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ABSTRACT 

This paper presents a novel multiobjective genetic algorithm (MOGA) based on NSGA-II algorithm, 

which uses metamodels to determine optimal sampling locations for installing pressure loggers in a 

water distribution system (WDS) when parameter uncertainty is considered. The new algorithm 

combines the multiobjective genetic algorithm with adaptive neural networks (MOGA-ANN) to 

locate pressure loggers. The purpose of pressure logger installation is to collect data for hydraulic 

model calibration. Sampling design is formulated as a two-objective optimization problem in this 

study. The objectives are to maximize the calibrated model accuracy and to minimize the number of 

sampling devices as a surrogate of sampling design cost. Calibrated model accuracy is defined as the 

average of normalized traces of model prediction covariance matrices, each of which is constructed 

from a randomly generated sampling set of calibration parameter values. This method of calculating 

model accuracy is called the ‘full’ fitness model. Within the genetic algorithm search process, the 

full fitness model is progressively replaced with the periodically (re)trained adaptive neural network 
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meta-model where (re)training is done using the data collected by calling the full model. The 

methodology was first tested on a hypothetical (benchmark) problem to configure the setting 

requirement. Then the model was applied to a real case study. The results show that significant 

computational savings can be achieved by using the MOGA-ANN when compared to the approach 

where MOGA is linked to the full fitness model. When applied to the real case study, optimal 

solutions identified by MOGA-ANN are obtained 25 times faster than those identified by the full 

model without significant decrease in the accuracy of the final solution. 

 

Keywords: Water distribution system; calibration; uncertainty; multiobjective genetic algorithm; 

adaptive neural networks. 

 

INTRODUCTION  

Data for the calibration of a water distribution system (WDS) model is usually collected from a 

series of field tests at strategic locations within the network in which the pressure head is recorded 

(de Schaetzen et al. 2000). The accuracy of calibration depends on the quality and quantity of the 

collected data. Therefore, the selection of appropriate collection locations, called the sampling 

design (SD), has been a challenge for researchers and practitioners (Kapelan et al 2005a).  

 

Practitioners often use a simplified approach for sampling design since they seek straightforward 

applicable methods without the need for complex computations (Walski 1983). Although these 

methods are simple to understand and apply, they suffer from the lack of accuracy since they may 

require a logger to be located on nodes where pressures are insensitive with respect to calibration 

parameters. This way, the measurement locations that can return most of the information about 

calibration parameters may be easily omitted.  
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The above problem was overcome in the past by identifying sampling designs that have the optimal 

trade-off between calibrated model accuracy and the sampling design cost (Meier and Barkdoll 

2000; de Schaetzen et al. 2000; Kapelan et al. 2003; Vitkovsky et al. 2003). However, all these 

models require estimating the calibration parameter values prior to the optimisation-based sampling 

design process. This is difficult to achieve as these values can be obtained accurately only after the 

model calibration. 

 

To overcome this problem, a stochastic sampling design problem is formulated and solved here. The 

problem is formulated as an optimisation problem trading off the calibrated model accuracy with the 

sampling design cost but this time, calibration parameter values are assumed uncertain and modelled 

by using probability density functions. This way, a more realistic representation of the (essentially 

unknown) calibration parameter values is obtained which should lead to more robust sampling 

designs obtained. However, this comes at the price as stochastic sampling design problem is more 

difficult to solve than the deterministic one.  

 

In this paper, an overview of sampling design and metamodeling approaches is briefly presented 

first. Optimal sampling design problem is then formulated. Following this, the methodology of the 

proposed algorithm, i.e. the multi-objective genetic algorithm and the adaptive neural network 

(MOGA-ANN), is described. The MOGA-ANN for SD is first tested on a hypothetical WDS, which 

is often used as a benchmark problem (Farmani et al., 2003), and then it is applied to a real case 

study. Finally, the relevant conclusions are drawn. 

 



 4

BACKGROUND 

Sampling Design 

The problem of sampling design for WDS models has attracted the attention of a number of 

researchers in recent years (Kapelan, 2002; Lansey, 2006). Only a few recently developed studies 

related to the proposed model are discussed here. A comprehensive overview of the relevant works 

can be found in Kapelan (2002). 

 

Most of the developed SD approaches have been based on the sensitivity criteria of measurement 

locations with respect to calibration parameters. Mainly, Jacobian matrix and covariance matrix are 

used to find the most sensitive locations for monitoring (Yu and Powell 1994; Bush and Uber 1998; 

Lansey et al. 2001; Kapelan et al. 2003). These criteria have been used either to rank potential 

locations based on a sensitivity-based method (Ferreri et al. 1994; Bush and Uber 1998; Piller et al. 

1999) or to create an optimization problem (Lee and Deiningger 1992; Meier and Barkdoll 2000; de 

Schaetzen et al. 2000; Kapelan et al. 2003; Vitkovsky et al. 2003).  

 

In the ranking approach, a new measurement location with the highest sensitivity is added to the 

previously selected set of logger locations until the maximum number of loggers is reached. Clearly, 

such an approach will ignore the effect of all required measurement locations simultaneously. 

However, when compared to the empirical methods, the sensitivity-based approach is far superior, 

and yet easy to apply without solving a complex optimization problem. 

 

The optimization model can take into account the effect of a set of monitoring locations altogether 

and their mutual interactions when performing SD for a set of specified monitoring locations. Most 
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SD approaches have used genetic algorithms (GAs) to solve the associated optimization problem 

(Meier and Barkdoll 2000; de Schaetzen et al. 2000; Kapelan et al. 2003; Vitkovsky et al. 2003).  

 

Bush and Uber (1998) proposed three sensitivity-based methods to rank the locations of pressure 

and tracer measurements within WDS for model calibration. All three methods are based on 

minimizing the uncertainty in estimated parameter values (directly or indirectly). Lansey et al. 

(2001) developed an SD procedure based on a three-step calibration process to consider the 

uncertainties in measurement and estimation. The trace of the model prediction covariance matrix is 

used as the model uncertainty. They finally proposed how to identify the preferable conditions and 

locations for data collection based on the uncertainty and sensitivity-based heuristic analysis. 

 

The model by Kapelan et al. (2003) presented a deterministic multi-objective genetic algorithm 

(MOGA) for SD prior to WDS model calibration. The two objectives proposed were to maximize 

calibrated model accuracy and to minimize total SD costs. The authors also proposed and compared 

three different approaches for evaluating the model accuracy, which were calculated using some 

norms of the parameter itself or the prediction covariance matrix. In this approach, elements of the 

Jacobian matrix are calculated prior to the optimization model run by assuming the model parameter 

values. This approach is obviously prone to errors as that kind of information is not readily available 

when measurement locations are being selected.  

 

In water quality management, optimal sensor placement in WDS has also attracted special attention 

with the aim of identifying contamination sources (Ostfeld and Salomons 2004; Berry et al. 2005; 

Propato, 2006; Berry et al. 2006; Shastri1 and Diwekar 2006). They all typically minimize the risk 

from contamination using sensors for timely detection. 
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Meta-modelling 

The use of metamodels to reduce the computational times in optimisation processes was proposed 

by Blanning (1975). A metamodel can be used as a surrogate for calculating fitness values, which 

are normally based on time-consuming simulations. Such a metamodel can be effectively integrated 

into the search process to gradually substitute the large portion of simulation which model runs 

require. One of the frequently used metamodels is the artificial neural network (ANN) because of its 

ability to approximate effectively a wide range of nonlinear functions (Leshno et al. 1993).  

 

Historically, ANNs have been successfully applied to several water resource problems, such as 

groundwater remediation designs (Rizzo and Dougherty 1996; Rogers et al. 1995; Aly and Peralta 

1999; Yan and Minsker 2005). In a recently developed application, Yan and Minsker (2006) 

reported a model for groundwater remediation design that makes use of an adaptive neural network 

and a single objective genetic algorithm. They saved approximately 90 percent of the simulation 

model calls with no loss in accuracy in the optimal solutions. In the context of water distribution 

systems, a few applications using ANNs have been observed. Lingireddy and Ormsbee (1998) 

applied ANNs to optimal calibration of a WDS model. Recently, Broad et al. (2005) proposed 

ANNs as a substitution for a complex simulation model for WDS design, in which ANNs were 

trained offline. As ANNs were trained before being used by the optimization model, the authors 

proposed setting some heuristic rules to prohibit solutions becoming infeasible. 

 

OPTIMAL SAMPLING DESIGN 

The objective of the SD here is to find a set of optimal measurement locations with the aim of 

calibrating accurately the WDS hydraulic model. The stochastic SD problem is formulated and 
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solved as a two objective optimization problem under parameter uncertainty. The two objectives are 

the maximisation of the calibrated model accuracy and the minimisation of the sampling design cost. 

 

To quantify the calibrated model prediction accuracy, a first-order second-moment (FOSM) model 

is used to approximate the relevant parameter and prediction covariance matrices. Without the loss 

of generality, it is assumed that prediction and measurement variables of interest are nodal pressures 

only. As a consequence, if a set of Nl measurement devices with the standard deviation of s are 

installed in Nl measurement WDS locations, the variance of calibrated parameters can be estimated 

from the diagonal elements of the parameter covariance matrix (Bush and Uber 1998, Kapelan et al. 

2005a): 

 

 
12 ).( −

= JJCov T

a s   (1) 

 

where J =Jacobian matrix of derivatives ki ay ∂∂ /  (
ao NkNi ,...,1;,...,1 == ), y =vector of oN  

pressure predictions at locations where loggers are installed, a=vector of Na calibration parameters, 

No=number of observations, i.e. measurement data in both spatial and temporal domains (e.g. if 

there are Nt time steps for each of Nl monitoring locations, then No=Nt�Nl), aN =number of 

calibration parameters.  

 

The uncertainty in model predictions (e.g. pressures) at any location in the system can be estimated 

from the diagonal elements of the prediction covariance matrix (Lansey et al. 2001, Kapelan et al. 

2005a): 
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where zJ =Jacobian matrix of derivatives ki az ∂∂ /  ( az NkNi ,...,1;,...,1 == ); z=vector of zN  

pressure predictions of interest. Note that there are several general methods for the calculation of 

elements of the Jacobian matrices J  and zJ  (Kapelan et al. 2003). 

 

To aggregate the model prediction uncertainty, the average of square root of all diagonal elements in 

matrix zCov  (i.e. standard deviations of model predictions) is assumed as the model uncertainty:  
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Therefore, the normalised prediction accuracy is then defined as follows (Kapelan et al. 2003; Bush 

and Uber 1998): 
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where mlf ,1 =the value of model uncertainty for the ideal state where all potential measurement 

locations are monitored. Note that if model uncertainty (equation 3) is to be minimised then 

normalized prediction accuracy (equation 4) has to be maximised. 
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Note that all Na calibration parameters have to be assigned a value before the values of the full 

Jacobian matrix can be calculated, i.e. before sampling design process can commence. These values, 

however, are not normally available prior to the sampling design process. To overcome this 

problem, each calibration parameter is assumed here to be uncertain following some pre-defined 

probability density function (PDF). It is envisaged that this should enable a more realistic 

representation of essentially unknown calibration parameter values. 

 

As a consequence, the calibration accuracy objective is defined here as the average of normalised 

prediction accuracies (see equation (4)), each of which is constructed from a randomly generated 

sample of calibration parameter values: 

 

 Maximise 1

1

1 1

1 k
jN
,ml

j
jk

f
F

N f=

= ∑   (5) 

 

where kN =number of sets of samples and superscript j  refers to jth sampling set. This approach to 

calculating the first objective value is called the ‘full’ fitness model henceforth. To do so, kN  sets of 

uncertain parameter values are randomly generated from the associated PDFs by using the Latin 

Hypercube (LH) sampling technique (McKay et al. 1979, Helton and Davis 2003). The noisy 

objective value is then calculated by averaging the relative accuracies obtained by kN  runs of the 

deterministic SD model.  

 

The sampling design cost is surrogated by the number of devices used leading to the following 

second optimisation objective and the associated constraint: 
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 Minimise 
2 l mlF N N=  (6) 

 maxmin

lll NNN ≤≤  (7) 

 

where mlN =number of potential measurement locations; min

lN , max

lN = minimum and maximum 

number of measurement devices used, respectively. 

 

METHODOLOGY 

The objectives and the constraints shown in equations (5)-(7) define a two-objective optimisation 

problem under uncertainty. The main problem here is how to efficiently calculate the value of first 

objective function (see equation (5)) due to the time consuming nature of repetitive Jacobian matrix 

calculations. To resolve this, the optimisation problem is solved by using the multi-objective genetic 

algorithm coupled with adaptive neural networks (MOGA-ANN).  

 

Each GA chromosome is coded as a potential sampling design solution and its fitness is evaluated 

initially by using the full fitness model (i.e. with a number of samples). Later on, during the GA 

search process, the full fitness model is progressively replaced with the periodically (re)trained 

ANN metamodel where (re)training is done using the data collected from the previous evaluations 

by the full model. The ANN is retrained after a pre-specified number of objective function 

evaluations using the full model. The detailed flowchart of MOGA-ANN is shown in Figure 1. 

Multi-objective Genetic Algorithm 
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Here, a multi-objective evolutionary algorithm known as the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) is used (Deb et al., 2002). NSGA-II alleviates all of the following 

difficulties of previous MOGAs: (1) considerable computational effort, (2) non-elitism approach, (3) 

the need for the specification of a sharing parameter. The selection operator in NSGA-II combines 

the parent and offspring populations in a single population and then selects the best solutions with 

respect to fitness and spread criteria. More details of this approach can be found in Deb et al. (2002). 

 

Integer value coding is used for the encoding of each chromosome. The number of genes equals the 

maximum number of measurement devices ( max

lN ), each of which represents the position of one 

pressure logger in WDS. A gene with zero value indicates no measurement device is available. 

When using integer encoding, two or more genes may take the same integer value, indicating more 

than one pressure logger should be installed in the same location. These solutions will be rejected by 

MOGA due to an increase in cost and no increase in accuracy (Kapelan 2002). 

Artificial Neural Network (ANN) 

The ANN is used here as a replacement for a full fitness evaluation model used when estimating the 

model accuracy objective with the idea of making significant computational time savings. However, 

ANN predictions are only approximate and, therefore, prone to errors when used to evaluate the 

objective value. To resolve this problem, several strategies have been proposed to sample solutions 

and calculate the relevant objective value with the full model. In addition, the ANNs are periodically 

retrained within the algorithm progress to improve their prediction accuracy. 

 

Figure 2 shows the architecture of the proposed ANN. As it can be seen, a conventional neural 

network with an input, hidden and an output layer is assumed. Input data are defined as 
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measurement locations, hence the number of input layer neurons is equal to the maximum number 

of measurement devices (See above). The output layer has one neuron only equal to the value of 

first objective function (prediction accuracy), as defined in equation (5). The second objective 

function value, i.e. the number of measurement locations, is directly calculated and there is no need 

to consider it as an additional output neuron. The back propagation Levenberg-Marquardt algorithm 

is used to train the ANN (Lingireddy and Ormsbee 1998). 

MOGA-ANN Algorithm 

A flowchart of the proposed MOGA-ANN method is shown in Figure 1. It can be seen that the 

method is essentially a modified NSGAII algorithm that makes use of the ANN and the caching 

technique. The search process starts by creating a random initial population and evaluating the 

fitness of each chromosome by using the full fitness evaluation model. The data obtained (both 

chromosome components, i.e. genes and relevant objective function values) is then stored in the 

cache with the idea of preventing costly repetitive fitness evaluations. The cache is updated 

continuously during the search process, i.e. every time chromosome fitness is evaluated using the 

full model. 

 

The main loop of the algorithm starts with the creation of the offspring population using the NSGA-

II selection, crossover, and mutation operators. In the first few generations, chromosome fitness is 

estimated using the full model only, in order to collect enough ANN training data (steps 5-7 in 

Figure 1). Once the ANN is trained for the first time, evaluation of objective function values is done 

by using both ANN and the full model (steps 10-13 in Figure 1). At first, objective values of all 

chromosomes in the offspring population are evaluated by using the ANN. Then the offspring 

chromosomes are compared to the ones previously stored in the cache. If the offspring chromosome 
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is found in the cache then its accuracy objective value (approximated by the ANN) is replaced with 

the corresponding value from the cache (estimated previously by the full model). 

 

To improve the algorithm convergence, a (small) number of chromosomes in the offspring 

population is selected and re-evaluated by using the full model (if they were previously evaluated by 

the ANN). The chromosomes selected are the ones present in the best NF Pareto (sub)fronts, i.e. 

subpopulations of the offspring population.  

 

Furthermore, when using the integer coding, two or more genes in a newly created chromosome 

may have the same value indicating that more than one pressure logger should be placed on the 

same network node, i.e. indicating an infeasible solution. Even though they should be rejected, such 

chromosomes are considered by the MOGA-ANN model because of the errors in ANN predictions 

and, as a consequence, these solutions may still appear in the best NF Pareto (sub)fronts. Although 

applying the above re-evaluation would cause such infeasible solutions to be rejected quickly, it 

would lead to a weak convergence of the algorithm. To avoid this, a penalty is added to the accuracy 

objective function value of these chromosomes. 

 

Once the offspring population is created by using the above procedure, it is combined with the 

parent population into a single one. The next generation population is then created by using the 

standard NSGA-II approach. At this point an additional check is made and if a chromosome fitness 

value is estimated by the ANN, its fitness is re-evaluated by using the full model. This is necessary 

to ensure good algorithm convergence and it typically involves a small number of chromosomes. 

The above search process continues until some convergence criterion is met.  

 



 14

In addition to standard NSGA-II parameters, MOGA-ANN has some additional parameters which 

have to be set before performing the optimisation run. This includes setting the values of: NF, the 

number of Initial Training Generations (ITG), the number of retraining data and the number of 

neurons in a hidden layer. The MOGA-ANN is first rigorously analysed in a hypothetical case study 

to identify the optimal MOGA-ANN model parameter values. These parameter values are then used 

in a real case study.  

 

Best ranked Pareto-(sub)fronts (subpopulations). As noted above, after identifying all Pareto sub-

fronts in the offspring population, members of the best NF fronts are checked to see whether their 

fitness has been calculated by the full model. If not, they are re-calculated using the full model. 

Obviously, a trade-off exists here - the larger the NF the better results are achieved from the search 

accuracy point of view, but worse from the computational time point of view.  

 

Number of initial training generations (ITG). A number of initial full model fitness evaluations are 

required to obtain data for the first ANN training. This data is collected by using the full fitness 

model only when evaluating chromosomes in the first ITG generations. A sensitivity analysis is 

performed to determine the minimum number of ITG required for the good MOGA-ANN 

performance.  

 

Number of retraining data. To increase the accuracy of ANN predictions, ANNs need to be 

periodically retrained with new data. The number of retraining data points is defined as the number 

of additional (i.e. new) full fitness model evaluations that is collected before ANN is (re)trained. 

There are two possible approaches for collecting additional training data (Yan and Minsker 2006):  

(1) the growing set approach and (2) the fixed set approach. In the former approach, the ANN 
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retraining is accomplished with both new and existing data (each time the ANN is retrained) whilst 

in the latter approach existing data are replaced with new data (leading to the constant number of 

retraining data and hence, smaller data sets than in the growing set approach). Thus, the fixed set 

approach typically needs less time for retraining and contains less data but may lead to lower 

prediction accuracy. A novel mix of the above two approaches is adopted here to exploit the benefits 

of both. The growing set approach is used first to gather (re)training data until some predefined data 

capacity is reached. After this, new data are replaced with the oldest existing data which are less 

likely to be found by the genetic algorithm search. 

 

CASE STUDIES  

Case #1: Literature Example 

The above methodology is first tested and verified on a literature benchmark case study of the 

Anytown network (Kapelan et al 2003, Ormsbee 1989). The objective is to test and verify the 

computational efficiency and accuracy of the proposed MOGA-ANN method. The comparison is 

made between the MOGA-ANN model and the MOGA model (the latter being based on full fitness 

evaluations only, i.e. no use of either ANN nor caching). 

 

Figure 3 shows the layout of the Anytown network. The network configuration data has been taken 

from Ormsbee (1989). Sampling design is performed with respect to 5 grouped pipe roughness 

coefficients and 4 grouped nodal demands (Na=9). All network nodes are considered as potential 

pressure measurement locations except for the reservoir and tank nodes (Nml=16). Full Jacobian 

matrix 
mlJ  is obtained by using all potential measurement locations and loading conditions leading 

to No =128 (16 nodes for 8 steady-state loading conditions). The standard deviation of all pressure 
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loggers is assumed to be equal to s=0.1 m. The value of kN  is set to 200 samples which is sufficient 

for the noisy function based on the sensitivity analysis performed (not shown here). The following 

assumptions are made about uncertain parameters: (1) uncertain pipe roughness coefficient 

parameters follow a uniform PDF with lower and upper bounds equal to ± 30% of the deterministic 

value; (2) uncertain nodal demand parameters follow a Gaussian PDF with coefficient of variation 

(CV) equal to 0.20. 

 

GA parameters were determined after a limited number of trial runs with different initial 

populations. The following parameters are used here: population size of 50, binary tournament 

selection operator, random-by-gene mutation with the probability of 0.25 and single-point crossover 

with the probability of 0.90. All MOGA and MOGA-ANN runs were performed for 500 

generations. 

 

MOGA-ANN algorithm parameters were determined by the sensitivity analyses. The criteria for 

comparing different sets of parameter values are the number of full fitness evaluations and the 

search model reliability. The latter is denoted here as the percentage of Pareto optimal front points 

obtained by using the MOGA-ANN model when compared to the MOGA model. This percentage 

has been averaged over 20 MOGA runs with different random initial populations. The number of 

best ranked Pareto-(sub)fronts (NF) is examined especially since it has a major effect on both 

comparison criteria. 

 

Figure 4 shows the average number of full model evaluations for three values of NF and ITG. As it 

can be seen, when the NF is increased, the average number of full model evaluations increases 

monotonically, and yet, considerably compared to the increasing ITG. Figure 5 shows the model 
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reliability sensitivity with respect to the two MOGA-ANN parameters. Based on this figure the best 

MOGA-ANN performance is achieved for ITG=6 and NF=2 or 3.  

 

Figure 6 shows the sensitivity of model reliability to the number of retraining data. As it can be 

seen, for NF =1 and 2, model reliability decreases when the number of retraining data increases. 

This decrease for NF=1 is about 10% when the number of retraining data is increased from 1000 to 

2000 because ANNs are not updated after their first training. However, the same decrease in model 

reliability is much lower for NF=2 because ANNs are re-trained during the search process and hence 

the required training data for NF=2 is obtained earlier than the corresponding data for NF=1. For 

NF=3, model reliability is not dependent on the number of retraining data (always 100%) showing 

that the value of NF=3 is large enough to cover all errors arising from different ANN updating.  

 

Figure 7 shows the sensitivity of model reliability to the number of neurons in ANN’s hidden layer. 

As can be seen, model reliability of 100% is obtained for NF=2 and the number of neurons equal to 

20 and 30 and NF=3 (regardless of the number of hidden layer neurons). Since a larger number of 

hidden neurons would lead to longer ANN training times, the number of hidden layer neurons equal 

to 20 is selected here.  

 

Based on the above sensitivity analyses, the following MOGA-ANN specific parameter values are 

used here: ITG=6, NF=3, number of ANN hidden layer neurons = 20 and ANN re-training every 

1000 full model fitness evaluations. 

 

To validate and compare the results (i.e. the optimal sampling locations) obtained by using the 

MOGA-ANN model, the Monte Carlo Simulation (MCS) based model is developed and used here. 
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In the MCS-based model, an equivalent deterministic sampling design optimization problem (i.e. 

maximization of normalized prediction accuracy defined by equation (4)) is solved for a number of 

randomly generated calibration parameter samples. Optimal sampling locations are then determined 

by identifying the most frequently selected sampling locations in these optimization runs. Based on 

the separate sensitivity analysis performed (not shown here), 200 samples were deemed sufficient 

for the MCS model. 

 

The optimal sampling locations obtained by the MOGA-ANN model are shown in Table 1. The 

table also shows the percentage of selected sampling locations obtained by the MCS-based model. 

As it can be seen, the most frequently selected sampling locations in the MCS-based model (framed 

fields) almost always correspond to the optimal ones determined by the MOGA-ANN model. Of 

course, some discrepancies exist too (dark coloured fields). The differences occur inevitably due to 

the different approaches used in the two methods when dealing with uncertainty. Nevertheless, 93% 

of solutions matched show similarity in the results obtained using the above two stochastic 

approaches. Note that the MOGA model found the same solutions as the MOGA-ANN model and 

hence its optimal measurement locations are not shown in Table 1. 

 

When comparing the percentage of optimal measurement locations obtained by the MCS-based 

model in Table 1, it can be observed that the average percentage for a few sampling locations is not 

as robust as the one for a large number of sampling locations. For example, the average of these 

percentages for four optimal measurement locations is 64% whilst the same value for eight optimal 

measurement locations is 89%. This implies that a small set of optimal measurement locations have 

more uncertainty than a large set of measurement locations under stochastic sampling design.  
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Furthermore, for each given number of monitoring devices in Table 1, a relatively uniform 

distribution of optimal measurement locations is seen within the network. This can be interpreted as 

the tendency of the model to cover all parts of the network. However, these devices are usually 

located in places far from transmission pipes which are often close to main sources. For example, 

nodes 20 and 30, which connect the main source and the main costumers, consistently rank low. On 

the other hand, nodes which are the final receivers of water are the most sensitive nodes and hence 

they can be the first candidates for selection. For example, the flow in all connecting pipes linked to 

nodes 90, 120 and 170 are almost always directed towards these nodes, which indicates that they do 

not transmit water. This can be because such nodes are the most sensitive ones with respect to the 

head loss changes. Nonetheless, other factors can affect the selection process of optimal locations 

such as the layout of the grouped calibration parameters, or the existence of the loop in the network.  

 

To compare the Pareto optimal front obtained by the MOGA-ANN and the MCS-based models, 

solutions are further evaluated in the same uncertain environment. To do so, the following steps are 

preformed: (1) 10,000 sets of uncertain parameter values are randomly generated according to the 

pre-specified parameter PDFs; (2) for each model the normalised prediction accuracy (see equation 

(5)) is calculated for each optimal measurement location identified in the 10,000 samples.  

 

Figure 8 shows Pareto optimal fronts obtained by the aforementioned method for the two stochastic 

models. The values of prediction accuracy of both models are also shown in the third column of 

Table 1. As can be seen from Figure 8, both Pareto optimal fronts match reasonably well although 

MOGA-ANN’s front seems to be slightly better for a small numbers of measurement locations. 

Also, note that most the calibration accuracy is gained by installing 6-7 loggers. This fact could be 

used when selecting the ‘best’ solution from the Pareto front (Kapelan et al. 2005b).  
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To further compare solutions obtained by the MOGA-ANN and MCS-based models, the four 

optimal monitoring locations identified by each of these two methods are shown in Figure 3. Here it 

shows that three out of four monitoring locations are identical. The statistics of relative pressure 

prediction accuracy which resulted from model simulations in the uncertain environment are given 

in Table 2. It can be seen that both statistics are similar to each other. 

 

Figure 9 shows the comparison of the number of the actual function evaluations using the full 

model, the caching technique and the ANN approximations as the MOGA-ANN model search 

progresses. It can be seen from this Figure that a total of 12% of chromosomes are evaluated by 

using the full fitness evaluation model. Most of these evaluations occur in the first six generations of 

the MOGA-ANN model when the initial ANN training data is obtained. After that, the proportion of 

the full model evaluations decreases in favour of two other means of estimating the solution fitness. 

The percentage of objective values retrieved from the cache is almost constant at 25% once the 

initial ANN training is done. 

 

Table 3 shows the comparison of computational effort for the three aforementioned stochastic 

sampling design models. As can be seen from the second column of this table, the MOGA-ANN 

model achieves optimal solutions 8 times faster (87% savings) than the MOGA and the MCS-based 

models.  

Case #2: Real-world Case Study 

Here, the proposed MOGA-ANN sampling design model is further tested and verified on the 

Mahalat WDS shown in Figure 10. The city of Mahalat is located in the central part of Iran. The 
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WDS covers an area of approximately 46 km
2
, with a population of around 160,000. The city is 

located on a steep slope with the lowest elevation of 1584 m.a.s.l. while the highest elevation is 

1900 m.a.s.l. Water demands are predominantly domestic with some commercial users. To reduce 

the high pressure head induced by the steep slope, six pressure reducing vales (PRVs) are used to 

decrease pressure heads to pre-specified values. The total number of pipes defined in the original 

WDS is 1814 with the total length of approximately 101 kilometres.  

 

The dominant pipe materials (see Table 4) are ductile iron (larger pipe diameters), PVC (small 

diameter pipes) and asbestos cement (most of the middle diameter pipes). The skeletonised 

EPANET hydraulic model has 237 pipes, 195 junctions, 2 tanks and 6 PRVs. The WDS is supplied 

by gravity and pumped from three wells and two service tanks (reservoirs). The position of the water 

supply sources (two wells) is marked in Figure 10 as ‘Inflow’. The third well supplies the two 

reservoirs. The average water demand in the network is 158.9 l/s.  

 

It is assumed that the above WDS model will be calibrated for 7 grouped pipe roughness 

coefficients, i.e. aN =7. Although there are a large number of pipes (237 pipes), the small number of 

calibration parameter groups is assumed to primarily keep the calibrated model prediction error low 

but also to reduce the computational effort (Mallick et al. 2002). The Hazen Williams (HW) pipe 

roughness coefficients were first grouped using engineering tables and proposed relationships based 

on the diameter, material, lining and age of pipes (Walski et al. 1988; Kapelan 2002). Then, the final 

pipe grouping was performed by dividing the range of identified HW pipe roughness coefficients 

(78-155) into the following groups: (78,90], (90,100], (100,110], (110,120], (120,130], (130,140] 

and (140,155]. Once this was done, the average value at each interval was considered as the group’s 

representative roughness coefficient value. Furthermore, it was assumed that the Mahalat model 
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would be calibrated for normal demand loading condition only. The standard deviation of all 

pressure loggers was assumed equal to s=1.0 m.  

 

Since the number of calibration parameters is equal to 7 (Na=7), the constraint on the minimum 

number of measurement devices (Nmin) is set to 7. This ensures that the sampling design solution 

will lead to at least an even-determined calibration problem. Furthermore, each node of the network 

was considered as a potential measurement location (Nml=195). However, the maximum number of 

50 measurements (Nmax=50) was introduced as the SD budget limit. 

 

MOGA model settings were determined after a limited number of trial runs with different initial 

populations. The following settings have been used for GA parameters in all model runs: population 

size of 200, binary tournament selection, random-by-gene mutation with probability rate of 0.05 and 

single point crossover with probability rate of 0.80. All MOGA runs were performed for 8,000 

generations. The additional MOGA-ANN model parameters were set equal to the values obtained in 

the first case study. When compared to this case study, the maximum training data capacity needs to 

be defined in this case because of the large number of full fitness evaluations. Therefore, the caching 

capacity of 5000 was assumed for the Mahalat case study. Furthermore, the following assumptions 

are made about uncertain parameters: (1) The calibration parameters are assumed to be only pipe 

roughness coefficients, all following a uniform PDF with lower and upper bounds equal to ± 30% of 

the deterministic value; (2) uncertain nodal demands following a Gaussian PDF with coefficient of 

variation (CV) equal to 0.3 were modelled too (but not calibrated for).  

 

The near optimal measurement locations are obtained by running both the MOGA and the MOGA-

ANN models. As the lists of these sampling locations are long (between 7 and 50), only the Pareto 
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optimal fronts obtained are shown here. The same methodology used in case #1 is used here to 

compare the two Pareto optimal fronts.  

 

Figure 11 shows the Pareto optimal fronts obtained by the MOGA and the MOGA-ANN models. 

The following can be observed: (1) both fronts match reasonably well although there is a minor 

advantage of MOGA over MOGA-ANN for the large number of monitoring locations. As a 

consequence, solutions obtained by the MOGA-ANN model represent a good surrogate of the 

solutions obtained by using the MOGA model; (2) An average normalized accuracy of 

approximately 60% is attainable by monitoring 25% optimal measurement locations (i.e. by using 

50 pressure loggers); (3) The rate of increase in WDS model prediction accuracy declines quickly 

with the increase in number of monitoring locations; for example, adding one more measurement 

location when 4% locations are already monitored improves the normalized calibrated WDS model 

prediction accuracy by 3%, while adding one more sampling location when 10% of the system is 

monitored leads to an improvement (in normalised WDS model prediction accuracy) of less than 

1%.  

 

The ten MOGA-ANN and MOGA optimal monitoring locations are shown in Figure 10. Only four 

monitoring locations are identical although other monitoring nodes are relatively close to each other. 

The statistics of relative pressure prediction accuracy (equation 4) and pressure prediction 

uncertainty (equation 3) obtained by using the model simulation in the uncertain environment are 

given in Table 5. The 95% confidence interval for pressure prediction is between 0.18 and 0.27 in 

both models. The statistics show similar relevant objective values although the optimal monitoring 

nodes are not quite the same. This is probably due to the fact that as in many other large-size 

optimization problems, there are many combinations of near optimal solutions (i.e. monitoring 
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locations) that can produce similar fitness statistics. Figure 10 also shows that the distribution of ten 

optimal measurement devices is relatively uniform within the network. The selected measurement 

locations are usually located away from the main sources and transmission pipes. This confirms that 

the optimal measurement locations satisfy suggestions put forward by Walski (1983) and verified by 

Kapelan et al. (2003). 

 

Table 6 shows the comparison of computational times for the two stochastic SD models. It can be 

seen in the case of a real world problem, that the main advantage of the MOGA-ANN model when 

compared to the MOGA model, is that Pareto optimal solutions are obtained with large 

computational savings (96% approximately) without significant decrease in accuracy. 

 

Finally, Figure 12 shows the proportion of different types of fitness evaluations performed by the 

MOGA-ANN model in the case of the Mahalat WDS. This Figure shows that less than 1% of all 

fitness evaluations are performed by using the full model, 65% are performed by using the ANN and 

the rest is obtained by using the caching technique.  

 

SUMMARY AND CONCLUSIONS 

 

This paper addresses the problem of stochastic WDS sampling design for calibration. The objective 

is to identify best measurement locations in the WDS that should be used to collect the relevant data 

for subsequent model calibration. The sampling design is formulated and solved as a two-objective 

optimisation problem under calibration parameter uncertainty. The two objectives are the 

maximisation of the calibrated model accuracy and the minimisation of the number of sampling 
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devices used (used as a surrogate for sampling design cost). Uncertain calibration parameters are 

characterised by means of pre-specified PDFs.  

 

The sampling design problem is solved by the new MOGA-ANN algorithm. This is a modified 

NSGA-II algorithm, which makes use of artificial neural networks and the caching technique to 

reduce the computational burden. The periodically retrained ANNs are used as surrogate models 

during the optimisation process to speed up the fitness evaluations. The caching technique is used to 

retrieve previously evaluated solutions efficiently and prevent re-evaluation.  

 

The MOGA-ANN algorithm is tested and verified on two case studies, the benchmark problem of a 

hypothetical network (Anytown), and the real case study of the Mahalat WDS. The results obtained 

clearly demonstrate that substantial computational savings can be achieved by using the MOGA-

ANN model without significant loss of accuracy. This is a promising result when it comes to solving 

stochastic sampling design or generally time-consuming multiobjective optimization problems for 

large-scale WDSs. Having said this, further research work is required to test and verify the 

capability of the proposed approach before achieving that goal. In addition, improvements achieved 

by stochastic sampling design should be further investigated in real case studies. 
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LIST OF SYMBOLS USED 

 

a = vector of calibration parameters; 

Cova = parameter variance-covariance matrix; 

Covz = model prediction variance-covariance matrix; 

F1 = normalized first objective function; 

F2 = normalized second objective function; 

f1  = average of model predictions’ standard deviation; 

f1,ml = Value of f1  assuming that all analyzed locations are monitored; 

ITG = Initial training generations; 

J = Jacobian matrix; 

Jml =full Jacobian matrix (all locations monitored); 

Jz = prediction Jacobian matrix; 

NF = number of best Pareto (sub)fronts in offspring population; 

Na = number of calibration parameters; 

Nk = number of sets of samples from uncertain parameters; 

Nl = actual number of measurement devices; 

max

lN  = maximum allowed number of measurement devices; 

min

lN  = minimum number of measurement devices; 

Nml = number of SD potential measurement locations; 

No = number of measurements in both spatial and temporal domain; 

Nz = number of model predictions for whom uncertainty are evaluated; 

Superscript T = vector/matrix transpose operator; 

s = standard deviation of measurement devices; 
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y = vector of WDS model predicted variables; 

z = vector of model predictions of interest; 
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Figure 1. MOGA-ANN Flowchart 
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Figure 2. ANN Architecture 
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Figure 3. Case #1: Anytown Network Layout and Optimal Pressure Logger Locations 
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Figure 4. Case #1: Average Number of Full Model Fitness Evaluations for Different Values of NF 

and ITG  
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Figure 5. Case #1: Model Reliability for Different Values of NF and ITG  
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Figure 6. Case #1: Model reliability for Different Values of NF and the Number of Retraining Data  
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Figure 7. Case #1: Model Reliability for Different Values of NF and the Number of Hidden Layer 

Neurons  
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Figure 8. Case #1: Comparison of the Pareto Optimal Fronts Obtained by the MOGA-ANN and the 

MCS-based models  
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Figure 10. Case #2: Skeletonized Mahalat WDS Model and Optimal Pressure Logger Locations  

(10 Measurement Points)



 38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25

Normalized number of monitoring nodes (F2)

A
v
e
r
a
g
e
 n
o
r
m
a
n
iz
e
d
 a
c
c
u
r
a
cy
 (
F
1
)

MOGA MOGA-ANN

 

Figure 11. Case #2: Comparison of Pareto Optimal Fronts Obtained by the MOGA and the MOGA-

ANN Models 
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Figure 12. Case #2: Comparison of Different Fitness Type Evaluations in the MOGA-ANN Model  
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Table 1. Case #1: Pareto Optimal Solutions Obatined by Using the MOGA-ANN and Percentage of 

Selected Sampling Locations Obatined by Using the MCS-based model 

Number of 

Monitoring 

Nodes

F2 F1 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

0.1618 Opt. locations 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0.0484 Percentage 0 1 12 10 20 7 6 14 22 0 72 23 3 1 1 3

0.2621 Opt. locations 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0

0.2569 Percentage 0 0 13 6 48 6 5 33 55 13 74 33 3 2 2 10

0.3912 Opt. locations 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1

0.3598 Percentage 0 0 2 1 46 18 4 75 42 40 87 21 1 3 14 49

0.5143 Opt. locations 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

0.5404 Percentage 0 0 1 1 63 18 0 95 38 74 95 3 0 1 27 86

0.6491 Opt. locations 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1

0.6306 Percentage 0 0 5 0 90 28 1 100 43 90 99 0 0 1 50 96

0.7198 Opt. locations 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1

0.7198 Percentage 0 0 14 3 99 45 2 100 49 97 100 1 0 1 93 100

0.7731 Opt. locations 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1

0.7731 Percentage 1 0 37 8 100 59 8 100 55 99 100 27 3 5 100 100

0.8152 Opt. locations 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1

0.8154 Percentage 2 0 51 16 100 71 21 100 68 99 100 53 4 16 100 100

0.8575 Opt. locations 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1

0.8615 Percentage 2 0 63 25 100 83 35 100 84 99 100 76 5 30 100 100

0.8867 Opt. locations 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1

0.8944 Percentage 4 0 75 35 100 94 49 100 93 100 100 93 8 50 100 100

0.9257 Opt. locations 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1

0.9257 Percentage 5 1 87 57 100 98 64 100 97 100 100 100 12 82 100 100

0.9561 Opt. locations 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

0.9561 Percentage 8 2 96 80 100 99 89 100 100 100 100 100 30 99 100 100

0.9771 Opt. locations 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.9771 Percentage 10 8 100 96 100 100 100 100 100 100 100 100 88 100 100 100

0.9924 Opt. locations 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.9924 Percentage 19 82 100 100 100 100 100 100 100 100 100 100 100 100 100 100
15 0.9375

13 0.8125

14 0.875

11 0.6875

12 0.75

9 0.5625

10 0.625

7 0.4375

8 0.5

5

6

0.125

0.1875

0.25

0.3125

0.375

Node ID

2

3

4

 

In the “Opt. locations” rows, “1” means pressure logger should be installed in the node and “0” means no pressure 

logger is required in the node 
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Table 2. Case #1: Statistics of Relative Accuracy for Four Optimal Measurement Locations 

Obtained by Using the MOGA-ANN and the MCS-based Models 

Description MOGA-ANN MCS 

Mean 0.3912 0.3598 

Minimum 0.1146 0.1075 

Maximum 0.5414 0.5985 

Standard deviation 0.0499 0.0645 

95% confidence interval upper bound 0.2804 0.2387 

95% confidence interval lower bound 0.4789 0.4857 

 



 42

 Table 3. Case #1: Comparison of Computational Times  

Model type 

Computational time 

(minutes) 

The number of 

deterministic prediction 

accuracy calculation calls 

MOGA 32 5,000,000 

MOGA-ANN 4 590,000 

MCS-based 32 5,000,000 

*
The number of deterministic prediction accuracy calculation calls defined by (4) for MOGA and MCS-based model is 

equal to NpopNgenNk, where Npop is GA population size (50 here) and Ngen is the number of GA generation before 

convergence (500 here) and Nk is the number of samples (200) 

 

 

 

Table 4..Case #2: Summary of Pipe Materials and Diameters  

No. 

Original 

Material 

Number of 

Pipes 

Diameter 

(mm) 

1 

Asbestos 

Cement 

406 80-250 

2 Ductile Iron 470 100-500 

3 

Galvanized 

Iron 

113 25-125 

4 PVC 657 25-110 

5 Steel 166 20-65 
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Table 5. Case #2: Statistics of Relative Accuracy and Uncertainty for Ten Optimal Measurement 

Locations Obtained by Using MOGA-ANN and MOGA-ANN  

 Relative Pressure Prediction Accuracy  Pressure Prediction Uncertainty (m) 

Model type Mean 

95% confidence 

interval lower 

bound 

95% confidence 

interval upper 

bound  

Mean 

95% confidence 

interval lower 

bound 

95% confidence 

interval upper 

bound 

MOGA 0.2451 0.1836 0.2761 0.6774 0.5838 0.9012 

MOGA-ANN 0.2445 0.1849 0.2747 0.6780 0.5909 0.8919 

 

 

 

 

Table 6. Case #2: Comparison of the Computational Times Required to Obtain Pareto Optimal 

Solutions 

Model type Computational time (minutes) 

The number of deterministic 

prediction accuracy calculation 

calls* 

MOGA 1,550 320,000,000 

MOGA-ANN  65 2,098,400 

*
The number of deterministic prediction accuracy calculation calls defined by (4) for MOGA is equal to NpopNgenNk, 

where Npop is GA population size (200 here) and Ngen is the number of GA generation before convergence (8000 here) 

and Nk is the number of samples (200) 

 


