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Introduction 

Fasciola hepatica is an important digenetic trematode common in ruminant livestock 

and increasingly causing infection in humans [1].  The infective life stage of the 

parasite, the metacercariae, excyst from a dormant state following ingestion by the 

host and penetrate the intestinal wall before migrating to the liver.  They cause 

extensive damage to the liver prior to moving into the bile ducts.  The flukes pass the 

bile duct walls and develop into their mature form that lives in the microenvironment 

of the bile ducts.  The developing and migrating parasite is exposed to reactive 

oxygen species generated by the host effector cells such as macrophages, neutrophils, 

eosinophils and platelets [2, 3].  These cells generate free radicals via the oxidative 

burst and are thought to contribute to the killing of parasites by the host [3, 4, 5].  

Previous studies have shown the presence of CuZn superoxide dismutase (SOD) 

activity in the excretory-secretion (ES) products of both immature and adult flukes 

[6], however, to date no catalase or glutathione peroxidase enzymes have been 

detected [7]. The action of SOD results in the production of hydrogen peroxide, which 

can readily diffuse widely and is potentially more damaging than superoxide.  It is 

thought that the peroxiredoxin (Prx) and thioredoxin (Trx) enzyme system fulfils the 

role of peroxide metabolism in Fasciola, as proposed by McGonicle et al [8].  

Fasciola Prx has been associated with protection against the by-products of aerobic 

metabolism [9] and the natural electron donor of this enzyme is Trx.  Trx is a 

ubiquitous small protein (typically around 12 kDa) which contains a redox active 

disulfide.  Reducing equivalents ultimately come from NADPH, via the flavin 

dependent enzyme thioredoxin reductase (TrxR).  Reduced Trx is known to interact 

with and reduce a number of proteins and metabolites.   

 



All members of this protein family have a similar structure, the Trx fold, which has a 

central five stranded  sheet surrounded by four  helices.  Classical Trxs have the 

active site motif containing the conserved cysteine residues (Trp-Cys-Gly-Pro-Cys) 

which is located between  strand 2  and  helix 2 [10].  Trx is essential to a number 

of cellular functions and is an important protein in protection against oxidative stress.  

It supplies reducing equivalents to a number of enzymes such as Prx, ribonucleotide 

reductase and also reduces cysteine residues in other proteins [11], including 

transcription factors which result in their increased binding to DNA [10].  

 

The human Trx1 oxidising activity has been shown to be regulated by a number of 

factors in different cells.  In endothelial cells the S-nitrosylation of residue C69 has 

been shown to be essential for the apoptotic function and redox regulation of Trx1 

[12].  Additionally, during oxidative stress residue C73 has been shown to be 

glutathionylated, reducing the Trx activity [13].   A further disulfide motif between 

residues C62 and C69 has also been identified in human Trx1 which can impair Trx 

activity during redox signalling and oxidative stress, allowing for more time for the 

sensing and transmission of the oxidative signal [14].    

 

F. hepatica Trx was identified as a tegumental antigen being present on both juvenile 

and adult worm stages of Fasciola [15].  The 12kDa protein was subsequently cloned, 

over expressed and functionally characterised [16].  Here we describe the x-ray 

crystal structure of this recombinant thioredoxin protein solved to 1.45 Å.   



Materials and Methods 

Protein Sample and Crystallisation 

A BamHI restriction fragment from plasmid pGEX-TRX [16], containing the F. 

hepatica Trx coding sequence, was cloned into plasmid pQE30 previously digested 

with BamHI, resulting in pQE-FhTrx expression vector. The correct orientation of the 

cDNA insert was investigated by restriction analysis and nucleotide sequencing.   

Recombinant Trx was expressed and purified from E. coli BL21 cultures transformed 

with pQE-FhTrx vector and induced for 3 hours with 0.2 mM isopropyl-β-D-

thiogalactoside at 37°C.  Cells were harvested by centrifugation, suspended in cold 

phosphate saline buffer (PBS) and then lysed by sonication. The extract was clarified 

by centrifugation and loaded onto a Ni-Sepharose column equilibrated in 0.1 M PBS 

buffer pH 7.0.  The column was serially washed with PBS containing increasing 

concentrations of imidazole and the recombinant Trx was finally eluted with 400 mM 

imidazole. The pooled fractions containing recombinant Trx were dialyzed against 50 

mM potassium phosphate buffer, 140 mM sodium chloride, pH 7.4.  Protein was 

precipitated by 70% (saturation) ammonium sulfate for the purpose of storage and 

shipment.  The precipitated protein was resuspended in 50 mM potassium phosphate 

buffer, 140 mM sodium chloride, pH 7.4 and dialysed against the same buffer to 

ensure removal of all of the ammonium sulfate.  The recombinant protein was 

concentrated to ~ 9 mg/ml in 50 mM potassium phosphate buffer, 140 mM sodium 

chloride, pH 7.4 using Amicon Ultra-4 5000 molecular weight cut off (MWCO) 

centrifugal filtration devices (Millipore).  Crystals were successfully grown by vapour 

diffusion using the Molecular Dimensions Limited Structure Screen 1, condition 

number 32 (0.1M Tris-HCl pH 8.5 and 2 M ammonium sulfate).  Crystallisation trays 

were incubated at 19 C and crystals grew within 5 days.  Crystals were harvested 



into a cryo-liquor containing 0.1M Tris-HCl pH 8.5, 55% (saturation) ammonium 

sulfate and 30% (v/v) glycerol, and flash frozen in liquid nitrogen.   

 

X-ray data collection, processing, structure solution and refinement 

The crystals diffracted to 1.3Å resolution and were found to belong to the space group 

P21 with the unit cell parameters a = 32.67 Å, b = 34.59 Å, c = 40.38 Å,   =  =  90 ° 

and  = 106.3 °. Data were collected at the BW6 beamline of HASYLAB (DESY, 

Hamburg) under cryo-cooled conditions (100  K).  Data to 1.45 Å resolution were 

processed, and scaled using the programs DENZO and SCALEPACK [17].  The 

Fasciola Trx structure was solved by molecular replacement using the program 

BABEL [18,19].  The solution chosen used the search model 2fa4, the 2.38 Å 

thioredoxin structure from Saccharomyces cerevisiae [20].  Refinement was carried 

out using the program REFMAC 5.2 [21].  The model building was performed using 

COOT [22].  Structure analysis was carried out using COOT [22] and PyMol [23].  

The root mean squared standard deviations (RMSDs) between different structures 

were calculated using the program O [24]. The structure has been deposited at the 

wwwPDB and assigned the code 2vim. 

 



Results and Discussion 

Structural analysis and quality of the model 

The crystal structure of the recombinant Fasciola Trx has been determined at 1.45 Å 

resolution.  The data and refinement statistics are shown in table 1.  The asymmetric 

unit contains a monomer.  The final R  value is 0.19 and the Rfree value 0.24 with good 

stereochemistry.  91.5% of the residues fall within the allowed regions of the 

Ramachandran plot as defined by PROCHECK [25]. The remaining 8.5% of residues 

fall into the additionally allowed regions. All amino acid residues could be located in 

the electron density and the side chains of residues Cys31, Cys34, Glu50, Glu62, 

Ser69, Met73, Asp81, and Lys 95 were found to occupy two positions.  The side 

chain of Ser89 was found to occupy three positions.  106 water molecules were 

modelled. 

 

Overall structure 

The overall structure of Fasciola Trx is shown in figure 1, and the secondary structure 

elements are indicated on the sequence alignment shown in figure 2.  The general fold 

consists of a five stranded -sheet surrounded by four -helices (--------).  

The molecular architecture of this Trx is similar to that seen in the structures of 

previously studied Trx proteins.  There is a cis peptide between Met73 and Pro74.  

Many Trx fold proteins contain a conserved cis proline at this position which is 

thought to prevent the binding of metals to the active site thiolates [26].  As the F. 

hepatica Trx sequence only has the two catalytic cysteine residues (C31 and C34) it is 

unlikely that this Trx enzyme is involved in the regulatory processes seen for the 

human Trx counterpart. These additional cysteine residues are conserved in the Trx 

sequences found in the bovine and ovine host animals indicating that the Trx proteins 



from these organisms are involved in similar regulation processes to those seen in the 

human system.   

 

Active site 

The active site of Trx enzymes contain a redox active cysteine pair (Cys31 and 

Cys34) which can be in the oxidised disulfide state or in the reduced dithiol state.  

The electron density of the Fasciola Trx structure shows the cysteine residues in both 

the disulfide and dithiol states (figure 3a and 3b).  In the dithiol form the S

 atoms are 

at a distance of 3.44 Å and in the disulfide form a distance of 2.23 Å.  There appears 

to be only a small conformational change of the cysteine side chain positions in order 

to change between the two oxidation states.  Cys31 C has a movement of 0.39 Å and 

the S
 
atom rotates by 5.26° about C, resulting in a movement of a distance of 0.8 Å 

between positions.  Residue Cys34 has a smaller movement, the C has a movement 

of 0.12 Å and the S
 
atom rotates around C by 1.65° resulting in a movement of 0.5 

Å between positions.  Cys31 is exposed at the protein surface whereas Cys34 is in a 

more buried position.  Cys34 S
 

atom in the dithiol state is at a distance of 3.39 Å 

from water molecule 71.  Cys31 S
 

atom in the dithiol state is hydrogen bonded to 

water molecule 66 at a distance of 2.72 Å.   

 

Comparison with other Trx structures 

The F. hepatica Trx structure was found to be similar to other Trx structures and the 

RMSDs to the F. hepatica Trx are shown in table 2.   The sequence identities of these 

proteins to F. hepatica Trx as calculated by BLAST [27] are also shown in table 2 and 

an alignment is shown in figure 2.  Also shown in the alignment are the Trx sequences 

from two host animals Bos taurus and Ovis aries.   



The positions of the active site Cys residues are similar to those seen for other 

structures of Trx showing both disulfide and dithiol oxidation states.  The active site 

contains a conserved Trp residue which is present in the conserved Trx motif 

sequence (WCGPC).  This residue is on the surface of the protein, and in most Trx 

structures is found to form a flat surface close to the active site [32].  In the T. brucei 

structure this residue is flipped out and interacts with a neighbouring protein molecule 

in the crystals [32], demonstrating that the Trp residue can adopt different 

conformations; possibly when the Trx is interacting with one of it’s redox partners 

[32].  In the F. hepatica Trx structure Trp30 is positioned so as to form a flat surface.  

In all of the structures listed in table 2 with the exception of the T. brucei structure, 

this residue is positioned with the side chain flat to the protein surface.   

 

Trx proteins generally contain a conserved Asp residue in the active site behind the 

more buried Cys residue.  Most of the Trx structures that show this conserved Asp 

residue also have a water molecule bonded to one of the Asp carboxylate oxygen 

atoms.  In F. hepatica Trx both carboxylate oxygen atoms of Asp25 are bound to 

water molecules; water 71 is 2.6 Å from atom OD1 and water 13 is 2.6 Å from atom 

OD2.  The most conserved water of these two in the other structures shown in table 2 

is water 13, with an equivalent water molecule being found in the Trx structures PDB 

1xwa, 1ert, 1xwb, 1xw9, 1xwc and 2fa4, that are all at a distance between 0.29 Å and 

1.1 Å from the position of water 13.  The T. brucei protein (PDB 1r26) does not have 

the conserved Asp residue, having a Tyr residue instead and has a water molecule 

positioned between the positions of water 13 and water 71 of the F. hepatica Trx 

structure.  In the F. hepatica Trx structure Cys31 S
 

atom in the dithiol state is 



hydrogen bonded to water molecule 66, which does not seem to have equivalent water 

molecules in any of the structures shown in table 2. 

 

In the Drosophila melanogaster Trx structures, residue Phe28 was seen to move over 

the active site Cys35 in two of the oxidised state structures [31].  The authors propose 

that in this position the Phe residue may be blocking movement of Cys35 when the 

side chain of C32 approaches during oxidation [31].  In most structures the equivalent 

Phe residue side chain is found to be positioned away from the active Cys pair, as is 

the case in the F. hepatica Trx structure (Phe27).  In The human Trx1 protein the 

equivalent residue at this position is a Ser (Ser28) and in the T. brucei Trx the 

equivalent residue is a Thr (Thr26). 

 

 

 

Summary 

This study has provided detailed structural analysis of the F. hepatica Trx which has 

demonstrated the subtle conformational changes associated with its oxidation from the 

free thiol to the disulfide form.  This information provides a useful comparison with 

the human Trx protein, and by sequence identity to the Bovine and Ovine Trx’s, the 

hosts of the parasite.  Further studies are in progress to investigate the detailed 

interaction of the F. hepatica Trx and the peroxiredoxin to understand details of the 

oxidative stress response induced during the parasite infective cycle.  

Despite having 66% sequence identity the RMSD of the F. hepatica and the human 

Trxs is very similar at 0.57 (reduced) and 0.6 (oxidised).  The F. hepatica Trx crystal 

structure shows a mixture of both oxidised and reduced cysteines within the same 



crystal, demonstrating the small conformation changes between these two states.  This 

is the only Trx structure that shows both the oxidation states in the same structure.   

Interestingly the F. hepatica Trx structure shows highest identity to the human and 

therefore higher eukaryote Trx structures than to those of lower eukaryote organisms. 

This study has allowed a detailed structural comparison of the Trx protein from F. 

hepatica with Trxs from two other parasites. It also provides a comparison with the 

host Trx proteins from human, and by high sequence identity, to bovine and ovine 

species. The study has shown that the F. hepatica Trx crystal structure is most similar 

to the Trx from the human host. The F. hepatica Trx resembles other lower eukaryotic 

Trxs in that it does not have additional cysteine residues present in the host Trxs that 

are proposed to be involved in regulatory processes associated with higher eukaryotes.  

Further studies providing information on protein/protein complexes of Trx with other 

proteins from both the parasite and host will provide additional information regarding 

the role of the F. hepatica Trx in oxidative stress and parasitic adaptation.  
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Figure legends 

Figure 1 Cartoon representation of F. hepatica Trx with secondary structure elements 

labelled in addition to the N and C termini. The figure was generated with PyMol 

[23]. 

 

Figure 2  Clustal alignment of Trx sequences from F. hepatica, B. taurus, O. aries, H. 

sapiens, S. cerevisiae, D. melanogaster, T. brucei  and P. falciparum.  Identical 

residues are in shaded blocks, similar residues are in outlined boxes.  Secondary 

structure elements of the F. hepatica Trx are shown above the alignment.  The 

asterisks above residues indicate sidechains which have a second position in the 

structure and the 1 below the cysteine residues indicates the presence of a disulfide 

bond.  The figure was generated in ESPript [26]. 

 

Figure 3 (a)   Stereo view of a cartoon representation showing the active site cysteine 

residues (labelled) in the disulfide oxidation state. The secondary structure elements 

are shown in green, the cysteine residues are shown as sticks with the sulfur atoms 

coloured yellow.  The figure was generated with PyMol [23].  (b)  Stereo view of a 

cartoon representation showing the active site cysteine residues (labelled) in the 

sulfoxide oxidation state. The secondary structure elements are shown in green , the 

cysteine residues are shown as sticks with the sulfur atoms are coloured yellow.  The 

figure was generated with PyMol [23]. 

 



Table Legends 

Table 1 Summary of data collection and refinement statistics. 

 

Table 2   Structural alignment RMSD and sequence identities for different Trx 

structures versus the F. hepatica Trx 

Table 1 

Summary of data collection and refinement statistics 

 

 

Space Group     P1 21 1 

Unit cell parameters  (Å)  a = 32.67, b = 34.59, c = 40.38,  

  =  =  90° and  = 106.3° 

Resolution Range (Å) 38.69 – 1.38 

Completeness (%) 89.65 

Rsym (last shell) 0.072 (0.488) 

<I>/<I> (last shell) 10.75 (0.87) 

Redundancy 2.4 

Unique reflections 16069 

B-factor of data from Wilson plot (Å
2
) 25.94 

Final Rcryst (%) 19.2 

Rfree (2.0% total data: %) 24.8 

No. of protein residues 104 

Average B-factor (protein: Å
2
) 24.22 

No. water molecules 103 

Average B-factor (water: Å
2
) 40.37 

Rms deviations from ideality
a
   

    Bond lengths (Å)  0.017 (0.022) 

    Bond angles (º)  1.679 (1.968) 

B-factors correlation (Å
2
)

a
   

    Main-chain bond  2.627 (4.0) 

    Main-chain angle  3.696 (6.0) 

    Side-chain bond  4.860 (8.0) 

    Side-chain angle  7.357 (10.0) 

    
 

Rsym=  | I - <I>| /  I , Rcryst =  | | Fo | - | Fc | | /  |Fo| where I is the intensity of the 

reflection. 

a  
Target values are given within parentheses. 

 

 

 



 

 

Table 2 

PDB Organism RMSD No C 

atoms 

Sequence 

identity (%) 

Reference 

2fa4 S. cerevisiae 0.79 103 48 18 

1ert 

(reduced) 

H. sapiens 0.57 104 66 35 

1eru 

(oxidised) 

H. sapiens 0.60 104 66 35 

1xwa D. melanogaster 0.88 104 45 36 

1r26 T. brucei brucei 1.12 101 43 37 

1syr P. falciparum 1.02 103 39 38 
 

 

 

 



Figure 1 

 

 

 



Figure 2 



Figure 3 

 

10 20 30 40 50 60
....|....|....|....|....|....|....|....|....|....|....|....|

Fasciola hepatica -MRVLATAADLEKLINENKGRLIVVDFFAQWCGPCRNIAPKVEALAKEIP-EVEFAKVDV

Bos taurus MVKQIESKYAFQEALNSAGEKLVVVDFSATWCGPCKMIKPFFHSLSEKYS-NVVFLEVDV

Ovis aries MVKQIESKYAFQEALNSAGEKLVVVDFSATWCGPCKMIKPFFHSLSEKYS-NVVFLEVDV

Homo sapiens Trx1 MVKQIESKTAFQEALDAAGDKLVVVDFSATWCGPCKMIKPFFHSLSEKYS-NVIFLEVDV

Saccharomyces cerevisiae MVTQLKSASEYDSALASG-DKLVVVDFFATWCGPCKMIAPMIEKFAEQYS-DAAFYKLDV

Drosophila melanogaster MVYQVKDKADLDGQLTKASGKLVVLDFFATWCGPCKMISPKLVELSTQFADNVVVLKVDV

Trypanasoma brucei brucei SVVDVYSVEQFRNIMSED--ILTVAWFTAVWCGPCKTIERPMEKIAYEFP-TVKFAKVDA

Plasmodium falciparum MVKIVTSQAEFDSIISQN--ELVIVDFFAEWCGPCKRIAPFYEECSKTYT-KMVFIKVDV

70 80 90 100
....|....|....|....|....|....|....|....|....|....

Fasciola hepatica DQNEEAAAKYSVTAMPTFVFIKDGKEVDRFSGANETKLRETITRHK---

Bos taurus DDCQDVAAECEVKCMPTFQFFKKGQKVGEFSGANKEKLEATINELI---

Ovis aries DDCQDVAAECEVKCMPTFQFFKKGQKVSEFSGANKEKLEATINELI---

Homo sapiens Trx1 DDCQDVASECEVKCMPTFQFFKKGQKVGEFSGANKEKLEATINELV---

Saccharomyces cerevisiae DEVSDVAQKAEVSSMPTLIFYKGGKEVTRVVGANPAAIKQAIASNV---

Drosophila melanogaster DECEDIAMEYNISSMPTFVFLKNGVKVEEFAGANAKRLEDVIKANI---

Trypanasoma brucei brucei DNNSEIVSKCRVLQLPTFIIARSGKMLGHVIGANPGMLRQKLRDIIKDN

Plasmodium falciparum DEVSEVTEKENITSMPTFKVYKNGSSVDTLLGANDSALKQLIEKYAA--

 

 

 

 



  

 


