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Abstract

Two-dimensional regular theoretical units that give a negative Poisson’s ratio (NPR) 

are well documented and well understood. Predicted mechanical properties resulting 

from these models are reasonably accurate in two dimensions but fall down when 

used for heterogeneous real-world materials. Manufacturing processes are seldom 

perfect and some measure of heterogeneity is therefore required to account for the 

deviations from the regular unit cells in this real-life situation. Analysis of 

heterogeneous materials in three dimensions is a formidable problem; we must first 

understand heterogeneity in two dimensions. This paper approaches the problem of 

finding a link between heterogeneous networks and its material properties from a new 

angle. Existing optimisation tools are used to create random two-dimensional 

topologies that display NPR, and the disorder in the structure and its relationship with 

NPR is investigated.

http://ees.elsevier.com/mecmat/viewRCResults.aspx?pdf=1&docID=690&rev=1&fileID=19066&msid={DEE8F93C-A285-4EED-922A-C9464DBDE6E5}
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Introduction

A material with a negative Poisson’s ratio (NPR), also termed an auxetic (Evans et al 

1991), has the counter-intuitive property that it expands laterally when under tension 

and contracts when under compression. Materials with this property exist naturally

(Lees et al 1991; Veronda and Westman 1970; Williams and Lewis 1982; Gunton and 

Saunders 1972; Baughman et al 1998) and have also been manufactured (Lakes 

1987a; Lakes 1987b; Evans and Alderson 2000; Alderson  and Evans 2001) from a 

variety of materials. The majority of synthetic auxetics can be classified as porous or

‘cellular’ in that they have large volume fractions of voids, notably polymer and metal 

foams (Bezazi and Scarpa 2007; Friis et al 1988) microporous polymers (Caddock 

and Evans 1989a; Caddock and Evans 1989b; Alderson and Evans 1992) and 

honeycombs (Masters and Evans 1996; Scarpa et al 2007; Gaspar et al 2005a). 

Auxetic materials have many potential applications but their manufacture is often 

problematic since the basis of most theoretical models of structure–property 

relationships require homogeneity and symmetry in the microstructure. This is 

possible with materials such as 2D honeycombs, although there are issues with 

manufacturing defects or in-service damage, but this is usually impossible with 3D 

cellular solids for instance polymeric foams, in which greater or lesser degrees of 

inhomogeneity and asymmetry exists in their microstructure. It is the purpose of this 

paper to explore the effects of heterogeneity on this structure-property relationship.
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Much of the explicit modelling of cellular solids has considered tessellating, and 

therefore homogeneous, arrays of unit cells and uses simple beam mechanics to derive 

relationships between internal material properties and structure, and bulk properties

(Gibson et al 1982; Evans and Grima 2000; Alderson and Evans 2001; Evans et al 

1991; Gaspar et al 2005a; Sanders and Gibson 2003a; Sanders and Gibson 2003b; 

Lakes et al 1993). The results from these may correlate fairly well with experimental 

data but since their geometries often bear little resemblance to the reality of the 

internal microstructure of the materials there remains a gap in understanding between 

theorised ideals and the heterogeneous structures seen in auxetic materials (Gaspar et 

al 2005b). This disparity leads to difficulties in predicting properties when 

considering the manufacture of such materials since it is currently very difficult to 

accurately account for heterogeneity in microstructure and resulting Poisson’s ratios

(Gaspar et al 2005b; Koenders and Gaspar 2008). The issue of control over the nature 

and extent of heterogeneity is relatively unexplored and indeed may prove difficult to 

achieve in practice. However, previous work (Gaspar et al 2003) has shown that 

improved properties, and in particular negative Poisson’s ratios, can be obtained from 

heterogeneous structures, but that the manufacture of such structures must be 

controlled closely.

Some work has been done to model heterogeneity, both for cellular solids (Guo and 

Gibson 1999; Silva et al 1995; Silva and Gibson 1997) and for fibrous composites 

(Yang et al 1999). This has predominantly taken the form of finite element models of 

specific anisotropic cell arrangements (Warren and Kraynik 1988; Warren and 

Kraynik 1991), rather than more generalised explicit forms. Other work (Gaspar et al 
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2003) has started to quantify numerically the differences in material properties 

(including calculations of material properties, failure modes and isotropy) between a 

homogeneous and a heterogeneous material.

The work described in this paper concerns the question of whether a 2D honeycomb 

with a microstructure optimised for negative Poisson’s ratio in combination with a 

generally useful set of other elastic properties will be heterogeneous, and if so what 

are the underlying mechanisms engendering this negative Poisson’s ratio. These 

questions are tackled via numerical optimisation of 2D grids and statistical analysis of 

results in the context of the homogenisation approach of Gaspar and co-workers 

(Gaspar et al 2003; Koenders and Gaspar 2008).

Methods

Two-dimensional grids with optimised honeycomb structures have been created using 

two different techniques. These have been optimised for maximal values of negative 

Poisson’s ratio. The structures created were not assigned a specific material type since

the internal geometry alone produces the NPR effect, as it does in most cases, 

meaning that the geometries could be applied to produce NPR in a wide range of 

materials. In practical applications, these could range from plastics and metals to 

carbon nanotubes, provided that the material itself remains in the linear elastic region

so that the desired deformation mechanisms can function. Preliminary work on the 

two models presented here used values of Young’s modulus ranging from 10 MPa to 

70 GPa.
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Two types of optimisation techniques were used, a genetic algorithm (GA) (Mitchell 

1996; Davis 1991) and a differential evolutionary (DE) algorithm (Storn 1996; Mayer 

et al 2005). Both methods produce heterogeneous optimal solutions with negative 

Poisson’s ratios but have different advantages; DEs efficiently explore a section of the 

possible solution surface (Pathria and Morris 1991; Lew et al 2006), whereas GAs are 

more computationally intensive but do not have pre-determined distributions for 

variables. The basis of the structures optimised is the Gibson-Ashby hexagon (Gibson 

and Ashby 1997) defined by h, t, ℓ and θ. 

The genetic algorithm (GA) method was adapted from (Javadi et al 2005). A 

population of 10 identical arrays (10 by 10 cells, large enough to minimise edge 

effects but small enough to be computationally feasible) with h=4mm, ℓ=2.92mm, 

θ=1.193rads (68.4º) and t=0.2mm was created, known as generation 0, see Figure 1. 

The GA algorithm then applied random changes to the location of any or all of the 

nodes, and consequently the length of the ribs in each of the cells, creating 10 new 

different ‘offspring’ arrays. All offspring geometries were simulated under uniaxial 

loading in an FE package and the Young’s moduli, Poisson’s ratios and shear 

modulus of each data set were calculated. This was done in four stages, two uniaxial 

tensile tests and two shear tests. The FE package used was ABAQUS 6.5-5 (Dassault 

Systems) with beam elements of circular cross-section (diameter 0.2 units). Small 

displacements were applied to relevant sets of edge elements for the calculation of the 

grid’s properties. These offspring are then evaluated for ‘fitness’ against a set of user-

defined criteria, in this case for the maximum negative value of Poisson’s ratio, where 

both ν21 and ν12 are being used for this assessment. The fittest members of each 

generation were then used as ‘parents’ for subsequent generations. The algorithm 
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iterates this process through a number of generations, each time improving against the 

criteria required. In addition to small random changes, the algorithm also allows 

periodic larger changes termed ‘mutations’, so the solution converges to the global 

optimum rather than becoming trapped in local minima. 

The differential evolutionary algorithm (DE)  method starts with one regular grid (see 

figure 2) defined by the user in terms of rib length ℓ and angle θ (again using the 

standard Gibson and Ashby notation as defined above). The user then defines a 

variance, the magnitude of the Gaussian distribution that governs the displacements of 

the nodes. The program then outputs a number (in this case 70) of random grids, 

representing the solution surface of the problem. The DE also uses the commercially 

available FEA package ANSYS (ANSYS Inc.) to find the Young’s moduli, Poisson’s 

ratios and shear modulus of each output. This was again done in four stages, two 

uniaxial tensile tests and two shear tests. The user must then evaluate manually to find 

the best solution from this set of possible solutions. There are 7 different variables 

available to the user every time the algorithm is run (starting rib length ℓ0, cell wall 

aspect ratio α, the angle defining the unit cell θ, the relative density β, the number of 

cells in the x-direction n, the variance, and the number of grids to output). For 

simplicity, the values of the cell wall aspect ratio α, the relative density β, and the 

starting rib length ℓ0, are all kept permanently to their default parameters of α=1.0, 

β=0.05, ℓ0=0.007. The variances used for modifying the locations of the nodes were 

5%, 10% and 15%. Figure 2 shows the three different starting geometries. The output 

parameters are E1, E2, ν21, ν12 and G. The algorithm was asked to return 70 possible 

solutions each time. 
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The conventional statistical analysis of finding bulk material properties from local 

values concentrates on simply averaging local properties over the whole volume

(mean-field approximation). This homogenisation process loses potentially important 

information regarding particular parts of the material. It is the purpose of this study to 

work towards ascertaining what the parameters that affect NPR are, and therefore, 

such generalisation is not very useful. 

The geometry of the grid can be defined by the locations of the nodes, or by the length 

of the ribs r connecting the nodes and the angles θ between them. Preliminary 

statistical calculations were performed on the lengths and angles.  More sophisticated 

techniques were then used to further interrogate the structure of these simulated grids. 

The following techniques are based on analyses of randomly packed granular 

materials that have been adapted to bending beam networks (Koenders and Gaspar 

2008).

If we consider stiffness tensor Z for these 2D arrays then locally, for each node μ the 

elastic properties are related by

  Z (1)

and globally the properties arise as an average of the local properties, i.e.  Z

(where  and  are the local stress strain respectively, the bar denoting ‘local’) so 

under equilibrium conditions at any point μ    . However, due to the 

heterogeneity in the structures, the global properties are not the same as an average of 

the local properties (Gaspar et al 2003), therefore, an additional term based on the 

geometrical differences must be included. The analysis follows that of Koenders and 

Gaspar (2008) in which each node is considered subject to force and force moments 
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from the displacements of its neighbours. Neighbours ν are located a vector cμν from 

node μ. The mechanics of the geometry then entrain summations over neighbouring 

nodes. These so-called structural sums represent the fabric of the material.

These structural sums can then be used to find the constant strain mean-field 

approximation, ie the stiffness tensor Z, from the equilibrium equations solved for the 

specific geometry. The Poisson’s ratio can then be calculated (table 1).


pstqijstpqij APZ  (2)
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where E is the Young’s modulus, s the sectional area, c the rib length, I the second 
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xy is the Kroenecker delta
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ijk is the permutation tensor

and

n is the unit vector connecting nodes μ and ν

To this is then added a corrective term (highlighted) that takes local heterogeneity into 

account:

 )( XZZ  (6)

The complete corrective term, taken from the full explicit calculation (Koenders 

2005), is based upon allowing local deformations to the nodes and then requiring 

equilibrium in force and moments.
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(7)

where

U is the local continuum rotation, and subscripts bc and ef denote a symmetrised tensor.

ζ and κ are Lame’s constants

Results

The values of the Poisson’s ratios from the arrays generated by one run of the GA 

optimiser can be seen in figure 3, and most other runs were similar. All the results 

were heterogeneous, strongly suggesting that heterogeneous grids have advantageous 
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properties over homogeneous counterparts. Large changes occur at the beginning, 

then as the solution progresses it becomes asymptotic towards an optimum. The data 

are for the fittest member in each generation. These data do not necessarily end with 

the most negative values as the process is iterative and may also produce a less fit 

generation than the preceding one.

Fig 4 shows the starting grid and a selection of subsequent optimised grids, along with 

the Poisson’s ratio 21. The properties of the starting grid were obtained from FE 

analysis on a regular hexagonal unit cell. It is interesting to note that there is no 

obvious visible difference between generation 1 and generation 800 despite the large 

difference in Poisson’s ratio between them. It is clear that subtle changes in geometry 

are having a very large effect on the properties. 

Very large negative values (up to -6.83) of Poisson’s ratio were obtained from the DE 

with a starting grid of θ=-5°. In addition, Poisson’s ratios of approximately 1 were 

produced with  = 30°. However, the most interesting results come from a starting 

grid of θ=0° as the resulting arrays include both positive and negative Poisson’s ratio 

examples, see Figure 3, and, as with the GA, there is no obvious difference between 

these structures.

The off-axis properties can be calculated from the conventional equations (Nye 1957), 

and are given in Figure 5. For simplicity, only the two most negative results are 

shown, one from the GA and one from the DE. The off axis Poisson’s ratios from the 

DE are all negative, which contrasts with those from the GA which are predominantly 

positive. There is also more variation in the Poisson’s ratios obtained from the DE      
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(-5.68 to -0.01) when compared with the GA (-0.34 to 0.65). The frequency of radius 

and angle for maximum and minimum Poisson’s ratio cases for the DE and GA are 

presented in Figures 6 and 7 respectively.

In addition to neighbour-neighbour considerations, correlations between non-

contacting ribs were also investigated. Ribs with angles greater than 6º from the 

vertical or from the horizontal were correlated with all other ribs. The ribs which are 

almost perfectly horizontal or vertical are a priori well correlated. By removing them 

with a minimum angle stipulation we concentrate on the ribs whose geometry 

provides the most variation between models. Figure 8 shows a pair of non-contacting 

ribs, which are treated as vectors V1 and V2, the distance between them, r, and the 

angle between them θ. The sign of the angle θ defined here depends on which rib in a 

pair is chosen as V1, and on the orientation of the vectors. The function cos(2θ) 

removes these dependencies. 

These values were then used in a set of correlation functions, β. The most interesting 

were found to be:

Double angle   )2cos(                (8)

Mixed angle  )2cos(21  VV         (9)

These functions were then used to analyse the data from the DE. The correlation 

functions are plotted in Figure 9 as a function of separation r for the DE results with 

θ=0.
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Discussion

The most interesting outcome so far arises from the DE results and it is that larger 

negative values of global Poisson’s ratio were obtained with lower variance values 

than with larger variance values (Figure 5). This somewhat surprising result

underlines the observation that subtle structural changes may make very large 

differences in Poisson’s ratio, but also that these subtle structural changes must be of 

a particular type (as yet unquantified). Since Poisson’s ratios in cellular solids are

almost wholly dependent on microstructure rather than the properties of the 

constitutive material, this finding has implications for foams, honeycombs and other 

cellular solids, fabricated from many different materials, and used in a wide range of 

applications.

The constant strain mean-field approximation for the GA structures, table 1, predicts 

no negative values of Poisson’s ratio, yet we know from the FEA that the structures 

do in fact have NPR. This reinforces the idea that subtle structural changes can have a 

large effect on the value of Poisson’s ratio. Quantifying such changes would allow 

material properties to be tailored to specific requirements, but the accuracy of the 

predictive mean-field approximation is not yet sufficient for this to occur. Despite 

attempts to correlate heterogeneity measures with elastic parameters such as Poisson’s 

ratio, in such materials, there is as yet no known robust method for doing this [Gaspar 

and Koenders, 2001b; Kuhn 2003]. In contrast to the mean-field approximation, the 

full corrective term shows too large a value of NPR. If we look more closely at the 

standard deviation of the corrective term, we can see that it is approximately 50%. 

The corrective term in Koenders (Koenders 2005) presumes only first order 
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fluctuations in the displacement fields applied, and we can see that these assumptions 

are breaking down, i.e. the fluctuations in the grids are too big to directly compare 

with the theoretical calculations. This shows that either the optimisation tools must 

apply an unintended constraint on the extent of heterogeneity, or these calculations 

need to be extended to accommodate larger fluctuations. However, this analysis is still 

valid in the calculation of the shear modulus [Gaspar and Koenders, 2001a], where

similarly there is no correlation between the mean-field approximation prediction and 

the statistical measures of rib-lengths and angles.

The DE data has also been analysed with the full mean-field approximation and 

corrective term calculations, with worse correlations found than with the GA. In 

addition, the same results have been found as with the GA regarding the frequency 

distributions of the rib lengths. That is, that there is no difference between the two 

(Figure 6). These results were contrary to those that have been found from previous 

similar work (Gaspar et al 2005b) which always found obvious differences between 

positive and negative Poisson’s ratio structures. Although Gaspar et al analysed 3D 

NPR foams whereas the present structures are 2D, there seems to be no a priori

reason why similar shifts in peak frequency values should not also be seen in the 

present structures if the same factors underlay the changes in Poisson’s ratio.

Koenders and Gaspar (Koenders and Gaspar 2008) also propose a partial corrective 

term as an alternative to the full calculation
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

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P
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Looking at this equation, we can see that corrZ1122 has a predominant dependency on the 

<
2

12P > term. However, this partial correction is based on the assumption that all the 

ribs are long and slender. Looking at the rib lengths in these results (figure 7) we can 

see that this assumption is definitely not valid in this case. Indeed, with a diameter of 

0.2, not an insignificant number of the connections between the nodes are shorter than 

this. Looking at table 2 we can see the effect of having a node with a shorter rib 

attached has on <
2

12P >. Therefore, this issue has to be addressed by constraining the 

GA so that there is a specified minimum aspect ratio.

In addition, looking at the off-axis properties, it can clearly be seen that the DE is 

optimising in one direction, hence the anisotropy in the Young’s modulus when 

compared with the off-axis values from the GA, where very similar values are 

obtained at both 0° and 90°. This also leads to very negative values of Poisson’s ratio 

(minimum off-axis value of -5.68). Interestingly, in addition, the off-axis Poisson’s 

ratio is entirely negative. This again is in stark contrast to the GA where both positive 

and negative values occur. Theoretically, the GA should produce the more negative

results as it should optimise for the most negative value of Poisson’s ratio in one 

direction. Whilst this is true for the on-axis case, when taking all orientations into 

consideration this is no longer the case.

The interactions between non-contacting pairs of ribs gives more of an insight into 

why these measures of heterogeneity tend not correlate well with predictions of elastic 
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constants. In Figure 9 where r*100=1 the separation r is approximately equivalent to 

one rib length and thus equivalent to the above neighbour-neighbour interactions 

(simple rib-length and angle correlations and the mean-field approximation). At these 

short length scales it is clear that there is very little correlation between angles, and it 

is only when distances increase to about 3-12 rib lengths that we see a marked 

increase correlation () for both the PPR and NPR cases. This would indicate that the 

effective unit cell, i.e. the functional unit of deformation, may be significantly larger 

than the individual honeycomb cells. This may explain why NPR mechanisms have 

been difficult to uncover in these structures. This larger effective unit cell has also 

been found in granular mechanics, and is sometimes referred to as structure formation 

[Koenders, 1997] or as a circulation cell [Williams and Rege, 1997].

Conclusion

Two different optimisation tools have been introduced and their results analysed.

Heterogeneous grids are created by both methods, showing that a negative Poisson’s 

ratio honeycomb can be created simply by adding disorder to a positive Poisson’s 

ratio one. Both optimisation tools have different advantages and offer different 

insights into heterogeneity, although no direct predictive relationship between 

heterogeneity and such elastic properties had been found as yet despite some work 

towards this [Gaspar and Koenders, 2001b; Kuhn 2003], although the mean-field 

approximation is still of use in predicting the shear moduli. Negative values of 

Poisson’s ratios were found in both cases and the statistical tools are in place for work 

to continue on quantifying the relationship between heterogeneity and material 

properties. Further work will investigate higher order interactions, i.e. longer length 
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scale interactions between non-contacting neighbours, since the effective unit cell 

appears to be much larger than first thought. A robust direct correlate of structural 

heterogeneity and mechanical properties in such structures may well result.
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TABLES

Table 1 Poisson’s ratios obtained from the GA runs by averaging the material 
properties, correcting this average to account for the heterogeneity, and from the FE 
analysis.

Poisson’s ratio ν21

Generation Uncorrected
(mean-field)

Corrected FE simulation

1 0.2585 -0.3012 0.0474

10 0.2074 -0.2431 -0.0538

800 0.2378 -0.2131 -0.200

Table 2: <
2

12P > values for short and long ribs

Generation r < 1.0 r > 1.0
1 0.51659 0.31283
10 0.50067 0.32577
800 0.38843 0.32570
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Figure 1 Starting grid for the GA ( 12 = 0.714, 21 = 0.855)

Figure 2 Starting grids for DE showing the different starting angles

   θ = 0 º          θ = 30 º               θ = -5 º
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Figure 3: Poisson’s ratio by generation (GA) and average values with min/max bars 
(DE)

Figure 4 Starting grid and subsequent optimised grids by generation

Generation 1 ν21= 0.0474        Generation 2 ν21= 0.0106

Generation 10 ν21= -0.0538         Generation 800 ν21= -0.253 



 

 

 

ACCEPTED MANUSCRIPT 

 

Figure 5: Off-Axis properties for GA and DE data

DE results for θ=0, variance=5%, ν21(on-axis)=-1.0395

Young’s Modulus (normalised to constituent material)            Poisson’s Ratio

GA results for generation 800 ν21(on-axis)=-0.200

             Young’s Modulus (normalised)                Poisson’s Ratio (negative values shaded)
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Figure 6: Frequency of radius and angle for maximum and minimum Poisson’s ratio 
cases for the DE

Figure 7 Rib length against frequency for the GA
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Figure 8: Showing notation for non-contacting rib pairs

Figure 9: Correlation functions as defined in equations 7 and 8




