron, 1975;
Dubois and Prade, 1991] has attracted increasing attention
in recent years, as it can cope with varying levels of preci-
sion regarding information, and uncertainty can be repre-
sented directly using original uncertainty forms without
further assumptions. It is a theory of set-valued stochastic
processes, observations of which are intervals or sets rather
than precise point values, and thus it can be viewed as a
natural generalization of probability and statistics on ran-
dom variables [Nguyen, 2006]. Most importantly, it can
serve as a bridge between different uncertainty representa-
tions, thus allowing them to be handled simultaneously in a
single modeling framework [Hall, 2003].

[8] The aim of this work is to present a new methodol-
ogy for imprecise probabilistic evaluation of sewer flooding
using random set theory. In this methodology, temporal
uncertainty in rainfall data is considered (spatial distribu-
tion and measurement uncertainties are neglected) and rep-

resented using imprecise probability distributions of
rainfall depth and duration. Synthetic rainfall events of uni-
form shape are used both because they are simple and typi-
cally used in practice [Butler and Davies, 2004], and
because they are generally assumed when there is a com-
plete lack of evidence on the appropriateness of other
shapes. Model parameter uncertainty is characterized by
fuzzy numbers with assumed shapes only. The most com-
monly used discretization method is used initially to propa-
gate the two different types of uncertainties, and a MC
based method is then developed to improve computational
efficiency. What results from the method are the lower and
upper cumulative distribution functions (CDFs) for model
outputs (flood depth), constructed using the propagated ran-
dom set. This methodology can potentially handle different
uncertainty characterizations simultaneously, and thus
allows for a more complete, and arguably accurate repre-
sentation of uncertainty in data and models in terms of the
most appropriate form wherever they originally appear,
i.e., without further assumptions that might reduce the in-
formation or lead to inappropriate conclusions.

2. Problem Statement
2.1. Conventional Method

[9] In this study, the hydraulic performance of an urban
drainage system is measured by the maximum flood depth
during a rainfall event, i.e., the maximum water level over
the ground surface at a manhole h ¼ g(x), where g repre-
sents the urban drainage model and x ¼ (x1, . . . , xd) is a
vector of d uncertain variables. The case of g(x) ¼ 0 is nor-
mally defined as the limit state function (or failure surface)
in the field of system reliability analysis. When h > 0,
flooding occurs and the urban drainage system is regarded
as having failed. The probability that flood depth is less
than or equal to a value hf is defined as

Pf ¼ P g xð Þ � hff g : ð1Þ

[10] Pf is the so called failure probability when hf ¼ 0.
Calculation of Pf is important to estimate flood risk in the
process of sewer flood risk analysis and management. Con-
ventionally, the variables x are regarded as random varia-
bles, and the uncertainties are characterized by the joint
probability density function f(x). Thus, equation (1) can be
written as

Pf ¼
Z

g xð Þ�hf

f xð Þdx : ð2Þ

[11] This precise probabilistic formulation is well estab-
lished and various methods have been developed to esti-
mate Pf. For instance, Thorndahl and Willems [2008]
applied the first-order reliability method to estimate the
failure probability of sewer system flooding, surcharge, and
overflow, and this method was compared with the standard
MC method.

[12] There is seldom sufficient information to describe
the joint probability function over the uncertain variables.
In this study, the uncertain variables considered for sewer
flood simulation include rainfall input variables and model
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parameters. Stochastic rainfall is the driving force that has
a significant effect on flood frequency. Continuous hydro-
graph simulation driven by long term historical rainfalls or
event-based simulation from individual rainfall events are
typically used in simulation-based flood analysis [Ryu,
2008]. The storm event analysis method, in which actual
rainfall events are analyzed and fitted to appropriate CDFs,
is used to characterize the stochastic nature of rainfall
[Adams and Papa, 2000; Thorndahl and Willems, 2008].
Besides rainfall, uncertainty also arises from the way vari-
ous physical processes are represented in the urban drain-
age model, including hydrologic processes that generate a
runoff discharge at a particular location and hydraulic proc-
esses in the piped sewer network that result in surcharge
water levels at that location. However, it is not normally
possible to obtain distribution functions for model parame-
ters due to insufficient data or cost constraints.

2.2. Random Set Theory and Its Use in Water
Engineering

[13] Random set theory can be dated back to the work of
Kendall [1974] and Matheron [1975] in the field of stochas-
tic geometry. The theory can be regarded as set-valued ran-
dom variables or multivalued mappings, and is equivalent
to the Dempster –Shafer theory of evidence [Dempster,
1967; Shafer, 1976], in which probability masses are allo-
cated to subsets rather than singletons of a given universe.
It has proved to be a valuable theoretical framework for
handling a range of different types of uncertainty informa-
tion (e.g., intervals, probability distributions, fuzzy sets,
and imprecise probability distributions), and the available
information sources can be preserved in the original format
in which they appear [Hall, 2003].

[14] Let X be a universal nonempty set containing all the
possible values of a variable x, and P (X) the power set of
X, i.e., the set of all the subsets of X. A random set can be
defined as a pair ð=; mÞ, where = is the family of non-
empty elements of P (X) and m is a mapping [Dubois and
Prade, 1991]

m : = ! ½0; 1� ; ð3Þ

such that m(�) ¼ 0 and

X
A2=

m Að Þ ¼ 1 ; ð4Þ

where A 2 P ðX Þ and for which m(A) > 0 is called the
focal element, and m is called the basic probability assign-
ment. Each set A contains some possible values of the vari-
able x 2 X and the value m(A) expresses the probability
that x 2 A but does not belong to any subsets of A. This
does not exclude that some elements of A contribute to the
probability of subset B 2 P ðX Þ so that A \ B = �. A ran-
dom set is regarded as infinite provided that the cardinality
of =, i.e., the number of elements in =, is infinite.

[15] A random set ð=; mÞ on X assigns a probability to
all the subsets of X, while classical probability theory only
considers the singleton subsets of X. Thus, random set
theory can be seen as a generalization of probability theory
to allow consideration of imprecision in the set definition
of an event. This is designed to deal with the uncertainty

where the information is not sufficient enough to permit the
probability assignment to single events. As a result of the
imprecise nature of this formulation, it is impossible to cal-
culate the precise probability of a subset E � X , i.e., P (E).
Instead, the related imprecision of this probability can
be bounded at the lower end by the belief function Bel
[Dempster, 1967; Shafer, 1976]

Bel Eð Þ ¼
X
A�E

m Að Þ ð5Þ

and at the upper end by the plausibility function Pl

Pl Eð Þ ¼
X

A\E 6¼�
m Að Þ ¼ 1� Bel �Eð Þ ð6Þ

where �E is the complement of E. The belief Bel(E) meas-
ures the minimum amount of evidence that fully supports
x 2 E, i.e., those cannot be removed out of E because the
summation in equation (5) only involves A such that
A � E. Similarly, the plausibility Pl(E) measures the
maximum amount of evidence that could be linked with
the event E, i.e., those could be counted into E because the
summation in equation (6) involves all A such that
A \ E 6¼ � :

[16] The application of random sets in modeling and de-
cision making is relatively new in water and environmental
engineering, and the first application was perhaps from
Caselton and Luo [1992]. They described the theoretical
aspects of the Dempster –Shafer theory with an intention to
introduce this theory to decision makers and decision ana-
lysts as an alternative to the conventional Bayesian deci-
sion analysis. Its application was demonstrated with a
water resource example to support decision making with
scarce information in order to deal with rare design events
and longer-term perspectives.

[17] Hall [2003] reviewed various mathematical methods
for uncertainty analysis in hydroinformatic processes,
including probability theory, fuzzy sets, and the Dempster–
Shafer theory of evidence. He argued that purely probabilis-
tic treatment of uncertainty does not lend itself to some of
the more subtle aspects of uncertainty handling in hydroin-
formatics. The Dempster–Shafer theory was demonstrated
as the best developed of the generalized mathematical meth-
ods for uncertainty handling. Different uncertainty types
represented by probability distributions, interval measure-
ments, and fuzzy sets were propagated through a simple
equation to provide cumulative distribution bounds on over-
topping discharge at a smooth sloping seawall.

[18] Rubio et al. [2004] applied random set theory to the
uncertainty analysis of a combined slope hydrology and
stability model. The uncertainties in model parameters
were expressed in two forms: probability distributions and
intervals, and were propagated through the model in the
random set framework. This method generated the bounds
on the cumulative probability distributions of slope safety
with respect to rainfall-induced landslides. Application of
random sets to slope stability analysis was also investigated
by Schweiger and Peschl [2005].

[19] Hall et al. [2007] analyzed uncertainties in global
mean temperature predictions using random set theory.
Fuzzy emission scenarios were constructed to represent the
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underlying uncertainties in social-economic constructs, and
the lower and upper CDFs for a critical model parameter,
derived from a number of published probability distribu-
tions, were used to characterize model parameter uncertain-
ties. Using random set theory, these two types of
uncertainty representations were then propagated through a
climate change model to provide the bounds on the uncer-
tainties in predicted global mean temperature rises.

[20] The above applications demonstrate the need for and
potential of random sets in handling different representations
of uncertainty in water and environmental modeling. How-
ever, in these applications, the only uncertainty propagation
method used is the discretization method [Tonon, 2004],
which is computationally expensive and intractable for high-
dimensional problems. Ross et al. [2009] avoided the direct
use of this method by transforming the random set, con-
structed for a model parameter (hydraulic conductivity) on
the basis of expert knowledge, into a fuzzy set, and then
using the vertex method [Ross, 2004] to propagate the fuzzy
set through a groundwater model. However, the vertex
method is essentially a discretization-based method and the
model output is generated in the form of possibility distribu-
tions, which might need to be transformed back into upper
and lower bounds of probability distributions for interpreta-
tion. In this paper, a MC-based method is applied, for the
first time, to propagate uncertainties for sewer flood evalua-
tion and is compared with the discretization method.

2.3. Random Set Approach for Flood Estimation
[21] Using random set theory, the problem of estimation

of flood depth probability is to find the bounds on Pf,
instead of a precise value as calculated in equation (2).
Incomplete knowledge about the uncertain variables x ¼
(x1, . . . , xd), including their dependency, can be expressed
as a random relation, i.e., a random set ð=; mÞ on the Car-
tesian product X1 � . . .� Xd. According to the random set
extension principle by Dubois and Prade [1991], the infor-
mation about flood depth can be represented as a random
set ð<; �Þ, which is the image of ð=; mÞ through the urban
drainage model g,

< ¼ Rj ¼ g Bið Þ;Bi 2 =
� �

; where g Bið Þ ¼ g xð Þ; x 2 Bif g ð7Þ

� Rj
� �

¼
X

Bi :Rj¼g Bið Þ
m Bið Þ : ð8Þ

[22] When the marginal random sets are stochastically
independent the mass assignment in the joint space can be
obtained as the product of the masses of the marginal ran-
dom sets

m A1 � . . . � Adð Þ ¼
Yd

i¼1

m Aið Þ; A1 � . . . � Ad 2 = : ð9Þ

[23] On the basis of the random set ð<; �Þ, the lower and
upper bounds of CDFs for flood depth H can be recon-
structed using the belief and plausibility functions. Assume
first that the flood depth axis is partitioned into adjoining
intervals [h1, h2], [h2, h3], . . . , [hs, hsþ1] denoted as R1,
R2, . . . , Rs, respectively. According to the definitions in

equations (5) and (6), the lower and upper CDFs FðhÞ and
�FðhÞ at some point h defined on the domain [h1, hsþ1] can
be obtained as follows [Tonon, 2004; Hall et al., 2007]

F hð Þ ¼ Bel H � hf gð Þ ¼
X

h�sup Rjð Þ
� Rj
� �

ð10Þ

F hð Þ ¼ Pl H � hf gð Þ ¼
X

h�inf Rjð Þ
� Rj
� �

: ð11Þ

[24] These derived bounds represent the best possible
knowledge about flood depth, given all kinds of uncertain-
ties in variables, and should embrace the unknown true
CDF of flood depth. The spread of the bounds represents
the extent of imprecision and incompleteness in uncertainty
representations and can only be reduced when more knowl-
edge is available.

[25] Applying the extension principle for uncertainty prop-
agation generally requires calculation of the image of the
focal set Bi through the model g, which usually is a global
optimization problem. The focal element Rj ¼ g(Bi) can be
obtained by solving the following optimization problem,

Rj ¼ ½min
x2Bi

g xð Þ;max
x2Bi

g xð Þ� : ð12Þ

[26] Generally, the discretization method can be used to
derive equation (12) [Tonon, 2004]. The idea is to use the
interval-based vertex method [Moore, 1966]. As each focal
element Bi is a d-dimensional box with 2d vertices, if model
g is a continuous function with no extreme points in the
box or on its edges, it is only necessary to evaluate the
model at the vertices to find the global minima and max-
ima. This means that model g has to be evaluated 2d times
for each focal element Rj. The number of model evalua-
tions can be further reduced if g is monotonic to some or
all variables. In the case of one or more extreme points
existing in the interior of Bi or on its edges, the true global
minima and maxima can be approached by increasing the
number of each marginal random set, i.e., the fineness of
discretization. Tonon [2004] suggested that doing so is
computationally more efficient than invoking an optimiza-
tion method.

[27] It should be noted that, in the discretization method,
the number of model evaluations increases exponentially
with the number of variables. Thus, this method becomes
inefficient for high-dimensional problems. To improve
computational efficiency, a MC-based method is proposed
to propagate uncertainties for sewer flood evaluation.

3. Case Study
[28] A combined sewer network in the UK is used to

demonstrate the methodology developed in this paper, as
shown in Figure 1. The total catchment area is about 200
hectares, serving a population of 4000. The sewer system
consists of 265 nodes, 265 pipes, 2 outfalls, and 1 weir, and
has a total conduit length of 22,482 meters. The pipe gra-
dients vary from 0.0001 to 0.0439. Flows are diverted
downstream via the two outfalls: one is connected to a
wastewater treatment works (Outfall 1) and the other to a
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combined sewer overflow (Outfall 2), and both flows are
eventually discharged into a river.

[29] The storm water management model (SWMM),
developed by the U.S. Environmental Protection Agency
(available at http://www.epa.gov/ednnrmrl/models/swmm/),
was used for hydrologic simulation of rainfall runoff in the
urban catchment and for hydrodynamic simulation of in-
sewer transport through the urban drainage system. The
sewer system model was originally set up and calibrated
for flood evaluation in work by Fullerton [2004], as sewer
systems historically have experienced significant flooding
problems.

4. Uncertainty in Rainfall
4.1. Data Analysis

[30] The estimation of flood probability in an urban
drainage system must take into consideration the stochastic
nature of rainfall events that occur over the catchment. Du-
ration and depth (equivalently, average intensity over the
rainfall time interval) are the most important characteristics
of a rainfall event. Thus, these two variables were used to
analyze statistical characteristics of the actual rainfall
events in the urban catchment, from 10 years of 5 min rain-
fall data from one rain gauge station.

[31] To analyze the rainfall data, the concept of intere-
vent time definition (IETD) was adopted to separate indi-
vidual rainfall events; that is, the time interval between
two consecutive events should be no less than a predeter-
mined IETD. In this case study, IETD was set to 30 min.
This is greater than the maximum concentration time of the
catchment, so the runoff response from an individual event
is not affected by any other. A total of 767 events were
identified, with an average of 77 rainfall events per year.
Figure 2 shows the histogram of the events. There is a high
frequency of low rainfall depth; about 50% of the rainfall
events have a depth less than 5 mm, while the range of
recorded values is up to 49 mm. Similarly, most events last
a short period, although about 10% have a duration over
800 min.

[32] Independence between rainfall depth and duration is
assumed for simplicity. This is reasonable in this case
because the correlation coefficient (r) between these two
variables is only 0.09 for the rainfall events considered, and

the scatterplot for rainfall depth and duration suggests that
the two variables have no statistical relationship. Synthetic
rainfall events are generated by applying a rectangular
pulse, with duration as the width and average rainfall inten-
sity as the height. If dependence between rainfall depth and
duration was present it could be expressed as a random
relationship, i.e., a random set ð=; mÞ, and then handled
using equations (7) and (8) for uncertainty propagation
(refer to Dubois and Prade [1991] for more details). The
rainfall, generated on the basis of statistics from one rain
gauge station, is assumed to be uniformly distributed over
the catchment as it is relatively small.

4.2. Imprecise Probabilistic Representation
and p-Box Discretization

[33] In flood analysis, theoretical probability distributions
are usually assumed for rainfall characteristics, and their pa-
rameters are calibrated using historical rainfall events.
Choice of an appropriate distribution is arbitrary and de-
pendent on expert knowledge, although it can have a signifi-
cant effect on derived distributions of flood depth. However,
in many situations, particularly when data are sparse, there
can be more than one distribution that fits the data well and
cannot be rejected on the basis of goodness-of-fit tests.
Although Bayesian methods can be used to select or com-
bine different probability distributions by using prior knowl-
edge [Korving et al., 2002], the principal difficulty is that the
statistical parameters have to be represented by exactly
specified, classical probability distributions, no matter how
weak the information or prior knowledge [Walley, 1991;
Caselton and Luo, 1992]. In this study, use of imprecise
probabilities provides an alternative approach to describe the
rainfall uncertainties in flood analysis.

[34] A number of CDFs were used to fit the rainfall data,
and three goodness-of-fit tests, i.e., Kolmogorov –Smirnov
(K– S), Anderson –Darling (A –D) and Chi-Square (�2)
tests, were used to judge whether one specific distribution
should be rejected. With the test at the 5% significance
level, a number of distribution functions (Figure 2) were
selected for rainfall depth or duration, including Frechet,
Gamma, Generalized Pareto, Generalized Extreme Value
(GEV), Inverse Gaussian, Log-Logistic, and Pearson Type
6. These CDFs are provided in Appendix A. It can be seen
from Tables 1 and 2 that the statistics of the chosen CDFs

Figure 1. Layout of the case study network.
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for the two rainfall variables are all below the critical val-
ues of the three tests, i.e., 0.049 for K –S, 16.919 for �2,
and 2.502 for A –D, and that the calculated p-values exceed
the significance level of 5%.

[35] The chosen distributions for rainfall depth or dura-
tion form a family of CDFs with different approximations
to the unknown distribution. From these distributions, the
lower and upper bounds of CDFs FX and FX can be derived

FX ðxÞ ¼ inf
i

FiðxÞ 8x 2 R ð13Þ

FX ðxÞ ¼ sup
i

FiðxÞ 8x 2 R ð14Þ

where Fi(x) represents the ith CDF considered in the fam-
ily. For each point x, there is a corresponding interval
FX xð Þ;FX xð Þ
� �

, the lower probability measures the evi-
dence supported by the family and the upper probability
reflects the lack of information against it. The interval pro-

vides a bracketing of some ill-defined CDFs and its spread
represents the extent of incomplete knowledge about the
true known distribution.

[36] Instead of the use of one single or linear combina-
tion of the chosen distributions, the lower and upper bounds
of the family of distributions are used to represent the
uncertainties in rainfall characteristics. The lower and
upper probabilities can be transformed into a random set
through the p-box discretization method [Tonon, 2004;
Hall et al., 2007; Alvarez, 2009]. An outer approximation
is constructed by drawing nþ1 horizontal lines with cumu-
lative probabilities p0, p1, . . . , pn, where pi ¼ i/n (i ¼
0, . . . , n), and thus dividing the distributions into n boxes.
Within each box, the interval Ai ¼ xi; xi

� �
(i ¼ 1, . . . , n)

is defined by pi-1 and pi such that FX ðxiÞ ¼ pi�1 and
FX ðxiÞ ¼ pi. These intervals can be regarded as focal ele-
ments of a random set (�, m)

� ¼ Ai ¼ xi; xi
� �� �

; i ¼ 1; . . . ; n ð15Þ

Figure 2. Probability distributions for rainfall duration and depth. Gray bars show the histograms nor-
malized by the total number of rainfall events. The stair-step curves show the 21-level discrete approxi-
mation for the lower and upper probability distributions.
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with a probability mass assignment

m Aið Þ ¼ 1=n : ð16Þ

[37] The random set approximates the lower and upper
cumulative probabilities by touching them exactly at p0,
p1, . . . , pn levels. A 21-level approximation to the cumula-
tive probabilities of rainfall duration and depth is shown in
Figure 2. It should be noted that the accuracy of the p-box
discretization method is dependent on the number of proba-
bility levels (n), thus a high number within the available
computing resources should be used to improve the accu-
racy in propagated random sets.

4.3. Propagating Rainfall Uncertainty
[38] Three cases with an increasing approximation level

were used to approximate the lower and upper cumulative
distribution bounds of rainfall depth and duration. In each
case, 21, 51, or 101 levels were used for both rainfall depth
and duration, consequently a random set with 20, 50 or 100
focal elements, respectively, was generated for each vari-
able. The joint random set was constructed using the Carte-
sian product and was propagated through the SWMM model
in the first instance with the default model parameters
(Manning’s roughness coefficient ¼ 0.013 and catchment
runoff coefficient ¼ 0.85). The vertex method was used to
calculate the image of each joint focal element, i.e., one
model simulation is run for each of the four vertices in the
two-dimensional box, formed by every interval of rainfall
depth and of rainfall duration. The propagated random set
for flood depth is then used to construct the lower and upper
CDFs using equations (10) and (11); results for the critical
node N126 are shown in Figure 3.

[39] It can be seen that the lower and upper CDFs of flood
depth with 21 levels has the widest gap, which is reduced
when a higher-level approximation is used. When more lev-
els are used to approximate the lower and upper CDFs of
rainfall variables, the p-boxes derived can provide a more
precise representation, i.e., less information contained in the

CDFs is lost in the transformation process. However, an
increase from 51 and 101 levels provides almost the same
results; this implies that result quality cannot be improved
by further increasing the degree of discretization, i.e., the
hard boundary for the lower and upper CDFs has been
approached using the discretization method.

5. Uncertainty in Model Parameters
5.1. Fuzzy Representation of Model Parameter
Uncertainty

[40] Two model parameters were considered: Manning
roughness and runoff coefficients. For sewer systems after
a certain period of service, the roughness coefficients of the
pipes are difficult to estimate because of complex pipe
aging processes [Revelli and Ridolfi, 2002]. In the rainfall
runoff modeling process, the runoff coefficient is related to
catchment and rainfall event characteristics. The uncertain-
ties from these parameters arise from the difficulty in esti-
mating the parameter values particularly when data are
limited, thus in this study they are more adequately repre-
sented by fuzzy sets, rather than probability distributions.
In a fuzzy set S defined on the universe X, the membership
of an element x to the set is no longer binary, but is charac-
terized by a membership function,

�S : X ! ½0; 1� ð17Þ

which assigns each element x 2 X a degree �S xð Þ meas-
uring how much the element belongs to the fuzzy set S.
The set fx 2 X j�sðxÞ � 0g is called the support of the
fuzzy set, and the set fx 2 X j�s ðxÞ ¼ 1g is called the ker-
nel of the fuzzy set. The membership function can take
many different shapes, and a trapezoidal shape for the two
model parameters is assumed in the first place and then
compared with triangular and narrower-support trapezoidal
shapes in terms of their impacts on the probabilities of
flood depth (Figure 4).

Table 1. Test Statistics of the Chosen CDFs for Rainfall Durationa

Distribution Distribution Parameter

K –S �2 A–D

D p-Value D p-Value D

Frechet � ¼ 4.693, 	 ¼ 893.45, � ¼ �620.33 0.032 0.393 12.342 0.195 1.057
Gamma � ¼ 1.946, 
 ¼ 220.18, � ¼0 0.026 0.683 10.15 0.339 0.754
Pearson Type 6 �1 ¼ 2.463, �2 ¼ 12.487, 
 ¼ 1995.1 0.021 0.892 9.408 0.401 0.397
GEV � ¼ 0.137, 	 ¼ 202.48, � ¼279.91 0.032 0.407 7.73 0.562 1.033
Inverse Gaussian � ¼ 1216.7, � ¼501.58, � ¼ �73.191 0.024 0.746 13.388 0.146 0.541
Log-Logistic � ¼2.319, 
 ¼329.25 0.048 0.05 16.38 0.053 2.450

aCDFs are provided in Appendix A

Table 2. Test Statistics of the Chosen CDFs for Rainfall Deptha

Distribution Distribution Parameter

K –S �2 A–D

D p-Value D p-Value D

Gamma � ¼ 0.773, 
 ¼ 6.235, � ¼ 2.0 0.043 0.112 15.369 0.081 2.392
Generalized Pareto � ¼ 0.190, 	 ¼ 3.823, � ¼ 1.941 0.020 0.910 5.393 0.80 0.496
GEV � ¼ 0.360, 	 ¼ 2.358, � ¼ 4.012 0.042 0.057 15.806 0.071 4.533
Inverse Gaussian � ¼ 3.148, � ¼ 5.07, � ¼ 1.591 0.045 0.090 15.746 0.072 2.183

aCDFs are provided in Appendix A
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5.2. The a-Cut Discretization
[41] A fuzzy set can be represented as a nested set of inter-

vals through the �-cut method [Dubois and Prade, 1991].
The �-cut of a fuzzy number S is defined as the set contain-
ing all the values x with membership degree no less than
� 2 ½0; 1�. For nþ1 �-cut levels 0 ¼ �0 < 	 	 	 < �n ¼ 1 ;
we have the a sequence of nested sets S0 
 	 	 	 
 Sn, where
Si ¼ x j�s ðxÞ � �ig ; i ¼ 0, . . . , n. These nested sets can
be regarded as the focal elements in a random set (�, m). For
the set Si, the probability mass can be calculated as

m Sið Þ ¼
�i � �iþ1; i ¼ 1; . . . ; n

0; i ¼ 0

�
ð18Þ

[42] In the case of the fuzzy set support S0, the probabil-
ity mass is thought to be completely unknown. In this way,
the fuzzy set is transformed into a random set (�, m) with n
focal elements Si[� (i ¼ 1, . . . , n). A 6-level discretization
for the trapezoidal fuzzy numbers is shown in Figure 4.

5.3. Combining Model Parameter and Rainfall
Uncertainties

[43] The imprecise probabilistic rainfall uncertainties
and fuzzy model parameter uncertainties (using trapezoidal
fuzzy numbers) can be combined in a joint random set
using the discretization method. The 51-level approxima-
tion for rainfall depth and duration is used in this case, as it
was proven to be accurate in the previous case of rainfall
uncertainty. Two approximations, 6- and 11-level, are con-
sidered for the fuzzy model parameters, leading to a total
of 62,500 (50 � 50 � 5 � 5) and 250,000 (50 � 50 � 10 �
10) focal elements in the joint random set, respectively. No
correlation between any two variables is considered in con-
structing the joint random set. Similarly to the rainfall vari-
able case, the image of all focal elements can be calculated
using the convex method. However, the number of model
simulations for each focal element can be reduced from 16

(24) to 8, as monotonicity can be observed for the two
model parameters considered.

[44] Figure 3 is now redrawn as Figure 5 to show that the
lower and upper cumulative probabilities from the high-
level approximation bracket those from the low-level
approximation. The gap is only reduced slightly when the
higher-level approximation is used. The results from the
11-level approximation of model parameters are suffi-
ciently accurate when compared with those from the MC
method as discussed below.

6. Monte Carlo Simulations
[45] The Monte Carlo sampling method can be used to

sample the fuzzy sets of model parameters and the lower
and upper CDFs of rainfall variables. For imprecise proba-
bilistic rainfall variables, each cumulative probabilistic
level corresponds to a unique interval in the lower and
upper CDFs and vice versa. Similarly, for fuzzy model pa-
rameters, each �-cut level of a fuzzy set relates to a unique
�-cut subset. If the level is drawn from a uniform distribu-
tion on (0 1], then the MC method can be used to approxi-
mate equations (10) and (11) [Alvarez, 2006].

[46] In order to reduce the number of samples required
and to provide a more efficient sampling, the Latin Hyper-
cube Sampling (LHS) technique [McKay et al., 1979] is used
to generate a joint random set for uncertain variables. Assum-
ing that n sample points ui ¼ u1

i ; . . . ; ud
i

� �
2 0; 1ð �d (i ¼

1, . . . , n) are generated from the independent uniform distri-
butions on (0 1] using the LHS technique, where d represents
the number of variables and d ¼ 4 in the case of considering
both rainfall variables and model parameters. In the situations
where the correlation between different variables has to be
considered, the concept of copula can be used to generate the
samples [Alvarez, 2006]. Each element of ui, i.e., uj

i (j ¼ 1,
. . . , d), is then used to derive the corresponding focal ele-
ment Aj

i for variable xj. For the rainfall variables, the corre-
sponding marginal focal element is obtained by choosing the
lower and upper values at the probability level uj

i, i.e.,

Aj
i ¼ ½FX

�1ðuj
iÞ;FX

�1ðuj
iÞ� ð19Þ

[47] For model parameters, the marginal focal element is
obtained by deriving the interval at the uj

i-level cut of the
fuzzy number S, i.e., Aj

i ¼ fxjjuS(xj) uj
ig. The joint focal

element can be obtained as Ai ¼ A1
i � . . . � Ad

i . In this
way, each sample point ui (i ¼ 1, . . . , n) has one corre-
sponding joint focal element Ai. Thus a finite random set
(Fn, m) is generated using the LHS sampling where Fn ¼
fA1, A2, . . . , Ang and m(Ai) ¼1/n implying that an equal
weight is assigned to the sampled elements as they are gen-
erated randomly. The joint random set (Fn, m) contains all
the information from all uncertainty sources of different
types. The image of all focal elements in the joint random
set can be calculated using the convex method, as in the
discretization method. The lower and upper cumulative
probabilities (belief and plausibility measures) can be con-
structed for flood depth on the basis of the propagated ran-
dom set. The derived belief and plausibility measures using
the above MC method can theoretically converge to their
true values when n!1 [Alvarez, 2006].

Figure 3. Lower and upper cumulative probabilities of
flood depth at node N126. These curves were derived using
the discretization method, considering only imprecise prob-
abilistic rainfall uncertainties.
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[48] In this study, the impact of the number of samples
on the precision of simulation results has been investigated.
Three different sample sizes, 1000, 2000, and 5000, were
used to simulate the CDFs of flood depth. In each case, five
runs were conducted, taking into account the randomness
of the MC method. The variation of the derived lower and
upper CDFs of flood depth between different runs is
reduced when more samples are used. Particularly, the
results from the five different runs are almost identical in
the case of 5000 samples. The linear averages of different
runs from 1000 samples have excellent agreement with
those of 5000 samples, as shown in Figure 6. This confirms

that the results derived with the MC method are unbiased
[Alvarez, 2009]. A set of 5000 samples was considered to
be sufficiently accurate in this case study, and thus was
used in the following investigations.

7. Discussion of Results
7.1. Imprecise Probabilistic Representation of Rainfall

[49] Stochastic rainfall is conventionally characterized by
probability distributions, and subjective knowledge expressed
through Bayesian analysis. However, in many situations,
prior information or beliefs may be very weak, incomplete,
or even nonexistent, implying that it is inappropriate for
uncertain statistical parameters to be represented using
exactly specified probability distributions [Caselton and Luo,
1992]. Such potentially ambiguous beliefs can be captured in
the form of imprecise probabilities, which are bounded by a
pair of lower and upper probabilities. In the context of gener-
alized game theory [Walley, 1991], the lower bound can be
interpreted as the highest betting rate at which the decision
maker is sure to buy a gamble, and the upper bound can be
interpreted as the lowest betting rate at which the decision
maker is sure to buy the opposite of the gamble (equivalent
to selling the original gamble). The use of imprecise proba-
bilities might be particularly appropriate for characterizing
rainfall uncertainty in urban catchments where the rainfall
data are either scarce or not suitable for sewer system model-
ing that requires small time step data.

[50] There are different ways to construct the imprecise
probabilities of rainfall depth and duration. In this paper, a
number of possible probability distributions were fitted to a
set of historical rainfall data, and those that could not be
rejected by all three statistical tests (K–S, �2, and A–D)
were chosen to constrain the uncertainties in the rainfall vari-
ables. As a result, the family of chosen distributions consists
of different probability functions. Alternatively, a family of
distributions may be simple to obtain when one probability

Figure 4. Fuzzy constructs for model parameters and their 6-level �-cut discretization.

Figure 5. Lower and upper cumulative probabilities of
flood depth at node N126. These curves were derived using
the discretization method, combining imprecise probabilis-
tic rainfall and fuzzy model parameter uncertainties.
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function is used but its parameters such as the mean value or
the variance are poorly known, for instance, if the parame-
ters are derived from subjective prior knowledge or fitted to
lie in an interval. In this case, the lower and upper bounds of
the family can be easily obtained.

[51] From a practical point of view, flood estimation
aims to elicit the probability of flood depth, or calculate the
corresponding return period. Considering the uncertainties
in the modeling process, confidence intervals can be
derived using probability or Bayesian approaches [e.g.,
Korving et al., 2002]. When imprecise probabilities are
used to characterize rainfall uncertainty, lower and upper
probability bounds can be derived to describe the resultant
flood depth. These bounds not only provide the interval
that brackets the true probability of flood depth, but also
they allow for an exclusion of those probabilities that
would be incommensurate with the currently available in-
formation or experts’ beliefs. Furthermore, using imprecise
probabilities, the imprecisions are expressed explicitly to
reflect the appropriate level of confidence ascribed to them.
The magnitude of confidence can be indicated by the dis-
tance between the upper and lower probabilities (belief and
plausibility measures). Thus, the narrower the distance, the
more confidence a decision-maker can have in them.

[52] The CDFs of flood depth from an imprecise proba-
bilistic representation of rainfall uncertainty are compared
with those derived when both rainfall depth and duration
are represented by classic, precise probability distributions.
Several combinations of the probability distributions of
rainfall duration and depth in Tables 1 and 2 are propa-
gated using the standard MC method. Figure 7 shows the
comparative results that consider rainfall variables only.
As expected, the lower and upper probability bounds of
flood depth bracket any of the combinations from the pre-
cise probabilistic cases. None of these combinations are
close to the upper or lower bounds, indicating how unwise
it is to rely solely on such estimates.

[53] According to the lower and upper CDFs of flood
depth in Figure 7, for each rainfall event, the probability of

no flooding occurring (flood depth ¼ 0) at node N126 lies
in the range (0.42 –0.74). In other words, when a rainfall
event occurs, the probability of flooding at this node is
from 0.26 to 0.58, which is equivalent to the probability of
system failure. Because the average number of rainfall
events is 77 per year, the number of flood events ranges
from 20 to 45 in one year on average. This result is consist-
ent with the number of floods (about 30 per year) obtained
when the 10 year rainfall series is used for simulation. This
high number of failures at this critical node is caused by
the expansion of the network to the (left) upstream due to
urban development. Similarly, the probability bounds for
any specific flood depth can be derived; for example, the
likelihood of flood depth greater than 0.15 m is confined to
the range (0.06 –0.43). Although these probability gaps are
apparently rather large, they do represent the belief interval
given the substantial uncertainties in rainfall, which include
the epistemic uncertainty in choosing the distribution types
for rainfall depth and duration as well as their combina-
tions, and complete ignorance of the shape of synthetic
rainfall events. These gaps can be reduced only when more
data or knowledge are available. For example, Figure 7
illustrates how the probability gap is narrowed substantially
when and if the distribution type for rainfall depth and du-
ration and their combinations are known with certainty.

[54] In addition to imprecise probabilities and fuzzy sets,
other types of uncertainty representations can also be com-
bined in the integrated methodology using random sets
[Hall, 2003; Tonon, 2004]. For example, precise probabil-
ities or intervals can be used to characterize one variable
where necessary, and then combined with either or both
imprecise probabilities and fuzzy sets.

7.2. Model Parameter Uncertainties
[55] The impact of model parameter uncertainties on the

lower and upper bounds of CDFs for flood depth can be
established by comparing the probability gap in uncertain-
ties for rainfall only with those of the rainfall and model
parameters. Figure 8 shows the results obtained from the

Figure 6. Lower and upper cumulative probabilities of
flood depth at node N126 using the Monte Carlo method.
The curves are the linear averages of five random seed runs.

Figure 7. Comparison between the conventional stochas-
tic approach and the random set method of the cumulative
probabilities of flood depth at node N126.
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two propagation methods: the discretization method with a
51-level approximation for rainfall depth and duration and
an 11-level approximation for the two model parameters
and the MC method using a sample size of 5000 (averaged
over five random runs). The gap between the two pairs of
solid curves (or dotted curves) shows the influence of
model parameter uncertainties, which is rather small com-
pared with that of rainfall uncertainties. Recall that the gap
between the lower and upper CDFs indicates the magnitude
of (reducible) epistemic uncertainty, thus the gap reduction
realized by considering additional information indicates the
value of such information. To effectively reduce the overall
uncertainty in flood depth estimation, effort should be
made toward reducing rainfall prediction uncertainty.

[56] The impact of different fuzzy constructs has also been
investigated. Compared with the original trapezoidal fuzzy
numbers, two different constructs for runoff and roughness
coefficients have also been simulated: a triangular fuzzy
number with the same support and a narrower-support trape-
zoidal fuzzy number (Figure 4). Figure 9 shows the linear av-
erage CDFs of flood depth at node N126 from 5 runs using
the MC method with 5000 samples. The variation in fuzzy
numbers has very small impact on the probability gaps; how-
ever, the reduction in the fuzzy number kernel has less
impact than the reduction in the fuzzy number support. This
implies that, to reduce fuzzy model parameter uncertainties,
it is more valuable to seek expert knowledge constraining the
maximum range with the lowest possibility (the support) than
the minimum range with the highest possibility (the kernel).

7.3. Comparison of the Discretization and MC Methods
[57] For imprecise probabilities, there exists a clear differ-

ence between the discretization and MC method in construct-
ing the random set. In the discrete method, the interval
extremes of each focal element in equation (15) are derived
using different probability levels, while in the MC method the
same level is used, in equation (19). When the degree of dis-
cretization is low, the information contained in the lower and
upper CDFs can be lost in the transformation process through
p-boxes. Thus, a danger exists that the discretization method

can severely underestimate the lower bound and overestimate
the upper bound [Tonon, 2004], although it ensures that the p-
boxes completely envelop the lower and upper CDFs.

[58] Figure 8 shows a comparison of the results from the
two methods. In both of the two cases, i.e., considering
rainfall uncertainty only or together with model parameter
uncertainty, the two methods generated very similar lower
and upper CFDs. However, the underlying computational
requirements are different : in the case of rainfall and model
parameter uncertainty, the discretization method used
250,000 (50 � 50 � 10 � 10) focal elements in the joint
random set, the MC method used only 5000 focal elements.

[59] The discretization method requires (2N)d model eval-
uations for uncertainty propagation, where N is the number
of focal elements for each of d variables, as there are Nd

focal elements and 2d evaluations for each focal element
using the convex method (8 model evaluations, instead of
24 ¼ 16, are necessary for consideration of rainfall and
model parameter uncertainties because of the monotonicity
of the model parameters). The number of model evaluations
increase dramatically when the number of discretizations N
or the dimension d increases. As shown in Figure 3, the qual-
ity of results can be poor when the discretization is low.
Although results quality can be improved by increasing the
degree of discretization for uncertain variables, the computa-
tion required makes it impractical for high-dimensional prob-
lems. However, accuracy of the MC method mainly depends
on the number of samples and is insensitive to the number of
variables [Alvarez, 2009]. Thus, the MC method is recom-
mended for high-dimensional problems.

8. Conclusions
[60] Uncertainty in sewer flooding modeling, when it is esti-

mated at all, is typically handled using probability theory.
However, it has been argued that the type uncertainty is too
broad to be captured by probability measures alone. Given the
presence of imprecise data, vague expert knowledge, and
incomplete understanding of the system, the challenge of
sewer flood analysis is to assess what system failures can be
ruled out as unlikely, rather than simply ruled in as probable or

Figure 8. Comparison of the discretization and MC meth-
ods regarding the cumulative probabilities at Node 126.

Figure 9. Influence of different constructs of fuzzy model
parameters on the cumulative probabilities at Node 126.
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possible. In this paper, a random set-based framework for
sewer flood analysis has been presented, in which two different
uncertainty characterizations, i.e., imprecise probabilities from
rainfall and fuzziness from model parameters, are handled
simultaneously. This provides a more complete and therefore
accurate means of capturing uncertainties in data and models
by applying the most appropriate uncertainty characterization
to each uncertainty source, rather than assuming one for all
sources regardless of their underlying nature. This new meth-
odology is promising, in that it provides a single mathematical
framework to handle fuzzy sets and (imprecise) probabilities
in the uncertainty analysis process. The following conclusions
are presented on the basis of this study:

[61] 1. Imprecise probabilities are more appropriate to
describe stochastic uncertainty in rainfall when more than
one probability distribution fits well based on the available
data. Excluding any possible probability distributions or
imposing a false probability distribution may lead to inap-
propriate conclusions being drawn from the flood analysis
process.

[62] 2. Random set theory provides a general framework to
accommodate different uncertainty characterizations, and can
be applied to handle stochastic rainfall uncertainty and fuzzy
model parameter uncertainty in a single modeling framework
as demonstrated in the case study. The benefit is that the sto-
chastic and epistemic uncertainties can be represented in the
most appropriate form wherever they originally appear.

[63] 3. Discretization and MC methods are presented and
compared for uncertainty propagation within the random
set-based flood analysis framework. Results show that the
MC method is more computationally efficient at deriving
the lower and upper probability bounds of flood depth.
From 5000 samples, the MC method can provide an accu-
rate estimate of the lower and upper CDFs of flood depth.
The discretization method is only practical for low-dimen-
sional problems, as the computation required increases
exponentially with problem dimension.

[64] 4. Lower and upper probabilities can be derived for
flood depths using belief and plausibility functions as a
result of imprecise representation of information, which
embrace the true unknown probabilities. The distance
between the lower and upper probabilities reflects the
imprecision, incompleteness, or conflict in data and mod-
els, and so provides an indication of the magnitude of con-
fidence for use by the decision maker.

[65] 5. Rainfall (epistemic) uncertainty contributes to a
significant portion of the probability gaps in flood depth esti-
mation in the sewer system studied in this paper, compared
with model parameter uncertainty, and this indicates where
effort should be made to reduce the overall uncertainty of
flood estimation. Furthermore, comparative results show that
constraining the support (the maximum range with the low-
est possibility) of fuzzy model parameters is more valuable
in reducing the overall uncertainty than constraining the ker-
nel (the minimum range with the highest possibility).

[66] The methodology presented can be extended to esti-
mate flood risk, by including lower and upper bounds for the
possible cost caused by sewer flooding, and thus potentially
provides a useful tool for sewer flood management. Further,
the framework can be readily developed to include other rep-
resentations of uncertainty, for example, intervals or classic
probabilities.

Appendix A: Cumulative Distribution Functions

A1. Frechet Distribution
[67]

F xð Þ ¼ exp � x� �ð Þ=	½ ���
n o

where � > 0; 	 > 0 ; and � are shape, scale, and loca-
tion parameters, respectively

A2. Gamma Distribution
[68]

F xð Þ ¼ � x��ð Þ=
 �ð Þ=� �ð Þ

where � > 0; 
 > 0, and � are shape, scale, and loca-
tion parameters, respectively. � is the Gamma function,

� �ð Þ ¼
Z1

0

t��1e�tdt ;

for ð� > 0Þ and �z is the incomplete Gamma function,

�z �ð Þ ¼
Zz

0

t��1e�tdt

for ð� > 0Þ.

A3. Generalized Extreme Value Distribution
[69]

F xð Þ ¼ exp � 1þ � x� �ð Þ=	½ ��1=�
n o

where � 6¼ 0; 	 > 0; and � are shape, scale, and location
parameters, respectively.

A4. Generalized Pareto Distribution
[70]

F xð Þ ¼ 1� 1þ � x� �ð Þ=	½ ��1=�

where � 6¼ 0; 	 > 0; and � are shape, scale, and location
parameters, respectively.

A5. Inverse Gaussian Distribution
[71]

F xð Þ ¼ � �= x� �ð Þ½ �1=2 x� �ð Þ=�� 1½ �
n o
þ � � �= x� �ð Þ½ �1=2 x� �ð Þ=�þ 1½ �

n o
exp 2�=�ð Þ ;

where � > 0; � > 0 ; and � are parameters, and � is the
Laplace Integral, i.e., the CDF of the standard normal dis-
tribution
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� xð Þ ¼ 2
ð Þ�1=2
Zx

0

e�t2=2dt :

A6. Log-Logistic Distribution
[72]

F xð Þ ¼ 1þ 
=xð Þ�½ ��1

where � > 0 and 
 > 0 are parameters.

A7. Pearson Type 6 Distribution
[73]

F xð Þ ¼ Bx= xþ
ð Þ �1; �2ð Þ=B �1; �2ð Þ

where �1 > 0 and �2 > 0 are shape parameters, and

 > 0 is the scale parameter. B is the Beta function

B �1; �2ð Þ ¼
Z1

0

t�1�1 1� tð Þ�2�1dt

for �1 > 0 and �2 > 0,

Bz �1; �2ð Þ ¼
Zz

0

t�1�1 1� tð Þ�2�1dt

for �1 > 0; �2 > 0 ; and 0 � x � 1.
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