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Abstract. We present a new time-stepping algorithm for nonlinear PDEs
that exhibit scale separation in time of a highly oscillatory nature. The al-
gorithm combines the parareal method—a parallel-in-time scheme introduced
in [24]—with techniques from the Heterogeneous Multiscale Method (HMM)
(cf. [13, 2]), which make use of the slow asymptotic structure of the equations
[32], [27], [28], [36]. By numerically computing a locally asymptotic solution
we are able to “factor out” the fast oscillatory part of the solution, and solve
for the remaining slow part of the solution using time steps that are orders
of magnitude larger than standard time-stepping methods allow. The scheme
has two elements. First, we use HMM to numerically advance the asymptotic
form of the equations with a large time step ∆T . Second, we refine the solu-
tion in parallel on the subintervals [n∆T, (n + 1) ∆T ] using small time steps
∆t and the iterative scheme scheme in [24]; the intermediate solutions on the
sub-intervals [n∆T, (n + 1) ∆T ] are ephemeral, and are used only to converge
the overall solution at the large time steps n∆T . Using the asymptotic struc-
ture allows the computed solutions to be close enough to the actual solution
that parallel-in-time methods converge to high accuracy and with significant
parallel speedup.

We present error bounds, based on the analysis in [17], that demonstrate
convergence of the method. A complexity analysis also demonstrates that
the parallel speedup increases arbitrarily with greater scale separation. Fi-
nally, we demonstrate the accuracy and efficiency of the method on the (one-
dimensional) rotating shallow water equations, which is a standard test prob-
lem for new algorithms in geophysical fluid problems. Compared to exponential
integrators such as ETDRK4 and Strang splitting—which solve the stiff oscil-
latory part exactly—we find that we can use coarse time steps ∆T that are
orders of magnitude larger (for a comparable accuracy), yielding an estimated
parallel speedup of approximately 100 for physically realistic parameter val-
ues. For the (one-dimensional) shallow water equations, we also show that the
estimated parallel speedup of this “asymptotic parareal method” is more than
a factor of 10 greater than the speedup obtained from the standard parareal
method.

1. Introduction

We present a new algorithm to integrate nonlinear PDEs that exhibit scale sep-
aration in time. We focus on time scale separation of a highly oscillatory nature,
where standard (explicit or implicit) time-stepping methods often require time steps
that are on the order of the fastest oscillation to achieve accuracy. This type of
equation arises in numerous scientific applications, including the large-scale simu-
lations of the ocean and atmosphere that serve as the primary motivation of this
paper [7, 8].
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In particular, we consider computing solutions to equations of the form

(1.1)
∂u

∂t
+

1

ε
Lu = N (u) +Du, u (0) = u0,

where the linear operator L has pure imaginary eigenvalues, the nonlinear term
N (u) is of polynomial type, the operator D encodes some form of dissipation,
and ε is a small non-dimensional parameter. For notational simplicity, we let u (t)
denote the spatial (vector-valued) function u (t, ·) = (u1 (t, ·) , u2 (t, ·) , . . .). The
operator ε−1L results in temporal oscillations on an order O (ε) time scale, and
generally necessitates small time steps if standard numerical integrators are used.

Our approach for integrating (1.1) uses a variant of the parareal algorithm [24],
which is a parallel-in-time method that relies on a cheap coarse solver for computing
in serial a solution with low accuracy, and a more expensive fine solver for itera-
tively refining the solutions in parallel. The key novelty in this paper is to replace
the numerical coarse solution of the full equations (1.1) with a locally asymptotic
approximation of (1.1). This enables us to effectively bypass the Nyquist constraint
imposed by the fastest oscillations, and acheive much greater parallel speedup. Ex-
amples on the rotating shallow water equations—a standard benchmark against
which to test new algorithms in geophysical fluid applications—demonstrate that
this approach holds promise for increasing the accuracy and speed of geophysical
fluid simulations. In fact, we find (see Section 6.2) that this approach allows us to
take step sizes ∆T � ε that are significantly larger than if alternative schemes are
used for the coarse solver, including exponential integrators and split-step methods
(which solve the stiff linear terms exactly). In the context of large-scale simulations
of the ocean and atmosphere, the gains achieved from spatial parallelization alone
are beginning to saturate, and the results in this paper are a preliminary effort
toward achieving greater efficiency.

We first describe the standard parareal method in more detail, and some of the
challenges for acheiving high parallel speedup for problems of the form (1.1). The
basic approach of the parareal method is to take large time steps ∆T in serial using
a coarse integrator of (1.1), and to iteratively refine the solutions in parallel using
small time steps ∆t and a more accurate integrator. This can result in significant
speedup in real (wall-clock) time if the parareal iterations converge rapidly, and
either the ratio ∆T/∆t of coarse and fine step sizes is large, or the cost of the
coarse solver is much cheaper than that of the fine solver (see Section 5 for more
details). Early applications of the parareal method include simulations of molecular
dynamics [4], the Navier Stokes equation [15], and quantum control problems [26];
additional references can be found in [34]. Although the parareal method has been
most widely used for parabolic-type PDEs, it has also been analyzed and used for
accurate simulation of first and and second order hyperbolic systems (cf. [14], [16],
and [10]). A recent variant of the parareal method also allows for the accurate long-
time evolution of Hamiltonian systems [23]. Finally, general convergence results for
the parareal algorithm can be found in [17, 5] ([17] also numerically demonstrates
convergence on the Lorenz equations, which is of particular relevance to geophysical
fluid problems).

Despite the many successes of the parareal method, a basic obstacle remains
for equations of the form (1.1): namely, the step size ∆T for a coarse integrator
that is based on a standard method generally must satisfy ∆T = O (ε) in order to
achieve any accuracy at all (which is a prerequisite for convergence of the parareal
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method). In practice, this can mean that the coarse integrator in the parareal
method must use very small time steps for solving (1.1), and the parallel speedup
can be minimal. There are, however, some types of highly oscillatory PDEs where
numerical integrators have been developed that can take much larger time steps
∆T � ε (cf. [18]).

In this paper, we use a numerically computed ’locally slow’ solution that is
based on the underlying asymptotic structure of (1.1), and which can allow step
sizes ∆T � ε significantly larger than the Nyquist constraint imposed by the O (ε)
temporal oscillations (and thus a potentially significant parallel speedup). A basic
observation behind efficiently constructing a slow solution is that the solution u (t)
to (1.1) has the asymptotic approximation u (t) = exp (−t/εL)u (t) + O (ε) (cf.
[27], [28], [36]), where the slowly varying function u (t) satisfies a reduced equation
of the form

(1.2)
∂u

∂t
= N (u) +Du, u (0) = u0.

Here the nonlinear term N (u) is given by the time average

(1.3) N (u (t)) = lim
T→∞

1

T

ˆ T

0

esLN
(
e−sLu (t)

)
ds.

We emphasize that the above time averaging is performed with u (t) held fixed.
Similarly,

(1.4) Du (t) = lim
T→∞

1

T

ˆ T

0

(
esLDe−sL

)
u (t) ds.

Note that u (t), and its time derivatives, are formally bounded independently of
ε, and thus significantly larger time steps ∆T � ε can be taken to evolve (1.2).
Section 4 also discusses how a numerical integrator based on a finite version of the
time averages (1.3) and (1.4) can be interpreted as a smoothed type of integrating
factor method, and allows accuracy even when there is no scale sepatation in time
(i.e. ε = O (1)); this is useful when the scale separation is localized in space,
and where it is desirable to have a time step that is constrained only by the slow
dynamics.

Despite the many successes of the above averaging procedure in elucidating im-
portant qualitative features (see e.g. [28] and [36] for geophysical fluid dynamics
applications), in practice this approach may not be accurate enough for moderately
small values of ε (e.g. ε = 10−2 is typical in geophysical fluid applications), where
the implicit constant hidden in the O (ε) notation can be significant [33]. Since
the parameter ε is typically fixed in idealized applications, the resulting asymptotic
approximation cannot be refined without some additional approach. Another limi-
tation is that the asymptotic approximation (1.2) is generally only valid on an O (1)
time interval, and this situation is usually not improved by adding more terms in
the asymptotic expansion. For many applications, it is therefore necessary to refine
this approach in order to approximate (1.1) with a given target accuracy and on
longer time intervals.

Our approach for computing the asymptotic approximation (1.2)—for the pur-
pose of constructing a slow solution—is based on evaluating the time averages
N (u (t)) and Du (t) numerically; this approach has also been used in [6] to solve
Hamiltonian systems more efficiently (see also [29] and [19] for related approaches
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in geophysical simulations). More generally, our numerical scheme for (1.2) is an
instance of the Heterogeneous Multiscale Method (HMM) (cf. [13, 2, 1] for selective
applications to highly oscillatory problems), which is a very general framework for
efficiently computing approximations to problems that exhibit multiple spatial or
temporal scales; a review of HMM can be found in [35]. The basic idea is that, by
integrating in time against a carefully chosen smooth kernel, the time average can
be performed over a window of length T0 = T0 (ε)� 1/ε; therefore, the overall cost
of evolving (1.2) is asymptotically smaller than the cost of computing (1.1) directly,
and can lead to arbitrarily large efficiency gains. In problems arising in geophysical
fluid applications, the value ε may only be moderately small (e.g. ε ≈ 10−2), and
in such cases numerically computing the average (1.3) can be as costly as explicitly
integrating the full equation (1.1). However, the numerical average can itself be
performed in an embarassingly parallel manner (see Section 2), and thus is not
expected to impact the overall (wall-clock) speed of the algorithm. Finally, we re-
mark that for solutions that develop sharp gradients, it may be necessary to use the
modified version of the parareal method explored in [10]. However, this is beyond
the scope of this paper.

The idea of using a coarse solution based on a modified equation is not new,
and the possibility has been mentioned early on in the parareal literature (cf. [34]).
In [25] and [12], multi-scale versions of the parareal method are developed for,
respectively, deterministic and stochastic chemical kinetic simulations; in [12], the
coarse solver is based on a deterministic (macroscopic) approximation. A recent
paper [22] applies a version of the parareal method to systems of ODEs that exhibit
fast and slow components. The multi-scale coarse solver in [22] uses a projection
onto the slow, low-dimensional manifold, and examples are provided for singularly
perturbed ODEs with dissipative-type scale separation. In contrast to [25], [12],
and [22] , here we investigate this procedure for a model nonlinear PDE whose scale
separation is of a highly oscillatory nature, and where methods that work well for
stiff dissipative problems (e.g. implicit or exponential integrators) generally fail to
impart significant speedup. Moreover, the asymptotic approximation (1.2) to (1.1)
cannot be computed explicitly in most cases, and this necessitates using additional
techniques. The locally asymptotic solver developed here works even when there is
no scale separation, which is an important feature when the time scale separation
is a function of space and time (as occurs in some geophysical fluid applications);
in this case, the time step in the coarse, asymptotic solution is only constrained by
the slow dynamics.

In Section 2, we present a version of the Heterogeneous Multiscale Method that is
appropriate for efficiently computing the asymptotic approximation (1.2). We then
present in Sections 3 a variant of the parareal method that is based on replacing the
coarse solver with a locally asymptotic approximation. Section 4 shows that, by av-
eraging over a scale on which the slow dynamics is occuring, this HMM-type coarse
solution is able to achieve accuracy even when there is no scale separation. We
provide complexity bounds for this algorithm, which demonstrate that the parallel
speedup increases arbitrarily as ε decreases. We also present error bounds that are
based on the analysis in [17] (see also [5]), and that demonstrate convergence of the
method under reasonable assumptions. Finally, Section 6.2 discusses some numer-
ical experiments on the (one-dimensional) rotating shallow water equations, which
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serve as a standard first test for new numerical algorithms in geophysical applica-
tions. Our experiments show that, in contrast to standard versions of the parareal
algorithm, the algorithm can converge to high accuracy in few iterations even when
large time steps ∆T � ε are taken for the coarse solution. In fact, compared to the
exponential time differencing method (ETDRK4), the integrating factor method,
and Strang splitting (cf. [9], [20], and [21])—all of which integrate the stiff linear
term ε−1L exactly—our algorithm yields an estimated parallel speedup of ≈ 100
for the physically realistic value of ε = 10−2. We also show that, for ε = 10−2, this
parallel speedup is at least 10 times greater than the speedup that can be achieved
by using the standard parareal method with ETDRK4, OIFS, or Strang splitting
as the coarse solver. Finally, we demonstrate that the asymptotic parareal method
yields high accuracy even when ε = 1 (i.e. in the absense of scale separation), and
with a parallel speedup that is comparable to using the standard parareal method
with ETDRK4, OIFS, or Strang splitting as the coarse solver. Using a coarser spa-
tial discretization in the asymptotic solver may also result in even greater efficiency
gains.

2. An asymptotic slow solution

We use the Heterogeneous Multiscale Method (HMM) to solve (1.2), which relies
on computing the averages (1.3) and (1.4) numerically (see also [6]). The key idea
is that, by averaging in time with respect to an appropriate smooth kernel and over
a carefully selected window length T0 = T0 (ε), the cost is asymptotically smaller
than 1/ε (which is the cost of solving the full equation (1.1) on an O (1) time
interval). Once such time averages can be computed, then large step sizes ∆T � ε,
coupled with a standard numerical integrator, can be taken to evolve (1.2). For
simplicity, we restrict our discussion to computing the time average (1.3) (in fact,
for the equations we consider here, the operators L and D commute, and so the
average D in (1.4) satisfies D = D).

The basic approach for computing the time average (1.3) involves the following
approximations:

N (u (t)) = lim
T→∞

1

T

ˆ T

0

esLN
(
e−sLu (t)

)
ds

≈ 1

T0

ˆ T0

0

ρ

(
s

T0

)
esLN

(
e−sLu (t)

)
ds(2.1)

≈ 1

M

M−1∑
m=0

ρ

(
sm
T0

)
esmLN

(
e−smLu (t)

)
.

The smooth kernel ρ (s), 0 ≤ s ≤ 1, is chosen so that the length T0 = T0 (ε) of the
time window over which the averaging is done is as small as possible, and that the
error introduced by using the trapezoidal rule is negligible (see e.g. [13] and [11]
for an error analysis).

More formally, we define the finite time average

(2.2) N ρ,T0
(u (t)) =

ˆ T0

0

ρ

(
s

T0

)
esLN

(
e−sLu (t)

)
ds.
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Then we need to choose the kernel ρ (s) and the parameters T0 = T0 (ε) and M so
that the truncation error, ∥∥N (u (t))−N ρ,T0 (u (t))

∥∥ ,
and the discretization error,∥∥∥∥∥N ρ,T0

(u (t))− 1

M

M−1∑
m=0

ρ

(
sm
T0

)
e(sm/ε)LN

(
e−(sm/ε)Lu (t)

)∥∥∥∥∥ ,
are smaller than our desired approximation tolerance. This can be accomplished
by requiring that the kernel ρ (s) satisfies ρ(m) (0) = ρ(m) (1) = 0, m = 0, 1, . . . It
will also be convenient for comparison with Section 4 to change variables s → s/ε
in the integrand in (2.2) to obtain the equivalent form

N ρ,T0 (u (t)) =
1

εT0

ˆ εT0

0

ρ

(
s

εT0

)
es/εLN

(
e−s/εLu (t)

)
ds.

To better understand the role of ρ (s) and the parameters T0 and M , we in-
formally analyze the above averaging procedure in more detail (6.1). First, since
we are assuming that the nonlinear operator N in (1.3) is of polynomial type and
L has pure imaginary eigenvalues, we can (in principle) expand u (t) in terms of
eigenfunctions of L and express the nonlinear term in the form

esLN
(
e−sLu (t)

)
=

∑
λn

eiλnsNn (u (t))

=
∑
λn=0

Nn (u (t)) +
∑
λn 6=0

eiλnsNn (u (t)) ,(2.3)

Here the pure imaginary numbers iλn are linear combinations of the eigenvalues
of L, and the set λn = 0 corresponds to resonant interactions (see Section 6.1
for a concrete example in the context of the rotating shallow water equations).
In fact, using the definition of the averaging N (u (t)) operator and the above
decomposition, we see that

N (u (t)) =
∑
λn=0

Nn (u (t)) .

To compare this to the finite time average N ρ,T0 (u (t)), use (2.3) to express this as

N ρ,T0
(u (t)) =

1

T0

ˆ T0

0

ρ

(
s

T0

)
esLN

(
e−sLu (t)

)
ds

=
∑
λn

(ˆ 1

0

ρ (s) eiλnT0sds

)
Nn (u (t)) .

Comparing N ρ,T0
(u (t)) and N (u (t)), we therefore require that

(2.4)
ˆ 1

0

ρ (s) eiλnT0sds ≈

{
1, for λn = 0,

0, for λn 6= 0.

In order to satisfy (2.4) with a time window length T0 as small as possible,
we choose a smooth kernel ρ (s) that satisfies ρ(m) (0) = ρ(m) (1) = 0. Repeated
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integration by parts shows that∣∣∣∣ˆ 1

0

ρ (s) eiλnT0sds

∣∣∣∣ ≤ Cm |λnT0|−m , m = 1, 2, . . .

In particular, the above calculation indicates that choosing a time window 1 �
T0 (ε)� 1/ε can formally yield an error∥∥N (u (t))−N ρ,T0

(u (t))
∥∥ = O (εm) , m > 1.

Moreover, repeated integration by parts, coupled with the Euler–Maclaurin formula,
also shows that the error induced from the trapezoidal rule is similarly small,∥∥∥∥∥N ρ,T0

(u (t))− 1

M

M−1∑
m=0

ρ

(
sm
T0

)
e(sm/ε)LN

(
e−(sm/ε)Lu (t)

)∥∥∥∥∥ = O (εm) , m > 1.

One commonly used choice of kernel function is given by

ρ (s) =

{
C exp (−1/ (s (1− s))) , 0 < s < 1,

0, |s| ≥ 1,

where the constant C is such so that ‖ρ‖1 = 1.

3. The asymptotic Parareal Method

We briefly review the parareal algorithm, in the context of replacing the coarse
solver with a numerically computed locally asymptotic solution based on the as-
ymptotic structure of the equations described by [27], [28], [36][32, 36].

We suppose that we are interested in solving (1.1) on the time interval t ∈ [0, 1].
We let ϕt (u0) denote the evolution operator associated with (1.1), so that u (t) =
ϕt (u0) solves (1.1). In a similar way, we let ϕt (u0) denote the evolution operator
associated with the approximation obtained from (1.2), so that u (t) = et/εLϕt (u0)
is the solution to (1.2) and ϕt (u0)− ϕt (u0) = O (ε).

To describe the parareal method, we first divide the time interval [0, T ] into N
subintervals [n∆T, (n+ 1)∆T ], n = 0, . . . , N − 1. Starting with the identity

Un = ϕ∆T (Un−1) + (ϕ∆T (Un−1)− ϕ∆T (Un−1)) , Un = u (n∆T ) ,

the parareal method computes approximationsUk
n ≈ Un by the iterative procedure:

Uk
n = ϕ∆T

(
Uk
n−1

)
+
(
ϕ∆T

(
Uk−1
n−1

)
− ϕ∆T

(
Uk−1
n−1

))
, k = 1, 2, . . .

At iteration level k = 0, the slow approximation U0
n = ϕ∆T

(
U0
n−1

)
is used. Notice

that, at iteration level k, the quantities Uk−1
n−1 in the difference ϕ∆T

(
Uk−1
n−1

)
−

ϕ∆T

(
Uk−1
n−1

)
are already computed; consequently, the difference ϕ∆T

(
Uk−1
n−1

)
−

ϕ∆T

(
Uk−1
n−1

)
can be computed in parallel for each n. Since the computation of

ϕ∆T

(
Uk
n−1

)
is inexpensive, the overall algorithm is also inexpensive in a parallel

environment if the iterates converge rapidly. This parareal method is illustrated
in figure 3.1. We note that the parareal method can be interpreted as an inexact
Newton-type iteration (cf. [17]).

Full pseudocode for the asymptotic parareal method is presented below. In
the pseudocode, we use the mid-point rule in the HMM-type scheme for the slow
integrator, and Strang splitting for the fine integrator. We assume that ϕ∆T (u0) is
computed using M small time steps ∆t (so that ∆T = M∆t), and that ϕ∆T (u0)
is computed using one big time step ∆T .
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Figure 3.1. This figure illustrates the asymptotic parareal algo-
rithm. The verticl axes represents a typical prognostic variable
such as h, the thickness of the layer of fluid in the shallow water
system. The pink line depicts the asymptotic solution at the large
time steps n∆T . The blue line depicts the parallel-in-time, fine
scale corrections, using small time steps ∆t � ∆T . Finally, the
black line depicts the updated solution at the large time steps n∆T .

(u )

Δ

Δ

T

t

h

t

ΔTN
φ
ΔT
φ

Δt

(u )1

2

(u )1

φ
ΔT

n

n

n

Algorithm 1 Evaluate time average (in parallel)

N (u0):
parfor j = 1, . . . ,M − 1:

sm = T0m/M
um ← ρ (sm/T0) esmLN

(
e−smLu0

)
end parfor
u1 ← Sum (u1, . . . ,uM )

Algorithm 2 asymptotic slow solver
Coarse_Solver(u0,∆T ):

Take a ∆T/2 timestep for the linear dissipative term:

v← e(∆T/2)Du0.

Take a ∆T timestep for the averaged nonlinear term:

v ← N (v) ,

v ← N
(
u0 +

∆T

2
v

)
.

Take a ∆T/2 timestep for the linear dissipative term:

v← e(∆T/2)Dv.

Transform back to the fast time coordinate:

u1 ← e(∆T/ε)Lv.

Return u1
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Algorithm 3 Fine solver
Fine_Solver(u0,∆t,∆T ):

M = ∆T/∆t
for m = 1, . . . ,M:

take ∆t/2 timestep for the linear term:

v← e(∆t/2)(ε−1L+D)um.

take a ∆t timestep for the nonlinear:

v ← N (v) ,

v ← N
(
um +

∆t

2
v

)
.

take ∆t/2 timestep for the linear term:

um+1 ← e(∆t/2)(ε−1L+D)v.

end for
Return uM.

Algorithm 4 Parallel-in-time integrator
Compute the initial guess using the slow solver:
Uold

0 ← u0

for n = 1, . . . , N − 1
Uold
n ← Coarse_Solver(Uold

n−1,∆T )
endfor
Now refine the solution until convergence:
Unew

0 ← u0

while (maxn ‖Unew
n −Uold

n ‖ / ‖Unew
n ‖ > tol)

parfor n = 1, . . . , N − 1:
Uold
n ← Unew

n

Vn ← Fine_Solver(Uold
n ,∆t,∆T )

Vn ← Vn − Coarse_Solver(Uold
n ,∆T )

end parfor
for n = 1, . . . , N − 1

Unew
n ← Coarse_Solver(Unew

n−1,∆T ) + Vn−1

endfor
end while
return Unew

1 , . . . ,Unew
N

4. The parallel-in-time algorithm without scale separation

In geophysical fluid problems, it is often the case that the time scale separation
can change in space and time, and it is important that this algorithm works even
when there is no scale separation. We give a heauristic derivation of the time average
(2.2) from a different point of view, which indicates that the coarse solution yields
accuracy even when ε = O (1), as long as the time average in (2.2) is performed
over a time scale on which the dynamics of the slow nonlinear terms are occurring.
Figure 4.1 schematically depicts how the large time step ∆T varies as a function of
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Figure 4.1. Schematic of ∆T as a function of ε for (a) the asymp-
totic parareal method (solid blue line), (b) the standard parareal
method with a linearly exact coarse solver (dashed red line), and
(c) a typical time-stepping method used in serial

ΔT

ε

Asymptotic-Parareal

Parareal-Strang

Direct Computation - Strang

0

1

.01 1

Figure 4.2. Schematic depiction of the moving time average

f HtL

f HtL + Dt X f ' HtL\

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

the scale separation parameter ε, for the asymptotic parareal method, the standard
parareal method, and a typical time-stepping method that is used in serial.

As in the integrating factor method, we first factor out the fast oscillatory part,

u (t) = e−t/εLv (t) ,

so that v (t) satisfies

(4.1)
∂v

∂t
= et/εLN

(
e−t/εLv (t)

)
.

Since
∂v

∂t
= O (1) ,

v (t) varies more slowly than u (t) and thus time steps ∆T � ε can potentially be
used to solve for v (t). However, simply using a standard time-stepping scheme for
v (t) will still require small step sizes. In fact, differentiating the equation (4.1)
shows that v (t) has small but rapid fluctuations,

∂2v

∂t2
= O

(
1

ε

)
,

and standard time-stepping schemes will not be accurate unless ∆T is small.
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The idea (see also [3] and [30]) is to take a time step using a smoothed out
version of the derivative; this is accomplished by using a moving time average, so
that the small O (ε) fluctuations in the derivative are removed; see Figure 4.2 for a
schematic depiction. In particular, we average the derivative out over a time scale
εT0 on which the slow dynamics occur (that is, we average over T0 fast oscillations).
Then using e.g. forward Euler we get the approximation

v (∆T ) ≈ v (0) + ∆T

〈
∂v

∂t
(0)

〉
T0

,

where 〈
∂v

∂t
(0)

〉
T0

=
1

εT0

ˆ εT0

0

ρ

(
s

εT0

)
∂v

∂s
(s) ds

≈ 1

εT0

ˆ εT0

0

ρ

(
s

εT0

)
es/εLN

(
e−s/εLv (0)

)
ds.

This approximation allows error control via two different mechanisms. First, when
ε� 1 the above approximation is also an asymptotic approximation, and the time
average serves to eliminate secular terms that arise from nonlinear resonances as
long as ∆T � ε. However, when ε = O (1), then we can take εT0 = ∆T , so that the
time average is performed over a scale ∆T on which the dynamics is slow. In this
case, we see that the above approximation is essentially the forward Euler method.
In fact, in this case the derivatives of v (s) are slow on an O (∆T ) time scale, and
we can Taylor expand to get

1

∆T

ˆ ∆T

0

ρ
( s

∆T

) ∂v
∂s

(s) ds ≈ 1

∆T

ˆ ∆T

0

ρ
( s

∆T

)(∂v
∂s

(0) + s
∂2v

∂s2
(0) + . . .

)
ds

=
∂v

∂s
(0) +O (∆T ) .

For systems of ODEs, rigorous error bounds for this “partial time averaging” are
derived in Section 3.2 of [31].

5. Error and complexity bounds

We first discuss the complexity of our algorithm. Although this analysis is
standard for the parareal method, the complexity bounds demonstrate (in the-
ory) arbitrarily large parallel speedup as the parameter ε gets smaller. We assume
that the time interval [0, 1] is divided into N sub-intervals [Tn−1, Tn] of length
∆T = Tn − Tn−1 = 1/N . We also assume that, within each subinterval, M time
steps of size ∆t are needed for the fine integrator, so that M = ∆T/∆t.

To obtain an initial guess for the parareal method, we first compute the slow
approximations U0

n = ϕ∆T

(
U0
n−1

)
, n = 1, . . . , N , which takes a wall-clock time of

τcN . Next, suppose that we are at a given iteration level k, and we need to compute
the next iterations Uk+1

n from Uk
n. To do so, we first need to compute, in parallel,

the difference Vk
n = ϕ∆T

(
Uk
n

)
− ϕ∆T

(
Uk
n

)
between the coarse and fine solutions.

This takes a wall-clock time of τc + τfM . We then need to compute, in serial,
the updated approximations Uk+1

n = ϕ∆Tn−1

(
Uk+1
n−1

)
+ Vk

n−1, n = 1, . . . , N −
1. This takes a wall-clock time of τcN , for an overall cost of τfM + τcN + τc
per iteration. Thus, after ν iterations, the overall cost of the parareal method is
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ν (τfM + τcN + τc) + τcN . In contrast, directly solving (1.1) in serial requires time
τfNM . Thus, the estimated parallel speedup is

τfNM

ν (τfM + τcN + τc) + τcN
≤ min

{
τf
τc

M

(ν + 1)
,
N

ν

}
.

Notice that an upper bound on the speedup is proportional to M = ∆T/∆t, the
ratio of slow to fine time step sizes.

In order for the asymptotic parareal method to converge, the fine solver needs
time steps ∆t that are some fraction of ε; therefore, ∆t ∼ ε, ∆T ∼ Mε, and
NM ∼ 1/∆t ∼ 1/ε. By choosing N = M =

√
1/ε , we see that the parallel

speedup is given by

τfNM

ν (τfM + τcN) + τcN
=

τf
ν (τf + τc) + τc

√
1

ε
.

Thus, the estimated parallel speedup increases as ε decreases, which results in
arbitrarily greater efficiency gains relative to standard numerical integrators.

We now use the theory developed in [17] for our error bounds (the analysis in [5]
would provide a more refined convergence analysis). We assume that the number
N of large time steps ∆T taken satisfies N = ε−1/2 (based on the above complex-
ity analysis, this yields, in principle, optimal parallel speedup). In particular, we
assume that the slow evolution operator ϕ∆T satisfies

(5.1) ‖ϕ∆T (u1)− ϕ∆T (u2)‖ ≤ (1 + C0∆T ) ‖u1 − u2‖ .

We also assume that the difference between the slow and fine approximations sat-
isfies

(5.2) ϕ∆T (u0)− ϕ∆T (u0) = E (u0) ε,

where the operator E (·) satisfies the bounds

(5.3) ‖E (u1)− E (u2)‖ ≤ C1 ‖u1 − u2‖ , ‖E (u0)‖ ≤ C2.

Letting Tn = n∆T , a slight modification of the proof of Theorem 1 in [17] im-
mediately yields the following result; we only provide the details that differ from
[17].

Theorem 1. The error, u (Tn)−Uk
n, after the kth parareal iteration is bounded by∥∥u (Tn)−Uk

n

∥∥ ≤ εk/2+1C2
(C1)

k

(k + 1)!
eC0(Tn−Tk+1).

Therefore, as long as the constants in the above error bound remain O (1) (which
is observed in practice), the error decreases by a factor of ε1/2 after each iteration.

Proof. Following the proof of Theorem 1 in [17], we obtain the bound∥∥u (Tn)−Uk
n

∥∥ ≤ εC2
(C1ε)

k

(k + 1)!
(1 + C0∆T )

n−k−1
nk

≤ εC2
(C1nε)

k

(k + 1)!
eC0(Tn−Tk+1)

≤ εk/2+1C2
(C1)

k

(k + 1)!
eC0(Tn−Tk+1).
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where the second inequality used that 1 + x ≤ ex, and the third inequality used
that nε ≤ Nε ≤ ε1/2 (recall the number N of big time steps is given by N = ε−1/2).

�

6. Numerical examples

6.1. Rotating Shallow Water Equations. We consider as a test problem the
non-dimensional rotating shallow water equations (RSW) equations,

∂v1

∂t
+

1

ε

(
−v2 + F−1/2 ∂h

∂x

)
+ v1

∂v1

∂x
= µ∂4

xv1,

∂v2

∂t
+

1

ε
v1 + v1

∂v2

∂x
= µ∂4

xv2,(6.1)

∂h

∂t
+
F−1/2

ε

∂v1

∂x
+

∂

∂x
(hv1) = µ∂4

xh,

with spatially periodic boundary conditions on the interval [0, 2π]. Here h (x, t)
denotes the surface height of the fluid, and v! (x, t) and v2 (x, t) denote the horizon-
tal fluid velocities. The non-dimensional parameter ε denotes the Rossby number
(a ratio of the characteristic advection time to the rotation time), and is often
small (e.g. 10−2) in realistic oceanic flows. The non-dimensional parameter F 1/2ε
gives the Froude number (a ratio of the characteristic fluid velocity to the gravity
wave speed), where F = O (1) is a free parameter which we set to unity in our
subsequent calculations. The scaling we have taken is for quasi-geostrophic dynam-
ics (cf. [28]), which governs the fluid flow dominated by strong stratification and
strong constant rotation. As is standard, we also introduce a hyperviscosity op-
erator µ∂4

x to prevent singularities from forming; using hyperviscosity also ensures
that the low frequencies are less effected by dissipation than the high frequencies.
The RSW equations represent a standard framework in which to develop and test
new numerical algorithms for geophysical fluid applications.

To relate equations (6.1) to the abstract formulation (1.1), we define

u (t,x) =

 v1 (t, x)
v2 (t, x)
h (t, x)

 .

Then the system (6.1) can be written in the form (1.1) by setting

L =

 0 −1 F−1/2∂x
1 0 0

F−1/2∂x 0 0

 , D = µ∂4
x

 1 0 0
0 1 0
0 0 1

 , N (u) =

 v1 (v1)x
v1 (v2)x
(hv1)x

 .

Because we work in a periodic domain, it is also convenient to consider (1.1) and
(1.2) in the Fourier domain. This will also make explicit the time-averaging in
(1.2) (periodicity is not required for our approach, and is only used to simplify the
numerical scheme). A straightforward calculation (see [28]) shows that

L
(
eikxrαk

)
= iωke

ikxrαk , ωαk = α
√

1 + F−1k2,
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where rαk is a vector that depends on the wavenumber k and α = −1, 0, 1. Therefore,
by expanding the function u (t) in the basis of eigenfunctions for L, we have that

eτLu (t) =
∑
k∈Z

eikx
1∑

α=−1

eiω
α
k uαk r

α
k .

As shown in e.g. [27], the nonlinear term esLN
(
e−sLu (t)

)
in (1.1) can be written

in the form

(6.2)
∑
k

eikx

( ∑
k1+k2=k

∑
α1,α2

e
i
(
ωαk−ω

α1
k1
−ωα2

k2

)
s
Cα,α1,α2

k,k1,k2
uα1

k1
(t)uα2

k2
(t)

)
rαk .

The interaction coefficients Cα,α1,α2

k,k1,k2
are explicitly given in e.g. [27]. From (6.2)

it is clear that the time average defining N (u (t)) in (1.3) retains only three-wave
resonances. Indeed, since

lim
T→∞

1

T

ˆ T

0

e
i
(
ωαk−ω

α1
k1
−ωα2

k2

)
s
ds =

{
0, ωαk − ω

α1

k1
− ωα2

k2
6= 0

1, ωαk − ω
α1

k1
− ωα2

k2
= 0,

we see that the time average is given by

(6.3) N (u (t)) =
∑
k

eikx

 ∑
(k,k1,k2,α,α1,α2)∈Sr

Cα,α1,α2

k,k1,k2
uα1

k1
(t)uα2

k2
(t)

 rαk .

Here the resonant set Sr is defined by

Sr =
{

(k, k1, k2, α, α1, α2) | k1 + k2 = k and ωαk − ω
α1

k1
− ωα2

k2
= 0
}
.

The HMM (outlined in Section 2) allows the resonant terms in (6.3) to be efficiently
computed.

6.2. Numerical experiments on the RSW equations. We solve equations
(6.1) with the initial conditions consisting of v1 (0, x) = v2 (0, x) = 0 and

(6.4) h (x, 0) = c1

(
e−4(x−π/2)2 sin (3 (x− π/2)) + e−2(x−π)2 sin (8 (x− π))

)
+ c0,

where c1 and c2 are chosen so thatˆ 2π

0

h (0, x) dx = 0, max
x
|h (x, 0)| = 1.

We also choose the viscosity parameter µ = 10−4, and the values ε = 10−2, ε =
10−1, and ε = 1 (corresponding to strong, weak, and no scale separation), which
are physically realistic values in geophysical ocean flows; smaller values of ε would
yield even greater parallel speedup, but are less physically relevant. Although the
choice of the initial height h (x, 0) in (6.4) is somewhat arbitrary, the conclusions
in this section appear to be insensitive to the initial conditions (as long as they are
sufficiently smooth). For all three choices of ε, we perform the following numerical
experiments. First, we compute the solution using the asymptotic parareal method
outlined in Section 3. We then compare the estimated parallel speedup with the
results of using three numerical integrators in serial: exponential time differencing
4th order Runge-Kutta (ETDRK4) [9], the operator integrating factor method (cf.
[20]), and Strang splitting (see Algorithm 3 of Section 3). Finally, for comparison
we compute the solution using the standard parareal method by solving the full
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equation (1.1) using big and small step sizes ∆T and ∆t, where we use Strang
splitting for the coarse solver (we find that using ETDRK4 or OIFS as a coarse
solver yields similar parallel speedup). For the sake of simplicity, we also assume
that the cost of computing a single time step using ETDRK4, OIFS, and Strang
splitting is the same; a more careful analysis that takes into account the number of
operations required for each integrator would yield greater parallel speedup.

As we show below, with the coarse time step ∆T ≥ 3/10, we find similar con-
vergence and accuracy in the asymptotic parareal method for all values of ε. The
parallel speedup for ε = 10−2 is about a factor of 100 relative to using ETDRK4,
the integrating factor method, or Strang splitting in serial. In contrast, the stan-
dard parareal method (using ETDKRK4, the integrating factor method, or Strang
splitting as a coarse solver) requires much smaller time steps, resulting in a parallel
speedup that is about 10 times smaller for ε = 10−2.

In our first numerical experiment, we take ε = 10−2. For the asymptotic parareal
method, we use a coarse time step ∆T = 50 × ε = 1/2, a fine time step ∆t =
ε/25 = 1/2500, and N = ∆T/∆t = 1250 time intervals [(n− 1) ∆T, n∆T ]. Even
though the solution executes many temporal oscillations within the time intervals
[n∆T, (n+ 1) ∆T ]—see Figure 6.1 for a plot of the 4th Fourier coefficient ĥ (k, t)
for 0 ≤ t ≤ ∆T—the method converges in a small number of iterations. In fact,
Figure 6.2 shows the maximum relative L∞ error,

max
0≤n≤N

∥∥Uk
n − u (n∆T, ·)

∥∥
∞ / ‖u (n∆T, ·)‖∞ ,

as a function of the iteration levels k = 0, 1, . . . , 5. Comparing the parallel speedup
relative to directly integrating the full equation (1.1) using ETDRK4, the integrat-
ing factor method, and Strang splitting, we find that we need step sizes ∆t = ε/25,
∆t = ε/20, and ∆t = ε/20, respectively, in order to obtain a comparable accuracy.
Therefore, using the complexity analysis in Section 5, we expect a parallel speedup
of

N (∆T/∆t)

5 ((∆T/∆t) +N) +N
≈ 110.

To constrast this speedup with that obtained using a standard version of the
parareal method, we show in Figure 6.2 the results obtained via a coarse solver
based on solving the full equation (1.1) using Strang splitting (the results are similar
with using ETDRK4 or the integrating factor method as coarse solvers). In this
experiment, we take ∆t = ε/25 = 1/2500, ∆T = 4ε = 1/25, and N = ∆T/∆t =
100, which yields an expected parallel speedup that is 10 times smaller.

In our second experiment, we take ε = 10−1, corresponding to weak scale separa-
tion. In Figure 6.3, we show the maximum relative L∞ error as a function of the iter-
ation levels k = 0, 1, . . . , 5.. Here we used a coarse time step ∆T = 3ε = 3/10, a fine
time step ∆t = ε/25 = 1/250, and N = 150 time intervals [(n− 1) ∆T, n∆T ]. Com-
paring the parallel speedup relative to directly integrating the full equation (1.1)
using ETDRK4, integrating factor method, and Strang splitting, we find that we
need time steps ∆t = ε/20 = 1/200, ∆t = ε/10 = 1/100, and ∆t = ε/20 = 1/200,
respectively, in order to obtain a comparable accuracy. Thus, we obtain an esti-
mated parallel speed of about 1/6 (∆T/∆t) = 13 relative to using Strang splitting
in serial; taking into account the number of operations required for each time step
in ETDRK4 and the integrating factor method, the estimated parallel speedup rel-
ative to these integrators will be comparable. In contrast, plot (b) of Figure 6.3
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Figure 6.1. Plot of the 4th Fourier coefficient ĥ (k, t) as a function
of time 0 ≤ t ≤ ∆T , for ε = 10−2
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Figure 6.2. Maximum relative L∞ error (on alog10 scale),
max0≤n≤N

∥∥Uk
n − u (n∆T, ·)

∥∥
∞ / ‖u (n∆T, ·)‖∞, as a function of

the iteration level k; the initial condition (6.4) is used, and
ε = 10−2. The solid green line depicts the errors from the asymp-
totic parareal method (Parareal-HMM) with a coarse time step
∆T = 50ε, and the dashed red and dashed-dotted blue lines depict
the errors from the standard parareal method using Strang split-
ting (Parareal-Strang) with ∆T = 4ε and ∆T = 5ε, respectively.
A fine time step ∆t = ε/25 is used for all three cases.
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Parareal, ∆T=4ǫ

Parareal, ∆T=5ǫ

shows the relative L∞ errors, where this time the standard parareal algorithm is
used with Strang splitting for the coarse and fine solvers, and using the same step
sizes ∆T = ε = 1/20 and ∆t = ε/20 = 1/200 (again, similar speedup is obtained
with ETDRK4 and the integrating factor method). Here the estimated parallel
speedup is 3 times smaller.

In our final experiment, we take ε = 1, corresponding to no scale separation. In
Figure 6.4, we show the relative L∞ error for the asymptotic parareal method, where
we use a coarse time step ∆T = 3/10, a fine time step ∆t = 1/200, and N = 60 time
intervals [(n− 1) ∆T, n∆T ]. Comparing the parallel speedup relative to directly
integrating the full equation (1.1), we obtain an estimated parallel speedup of about
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Figure 6.3. Maximum relative L∞ error (on alog10 scale),
max0≤n≤N

∥∥Uk
n − u (n∆T, ·)

∥∥
∞ / ‖u (n∆T, ·)‖∞, as a function of

the iteration level k; the initial condition (6.4) is used, and
ε = 10−1. The solid green line depicts the errors from the asymp-
totic parareal method (Parareal-HMM) with a coarse time step
∆T = 3ε, and the dashed red and dashed-dotted blue lines depict
the errors from the standard parareal method using Strang split-
ting (Parareal-Strang) with ∆T = ε and ∆T = 2ε, respectively. A
fine time step ∆t = ε/50 is used for all three cases.
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Figure 6.4. Maximum relative L∞ error (on alog10 scale),
max0≤n≤N

∥∥Uk
n − u (n∆T, ·)

∥∥
∞ / ‖u (n∆T, ·)‖∞, as a function of

the iteration level k; the initial condition (6.4) is used, and ε = 1.
The solid green line depicts the errors from the asymptotic parareal
method (Parareal-HMM) with a coarse time step ∆T = 3/10ε, and
the dashed red and dashed-dotted blue lines depict the errors from
the standard parareal method using Strang splitting (Parareal-
Strang) with ∆T = 3/10ε and ∆T = 4/10ε, respectively. A fine
time step ∆t = ε/200 is used for all three cases.
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a factor of 5; the speedup with the standard parareal method (and using Strang
splitting for a coarse solver) is about the same.

7. Summary

In this paper we have introduced an asymptotic-parallel-in-time method for solv-
ing highly oscillatory PDEs. The method is a modification of the parareal algorithm
introduced by [24]. The modification replaces the coarse solver used in [24] by a
numerically computed locally asymtotic solution based on the asymptotic mathe-
matical structure of the equations ([32], [27], [28], [36]) and concepts used in HMM.

In addition to presenting the method we also include psuedo code. We discuss the
performance of the method when ε =1, which is important for using the method
in realistic simulations where the time scale separation may vary in space and
time. We also present a complexity analysis that shows that the parallel speed-up
increases as ε decreases which results in an arbitrarily greater efficiency gain relative
to standard numerical integrators and a Theorem following [17] that shows that as
long as the constants remain bounded the error decreases by a factor of ε1/2 after
each iteration.

We also present numerical experiments for the shallow water equations. These
results demonstrate that the parallel speedup is more than 100 relative to expo-
nential integrators such as ETDRK4 (for realistic parameter values in the shallow
water equations); the speedup is also more than 10 relative to using the standard
parareal method with a linearly exact coarse solver. Finally, the results demon-
strate that the method works in the absence of scale separation, and with as much
speedup as the standard parareal method.
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