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Abstract 

 

Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are 

essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars 

are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which 

catalyzes the conversion of sedoheptulose-7-phosphate into D-glycero-D-manno-heptopyranose-7-

phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia 

pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes 

the active, closed form of the enzyme, and presents co-ordinating side chains as a potential acid and base 

to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal, 

and so suggests that the closed conformation is catalytically relevant, and is an excellent target for the 

development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of 

this structure and the activity of B. pseudomallei GmhA mutants. 
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Abbreviations used: 

2O6dDHep, 2-O-acetyl-6-deoxy--D-manno-heptopyranose; 6dDHep, 6-deoxy-D-manno-heptopyranose; 

CPS, capsular polysaccharide; CPS-I, type I capsular polysaccharide; DHep, L-glycero--D-manno-

heptopyranose; EXAFS, extended X-ray absorption fine structure; LPS, lipopolysaccharide; M7P, D-

glycero-D-manno-heptopyranose-7-phosphate; S7P, sedoheptulose-7-phosphate. 

 

Introduction

The bacterium Burkholderia pseudomallei is a major form of community acquired infection in Thailand 

and Northern Australia:
1-3

 in acute cases, mortality ranges from 20-50 %, depending on the treatment 

regimen.
4
 B. pseudomallei is also endemic over much of the tropics,

1,5,6
 and likely causes undiagnosed 

disease over much of South-East Asia. This bacterium shows innate resistance to most antibiotics,
7
 has no 

available vaccine, and is extremely persistent, with infections developing up to 63 years after exposure.
8
 

Both B. pseudomallei, and the related bacterium B. mallei, are considered to be potential biowarfare 

agents,
9
 and consequently novel treatments are being urgently sought. 

One key potential source of vaccines is the cell surface polysaccharides. Bacteria maintain a range of 

polysaccharides as a protective barrier against a variety of external insults, including hydrophobic 

molecules, divalent cations, and antibiotic macromolecules.
10

 Furthermore, in animal infections, 

polysaccharides interact with both innate and adaptive arms of the immune system.
11,12

 The principal 

surface polysaccharides of Gram-negative bacteria are lipopolysaccharides (LPS), whose core is usually 

essential for outer membrane integrity and viability,
10,12

 and capsular polysaccharides (CPS; Figure 1a). 

Many organisms maintain multiple CPS clusters, with each CPS providing access to a range of 

environmental niches, hosts, or infection stages.
13

 

In B. pseudomallei, both the best expressed of the organism’s four capsules 
14

 (CPS type I, CPS-I; Figure 

1b) and LPS have been proposed as potential vaccine candidates. CPS-I is one of the best validated 

virulence factors of the bacterium: immunization with capsule provides protection against future 
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infection;
15,16

 acapsular mutants are strongly attenuated;
14,17,18

 and the biosynthetic genes are absent in 

related, less pathogenic species.
14

 In addition to providing a general defence against immune challenge, B. 

pseudomallei CPS-I actively inhibits complement C3b, providing a defense against innate immunity.
19

 

CPS-I is thus an attractive target for vaccine and small molecule inhibitor development.  

The CPS-I structure is extremely simple, comprising a linear polymer of 2-O-acetyl-6-deoxy--D-manno-

heptopyranose (2O6dDHep; Figure 1b, c).
14,20

  Heptoses are rarely found in higher eukaryotes, but are 

common in bacterial polysaccharides. In E. coli LPS, L-glycero--D-manno-heptopyranose (DHep), forms 

part of the “inner core”, which is essential for virulence. In other pathogens, heptoses are used in a variety 

of polysaccharides: 6-deoxy-D-manno-heptopyranose (6dDHep) forms part of the LPS O-antigen in both 

Yersinia pseudotuberculosis 
21

 and Campylobacter jejuni.
22

 Heptose biosynthesis follows one of two 

divergent pathways in different bacteria, providing different nucleotide-linked sugars according to the 

needs of the bacterium.
10,23

 However, the initial stages of biosynthesis of DHep from the pentose 

phosphate pathway intermediate sedoheptulose-7-phosphate (S7P) are common to both pathways. The 

wide distribution of these enzymes, their essential nature for virulence, and the lack of equivalents in 

higher eukaryotes make such enzymes excellent targets for the development of novel, broad spectrum 

antibiotics.
24

 

A route to the biosynthesis of 2O6dDHep in B. pseudomallei has been proposed (Figure 1d; Cuccui et al., 

manuscript in preparation). A key enzyme in this biosynthetic pathway is GmhA: this is the first enzyme 

in the pathway, and converts sedoheptulose-7-phosphate into D-glycero-D-manno-heptopyranose-7-

phosphate (M7P). The structures of GmhA from Escherichia coli, Pseudomonas aeruginosa, C. jejuni and 

Vibrio cholerae have recently been determined (Table 1).
25,26

 These structures suggested that GmhA 

adopts two significant conformations, representing substrate and product binding conformers; and a 

plausible mechanism was proposed, consistent with all the crystallographic and mutational data and 

known mechanisms of homologous enzymes. However, whilst the proposed mechanism is a first step 

towards developing new interventions based on GmhA, some key details were not revealed. It is not clear 
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which conformation is relevant to catalysis, or whether catalysis occurs during a transition between 

conformations; and no role is apparent for several residues that are in environments often associated with 

a catalytic role (Figure 2).
27

 

The B. pseudomallei GmhA ortholog retains all of the key conserved amino acids seen in GmhA from 

these species, whilst having a slightly lower sequence identity than other extant structures (39 % identity 

to E. coli ortholog; others show > 40 % identity). It therefore represents an attractive target for 

ascertaining the role of these amino acids whose role is unaccounted for, and the two conformations, in 

GmhA activity. Furthermore, it should highlight whether GmhA might similarly represent a good target 

for antibiotic development against B. pseudomallei. I therefore determined the structure of GmhA from 

this organism. Surprisingly, the solved structure contains a metal ion in the core of the active site: careful 

investigation demonstrated that this metal ion is zinc, and suggests that it contributes towards the full 

activity of the enzyme. The side chains required for binding of this ion are completely conserved across a 

wide range of bacterial species, suggesting that zinc binding may be common to some other bacterial 

GmhA enzymes. The solved structure indicates that the “closed” conformation of GmhA is likely to be 

the catalytically relevant one, and that the previously proposed mechanism for GmhA is unlikely to be 

correct. The structure suggests an alternative mechanism for GmhA, consistent with all previously 

published data. This work reveals a novel metal binding site, unprecedented in the SIS enzyme class, and 

highlights a conformation that should represent an excellent target for the development of effective broad 

spectrum inhibitors of GmhA. 

 

 

RESULTS 

 

Structural analysis of His-tagged B. pseudomallei GmhA reveals a novel cation binding site 

Crystals of 6-His tagged GmhA grew in space group P1 (Crystal 1; Table 2), and the structure was solved 

by molecular replacement to GmhA from C. jejuni (PDB ID: 1TK9).
25

 Eight GmhA protomers were 
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observed in the asymmetric unit: these appeared to form into two tetramers. This is consistent with the 

previously observed structures of GmhA from E. coli, P. aeruginosa, V. cholerae, and C. jejuni;
25,26

 and 

with the behavior of the protein in size exclusion chromatography, where it eluted with a Stoke's radius 

consistent with a tetramer (data not shown). The final model was refined to R and Rfree values of 18.9 and 

24.5 % respectively (Table 2). 

Previously solved structures of GmhA from other organisms have suggested that GmhA crystallizes in 

one of two conformers, corresponding to substrate and product bound forms (Table 1). Comparison of 

GmhA from B. pseudomallei with these structures showed that this enzyme strongly resembles the 

“closed” structure, observed in two of the extant GmhA structures, including the one known product 

bound structure (Figure 3a). Moreover, the active site of the B. pseudomallei structure shows a clear 

evidence for an ion. There is an atom present that has electron density consistent with a first row 

transition metal, which is tetrahedrally co-ordinated (Figure 3b, c). The atom was therefore modelled as 

zinc, which proved to be an excellent fit to the electron density.  

 

Crystallization of untagged GmhA and determination of metal binding 

Since this crystal suggested that GmhA is a metalloenzyme, but did not unambiguously identify the native 

metal, protein with the His-tag removed was crystallized. The initial crystal form had some crystal 

contacts involving the TEV cleavage site, so removing this was expected to alter the crystal form. 

Untagged GmhA crystallized readily in a range of conditions: all of these crystals were in the space group 

P212121, with similar cell dimensions. To determine the identity of the metal in the active site, an extended 

X-ray absorption fine structure (EXAFS) scan was performed on crystal 2, following collection of a high 

resolution dataset to 1.62 Å. The emission peaks from this scan were unambiguously characteristic for 

zinc. Following this, a standard fluorescence scan at the zinc anomalous peak wavelength was performed 

on crystal 3. This showed a clear anomalous peak (Figure 4a). Data were collected for anomalous phasing 

for crystal 3, and these data were sufficient to locate the zinc atoms (Figure 4b), determine initial phases, 

and build an initial model for GmhA. This initial model was then refined against the data from crystal 2. 
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This model was refined to R and Rfree values of 14.6 and 17.9 % respectively (Table 2). 

 

Identification of ligands in the crystal structure 

The overall architecture of the structure in this crystal form is strikingly similar to that of the tagged 

protein (not shown). The structures of crystal 1 and crystal 2 show a main chain RMSD of 0.47 Å. Crystal 

2 clearly showed a molecule of the product in each active site (Figure 5a). The location of the product 

molecule strong resembles that observed for the product bound form of P. aeruginosa GmhA, with very 

similar interactions with side chains (Figure 6).  

 

GmhA mutants confirm that predicted active site residues are required for full activity 

As these structural data all suggested that the GmhA from B. pseudomallei is a metalloenzyme, a range of 

mutants were designed to test whether the enzyme has similar activity to the E. coli enzyme,
26

 and to 

provide evidence in support of zinc binding. Consequently, the mutations H64Q, E68Q, and Q175E 

mutants were made in residues ligating the zinc (Figure 5b); D98N and T124A mutants in ligand binding 

residues; and D61A, in a residue drawing protons away from H64 (Figure 5c). With the exception of the 

D61A, which was not tested, these mutations all had displayed reduced or no activity in E. coli. The 

kinetic parameters for the wild-type enzyme and these mutants (Table 3) demonstrate that GmhA from B. 

pseudomallei shows a similar activity to the E. coli enzyme. The E68Q, D98N, T124A and Q175E 

mutants are all inactive, whilst H64Q and D61A mutants retain some activity. This mirrors the behavior of 

E. coli GmhA, where equivalent mutations showed similar reductions in activity (Table 3). Addition of 

chelating agents (e.g. EDTA) did not significantly affect the rate of the reaction (not shown). 

 

DISCUSSION 

 

B. pseudomallei GmhA is a metalloenzyme 

The two structures of GmhA from B. pseudomallei presented here clearly demonstrate that the enzyme is 
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a metalloenzyme, as both structures show a metal at the heart of the active site (Figures 3 and 5). The 

most convincing proof for this is that the structure could be solved from the anomalous signal of the four 

zinc atoms located alone (Figure 4b). It is likely that the observed zinc is natively bound to the active site, 

and has been retained from the cell: no zinc was added to any of the purification or crystallization buffers 

used. Zinc is a common enzyme cofactor, with over 10 % of the well characterized enzyme mechanisms 

in the MACiE database 
28

 including a zinc ion. 

Comparison of the B. pseudomallei structure with those from other species demonstrates that this enzyme 

strongly favours the “closed” conformation.
26

 This conformation is observed in all three tetramers in the 

two crystal forms: the conformation is likely to be driven by the metal binding, as a similar constellation 

of the metal binding side chains is observed in the two structures that also adopt this conformation (Figure 

7). As the presence of the metal is clearly important for activity in the B. pseudomallei enzyme, it is 

unlikely to be able to access the “open” conformation at all, as this would imply loss of the bound metal. 

The metal appears to be tightly bound, as zinc binding persisted despite prolonged exposure to imidazole 

in purification, and several chelating agents failed to reduce the rate of the reaction. 

 

Implications for other orthologs 

The structure of GmhA from B. pseudomallei strongly suggests that the “closed” conformation, observed 

also in structures of P. aeruginosa and V. cholerae GmhA,
25,26

 is most likely to be the catalytically 

relevant conformation. The structure of the untagged protein presented here shows the product of GmhA, 

D-glycero--D-manno-heptopyranose-7-phosphate: this indicates that the enzyme is capable of turning 

over the substrate whilst in the “closed” conformation. Furthermore, crystal 2 was harvested five minutes 

after soaking with sedoheptulose-7-phosphate, consistent with a rapid turnover in the crystal. These 

observations suggest that the “closed” conformation is sufficient for substrate binding, and for all of the 

catalytic steps required to form the product in this enzyme. The “closed” conformation maintains a largely 

solvent exposed active site, so rapid ingress and egress of substrate and product should be possible. Given 

the high level of sequence identity between GmhA orthologs (Figure 2), this is likely to be the case for 
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GmhA from all species. The open conformation appears to be suitable for substrate binding,
26

 and may be 

used by some orthologs as a means of facilitating more rapid product release. The relative propensity of 

different orthologs to access this state may reflect differences in evolved turnover rate; B. pseudomallei 

represents an extreme, but perhaps not unique, case where the enzyme is locked into the “closed” 

conformation. Indeed, all of the previously determined structures used protein that had been purified in 

the presence of reducing agents, chelating agents, or both, and so it is possible that zinc may have been 

leached from some of these proteins prior to crystallization. These observations will be extremely 

important for efforts to rationally design inhibitors against GmhA: the “closed”, catalytic, conformation, 

of the enzyme offers an excellent target for obtaining a strong inhibitor that will mimic the substrate, 

product or transition state. 

 

Implications for the mechanism of GmhA 

Taylor et al. 
26

 proposed a mechanism for the action of GmhA involving an enediol-switch, with E68 and 

H183 (their E. coli equivalents) acting as an acid and base respectively to promote isomerization of 

GmhA (Figure 8a). Based on the structures presented here, this mechanism appears unlikely for B. 

pseudomallei GmhA, as H183 is buried by the zinc ion in the active site. In contrast, E68 and Q175 bind 

to the zinc in a manner that strikingly presents these side chains as a potential acid and base (Figure 5d). 

Mutation of either of these residues to the conjugate amide or acid is sufficient to reduce the enzyme rate 

at least 80 fold: as these mutations would not be expected to prevent zinc binding, this implies that the 

zinc ion serves principally to orientate these side chains. I therefore propose an amended mechanism, with 

E68 and Q175 acting as the base and acid respectively to promote this reaction (Figure 8b). Such a 

mechanism is consistent with the presence of zinc in the active site of some GmhA orthologs, as zinc ions 

in other enzymes commonly act to increase the acidity or nucleophilicity of co-ordinating side chains; and 

the co-ordination of the acid and base in a enediol switch mechanism by zinc has been previously 

described.
29

  

The presence of a zinc ion in the active site, and the proposed mechanism, are also consistent with mutant 
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data produced by Taylor et al. 
26

 and in this work: the most crucial side chains for enzyme activity appear 

to be E68, H183 and Q175. Mutation of H183 would be expected to have significant consequences for 

zinc binding in this structure (as it is the most buried zinc ligand), and in both the non-metal bound 

structures, where a hydrogen bond between H183 and H64 stabilizes the “closed” conformation (Figure 

7). Furthermore, the D61A mutant, which should reduce the affinity of H64 for the zinc, shows a 

considerably reduced activity, whilst H64Q, which should still be capable of providing a ligand to zinc, 

shows only a moderate loss in activity (Table 3). These observations explain the roles of the conserved 

residues of D61, H64, E68, Q175, E176, H178 and H183 across bacterial species (Figure 2): four of these 

residues are required to co-ordinate the zinc ion (H64, E68, Q175 and H183), whilst D61 and H178 

position and remove electrons from H64 (Figure 5c), and E176 performs a similar role with H183. 

Taylor et al. 
26

 proposed that cyclization of the heptose following isomerization would occur outside the 

enzyme. However, in crystal 2, which was soaked for 5 minutes with S7P, the cyclized product is 

unambiguously observed in all four active sites. This rapid turnover to the cyclized sugar, and the 

apparent preference for binding this form in the active site argue that GmhA also catalyzes cyclization. 

Based on the structures presented here, and on the structure of the complex of P. aeruginosa GmhA with 

M7P, I propose that D98 acts as a proton shuffle, providing both acid and base functions, to promote the 

cyclization of the sugar (Figure 8c). The crystal structures show that O1 of M7P is located suggestively 

close to the main chain amide of R72 (Figure 9): it is likely that, in the linear form, O1 will form a 

hydrogen bond with this amide. This interaction drives the conformation of the sugar such that the -

anomer of M7P will be preferred in the product. This is in agreement with the proposed pathway for the 

biosynthesis of the B. pseudomallei capsule, and suggests that anomer selection is made by GmhA in its 

catalytic steps, rather than by selection from a racemate by a later enzyme. 

 

Conclusions and future prospects 

The data presented in this paper suggest a novel metal binding site in GmhA, a key enzyme for the 

production of heptoses in bacteria. The discovery of this metal binding site has significant implications 
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for the mechanism of the enzyme: the revised mechanism explains the striking conservation of many side 

chains, including those quite distant from the catalytic centre, throughout the bacterial kingdom; and the 

structure clearly shows two side chains poised to act as a catalytic acid and base for the reaction. This 

work suggests that efforts to design inhibitors of GmhA as broad-spectrum antibiotics might be focused 

on the “closed” conformation, and should take account of the possibility of zinc binding across a range of 

species. The development of such specific inhibitors will provide important details as to the precise 

mechanism of the enzyme. 

 

 

MATERIALS AND METHODS 

 

Preparation of GmhA, WcbL and WcbN 

Full length sedoheptulose-7-phosphate isomerase (GmhA; Figure 1), D,D-heptose-7-phosphate 1-kinase 

(WcbL) and D,D-heptose-1,7-bisphosphate 7-phosphatase (WcbN) from B. pseudomallei strain K96423 

(genomic DNA a gift of R. Titball, University of Exeter) were cloned into pNIC28-Bsa4 (gift of O. 

Gileadi, SGC Oxford). Constructs were transformed into Rosetta (DE3) cells (Merck), and grown in 

ZYM-5052 media 
30

 supplemented with 100 g/mL kanamycin and 20 g/mL chloramphenicol. Cells 

were grown at 37°C until OD600 was 0.5, and then at 20°C for 16 hours. Harvested cells were resuspended 

in 20 mM Tris-HCl pH 8.0, 0.5 M NaCl (Buffer A), and lysed using a Soniprep 150 sonicator (MSE). 

Clarified lysate was purified using a nickel-agarose column (Bioline). Briefly, the loaded protein was 

washed with Buffer A supplemented with 20 mM imidazole-HCl pH 8.0, and eluted with Buffer A 

supplemented with 250 mM imidazole-HCl pH 8.0 (WcbL was eluted with Buffer A supplemented with 

250 mM imidazole-citrate pH 8.0). GmhA and WcbL were then loaded onto a Superdex 200 16/60 hr 

column (GE Healthcare), and eluted isocratically with 10 mM Hepes pH 7.0, 0.5 M NaCl. GmhA for 

enzyme assays was concentrated to 2.25 mg/mL using a Vivaspin centrifugal concentrator (Vivascience), 

and stored at -20°C with 20 % (v/v) glycerol added: WcbL and WcbN were diluted to 0.9 and 3.4 mg/mL 
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respectively, with 20 % (v/v) glycerol added, and stored at -20°C. For preparation of tag-free GmhA, 

approximately 50 mg of nickel affinity purified protein was incubated at 4°C for 36 hours with 700 g of 

TEV protease (S219V mutant, purified using methods available at 

www.mcl1.ncifcrf.gov/waugh_tech/protocols/pur_histev.pdf). The sample was then purified by size-

exclusion chromatography as described above, and extensively loaded over nickel-agarose to remove 

residual undigested GmhA and TEV. 

 

GmhA Mutagenesis 

Site directed mutants of GmhA were generated using the QuikChange II XL mutagenesis kit (Agilent). 

Mutations were verified by DNA sequence analysis (MWG, London). 

 

Structure Determination of GmhA 

All crystals were grown using the microbatch method, and were prepared using an Oryx6 crystallization 

robot (Douglas Instruments). Tagged B. pseudomallei GmhA at 10 mg/mL was mixed with an equal 

volume of crystallization solutions (see Table 4 for details of crystallization and soaking conditions), and 

grown at 20°C. Prior to flash-freezing in liquid nitrogen, crystals were soaked for 30-60 seconds in a 

cryoprotectant solution. Tag-removed GmhA at 10 mg/mL was mixed with an equal volume of 

crystallization solutions, and crystals were grown at 4ºC. Prior to flash freezing, crystals were soaked in 

cryoprotectant solutions containing proposed substrates (Table 4) for 5 (crystal 2) or 70 (crystal 3) 

minutes. All substrate was converted to product in both crystals. All X-ray diffraction data sets were 

collected at 100 K at beamline I03 of the Diamond synchrotron. Single wavelength datasets were 

collected for all crystals as detailed in Table 2. To determine the identity of the binding metal, an EXAFS 

scan was performed using station I03. An energy of 20 keV was used for the EXAFS scan. Data for 

crystal 1 were processed using MOSFLM version 7.0.2 
31

 and SCALA;
32

 data for crystals 2 and 3 were 

processed using iMOSFLM version 1.0.3 and SCALA. Initial phases for crystal 1 were determined by 

http://www.mcl1.ncifcrf.gov/waugh_tech/protocols/pur_histev.pdf
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molecular replacement using the structure of one monomer from C. jejuni GmhA (PDB ID: 1TK9) as a 

model. Molecular replacement was performed using PHASER.
33

 Eight protomers were observed in the 

asymmetric unit. Single wavelength anomalous data were collected for crystal 3: using SHELX C/D/E 
34

 

and the HKL2MAP pipeline,
35

 precisely four zinc atom sites were located. Phasing statistics were 

calculated using SHARP.
36

 An initial structure was determined using ARP/wARP version 7.0.
37

 Model 

building and refinement of the structures was performed using Coot version 0.5.2 
38

 and PHENIX version 

1.5-2.
39

 TLS groups were generated using TLSMD.
40

 Structures were validated using PHENIX, Coot and 

MOLPROBITY.
41

 Structural images were prepared using the PyMOL molecular graphics system 

(DeLano Scientific). 

 

Sedoheptulose 7-Phosphate (S7P) Synthesis 

S7P for enzyme assays was purchased from Carbosynth. For crystallization, S7P was synthesized using an 

irreversible activity of transketolase. E. coli transketolase was the gift of J. Littlechild, Exeter. Purified 

transketolase was incubated at 0.15 mg/mL in 50 mM Hepes pH 7.5, 1 mM EDTA pH 8.0, 6 mM 2-

mercaptoethanol, 2 mM thiamine pyrophosphate, 7.5 mM CaCl2 for 20 min at room temperature. One 

volume each of 40 mM ribose-5-phosphate and 80 mM -hydroxypyruvate were added to four volumes 

of this mixture, and incubated at 37°C overnight. The mixture was then incubated at 70°C for 10 min to 

eliminate the enzyme activity. Greater than 95 % conversion of ribose-5-phosphate to sedoheptulose 7-

phosphate was confirmed by HPLC. 

 

GmhA Enzyme Activity Assay 

GmhA activity was monitored by coupling product formation to WcbL and WcbN and monitoring Pi 

release, in an analogous manner to the methods of DeLeon et al.
42

 Briefly, a reaction mixture was formed 

consisting of 20 mM HEPES, pH 8.0, 10 mM MgCl2, 10 mM KCl, 200 M ATP, 9 g/mL WcbL, 34 

g/mL WcbN, and 36-90 g/mL GmhA (final concentrations) in a total volume of 50 L. Reactions were 



13 

 

initiated with 50 L of S7P for final concentrations ranging from 0 to 1.5 mM. Samples were incubated at 

37°C for 10 min, and the reaction was terminated by heating to 70°C for 5 minutes. The phosphate 

concentration was determined by the addition of 25 L of 5.6 % (w/v) ammonium molybdate, 0.006 % 

(w/v) malachite green in 6 M HCl to 90 L of reaction product. The absorbance at 660 nm was then 

determined using a Spectra MR plate reader (Dynex). The rate of GmhA was determined by comparison 

to a phosphate standard curve ranging from 0-200 M phosphate, and to negative controls containing no 

GmhA. All reactions were performed in triplicate, and a total of eight substrate concentrations were tested 

for each sample. The kinetic parameters of each GmhA preparation were determined by fitting the data to 

the Michaelis-Menten equation, using SPSS version 16 (SPSS Inc.). Activity figures are given per GmhA 

holoenzyme. A detection limit of 0.006 s
-1

 was determined for this assay. 

 

Accession numbers 

The co-ordinates and structure factors for the structures described in this paper have been submitted to the 

Protein Data Bank with accession numbers 2X3Y and 2XBL for crystals 1 and 2 respectively. 

Experimental data for crystal 3 have been submitted with the structure for crystal 2. 
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Figure 1: Polysaccharides in Burkholderia pseudomallei. (a) Schematic of bacterial polysaccharides. 

These be broadly categorised as the stress bearing, periplasmic, peptidoglycan; the lipopolysaccharides 

(LPS), which constitute the outer leaflet of the outer membrane; and the capsular polysaccharides (CPS), 

which form a protective barrier around the cell (after 
13

). (b) Structure of the repeating unit of B. 

pseudomallei CPS-I,  -3)-2-O-acetyl-6-deoxy-D-glycero--D-manno-heptopyranose-(1-; the capsule 

consists of long linear polymers of this linked to an unknown lipid. (c) Structure of D-glycero-D-manno-

heptopyranose (DHep), a sugar used by many bacteria in LPS or CPS. (d) Proposed pathway for the 

biosynthesis of the B. pseudomallei CPS-I precursor, GDP-2-O-acetyl-6-deoxy--D-manno-

heptopyranose (Cuccui et al., in preparation). The sites acted on by the next enzyme in the pathway are 

indicated at each step by an arrowhead. 

 

Figure 2: Sequence comparison of known GmhA sequences and structures. Sequences chosen to include 

all crystallized proteins, and to represent a wide range of bacterial taxa, were aligned using CLUSTALX 

version 2.0.
43

 Image prepared using JOY,
44

 with sequences of known structures annotated to indicate their 

environment (see key, bottom): residues shown with more prominent annotation are more likely to be in 

interesting environments, and conserved side chains of a type often associated with catalysis in such 

environments are indicated as explained below. Absolutely conserved residues are indicated with an 

asterisk below the residue. Side chains previously implicated in catalysis are indicated with a black arrow. 

Other zinc binding side chains proposed by this work are indicated with a gray arrow. Highly conserved 

side chains with unusual environments, located near to the active site, with no proposed role in catalysis, 

are indicated with a black arrowhead. Other residues selected for mutation are indicated with a gray 

arrowhead. Highly conserved residues with suggestive environments, but a clear role in providing 

structural stability are indicated with dashed black arrows. Sequences taken from the following species: 

Burkholderia pseudomallei K96243 (2XBL), Vibrio cholerae (1X94), Pseudomonas aeruginosa (1X92), 

Campylobacter jejuni (1TK9) Escherichia coli (2I22), Alphaproteobacterium HTCC2255, Aquifex 

aeolicans VF5, Methanococcus aeolicus Nankai-3, Bacteriodes sp. 1_1_6, and Desulfovibrio 

desulfuricans subsp. desulfuricans strain G20. 

 

Figure 3: Structure of 6*His-tagged GmhA from B. pseudomallei. (a) B. pseudomallei GmhA adopts a 

“closed” conformation: GmhA from B. pseudomallei (crystal 1, left, orange) is compared with the “open” 

conformation structure of E. coli GmhA (PDB ID: 2I22, middle, cyan) and the “closed” conformation of 

P. aeruginosa GmhA (PDB ID: 1X92, right, magenta 
26

). All proteins are shown in cartoon form. Note the 

disordered helices (arrowhead) and change in the angle of helices connecting the two dimers (arrow) at 

the centre of the “open” conformation, leading to a translocation of the lower dimer by 6 Å. (b) Crystal 1 

contains a zinc ion. Zinc is shown as a magenta sphere. The three protein chains that form the active site 

are colored orange, pink and cyan respectively. Zinc co-ordinating residues are shown as sticks, with the 

nearest water as a red sphere. In green is a simulated annealing omit map (Fo-Fc) with zinc and co-

ordinating side chains removed, contoured at 3. Difference density at the zinc position is still visible to 

9.5 (c) This structure shows each ion clearly tetrahedrally co-ordinated with ligands approximately 

equally spaced (pink dashed lines), with the closest waters too distant to form an addition ligand (blue 

dashed line). Distances are shown in Å. Structural images here and in other figures were prepared using 

the PyMOL molecular graphics system (DeLano Scientific). 

 

Figure 4: GmhA from B. pseudomallei contains a zinc ion in the active site. (a) Fluorescence scan of 

crystal 3 at the zinc peak shows a clear absorption edge. (b) SAD data for crystal 3 allows zinc ions to be 

located. Shown is an anomalous difference map, contoured at 10, for the final refined structure of crystal 

2 refined once in PHENIX against the data from crystal 3. The upper and lower panels show two 

representative zinc ions are clearly located. 

 

Figure 5: Ligand binding to B. pseudomallei GmhA. (a) Crystal 2 shows a molecule of M7P in each 
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active site. Protein is shown in cartoon form, with side chains within 3.5 Å of M7P shown as lines. The 

three protein chains that constitute the active site are colored yellow, pink and cyan. Zinc ion is shown as 

a purple sphere, and M7P as white sticks. In green is a simulated annealing omit map (Fo-Fc) with M7P 

removed, contoured at 3. All ligand atoms are clearly resolved in the density. (b, c) Rationale for 

selection of mutants. (b) The active site of crystal 2 is shown, with side chains selected for mutation 

shown as sticks. Coloring is as above. (c) Residue D61 helps co-ordinate a water filled cavity (waters 

shown as red spheres) between two active sites, and acts through water to draw a proton from H64. (d) 

E68 and Q175 are poised to act as proton donors and acceptors to drive catalysis. Active site of crystal 2 

is shown, with zinc binding residues and M7P shown as sticks, colored as above. This conformation 

presents one oxygen of E68 and the nitrogen of Q175 (arrowheads) in ideal locations for performing an 

acid-base catalysis of the isomerization of S7P.  

 

Figure 6: Active site interactions with M7P. The interactions of the active sites of B. pseudomallei (a) and 

P. aeruginosa (b) GmhA in complex with M7P were compared using MOE (Chemical Computing 

Group). E68, D98 and Q175 are indicated on each image by black, blue and red arrows, respectively. 

Other side chains mutated in this work are indicated by a green arrow. 

 

Figure 7: Comparison of the active sites of “closed” conformation GmhA. The histidine residues H64 and 

H183 of B. pseudomallei GmhA crystal 3 (left, yellow/pink/cyan) show a subtlely different conformation 

to their equivalents in P. aeruginosa (middle, magenta) or C. jejuni (right, slate). This presents the B. 

pseudomallei side chains to form an interaction with the zinc ion (purple sphere), and extends the 

nitrogen-nitrogen distance to 3.4 Å, precluding a hydrogen bond between H64 and H183. B. pseudomallei 

GmhA H64, E68, Q175, H183 and their equivalents in other structures are shown as sticks, with main 

chain shown as cartoon. 

 

Figure 8: Proposed mechanism for GmhA. (a) The mechanism previously proposed for GmhA 
26

 

implicated H180 (numbering is given for E. coli ortholog for residues marked *; equivalent B. 

pseudomallei residues are E68 and H183 respectively) as the catalytic acid for the isomerization of S7P. 

(b) Mechanism proposed by this work shows Q175 as a catalytic acid. In the middle step, Q175 forms an 

imine, stabilized by the presence of zinc. (c) Proposed mechanism for the cyclization to form M7P. D98 is 

proposed to act as both acid and base, with a protonated form stabilized by a hydrogen bond to S71. The 

preference for the -anomer appears to be driven by a hydrogen bond between the carbonyl oxygen and 

the main chain of R72 in the linear form (see Figure 9). 

 

Figure 9: Proposed mechanism for sugar cyclization to form M7P. A representative active site of crystal 2 

is shown. Key side chains and ligand are shown as sticks, with the protein chains colored yellow, pink and 

cyan, and the ligand white. D98 is poised to act as a proton donor/acceptor for M7P O1 and O5 

respectively (dashed orange lines), with S71 making a hydrogen bond (dashed pink line) to stabilize the 

protonated form of D98. In the linear form of the sugar, O1 would make a hydrogen bond (dashed blue 

line) with the main chain amide of R72, driving the cyclized sugar to the -anomer. 

 

 


