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Abstract 

Greater understanding of programmed cell death (PCD) responses in pathogenic fungi may offer a 

chance of exploiting the fungal molecular death machinery to control fungal infections.  Clearly identifiable 

differences between the death machineries of pathogens and their hosts, makes this a feasible target.  

Evidence for PCD in a range of pathogenic fungi is discussed alongside an evaluation of the capacity of 

existing antifungal agents to promote apoptosis and other forms of cell death.  Information about death 

related signalling pathways that have been examined in pathogens as diverse as Candida albicans, 

Aspergillus fumigatus, Magnaporthe grisea and Colletotrichum trifolii are discussed. 

 

1. Introduction 

Programmed cell death appears to be a ubiquitous feature of living systems, and has been described in 

one form or another in the majority of phylogenetic lineages including eubacteria, protists, plants and 

animals [1-8]. The wide spread occurrence of PCD hints either at an ancient origin, or suggests that it is an 

aspect of the life of both unicellular and multicellular organisms which has evolved many times over. In 

either case, PCD plays an important part in the life-histories of most organisms including fungi [9,10]. 

Differences in the nature of death responses are often a reflection of basic differences in the cell biology 

of the organisms under consideration. It is now apparent however that at a deep-rooted level, related 

molecules are taking part in the cell death decisions of organisms as diverse as bacteria, yeast, plants, 

worms, flies and man. Much research has focused on this similarity, but when differences are found they 

should be celebrated, as they may, in the case of pathogenic organisms provide a new avenue of 

investigation that could be exploited in the design of drugs that fight infectious diseases of plants and 

animals.   

The core features of the PCD responses in mammals are defined by a set of morphological and 

biochemical changes that are mediated by external (extrinsic) or internal (intrinsic) cell suicide programs. 

In the intrinsic death pathway, death signals induce the release of mitochondrial proteins, [11-13] resulting 

in an amplification of a caspase cascade,[11,14,15]. In the extrinsic pathway, signals mediated by death 

receptors of the TNF receptor superfamily activate the caspase cascade directly. Caspase independent 



suicide pathways may also be initiated in response to stress (eg after exposure of cells to ROS) that involve 

the translocation of an apoptosis inducing factor (AIF) from the mitochondrion to the nucleus.  

PCD is commonly associated with the fragmentation of nuclei and degradation of DNA which can be 

linked to the activity of a number of different nucleases [16-23]. PCD is also accompanied by a loss of 

phospholipid asymmetry that involves the translocation of phophatidylserine (PS) to the outer leaflet of the 

plasma membrane [24,25].  Such lipid bilayer rearrangments require the activation of non-specific 

bidirectional phospholipid flippases and floppases along with the inhibition of aminophospholipid 

translocases, or scramblases that normally recycle PS to the inner leaflet [26,27].  ATP-binding cassette 

transporters such as ABCA-1 and CED-7 have been implicated in transbilayer redistribution of PS [28]; 

perhaps of some significance therefore is the finding that homologues of such ABC-transporter enzymes in 

fungi have been implicated in antifungal drug resistance [29-31] though their roles in fungal cell death per 

se have yet to be explored.  

 

2. Understanding fungal PCD has wide implications 

Programmed cell death responses have now been described in a range of fungi [9,10] though the 

majority of studies are focused on the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe and 

Candida albicans [32-37].  Fungal cells dying under a range of conditions exhibit several markers 

characteristic of apoptosis, including the rapid exposure of PS at the outer cell membrane (revealed by 

annexin binding), the margination of chromatin in nuclei, nuclear fragmentation and the degradation of 

DNA (revealed by the TUNEL test).  In many cases it has been shown that exposure of cells to 

cycloheximide prevents these death associated changes, indicating that the death response requires active 

protein synthesis (eg [38]).   

Functional analyses of genes in yeast have revealed that there are some similarities at the molecular 

level between fungal apoptosis and apoptosis of higher eukaryotes, with the identification of homologues of 

caspase-like cysteine proteases [39], AIF [40] and Htr2A/Omi [41].  On the whole it is anticipated that the 

proteins responsible for fungal cell death will be sufficiently distinct from their mammalian counterparts to 

make drug therapies feasible since bioinformatic screens of fungal genomes have shown that many of the 

known components of higher organism apoptosis are missing or highly divergent at the amino acid level 

[42]. The discovery of PCD responses in the model pathogenic fungi C. albicans [36,37], Aspergillus 

fumigatus [43,44] and Magnaporthe grisea [45] raises the long-term possibility of developing novel 

antifungal drugs and fungicides that clear infections by activating fungal cell suicide. Identification of the 

endogenous molecular switches that trigger fungal apoptosis is of paramount importance if we are to 

achieve these aims.  

 

3. Fungal pathogens of man, animals and plants 



Fungi can affect human welfare by destroying crop plants [46] or by causing life-threatening diseases in 

immunocompromised individuals [47] - see Table 1 for a summary of the pathogenic fungal species 

considered in this review and the literature considered. 

In humans the major threats to our health are posed by pleiomorphic fungi, ie those that can grow in 

yeast, pseudohyphal or filamentous growth forms.  Most notable amongst the pleiomorphic fungal 

pathogens is Candida albicans and its close relatives (C. dubliniensis, C. krusei, C. parapsilosis, C. 

tropicalis), as well as the more distant relative, Candida glabrata. The other major human pathogenic fungi 

that cause life-threatening disease are Aspergillus fumigatus, Cryptococcus neoformans, Histoplasma 

capsulatum, Coccidioides immitis, Paracoccidioides brasiliensis and Blastomyces dermatidis. A number of 

additional human pathogens are now also emerging as significant threats to specific patient groups 

(particularly HIV-positive patients) including Penicillium marneffei [48] and Pneumocystis jiroveci, 

formerly known as P. carinii [49]. In addition to these pathogens, a large number of clinically important 

dermatophyte fungi (numbering in excess of 600) can cause both irritating and/or disfiguring superficial 

infections.  Amongst these, Malassezia globosa, a yeast that causes dandruff, as well as more severe 

seborrheic dermatitis, affects more than 50% of the human population and may contribute to atopic eczema 

in sensitized patients [50,51].  Trichophyton rubrum and T. mentagrophytes, cause superficial skin 

infections most notably athletes foot, and are considered to be the second most common cause of skin 

infections after acne [52] 

Candida albicans has become a molecular genetics work-horse for the study of pathogenicity, virulence 

and fungal development [53]. Candida species are typically commensal organisms, present on about 50% 

of the population at any one time [54].  Over a lifetime however, some 80% of women suffer from clinical 

Candida infections, and about 5% of these thrush infections can be recurrent, with some infections 

becoming resistant to antifungal therapy. In immuno-compromised individuals, C. albicans can produce 

mild but irritating, superficial infections of the oral and vaginal mucosa.  In severely immuno-compromised 

patients, C. albicans can produce a disseminated systemic infection which if not treated effectively is 

associated with a high incidence of mortality. Systemic C. albicans infections typically occur in patients 

undergoing chemotherapy or organ transplantation and, depending upon the patient group, one-third to one-

half of these infections are fatal.  The incidence of infection amongst premature and small babies can be as 

high as 7%, and over half of these patients may not survive [55].  C. albicans is also the fourth most 

common hospital acquired infection and typically extends a patient's stay in hospital by an average of 30 d. 

The number of clinical C. albicans infections in UK hospitals has risen significantly in recent years [56], 

and the incidence of resistance to traditional antifungal therapies is high [57].  Candida infections are 

therefore both socially and economically devastating.   

 

4. Major plant pathogenic fungi 

Human pathogenic fungi that cause life-threatening disease represent a small fraction of the species that 

cause disease. Indeed, whilst the majority of fungi are benign, a large number produce diseases in plants 



affecting crop yields and profit margins which can have serious consequences on both local and global 

scales. 

Arable food production worldwide is mainly based upon four staple crops - rice, wheat, maize and 

potato [58]. All of these are subject to infection by a significant number of plant pathogenic fungi.   

Fungicides are vital for the control of plant diseases, which are estimated to cause yield reductions of 

almost 20% in the major food and cash crops worldwide [59].  

Arguably at the top of the list of plant pathogenic fungi is the filamentous ascomycete Magnaporthe 

grisea (sexual state Pyricularia oryzae), the causative agent of Rice Blast Disease [46].  Annually, rice 

blast is responsible for a loss of between 10 and 30% of the rice harvest.  Other plant pathogens that pose 

serious environmental and socioeconomic threats include Tilletia indica (Karnal bunt, [60]) and 

Pucciniania kuehnii (Sugar Cane Orange Rust [61]). Cryphonectria parasitica a basidiomycete pathogen 

causing Chestnut blight [62,63] and Ophiostoma spp another ascomycete (Dutch Elm disease [64]) have 

also caused major losses in forestry in recent years.   

Overall fungi represent 30% of emergent infectious diseases (second only to viral infectious diseases at 

47% [65]. Despite extensive breeding programmes for resistance to fungal pathogens, the shear numbers of 

fungal propagules in the environment and the ability of fungi to generate diversity through sexual and 

parasexual recombination often mean that control is limited to only a few seasons before new virulent 

strains arise. 

Amongst the oomycetes, Phytophthora infestans (Potato late blight) is still the most important threat to 

potato production worldwide [66]. This pathogen which coevolved with wild potato (Solanum) species, 

was transported to Mexico from South America [67] from where it spread to cultivated crops worldwide.  It 

was introduced into the USA in about 1840 and was subsequently transported to Europe where it decimated 

potato production, causing the Irish potato famine and the forced migration of five million people [68].  

Blight was re-introduced from Mexico into the USA and Canada during the early 1990s [69,70] and 

outbreaks of blight continue to this day, causing devastating local and global epidemics potentiated by the 

emergence of virulent fungicide-resistant strains such as US-8 [71]. Other species of Phytophthora are the 

cause of major economic and environmental losses including P. ramorum in Europe (Sudden Oak death 

Syndrome [72] and P. cinnamomi in Australia (Jarrah Die-back [73]). 

 

5. Fungi as pests / spoilage organisms 

Fungi also affect our quality of life more indirectly by damaging / spoiling food-stuffs (which leads to 

both economic losses or the production of food-stuffs contaminated with health-threatening mycotoxins).  

Fungi can colonize our homes, workplaces and hospitals (damaging property) and following the production 

of copious quantities of airborne spora, induce allergic reactions that can in some case be life-threatening 

eg Stachybotrys chartarum [74] and  Aspergillus fumigatus [75]. Reducing the economic and 

environmental threats posed by such contamination requires the treatment of foods or property with a range 



of preservative agents that that can become less effective with prolonged use, and themselves may be 

considered harmful to our health or the environment. 

 

6. Worldwide economic losses attributed to fungal disease 

In 2006 the annual fungicide market aimed at arable crops was estimated to be $7.2 billion [173]). Such 

massive expenditure is however offset by the economic gains arising from the increase in yields / 

productivity which are thought to have netted the farming industry $12 billion dollars in additional revenue. 

At a local level the impact of losing a crop can however be devastating, even when the industry as a whole 

performs well.  Currently the antifungal drug market is of comparable size, estimated to be about $11.9 

billion in 2007 [174].   

 

7. Current practice - antifungals and fungicides 

The design and implementation of effective antifungal / fungicide therapies is complicated by basic 

similarities in the cellular organization of pathogenic fungi and their hosts.  In a medical setting many 

antifungal drugs are quite toxic to patients; precluding their long-term use.  

Current antifungal treatments used in healthcare largely target essential processes at the fungal cell 

surface, such as plasma membrane or cell wall biogenesis. Several distinct classes of antifungal drug are 

currently available for the treatment of clinical fungal infections.  Novel antifungals are always under 

development, but the mainstays of treatment and the most widely used are azoles, polyenes, allylamines, 5-

fluorocytosine (5FC) and the echinocandins [76].  

The polyene antifungal amphotericin B (AmB) has been used clinically for over 30 years [77]. 

Formulating AmB with liposomes [78], and lipid complexes [79] has allowed the use of higher doses of 

AmB, which can be useful in the treatment of recalcitrant infections.   The primary mode of action of AmB, 

in common with other polyene antifungals is thought to arise from its affinity for ergosterol. Integration of 

AmB into the cell membrane results in the formation of aqueous pores, which lead to altered plasma 

membrane permeability which is subsequently accompanied by loss of mono- and divalent cations leading 

to cell death [80]. The minimal inhibitory concentrations (MIC90) of AmB for a variety of species of 

Candida range from 0.25-1 µg/ml [81], whilst the minimal fungicidal concentrations (MFC) may be up to 2 

fold higher. The fungicidal action of AmB makes it useful in the treatment of systemic candidiasis, 

Candida meningitis and ophthalmitis [76] as well as infections that are traditionally regarded as resistant to 

azoles eg C. krusei and C. glabrata.  Polyenes also have a strong affinity for host sterols, especially 

cholesterol [82], which is associated with a number of side-effects, most importantly renal toxicity 

precluding their use in long-term therapy [83].  Resistance to AmB can be intrinsic, with isolates of 

Candida luscitaniae commonly failing to respond [76].  Acquired resistance, though rare, has been 

described, and is linked to the selection of mutants that accumulate 3β-ergosta-7,22-dienol and 3β-ergosta-

8-dienol, which is  associated with a defect in sterol Δ5,6 desaturases [84,85]. Increased catalase activity 



has also been found to offset the oxidative (ROS) damage that accompanies AmB treatment of fungal cells 

which is thought to contribute to its fungicidal properties [86]. 

Azoles were discovered in the 1960s and have been the mainstay of antifungal therapies for a number of 

years. Two classes of azole antifungal drug have been developed, N-1 substituted imidazoles (eg 

ketoconazole, clotrimizole) and triazoles (eg fluconazole, itraconazole).  Azoles target the CYP51A1 

cytochrome P450 required for the 14α-demethylation of lanosterol [87] and the Δ22-desaturase involved 

with the desaturation of ergosta-5,7-dienol [88].  Nitrogen in the imidazole or triazole rings bind to the 

haem iron of cytochrome P450, inhibiting its action.  The interaction depends on the precise conformation 

of the enzyme, thereby affecting the range of species against which individual azoles are effective. Despite 

this, azoles do generally possess broad spectrum antifungal properties and are used in the treatment of 

Candida spp., Cryptococcal infections, H. capsulatum, Coccidioides immitis and dermatophytes. The 

incidence of resistance to front-line azole antifungals is however one of the major driving forces behind the 

need to develop new active agents.   

Exposure of fungi to 5-Fluorocytosine (5FC) leads to its uptake by cytosine permeases.  Once inside a 

cell, 5FC is deaminated to 5FU and then converted to a nucleoside triphosphate, which when incorporated 

into RNA causes miscoding.  5FU, itself is also converted to a deoxynucleoside, which can subsequently 

inhibit thymidylate synthase.  5FC is fungicidal, however its spectrum of activity is limited because of 

widespread resistance, which is greatest amongst Aspergillus and Candida species [89]. 5-FC is often used 

in combination therapy with AmB because of the rapid acquisition of resistance by treated infections.  

Combined therapies often show contradictory responses in vitro, but in vivo animal models of both 

candidiasis and cryptococcosis do generally respond well [90]. 

Allylamines were initially developed in the 1970's and include terbinafine, naftidine and structurally 

related compounds such as tolnaftate. The allylamines inhibit squalene epoxidase, the first enzyme in the 

committed stage of ergosterol biosynthesis.  Allylamines function as reversible, non-competitive inhibitors 

of squalene epoxidase which leads to ergosterol depletion.   

Terbinafine is fungicidal against filamentous dermatophytes, but is only fungistatic against Candida 

species.  Co-treatment of cells with calcineurin inhibitors eg cyclosporin A or FK506  can alter this balance 

promoting cell death, potentially expanding the utility of this drug [91]. 

Echinocandins, a class of cyclic lipohexapeptides are the most recent additions to the arsenal of 

antifungal drugs.  Echinocandins have been shown to act as non-competitive inhibitors of β-1,3 glucan 

synthase which is required for the synthesis of glucan polymers, a major component of the fungal cell wall.  

Caspofungin, the first commercially available form of echinocandin, displays fungicidal activity against 

Candida, Aspergillus, Histoplasma, Coccidioides and Blastomyces, however it lacks activity against 

Cryptococcus and many filamentous fungal pathogens.  Micafungin is fungicidal against yeasts [92], but 

only shows fungistatic properties against aspergilli.  Currently there are no reports of resistance developing 

against these drugs in a clinical setting.   



 Fungicides used in the treatment of plant disease are very diverse, targeted at both narrow and wide 

spectra of fungal pathogens.  Sulphur containing compounds and strobilurins inhibit the electron transport 

chain, the latter blocking ubiquinol-cytochrome c oxidoreductase of the cytochrome bc1 complex III [93].  

Copper fungicides, dithiocarbamates, substituted aromatics and organophosphorous compounds inhibit the 

activities of a wide range of enzymes and are relatively non-selective.  Benzimidazoles and phenylamides 

inhibit DNA and RNA synthesis respectively, whilst dicarboximides inhibit both.  Cyclopropane 

carboxamide carpropramid and phenoxyamide (AC382042) both target scytalone dehydratase and therefore 

inhibit the synthesis of melanin [94,95].  Azole antifungals are also commonly used in agriculture - 

potentially with the risk of the development of resistance to such agents amongst clinical isolates.   

 

8. Resistance to antifungals 

Resistance of pathogenic fungi to traditional antifungal therapies is a perennial problem and in some 

clinical situations is alarmingly high [57] making the identification of novel targets for antifungal therapy 

of some urgency.  Resistance to antifungal drugs has both clinical and microbiological components [76]. 

Successful therapy depends upon a number of factors that not only depend upon the activity of the 

antifungal therapy but also the pharmacokinetics of the drug in a patient, and the status of their immune 

system. Resistance can arise through inefficient / inappropriate dosing of patients, inappropriate selection 

of antifungals, or repeated exposure. In recent years there has been a significant shift towards the isolation 

of more resistant Candida species in hospitals such as C. glabrata. The administration of azole antifungals 

as a prophylactic treatment may be a significant contributor to this trend [96,97].   

 Ideally microbiological resistance will be predictive of clinical resistance, though this is often not the 

case.  Some fungi are intrinsically resistant to specific classes of antifungal drug eg, fluconazole is highly 

efficacious against C. albicans and C. parapsilosis, but C. glabrata and C. krusei are less susceptible [76].   

Low mammalian toxicity and environmental impact as well as low residues in food, and compatibility 

with integrated pest management programmes are very important features that are required of new 

antifungals. A balance between cost, potency and safety is a major goal for both the agrochemical and 

pharmaceutical industries developing new antifungal agents. 

 

9. Examples of PCD induced in pathogenic fungi by antifungal agents 

Liao et al. [98] examined physiological changes in C. albicans cells treated with AmB and described 

three patterns of death. Death was always accompanied by a drop in ATP level but could be subdivided on 

the basis of plasma membrane integrity and mitochondrial membrane potential. Later, Phillips et al. [36] 

found that AmB treated cells that were able to exclude propidium iodide and produced ROS corresponded 

to an apoptotic sub-population. Normal treatment of systemic candidiasis may therefore already reduce 

infection loads by initiating apoptosis.   

Protoplasts of A. fumigatus treated with 0.25-1 µg ml-1 AmB stain positive with annexin V, indicating PS 

translocation to the outer surface of the plasma membrane and also display dsDNA breakage, detectable 



with the TUNEL assay [99]. Propidium iodide staining (indicative of necrosis) is less than 20% at 0.25 and 

0.5 µg ml-1 AmB, but increases to 85% at higher doses. Pre-incubation of cells with cycloheximide 

prevents the appearance of apoptotic markers, indicating that killing requires active translation.  In contrast, 

cycloheximide is not able to prevent the formation of propidium iodide positive cells at 1 µg ml-1. Taken 

together this suggests that at low fungicidal doses, AmB is pro-apoptotic and at higher doses it is pro-

necrotic.  

Pradimicin A, a broad spectrum fungicidal antifungal agent which binds to mannan residues in the cell 

wall [100], also induces apoptosis-like cell death in S. cerevisiae [101]. Nuclear fragmentation and DNA 

damage have been observed in yeast cells treated with Pradimicin A, accompanied by an accumulation of 

reactive oxygen species (ROS).  Pradimicin-induced cell death and the accumulation of ROS are prevented 

by free radical scavengers, suggesting some dependency between the two. 

Translational inhibitors such as the phenanthrolines have been shown to kill both mammalian and C. 

albicans cells [102]. Mammalian cells exposed to phenanthrolines show hallmarks of apoptosis, whilst C. 

albicans cells accumulate ROS and display elevated oxygen consumption rates. Nuclear disruption, 

including enlargement and formation of crescent shaped bodies, has been observed after treatment of yeast 

cells with some (though not all) silver, copper and manganese metal 'phen' complexes   The production of 

ROS in the absence of DNA damage could imply that ROS play a primary role as a signal of apoptosis and 

do not act directly as the DNA damaging agents.   Killing by these translational inhibitors may involve a 

reduction in the levels of cytochrome b and c and the associated uncoupling of respiratory function which 

might contribute to the formation of pro-apoptotic ROS. McCann et al. [103] found that phenanthrolines 

lowered the ratios of reduced:oxidised glutathione, consistent with a pro-oxidant role for the effects of 

these drugs. 

  A number of natural antifungal proteins have been found to exert their killing effect by induction of 

apoptosis like cell death. Osmotin, a member of the PR-5 family of plant defence proteins isolated from 

tobacco [104]; the basic, cysteine-rich antifungal protein PAF from Penicillium chrysogenum [105]; 

Dermaseptins from amphibian skins [106,107] and virally encoded yeast killer toxins [108] all appear to 

induce apoptosis in fungi. RsAFP2 an antifungal peptide isolated from Raphanus sativus interacts with 

glucosylceramides in membranes of fungi resulting in the production of ROS and the death of C. albicans 

cells [109]. Salivary histatins, short histidine rich peptides have also been shown to display both fungistatic 

and fungicidal activity against a range of Candida species[110]. Wunder et al.[110] concluded that histatins 

did not induce apoptosis in C. albicans since they could not find any evidence of DNA laddering or the 

release of cytochrome c when isolated mitochondria were treated with histatin 5. Although elevated levels 

of ROS were detected following the exposure of cells to histatin 5 or the intracellular expression of an Hst 

5 construct, the reduction in viability of SOD1/2 mutants of S. cerevisiae or SOD1 mutants of C. albicans 

was the same as wild type strains leading the authors to conclude that ROS production merely accompanied 

the death response, rather than contributing significantly to its fungicidal activity., The significant delay in 

killing that occurs after treatment has begun does still suggest that histatins might induce some form of 



PCD [36, 111]. Indeed, whilst the results of Wunder et al. [110] indicate that the primary mode of action of 

histatins is not the release of cytochrome c from mitochondria, the failure to detect PCD might be due to 

the fact that canonical markers of apoptosis were not examined in intact cells.   

Some antifungal drugs in some species do however appear to operate quite independently of apoptotic 

mechanisms. For example treatment of protoplasts of A. fumigatus with itraconazole or A. nidulans with 

aureobasidin A, AmB or itraconazole does not induce apoptosis [99, 112]. Furthermore, fluconazole 

toxicity has been shown to be independent of known apoptotic mechanisms in yeast, though this was only 

tested in the context of a failure of heterologously expressed Bcl-2 to inhibit killing and death 

characteristics per se were not addressed [113]. 

Finally, radio-labelled monoclonal antibodies have been used to treat C. neoformans and H. capsulatum 

infections [114].  An examination of the susceptibility of these species to 213Bi and 188Rd indicated that 

whilst both species were quite resistant, doses over 4 kGy produced apoptotic changes and killing.   

 

10. Studies of PCD in pathogenic fungi 

Direct studies of apoptosis-like cell death in pathogenic fungi have given us some insights that are not 

possible when looking at model fungi such as Saccharomyces cerevisiae in isolation. For example isolates 

of Colletotrichum gloeosporioides, a pathogen of the weed Aeschynomene virginica, display enhanced 

longevity when expressing the anti-apoptotic Bcl-2 protein [115]. Cells are also protected from Bax-

induced cell death, and exhibit enhanced stress resistance - all generally consistent with similar experiments 

in yeast [116].  However the isolates also show enhanced mycelium production and conidiation, and are 

hypervirulent to host plants.  The endogenous apoptosis-related cell machinery may therefore be important 

for regulating morphogenetic switches, which are critical for proper responses and adaptation of fungal 

pathogens to different environments [10].  

C. albicans activates a PCD response (with features reminiscent of apoptosis and necrosis) in response 

to a variety of environmental stimuli such as acetic acid, hydrogen peroxide as well as AmB [36].  This 

fungal PCD response is characterised by the rapid appearance of several classical apoptotic markers 

observed in mammalian cells including a loss of cell viability accompanied by the exclusion of the vital dye 

propidium iodide; sustained oxygen consumption and metabolic activity during cell death; the production 

of ROS in apoptotic cells (indicated by oxidation of dihydrorhodamine); the condensation of chromatin at 

the nuclear margin (visible with DAPI staining and TEM) and the accumulation of DNA breaks (as 

revealed by TUNEL positive staining).  The exposure of PS on the outer surface of the plasma-membrane 

(as revealed by annexin-FITC labelling) has also been observed.  In late stages of cell death, cells lose their 

ability to exclude propidium iodide linked with the onset of secondary necrosis.  Currently, we know very 

little about the effector molecules that are associated with the onset of PCD in pathogenic fungi.  Using the 

power of functional genetics in fungi it has been possible to ascertain the extent to which individual 

signalling pathways are necessary, or sufficient for PCD - taking us a step closer to the possible 

development of antifungal drugs that stimulate PCD. 



 

11. PCD related signalling pathways in pathogenic fungi 

Biella et al. [117] reported that the response of the chestnut blight fungus Cryphonectria parasitica to 

infection with a viral dsRNA hypovirulence factor resembled PCD. Using microarrays to look for genes 

that were differentially regulated following infection with the virus, 295 sequences (out of 2,200) were 

found with changed abundance [118].  Using differential display, Chen et al. [119] observed that 65% of 

the global changes initiated by viral infection could be reproduced by manipulating G-protein and cAMP 

signalling pathways – indirectly supporting a link between death responses and Ras-cAMP-PKA activity in 

fungi.   

Direct evidence of Ras-cAMP-PKA involvement in fungal cell death responses comes from studies of a 

number of pathogens including Colletotrichum trifolii (a pathogen of alfalfa) and C. albicans. In C. trifolii, 

expression of a hyperactive oncogenic fungal Ras protein (DRas) elevates the production of ROS leading to 

abnormal fungal growth and apoptosis-like cell death when grown under nutrient deprived conditions 

[120].  Addition of antioxidants such as N-cysteine, diphenylene iodonium, or proline can however rescue 

cells from undergoing apoptosis.  Proline was found to have a general suppressive effect as a ROS 

scavenger, perhaps mediated by an increased level of catalase activity in addition to a well characterized 

role as an osmolyte.  

In C. albicans, mutations that block Ras-cAMP-PKA signalling (ras1∆, cdc35∆, tpk1∆, tpk2∆) suppress 

or delay the apoptotic response induced by weak acid exposure [121].  In contrast mutations that stimulate 

signalling (RAS1val13 or pde2∆) accelerate the rate of entry of cells into apoptosis when cells are treated with 

low doses of weak acid.  Pharmacological stimulation of the Ras-cAMP-PKA pathway (either with 

dibutyryl cAMP, caffeine, or forskolin) enhances killing, whilst inhibition of Ras with lovastatin reduces 

apoptotic cell death.  Transient increases in endogenous cAMP occur under conditions that stimulate 

apoptosis, but not stress or growth arrest indicating that there may be a separation of the activity of the Ras-

cAMP-PKA pathway under stress and death inducing conditions. 

Studies of the response of S. cerevisiae cells treated with the plant defence molecule osmotin, shed more 

light on this idea, since the production of ROS, expression of antioxidant proteins and the apoptotic 

response are partially dependent upon an induced suppression of the RAS2/cAMP pathway [104]. 

RAS2G19V, a dominant active allele of Sc RAS2, increases sensitivity of cells to osmotin and a null mutant 

shows reduced sensitivity. The response can be linked specifically to the Ras-PKA rather than the Ras-

MAPK signalling pathway because the effects of the dominant active allele are also seen in a ste20 

background. Consistent with osmotin induced Ras-PKA signalling, a bcy1 null, with constitutively active 

PKA activity, exhibits significantly increased sensitivity to osmotin.  De-repression of STRE-dependent 

transcriptional responses in ras2 mutants [122] might account for the elevated resistance of RAS2 nulls to 

stress treatments - a view further supported by the finding that during osmotin induced PCD, both STRE-

element and YRE-reporter constructs are repressed [104].  It might therefore be argued that the balance 

between stress and apoptotic signals determines cell fate, and that osmotin stimulates pro-apoptotic ROS 



production via the activation of the RAS2/cAMP pathway which in turn inhibits YRE (Yap1-dependent) 

and STRE-mediated antioxidant stress response 

Over-expression of plant defence molecules induces a hyper-branching phenotype or the formation of 

spiral hyphae [104] and growth inhibition per se has long been linked to altered patterns of hyphal 

branching [123, 124]. Ras-signals have been linked to morphogenesis in a number of fungi (see [125] for a 

review), however a study of the link between death and morphogenesis in C. albicans showed that it could 

not be attributed to any of the known signalling pathways (EFG1, RIM101, TEC1, CPH1) that contribute to 

morphogenesis [36]. Morphogenesis could however require the integration of many signals and pathways, 

including Ras under the specific conditions examined. 

G-protein signals have been linked to apoptosis of Aspergillus nidulans induced by osmotin and the 

antifungal protein PAF, a small basic cysteine rich antifungal protein produced by Penicillium 

chrysogenum [105].  PAF-treatment induces hyperolarization of the cell membrane  which is accompanied 

by PS exposure, ROS production and a TUNEL positive phenotype. A dominant-interfering mutant of 

fadA, which leads to constitutive inactivation of heterotrimeric G-protein signals [126] confers resistance to 

both osmotin [127] and PAF [105].   

Few studies of pathogenic fungi have looked at signalling pathways other than Ras. However, several 

lines of evidence suggest that Ca2+/calmodulin/calcineurin signals might affect the fungal death response. 

In S.cerevisiae apoptosis induced by pheromone treatment and salt stress have been shown to be influenced 

by mutations in calmodulin / calcineurin signalling pathway [128,129]. In addition, azole activity against S. 

cerevisiae is reduced by the addition of Ca2+ and enhanced by the addition of EGTA [130]. Inhibitors of the 

Ca2+ binding regulatory protein calmodulin such as fluphenazine, calmidazolin and W-7, as well as 

inhibitors of Ca2+-dependant calmodulin-regulated phosphatase, calcineurin (cyclosporin and FK506) 

enhance azole activity. Consistent with these findings mutations that constitutively activate calcineurin 

demonstrate reduced azole susceptibility. When CRZ1 (a transcription factor regulated by calcineurin) is 

disrupted cells also show enhanced azole sensitivity - clearly indicating that the cell integrity pathway is 

important for the action of these drugs.    

Sanglard et al. [131] reported that FK506 treatment of fluconazole treated C. albicans cells induced a 

fungicidal, rather than a fungistatic response, which could have very important ramifications for future drug 

therapy regimens. Deletion of CYP1 prevented the fungicidal activity, implying that a cyclophilin was 

essential for fluconzaole toxicity. A similar effect of FK506 has recently been reported in Aspergillus 

fumigatus when cells are treated with caspofungin or nikkomycin Z [132]. 

Using nested, iterative PSI-BLAST searches, Uren et al. [133] identified a family of caspases, 

metacaspases and paracaspases in plants, animals and fungi. In fungi several metacaspases have been 

found; whilst S. cerevisiae, C. albicans, S. pombe and have single metacaspase encoding genes 

(YCA1/MCA1 and PCA1 respectively), A. fumigatus, A. nidulans and N. crassa appear to have two each 

[99,112,134,135]. Many studies have now shown that apoptosis in yeast may be dependent upon the 



activity of the metacaspases [39, 136-138].  In some scenarios however the apoptotic killing response does 

appear to be metacaspase independent [40,41,139,140].   

To date experimental studies of the role of metacaspases in the cell death response of pathogenic fungi 

have been limited to Aspergillus fumigatus [43,44]. Stationary phase cultures of A. fumigatus exhibit strong 

intracellular activity against substrates specific for caspase-1 and -8 and the development of an apoptotic 

phenotype is blocked by Z-FAD-fmk. However deletion of both casA and casB, the two genes encoding the 

mtacaspases, had little effect on measurable caspase activity, viability of hyphae or pathogenicity [44].  PS-

exposure in the double knock-out strain was strongly abrogated, leading Richie et al [44] to explore other 

possible functions for the casA and casB genes, including a role in endoplasmic reticulum homeostasis.  

Other "non-classical" cell death pathways may be linked to the death of fungal cells and tissues.  The 

development of turgor pressure in appressoria in the rice-blast fungus Magnaporthe grisea is a prerequisite 

for pathogenicity [141,142] and recently this process has been shown to be reliant upon the autophagic 

death of the germinating spore [45].  Moreover, knock-out mutants of MgATG8 arrest conidial death, and 

prevent pathogenicity, showing that the blocking of a fungal cell death response, rather than its stimulation, 

can also lead to control.  Blocking of fungal PCD might also be useful is the control of many other fungi, 

including the economically important rust fungi.  Whilst there have been no overt studies of PCD in rusts, it 

is evident that in some situations the death of support cells in rusts is essential for the dispersal of others 

[143]. Specifically terminal aeciospores are normally separated by dead suspensor cells. Clearly prevention 

of this step (blocking death) could prevent dissemination of this important group of pathogens. 

 

12. Genetic screens for potential antifungal drug targets 

In an ongoing exploration, some 30 fungal genomes have been fully sequenced, which currently 

includes 18 hemiascomycetes, 8 euascomycetes and 4 basidiomycetes [144].  In total, 17 of these 

sequenced genomes are from fungal pathogens, with the long term prospect that many more will be 

sequenced in the future.  This enormous bioinformatic resource is now being explored by the 

pharmaceutical and agrochemical industries in the search for genes, conserved between species, that might 

be useful targets for future antifungal drug therapies.  Potential drug targets are typically prioritized in 

terms of their degree of essentiality, broad-spectrum potential, drug target potential, fungal specificity, 

availability of functional assays, and amenability to high-throughput screening [145]. 

Recognizing the need for broad-spectrum antifungals, Liu et al [145] identified 240 putative antifungal 

targets that were conserved among 10 fungal species in order to develop a system to identify target-specific 

inhibitors. Essentiality for a selection of the genes was then determined in C. albicans using a repressible 

CaMET3 promoter. The value of this approach is that not only is the target known a priori, which helps 

with the subsequent phase I development of the drug  or fungicide, the impact of down-regulating the gene 

can be directly assessed.  The use use of dominant selectable markers (eg NAT1 conferring resistance to 

nourseothricin) and in vivo regulatable doxycycline-sensitive promoters (eg the GRACE™ strain collection 

of C. albicans,[146]) is particularly attractive for the validation of the essentiality of targets prior to drug 



screening.   Such bioinformatic screens have yet to produce clinically useful drugs, though the potential is 

clearly there [147]. 

Expression of pro-apoptotic members of the BCL-2 family of proteins, Bax and Bak, have been shown 

to kill yeast cells, and cell death is typically associated with an apoptotic phenotype [148-150]. Expression 

of a codon-optimized BAX gene in Candida albicans has been found to result in growth inhibition and cell 

death. By fusing Bax with GFP, the cell death-inducing effect of Bax was increased due to reduced 

proteolytic degradation of the Bax protein [151]. However, not all fungi respond in the same way to 

heterologous pro-apoptotic proteins, with expression of Bax in Pichia pastoris leading to growth arrest 

accompanied by the condensation of chromatin, and the accumulation of autophagic bodies [152], but no 

other apoptotic features.  

In the search for novel antifungal drug targets we shouldn't just restrict our search to essential genes, or 

to studying the effects of the expression of heterologous pro-apoptotic proteins since the over-expression of 

many endogenous genes can also lead to growth arrest / cell death.  Such genes are involved with many 

different biological processes but notably include components of the cytoskeleton [153-156] and a variety 

of signal transduction pathways [157-161]. In genome wide library screens using cDNA or genomic clones, 

lethal effects have been observed for ABP1, ACT1, ARF2, ATE1, AUA1, BIK1, BNI1, BOI1, ERG6, GCL17, 

HSF1, KAR1, MCM1, NHP6A, NHP6B, NPS1, NSR1, NTH1, PRK1, PSP1, RBP1, RHO1, STE4, STE11, 

STE12, SAC7, SEC17, SIR1, SNU114, SRP40, TPK1, TPK3, TUB1 and URA2 [162-165]. Whilst the 

induction of PCD has not been explicitly studies in these investigations, it is intriguing to note that both 

BNI1 (Gin2) and BOI1 (Gin7) produce cells with multiple DAPI staining bodies - perhaps hinting at 

evidence of nuclear fragmentation and apoptosis [165]. Often death in an over-expression screen will not 

due to the increased activity of a dedicated pro-death protein, but due to an imbalance in some unrelated 

critical process, nevertheless, such screens could provide a useful starting point to look for pro-death 

functions. 

The majority of studies of essential genes, or genes that when over-expression prevent growth, have not 

so far discriminated between the responses that are lethal and those that merely cause growth arrest.  It may 

therefore be of considerable value to ascertain the degree to which shutting off/inducing gene expression 

induces killing, and of course by what route. Performing screens under conditions that stimulate PCD may 

also allow antagonists of PCD to be identified that have anti/pro-apoptotic properties. Indeed, we can 

speculate that many of the ‘essential’ genes that have been described in fungi may have such anti-apoptotic 

roles. 

A final area that could be explored further in the search for novel antifungals that stimulate fungal PCD 

relates to the response of a fungal pathogen to its host during infection, in particular the events that 

accompany its clearance by the host immune system (plant or animal).  C. albicans infections are 

controlled in immuno-competent individuals through the activity of both the innate and adaptive immune 

system; indeed defects in the innate immune system are often responsible for predisposing patients to 

disseminated disease.  Macrophages and neutrophils provide some of the primary lines of defence, 



consequently their interaction with C. albicans cells has been the subject of a large number of studies (see 

review in [166]).  It is apparent that the interaction results in a major re-organization or re-programming of 

the transcriptional activity of both the host [167-169] and fungal cells [170, 171].  Recently Fernandez-

Arenas et al. [172] produced a model, based upon combined proteome and transcriptome data obtained 

from C. albicans cells ingested by RAW264.7 macrophages, indicating that the changes observed in the 

actin cytoskeleton and mitochondrial functioning could be associated with the onset of two distinct 

pathways of killing; autophagic death or apoptosis.  Clearly, further work needs to be undertaken to unravel 

the nature of the killing mediated by immune cells, but the information obtained could prove to be very 

useful in designing therapies that manipulate the delicate balance between a pathogen and its host. 

 

Conclusion 

This review has examined what little we do know about the cell biology of death responses in 

pathogenic fungi and shows how a combination of cell biological approaches, functional genetic analyses, 

genetic screens and global profiling technologies may just begin to unravel this important, but neglected, 

aspect of fungal growth and development. Furthermore, the existence of a number of discrete endogenous 

cell suicide pathways in fungi might be usefully exploited in the search for and design of novel therapies in 

the future. 
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