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Abstract 

 

Exercise in hypoxia is associated with reduced muscle oxidative capacity and impaired 

exercise tolerance relative to normoxia. Nitric oxide (NO) is a key signalling molecule for 

hypoxic vasodilatation which may facilitate better matching of muscle perfusion to metabolic 

activity. The purpose of this study was to assess the effects of dietary nitrate intake (which 

increases plasma [nitrite] and thus NO bioavailability) on muscle metabolism and exercise 

tolerance in hypoxia. Nine healthy subjects (2 female; mean ± SD age 28±7 years) were 

tested on three occasions in a single-blind, randomised crossover design. Subjects completed 

one trial in normoxia (21.0% O2; CON) and two trials in hypoxia (14.5% O2). During 24 h 

prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol 

nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice (0.006 mmol nitrate; H-PL). 

Subjects performed a series of low-intensity and high-intensity knee-extension exercise bouts 

for the assessment of muscle metabolism with calibrated 
31

P-MRS and exercise tolerance 

(time to the limit of tolerance; Tlim) and. Plasma [nitrite] was elevated (P<0.01) following BR 

(194 ± 51 nM) compared to PL (129 ± 23 nM) and CON (142 ± 37 nM). Tlim was reduced in 

H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P<0.05) but was not different between 

CON and H-BR (477 ± 200 s). The end-exercise [PCr] was not different between conditions, 

but the overall rate of decline in [PCr] was greater (P<0.01) in H-PL (63 ± 28 μM.s
-1

) than in 

CON (48 ± 24 μM.s
-1

) and H-BR (48 ± 21 μM.s
-1

). The [PCr] recovery time constant was 

greater (P<0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). 

Dietary nitrate supplementation reduced muscle metabolic perturbation during high-intensity 

exercise in hypoxia and restored exercise tolerance to that observed in normoxia. Nitrate 

supplementation also negated the slowing of [PCr] recovery kinetics which was observed in 

hypoxia, indicating that the O2 availability was enhanced and muscle oxidative function 

restored to the normoxic level.  
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Introduction 

 

Hypoxia has far reaching consequences for skeletal muscle energy metabolism and fatigue 

development during exercise. Breathing a gas mixture with a reduced fraction of O2 (FIo2) 

results in a reduced O2 partial pressure (Po2) gradient between the microcirculatory and 

intracellular compartments, a reduction in intracellular Po2 (Richardson et al. 1995), and a 

compensatory increase in blood flow. A fixed sub-maximal work-rate is associated with the 

same O2 uptake ( o2) but a greater muscle metabolic perturbation in hypoxia compared to 

normoxia (Adams & Welch 1980; Hogan et al. 1999; Linnarsson et al. 1974; Wilkins et al. 

2006). Reduced O2 availability mandates greater concentrations of other regulators of 

respiration in order to stimulate the mitochondria to maintain the required rate of oxidative 

ATP turnover; namely, ADP, Pi and NADH, which are derived through elevated rates of 

phosphocreatine (PCr) hydrolysis and glycolysis (Hogan et al. 1999; 1983).  The net result of 

hypoxia relative to normoxia at work rates >50% of maximum is accelerated depletion of 

muscle PCr and glycogen and a more rapid accumulation of fatigue-related metabolites 

(ADP, Pi, H
+
) which contribute to impaired exercise tolerance (Hogan et al. 1999; Richardson 

et al.1999; Allen et al. 2008).  Depending on the severity of hypoxia and the mitochondrial 

capacity of the individual, hypoxia also attenuates the maximal oxidative metabolic rate, 

which is reflected in a slowing of [PCr] recovery kinetics following cessation of exercise 

(Blei et al. 1993; Haseler et al. 1999; Paganini et al. 1997). 

 

The compensatory vasodilatation during hypoxic exercise is likely mediated by several 

synergistic factors including β-adrenergic and adenosine receptor activation, prostaglandin 

synthesis and the release of nitric oxide (NO) (Casey et al. 2010; 2011; MacLean et al. 1998). 

There is evidence to suggest that NO plays an increasingly important vasodilatory role 

independent of prostaglandins and β-adrenergic activation at higher metabolic rates (Casey et 

al. 2010; 2011; Wilkins et al. 2008).  NO is released by the endothelium in response to 

exercise, and is also derived through the reduction of dietary inorganic nitrate. Nitrate is 

reduced to nitrite (NO2
-
) and further to NO by various pathways (such as haemoglobin and 

xanthine oxidoreductase) which are potentiated in hypoxic and acidic conditions (Maher et al. 

2008; Millar et al. 1998; Modin et al. 2001).  It has been suggested that elevated NO 
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availability may facilitate a more precise local matching of blood flow to metabolic rate 

(Thomas et al. 2001), which may reduce the metabolic perturbation as exercise proceeds.  

 

Dietary nitrate intake is associated with elevated plasma [NO2
-
] and reduced blood pressure 

in normotensive humans (Bailey et al. 2009; Kapil et al. 2010; Larsen et al. 2007; Vanhatalo 

et al. 2010; Webb et al. 2008).  Nitrate supplementation has also been shown to reduce the O2 

(and ATP) cost of steady-state low-intensity exercise, to reduce the rate of PCr degradation 

during high-intensity exercise, and to increase exercise tolerance (Bailey et al. 2009; 2010; 

Larsen et al. 2007).  While increased NO bioavailability appears to be beneficial to 

cardiovascular health, reduced NO synthesis is characteristic of a number of pathologies.  

Aging and poor cardiovascular health are associated with uncoupling of endothelial NO-

synthase (eNOS), which results in reduced capacity for endogenous NO production (Sindler 

et al. 2009; Yang et al. 2009). The nitrate-nitrite-NO pathway, which is not dependent on 

NOS function, is enhanced by acidic and hypoxic conditions extant during repeated muscle 

contractions and in poorly perfused muscle (Bryan 2006; van Faassen et al. 2009). Nitrate 

supplementation may therefore represent a potential therapeutic intervention to alleviate the 

effects of hypoxia on skeletal muscle metabolism and performance. This is important, 

because tissue hypoxia contributes to exercise intolerance in several disease conditions 

including peripheral arterial disease, diabetes and chronic heart failure (Bulmer & Coombes 

2004; Ellis et al. 2010; Kenjale et al. 2011) as well as in exposure to high altitude. 

 

The greater muscle metabolic perturbation and reduction in exercise tolerance that is typically 

observed in hypoxia compared to normoxia may be attenuated when hypoxic exercise is 

preceded by dietary nitrate intake. The oral administration of pharmacological sodium nitrate 

to human subjects is restricted under UK legislation. We therefore used nitrate-rich beetroot 

juice (BR; Bailey et al. 2009; Kapil et al. 2010; Webb et al. 2008) to elevate NO 

bioavailability prior to exercise testing in moderate normobaric hypoxia (14.5% O2 in balance 

N2).  The purpose of this study was to test the hypotheses that nitrate supplementation will 

restore the rate of muscle metabolic perturbation, exercise tolerance and [PCr] recovery 

kinetics in hypoxia to the normoxic level. Specifically, we hypothesised that 1) high-intensity 

exercise will be associated with greater rate of changes in muscle [PCr], [Pi], [ADP] and pH 

during exercise in hypoxia with placebo supplementation (H-PL) than in normoxia (control; 

CON) and in hypoxia following nitrate supplementation (H-BR); 2) the time-to-exhaustion 

(Tlim) during high-intensity exercise in H-PL will be shorter than the Tlim in CON and H-BR; 
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and 3) the time constant of PCr recovery following exercise in H-PL will be greater than the 

recovery time constants measured in CON and H-BR.  

 

Methods 

 

Ethical approval 

All procedures were approved by the University of Exeter research ethics committee and 

were in accordance with the standards set by the Declaration of Helsinki. Subjects gave 

written informed consent to participate after the experimental procedures, associated risks, 

and potential benefits of participation had been explained.   

 

Subjects 

Nine healthy subjects, who were moderately trained in recreational sport, volunteered to 

participate in this study (mean ± SD: age 28 ± 7 years, body mass 73.4 ± 12.6 kg, height 1.77 

± 0.05 m; including 2 females).  Subjects were instructed to arrive at the laboratory in a 

rested and fully hydrated state, at least 3 h post-prandial, and to avoid strenuous exercise in 

the 24 h preceding each testing session.  Participants were asked to refrain from consuming 

caffeine for 6 h and alcohol for 24 h before each test.  Subjects also abstained from using 

antibacterial mouthwash throughout the study in order to preserve commensal oral bacteria 

which reduce nitrate to nitrite (Govoni et al. 2008).  

 

Experimental procedures 

Subjects were familiarized with the test protocol prior to data collection.  During this initial 

visit, a high-intensity work rate which would result in exhaustion in approximately 5-8 min 

was determined for each subject.  The following three visits (CON, H-PL, and H-BR) were 

allocated in a single-blind, counterbalanced, randomized order.  

 

Exercise tests were performed in a prone position within the bore of a 1.5T superconducting 

magnet (Gyroscan Clinical Intera, Philips, The Netherlands) using a custom-built non-ferrous 

ergometer.  The feet were fastened securely to padded foot braces using Velcro straps and 

connected to the ergometer load baskets via a rope and pulley system.  Two-legged knee-

extensions over a distance of 0.22 m were performed continuously at a constant frequency 

which was set in unison with the magnetic pulse sequence (40 pulses min
-1

) to ensure the 
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quadriceps muscle was in the same phase of contraction during each MR pulse acquisition.  

To prevent displacement of the quadriceps relative to the MRS coil, Velcro straps were 

fastened over the subject’s thighs, hips and lower back.  The exercise protocol consisted of 4 

min of low-intensity exercise and, following 6 min of passive rest, two 24-s bouts of high-

intensity exercise separated by 4 min of rest. These were used for the assessment of [PCr] 

recovery kinetics in the absence of substantial alteration in muscle pH. After a further 6 min 

of rest, subjects completed one high-intensity exercise bout which was continued until the 

Tlim. Subjects were provided strong verbal encouragement to continue for as long as possible 

but no feedback was given on the elapsed time. Tlim was recorded to the nearest second. Knee 

extensor displacement was measured using a calibrated optical shaft encoder (Type 

BDK.06.05A 100-5-4; Baumer Electric, Swindon, UK) connected to the weight basket 

pulley, and load was measured using an aluminium load cell (Type F250EBR0HN, Novatech 

Measurements Ltd., St. Leonards-on-Sea, East Sussex, UK.).  Work done was calculated as 

the product of force and displacement. The work rates were 14 ± 1 W for the 4-min low-

intensity bout, 28 ± 2 W for the 24 s bout, and 24 ± 2 W for the high-intensity bout which 

was continued to Tlim. 

 

Subjects wore a facemask throughout all exercise tests and breathed the normoxic or hypoxic 

inspirate for 15 min prior to the start of the exercise protocol while resting in a prone position 

in the bore of the magnet. Blood pressure of the brachial artery was measured at the end of 

this 15 min period (Schiller Maglife Light, Siemens, Germany) and the mean value of three 

consecutive measurements was recorded. Heart rate and arterial O2 saturation (SaO2) were 

monitored continuously throughout each testing session with a finger probe oximeter (Nonin 

7500FO, Nonin Medical Inc., Plymouth, MN). Arterial PO2 was estimated from SaO2 using 

the Hill equation assuming a P50 of 26.6 mmHg.  The inspirate was generated using a 

Hypoxico® HYP-100 filtration system (Sporting Edge UK Ltd, Basingstoke, UK). The 

generator fed via an extension tube to a 150 L Douglas Bag (Cranlea & Co, Birmingham, 

UK) placed within the scanner room.  This acted as a reservoir and mixing chamber, and had 

a separate output pipe feeding into a two-way breathing valve system (Hans Rudolf, Cranlea 

& Co, Birmingham, UK), which was connected to the facemask.  Thus, the flow rate was 

maintained constant, and no re-breathing of expired air occurred.  

 

The O2 and CO2 concentration of the inspirate was monitored during each test using a 

Servomex 5200 High Accuracy Paramagnetic O2 and CO2 Analyzer (Servomex, 
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Crowborough, UK).  The gas analyzer was calibrated prior to each test with a 16.0% O2, 

8.0% CO2 and 76.0% N gas mix (BOC Special Gases, Guildford, UK).  For the normoxic 

CON trial, the Hypoxico® HYP-100 was switched to normobaric mode (i.e. all O2 filters 

were inactivated such no O2 was removed from ambient air), whereas during hypoxic tests, 

the generator was set to maximum O2 filtration, which yielded an FiO2 of 14.45 ± 0.05%, and 

an FiCO2 of 0.04 ± 0.00%. The subject and the researcher running the exercise test within the 

MR scanner room were blinded to the inspirate being used. 

 

Supplementation and nitrite analyses 

During 24 h prior to the hypoxic trials, subjects consumed 0.75 L of nitrate-rich beetroot 

juice containing 9.3 mmol nitrate (H-BR) or 0.75 L of nitrate-depleted beetroot juice 

containing 0.006 mmol nitrate (H-PL; Beet It, James White Drinks Ltd., Ipswich). Nitrate 

was removed from the placebo product before pasteurization by passing beetroot juice 

through a column containing Purolite A520E ion-exchange resin which is specific for nitrate 

(Lansley et al. 2011). The supplement was taken in three equal doses approximately 24 h, 12 

h and 2.5 h prior to the start of the exercise test. Upon arrival at the laboratory, a venous 

blood sample (6 mL) was drawn from the antecubital vein into a lithium-heparin tube 

(Vacutainer, Becton Dickinson, New Jersey, USA).  Samples were centrifuged at 4000 rpm 

and 4°C for 10 min, within 3 min of collection.  Plasma was subsequently extracted and 

immediately frozen at -80°C, for later analysis of [NO2
-
] using a modification of the 

chemiluminescence technique which we have used previously (Bailey et al., 2010; Vanhatalo 

et al., 2010).  Equipment and surfaces were regularly rinsed with ionised water to minimise 

contamination of samples by extraneous sources of nitrite and nitrate.  Before samples were 

analysed for NO2
-
 content, they were thawed at room temperature and deproteinised using 

zinc sulfate precipitation.  The deproteinised samples were then refluxed in 0.3 M sodium 

iodide and glacial acetic acid at room temperature and analysed for [NO2
-
] using a Sievers 

nitric oxide analyser (Sievers NOA 280i, Analytix Ltd, Durham, UK). The nitrate 

concentrations of diluted beetroot supplements (100- and 1000- fold) were determined by the 

reduction to NO in a solution of vanadium (III) chloride in hydrochloric acid. The gas-phase 

chemiluminescent reaction between NO and ozone was detected from the spectral emission 

of the electronically excited nitrogen dioxide product, by a thermoelectrically cooled, red-

sensitive photomultiplier tube housed in the nitric oxide analyser (Sievers NOA 280i, 

Analytix Ltd, Durham, UK). 
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MRS measurements 

Absolute concentrations of muscle metabolites were established using a calibrated 
31

P-MRS 

technique. Spatially localized spectroscopy was undertaken prior to the exercise protocol to 

determine the relative signal intensities obtained from a phosphoric acid source placed within 

the scanner bed and an external Pi solution. A subsequent unsaturated scan was obtained 

comparing the signals obtained from the phosphoric acid standard and Pi in the muscle tissue, 

where the localized voxel sampled within the muscle was of the same dimensions and 

distance from the coil as the external Pi solution, allowing the calculation of muscle Pi 

concentration following corrections for relative coil loading.  PCr and ATP concentrations 

were then calculated using the ratio of Pi/PCr and Pi/ATP for each individual.  Fast field echo 

images were then acquired to determine whether the muscle was positioned correctly relative 

to the coil.  Matching and tuning of the coil was performed and an automatic shimming 

protocol was then undertaken within a volume that defined the quadriceps muscle. Before and 

during exercise, data were acquired every 1.5 s, with a spectral width of 1,500 Hz and 1K 

data points.  Phase cycling with four phase cycles was employed, leading to a spectrum being 

acquired every 6 s.  The subsequent spectra were quantified via peak fitting, assuming prior 

knowledge, using the jMRUI (version 3) software package employing the AMARES fitting 

algorithm (Vanhamme et al. 1997).  Spectra were fitted assuming the presence of the 

following peaks: Pi, phosphodiester, PCr, α-ATP (2 peaks, amplitude ratio 1:1), γ-ATP (2 

peaks, amplitude ratio 1:1), and β-ATP (3 peaks, amplitude ratio 1:2:1).  In all cases, relative 

amplitudes recorded during exercise were corrected for partial saturation by obtaining a 

baseline spectrum before exercise with long repetition time (TR = 20 s) in which the relative 

unsaturated peak amplitudes could be determined.  Intracellular pH was calculated using the 

chemical shift of the Pi spectral peak relative to the PCr peak. [ADP] was calculated via 

knowledge of [Pi], [PCr], and pH values, taking into account the dependency of rate constants 

on pH (Kemp et al. 2001).   

 

The [PCr] recovery time constant (τ) was determined by fitting a single exponential function 

to the [PCr] recorded over 150 s following the two 24 s exercise bouts (Graphpad Prism, 

Graphpad Software, San Diego, CA).  Each transition was fitted separately and the mean of 

two time constants was calculated for each subject. Metabolite concentrations (PCr, ADP, Pi 

and also pH) at resting baseline were calculated as the mean over the final 120 s preceding 

the first exercise bout and the end-exercise values were taken as the mean values measured 

over the final 12 s of exercise. The rates of change during high-intensity exercise were 
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calculated by dividing the metabolite concentration ([PCr], [Pi], [ADP] or pH) at a given time 

point by time. The overall rate of change was calculated as the end-exercise value divided by 

Tlim. 

 

Statistical analyses 

One-way repeated measures analyses of variance were used to assess differences across the 

treatments (CON, H-BR and H-PL trials) with follow-up LSD pairwise comparisons as 

appropriate (v15.0, SPSS Inc., Chicago, IL, USA).  Statistical significance was accepted at 

the P<0.05 level and data are presented as mean ± SD unless stated otherwise. 

 

Results 

 

Plasma [NO2
-
] and blood pressure 

Plasma [NO2
-
] was elevated following supplementation with nitrate-rich beetroot juice (194 ± 

51 nM) compared to placebo (129 ± 23 nM; P<0.05) and control (142 ± 37 nM; P<0.05).  

The blood pressure data are summarised in Table 1. The systolic BP was lower in H-BR than 

in H-PL (P<0.05) and tended to be lower than in CON (P=0.07), while the diastolic BP was 

reduced in the H-BR condition compared to H-PL and CON (P<0.05).  Similarly, the mean 

arterial pressure (MAP) was lower in H-BR compared to H-PL and tended to be lower than in 

CON (P=0.08). SaO2 remained stable within each condition and was lower in the H-PL (91 ± 

2 %; PO2 61 ± 5 mmHg) and H-BR (92 ± 1 %; PO2 62 ± 6 mmHg) trials compared to CON 

(98 ± 1 %; PO2 125 ± 37 mmHg). Heart rate at rest was not significantly different between 

conditions (64 ± 5 b∙min
-1

 in CON, 72 ± 9 b∙min
-1

 in H-PL and 68 ± 6 b∙min
-1

 in H-BR).  

 

[PCr] recovery 

The reduction in muscle [PCr] from resting baseline during the 24 s high-intensity bout was 

not different between conditions (9.8 ± 2.1 mM in CON, 9.6 ± 2.1 mM in H-PL and 9.3 ±  

2.9 mM in H-BR). The end-exercise pH was not different from resting baseline (7.06 ± 0.03 

in CON, 7.09 ± 0.04 in H-PL and 7.08 ± 0.04 in H-BR). The [PCr]τ measured during 

recovery was significantly greater in H-PL (29 ± 5 s) than in CON (23 ± 5 s; P<0.01) and H-

BR (24 ± 5 s; P<0.01). 

 

Low-intensity exercise 



10 
 

The muscle metabolic responses to low-intensity exercise are presented in Table 1 and 

illustrated in Figure 1. The HR measured at the end of exercise was lower in CON (76 ± 5 

b∙min
-1

) than in H-PL (86 ± 6 b∙min
-1

) and H-BR (84 ± 9 b∙min
-1

) (both P<0.05). The 

ANOVA revealed no significant differences in the baseline or end-exercise [PCr], [Pi], 

[ADP] or pH between conditions.  However, a direct comparison (one-tailed t-test) between 

the [PCr] amplitude in H-PL and H-BR indicated a significant difference (P<0.05) (Figure 1).  

 

High-intensity exercise 

During high-intensity exercise, the Tlim was reduced in H-PL compared to CON (393 ± 169 

vs. 471 ± 200 s; P<0.05) but was not different between CON and H-BR (477 ± 200 s).  The 

[PCr] and [Pi] profiles are illustrated in Figure 2 and the [ADP] and pH responses are shown 

in Figure 3.  There were no significant differences in muscle metabolite concentrations or pH 

measured at Tlim in the high-intensity trial (Table 2).  However, more PCr had been utilised in 

the H-PL trial compared to CON and H-BR after 60 s, and compared to H-BR after 120 s 

(P<0.05; Table 2).  The overall rates of [PCr] degradation, [Pi] accumulation and pH 

reduction during the entire exhaustive exercise bout were greater in H-PL than in CON and 

H-BR (all P<0.05) (Table 2).  The increase in [ADP] was accelerated in H-PL compared to 

CON and H-BR after 60 s and compared to H-BR after 120 s (Table 2).  

 

Discussion 

 

The principal novel finding of this study was that dietary nitrate supplementation reduced 

muscle metabolic perturbation during high-intensity exercise in hypoxia and restored exercise 

tolerance to that observed in normoxia. Nitrate supplementation also abolished the reduction 

in the rate of PCr recovery in hypoxia, possibly due to better NO-mediated matching of 

muscle O2 delivery to local metabolic rate. Essentially, with nitrate supplementation it was 

possible to attain the same maximal oxidative rate under mild hypoxia as is normally possible 

in normoxia. We also showed a trend towards reduced PCr utilisation during low-intensity 

steady-state exercise in hypoxia following nitrate intake.  The role of NO and nitrite in 

hypoxic signalling is well recognised. However, this is the first study to demonstrate that the 

deleterious effects of systemic hypoxia on muscle energetics and exercise tolerance can be 

ameliorated by increasing NO and nitrite availability by dietary means in humans. 
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PCr recovery kinetics 

An important finding of this study was the speeding of the PCr recovery kinetics by ~16% in 

the nitrate supplemented condition relative to placebo in hypoxia. The rate of recovery of 

intramuscular [PCr] immediately following exercise is considered to reflect the maximal rate 

of oxidative ATP reconstitution alone, with minimal or no contribution from glycolysis 

(Arnold et al. 1984; Kemp et al. 1993). Provided that the pH has not declined markedly, the τ 

of the monoexponential [PCr] recovery profile is independent of the level of PCr depletion at 

the cessation of exercise (Thompson et al. 1995). The recovery [PCr]τ in this study was 

similar to values reported for moderately- to well-trained subjects in normoxia (~25 s; 

Haseler et al. 1999). Under normal conditions, O2 delivery would not be considered limiting 

to maximal oxidative rate in this population. A speeding of the [PCr] recovery kinetics 

reflects an increase in maximal oxidative rate, and can be subsequent to factors such as 

increased mitochondrial mass, increased oxidative enzyme activity and/or hyperoxia (Haseler 

et al. 1999). Possible mechanisms underlying the observed speeding of [PCr] recovery 

kinetics in hypoxia following nitrate supplementation include increased mitochondrial 

efficiency (Larsen et al. 2010), increased bulk O2 delivery and/or a better matching of local 

perfusion to metabolic rate (Thomas et al. 2001; Victor et al. 2009).   

 

An improved mitochondrial efficiency following nitrate intake, reported in a recent study by 

Larsen et al. (2010), may allow the same maximal re-synthesis rate of ATP to be reached in 

hypoxia compared to the normoxic, non-supplemented condition. The mitochondrial P/O 

ratio was elevated by 19% in human biopsy samples after 3 days of nitrate supplementation 

(0.1 mmol/kg/d; Larsen et al. 2010), which may be sufficient to account for the 16% speeding 

in the in vivo [PCr] recovery τ in the present study (using a dose of 0.13 ± 0.02 mmol/kg over 

24 h). However, we have previously shown that increased NO bioavailability per se does not 

speed [PCr] recovery under normoxic conditions in healthy humans following 3-6 days of 

nitrate intake (Bailey et al. 2010 unpublished observation; Lansley et al. 2011).  Therefore, 

although an improved P/O ratio may contribute to the reduced [PCr] recovery τ in hypoxia to 

some extent, factors related to altered muscle perfusion and O2 delivery are likely to be more 

important.  

 

The combination of systemic hypoxia and muscle contractions creates a powerful stimulus 

for compensatory vasodilatation to ensure adequate O2 delivery to active muscle (Calbet et al. 

2009; Casey et al., 2010). The complex interactions of numerous vasodilatory mechanisms 
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remain under investigation. However, it is clear that NO and nitrite represent key agents in 

this signalling cascade (Casey et al. 2010; 2011; Heinonen et al. 2011; Maher et al. 2008; 

Modin et al. 2001). Elevated NO availability, as indicated by the reduced blood pressure after 

nitrate intake, would increase bulk blood flow to the active muscle. The plasma [nitrite] was 

elevated by 50% in the nitrate-supplemented hypoxia condition compared to hypoxic 

placebo. In addition to liberating bioactive NO, nitrite itself is recognised as a potent 

vasodilator and this effect is augmented in hypoxia (Maher et al. 2008). Furthermore, NO 

may ensure better distribution of intramuscular and intracellular O2 via inhibition of 

cytochrome c oxidase, such that the number of critically hypoxic loci within the muscle is 

reduced (Hagen et al. 2003; Victor et al. 2009; Thomas et al. 2001). When the O2 availability 

in the mitochondrion is low, the cytochrome c oxidase is predominantly in a reduced state 

and NO competes with O2 for binding at its heme a3 site (Brown & Cooper, 1994). As a 

result, the available O2 is redistributed away from the mitochondrion causing an attenuation 

of hypoxic signalling (Hagen et al. 2003; Victor et al. 2009). Therefore, NO may reduce the 

heterogeneity of perfusion relative to metabolic activity in skeletal by quenching the 

metabolic activity of fibres in the close proximity of blood supply, and facilitate improved 

oxygenation of the more distant fibres by increasing the O2 gradient (Thomas et al. 2001).  

The level of hypoxia induced in this study was relatively mild such that the elevated NO 

availability in H-BR may have sufficiently increased the bulk blood flow and improved O2 

distribution within the active muscle to compensate for the reduced arterial PO2 and enable 

the same maximal oxidative rate to be achieved as in normoxia. 

 

High-intensity exercise tolerance 

High-intensity exercise tolerance increased by ~21% with nitrate supplementation compared 

to placebo at a fixed work rate in hypoxia. The mechanisms responsible for this effect may 

include the restoration of the maximal oxidative rate to the normoxic level and reduced 

metabolic perturbation, both of which may be afforded by increased O2 delivery (as discussed 

above). Effectively, the fixed work rate demanded a greater proportion of the maximal 

oxidative rate in the H-PL trial than in the H-BR trial. The rate of PCr degradation and the 

increase in [Pi] were both attenuated following nitrate supplementation. The attenuation of 

metabolic perturbation allowed high-intensity exercise to be continued for longer before the 

same (limiting) intramuscular environment was attained as in the placebo and control trials 

(Hogan et al., 1999; Vanhatalo et al. 2010).  The effect of nitrate supplementation resembles 
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the effect of hyperoxia on [PCr] and exercise tolerance (Vanhatalo et al. 2010), suggesting 

that O2 availability contributed to these changes.  

 

We have previously reported a 25% increase in exercise tolerance and attenuated PCr 

degradation during high-intensity exercise in normoxia following nitrate supplementation 

(Bailey et al. 2010). The reduction in the O2 cost and the estimated ATP cost of force 

production during high-intensity exercise afforded by dietary nitrate (Bailey et al. 2009; 

2010) point to a possibility that the O2 requirement of the active muscle for the same work 

rate may also have been lower in the H-BR trial compared to H-PL. However, the potential 

synergistic effects of improved O2 delivery and contractile efficiency in hypoxia did not 

result in an improvement in exercise tolerance beyond what has been observed in normoxia 

(~25%; Bailey et al. 2010). It is important to note that the calculation of the ATP turnover 

rate using 
31

P-MRS data relies on the [PCr] recovery τ (Bailey et al., 2010; Kemp et al. 2007; 

Lanza et al. 2006).  Because changes in O2 delivery are known to alter the [PCr]τ (Haseler et 

al. 1999; 2004; 2007), this method cannot differentiate between possible changes in 

contractile efficiency and O2 availability. Resolution of the relative contribution of changes in 

O2 delivery, mitochondrial and/or contractile efficiency on exercise tolerance in hypoxia 

await further study.  

 

Low-intensity exercise 

The capacity of the respiratory and cardiovascular system to compensate for the reduced 

SaO2 was unlikely to be reached in this study given the relatively small active muscle mass 

(Calbet et al. 2009). Although acute hypoxia does not alter muscle O2 consumption at a fixed 

low-intensity work rate, the PCr utilisation typically increases compared to normoxia 

(Haseler et al.1998; Figure 1).  In the present study, with relatively mild hypoxia, PCr 

utilisation was not significantly greater in the H-PL compared to CON trial during low-

intensity exercise, but there was a tendency towards a reduction in PCr utilisation in the H-

BR trial compared to H-PL (Figure 1).  We have previously shown that the amplitude of 

[PCr] utilisation is reduced during low-intensity exercise in normoxia following nitrate 

supplementation (Bailey et al. 2010).  The linear relationship between pulmonary O2 uptake (

o2) and intramuscular [PCr] following nitrate supplementation (Bailey et al. 2010) implies 

that the reduced O2 cost of exercise largely derives from the contractile apparatus.  

Additionally, increased O2 delivery in the H-BR condition may have reduced the reliance on 

substrate level phosphorylation, thereby sparing muscle [PCr] and resulting in a lower steady-
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state [PCr] amplitude in the H-BR trial. It should be noted that the prevalence of NO as a 

hypoxic vasodilator may increase with exercise intensity (Casey et al. 2010), which could 

explain in part why the effects of dietary nitrate were greater during high-intensity exercise 

compared to low-intensity exercise in this study. It may also be considered that the interplay 

between the redox state of cytochrome c oxidase and O2 availability may be more sensitive to 

the manipulation of NO availability at higher exercise intensities. This is because the 

inhibition of cytochrome c oxidase by NO in competition with O2 requires the cytochrome c 

oxidase to be in the reduced state, which is increasingly the case when the metabolic rate is 

high (Taylor & Moncada, 2009; Wilson et al., 1979). 

 

Implications 

The present findings suggest that dietary nitrate may have important therapeutic applications 

for improving skeletal muscle energetics and functional capacity when muscle O2 delivery is 

compromised. Skeletal muscle is frequently challenged by acute and chronic hypoxia in 

conditions such as exercise and exposure to high altitude, as well as in cardiovascular, 

pulmonary and sleep disorders.  For instance, it appears that chronic exposure to altitude 

upregulates endogenous NO production, as evidenced by 10-fold greater NO availability in 

native high-altitude compared to sea-level dwellers (Erzurum et al. 2007). The reduction in 

the rate of substrate utilisation and fatigue development during exercise and the greater 

maximal oxidative rate in hypoxia afforded by nitrate supplementation in this study illustrate 

the therapeutic potential of dietary nitrate. This is in agreement with a recent study by 

Kenjale et al. (2011) who showed that dietary nitrate intake improved exercise performance 

in peripheral arterial disease patients.  Dietary nitrate may therefore represent a powerful 

therapeutic intervention, which can target the metabolic limitation to maximal oxidative rate 

by improving mitochondrial and contractile efficiency (Bailey et al. 2010; Larsen et al. 2010) 

as well as the potential to enhance O2 delivery and distribution within the active muscle. 

 

Conclusions 

Dietary nitrate intake resulted in a 50% increase in plasma [nitrite] and a significant reduction 

in the mean arterial pressure, indicating greater NO bioavailability in the nitrate 

supplemented condition compared to placebo. A key finding of this study was that nitrate 

restored high-intensity exercise tolerance in hypoxia to a level which was not different from 

that measured during the same exercise in normoxia. This effect was accompanied by a 

reduction in the rate of muscle metabolic perturbation (as indicated by PCr degradation and Pi 



15 
 

accumulation) during hypoxic exercise. We also showed that the [PCr] recovery time 

constant, which reflects the maximal oxidative rate and is normally slowed under hypoxia, 

was not different in the nitrate supplemented hypoxic condition compared to normoxic 

control.  The restoration of the maximal oxidative rate may be attributed largely to NO- and 

nitrite-mediated enhancements to O2 delivery and distribution within the active muscle, 

possibly with a small contribution from enhanced mitochondrial efficiency. These findings 

have implications for the development of dietary interventions to alleviate deleterious effects 

of systemic hypoxia on skeletal muscle energetics and exercise tolerance. Further research is 

warranted to identify the relative contribution by putative changes in O2 delivery, 

mitochondrial P/O ratio and contractile efficiency on hypoxic exercise tolerance following 

nitrate supplementation. 
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Figure legends 

 

Figure 1: Intramuscular [PCr] relative to resting baseline illustrated as group mean (panel A; 

error bars excluded for clarity) and in a representative individual (panel B), during low-

intensity exercise in normoxia (CON), hypoxia following placebo supplementation (H-PL) 

and hypoxia following nitrate supplementation (H-BR).  

 

Figure 2: Group mean intramuscular [PCr] (panel A) and [Pi] (panel B) during high-intensity 

exercise. The Tlim was significantly reduced in the H-PL trial compared to CON and H-BR 

(*P<0.05). Error bars indicate SEM at task failure. Panels C and D illustrate the [PCr] and 

[Pi] responses for a representative individual. 

 

Figure 3: Group mean intramuscular [ADP] and pH during high-intensity exercise. Error 

bars indicate SEM at task failure. * = Tlim less in the H-PL trial compared to CON and H-BR 

(P<0.05). 
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Table 1 Blood pressure at rest and muscle metabolic responses (mean ± SD) during low-

intensity exercise in control and in hypoxia with placebo (H-PL) and nitrate supplementation 

(H-BR). Amplitude indicates the change from baseline to end-of-exercise. (MAP = mean 

arterial pressure). 

 CON H-PL  H-BR 

BP systolic (mmHg) 120 ± 6 123 ± 4 114 ± 6 
#
 

BP diastolic (mmHg) 71 ± 7 74 ± 7 67 ± 7 * 

MAP (mmHg) 86 ± 5 90 ± 5 83 ± 5 
#
 

[PCr] (mM)    

Baseline 31.5 ± 2.6 33.6 ± 2.8 30.9 ± 3.9 

End-exercise 25.6 ± 3.1 27.4 ± 3.0 25.2 ± 3.6 

Amplitude -5.9 ± 1.0 -6.2 ± 1.3 -5.7 ± 1.9 

[Pi] (mM)    

Baseline 4.3 ± 0.8 4.4 ± 0.6 4.1 ± 0.8 

End-exercise 8.6 ± 1.3 9.2 ± 2.0 8.5 ± 2.6 

Amplitude 4.3 ± 1.4 4.8 ± 2.1 4.4 ± 2.6 

[ADP] (μM)    

Baseline 7.0 ± 1.3 7.1 ± 0.9 6.7 ± 1.2 

End-exercise 19.8 ± 4.3 20.0 ± 3.4 18.8 ± 4.2 

Amplitude 12.8 ± 4.0 12.9 ± 3.5 12.1 ± 5.0 

pH    

Baseline 7.03 ± 0.04 7.06 ± 0.03 7.05 ± 0.03 

End-exercise 7.01 ± 0.04 7.03 ± 0.03 7.03 ± 0.04 

Amplitude -0.02 ± 0.04 -0.03 ± 0.03 -0.02 ± 0.04 

* Different from CON and H-PL, P<0.05; 
#
 different from H-PL, P<0.05. 
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Table 2 Muscle metabolic responses (mean ± SD) during high-intensity exercise in control 

and hypoxia after placebo (H-PL) and nitrate supplementation (H-BR). Amplitude indicates 

the change from baseline to task failure. 

 CON H-PL  H-BR 

[PCr] (mM)    

Baseline 31.2 ± 2.8 33.1 ± 2.8 30.6 ± 3.9 

Δ 60 s -11.4 ± 2.7 -13.2 ± 2.7 
#
 -11.1 ± 2.9 * 

Δ 120 s -15.1 ± 3.1 -16.6 ± 2.2 -14.1 ± 3.0 * 

Δ 180 s -17.3 ± 3.3 -18.4 ± 2.4 -16.1 ± 3.2 * 

At task failure 12.1 ± 2.4 12.0 ± 3.6 11.3 ± 3.3 

Δ (μM.s
-1

) -48 ± 24 -63 ± 28 
#
 -48 ± 21* 

[Pi] (mM)    

Baseline 3.2 ± 0.9 3.3 ± 0.7 3.1 ± 0.7 

Δ 60 s 8.5 ± 2.5 10.4 ± 2.5 
#
 8.5 ± 2.1* 

Δ 120 s 11.7 ± 3.9 15.0 ± 3.3 
#
 12.2 ± 3.0* 

Δ 180 s 13.4 ± 4.0 17.1 ± 4.4 
#
 13.8 ± 4.3 * 

At task failure 18.3 ± 3.3 21.4 ± 4.7 19.1 ± 5.4 

Δ (μM.s
-1

) 39 ± 24 54 ± 26 
#
 40 ± 21 * 

[ADP] (μM)    

Baseline 7.2 ± 1.4 7.6 ± 1.1 6.9 ± 1.6 

Δ 60 s 34.4 ± 13.0 48.1 ± 17.4 
#
 33.6 ± 11.3 * 

Δ 120 s 46.7 ± 15.0 59.7 ± 18.5 44.0 ± 13.6 * 

At task failure 75.5 ± 19.9 102.9 ± 58.6 84.2 ± 28.6 

Δ (nM.s
-1

) 177 ± 107 286 ± 177 191 ± 104 

pH    

Baseline 7.01 ± 0.03 7.03 ± 0.03 7.02 ± 0.03 

At task failure 6.88 ± 0.08 6.85 ± 0.07 6.89 ± 0.07 

Rate of change (ks
-1

) -0.32 ± 0.29 -0.52 ± 0.24 
#
 -0.34 ± 0.30 * 

* Different from H-PL, P<0.05; 
#
 different from CON, P<0.05. 
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Figure 1 
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Figure 2 
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Figure 3 

 


