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Since the end of the 20th century, global mean surface temperature (GMST) has not risen

as rapidly as predicted by global climate models (GCMs)1–3. This discrepancy has become

known as the global warming ‘hiatus’ and a variety of mechanisms1,4–17have been proposed

to explain the observed slowdown in warming. Focussing on internally generated variability,

we use an observationally-constrained ensemble of GCMs and astatistical approach to eval-

uate the expected frequency and characteristics of global warming hiatus periods and their

likelihood of future continuation. Given an expected contemporary surface warming rate of

about 0.2 K/decade from GCMs, our estimated probability for a10-year warming hiatus due

to internal variability is ∼10 %, but less than 1 % for a 20-year hiatus. However, although

the absolute probability of a 20-year hiatus is small, the probability that an existing 15-year

hiatus will continue another five years is up to 25 %. Therefore, we should not be surprised

if the present hiatus continued until the end of the current decade. Finally, following the

termination of a hiatus, we show that there is an increased likelihood of accelerated global

warming associated with release of heat from the sub-surface ocean and a reversal of the

phase of decadal variability in the Pacific Ocean.
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The unexpectedly modest rise in GMST over the last decade or so, often referred to as the

global warming ‘hiatus’, has attracted considerable interest from the scientific community and

wider public1–3,8,18. While recent observational studies have shown that incomplete spatial sam-

pling may play a role19, this cannot account for the discrepancy between the observed trend (-0.04

to 0.04 K/decade, for the decade ending in 2013) and the central estimate from climate models

(0.2 K/decade) (fig. 1). However, several studies have shownthat hiatus decades are not inconsis-

tent with our expectations of internal climate variability1,8,10,11,20and do not necessarily imply a

reduction in the rate of energy accumulation in the Earth system10,21,22.

The latest IPCC assessment report2 attributed the hiatus to some combination of (i) external

climatic forcings that are not adequately represented in model simulations of the recent period and

(ii) the internal climate variability that is intrinsic to individual model simulations but largely absent

from the multi-model mean. Mechanisms proposed to explain the hiatus include aerosol emissions

from modest volcanic eruptions6,12,13,16,23, a delayed response to the Mount Pinatubo eruption24,

the unexpectedly prolonged solar minimum7,14,24, stratospheric water vapour changes15, increases

in anthropogenic sulfate aerosol emissions14,16,25, internal decadal variability in the Pacific and/or

high-latitude oceans9–11,26,27, and externally forced and/or internally generated wind-driven rear-

rangement of heat in the oceans4,5. Several studies have previously commented on the likelihood

of a warming hiatus and the potential for a subsequent accelerated warming5,8,17,20,27,28; how-

ever, none have considered the likelihood of the present hiatus continuing into the future using the

framework of conditional probabilities.
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In the present work, we consider how long the observed hiatusmight last due to internal

variability alone and characterise both the spatial patterns of surface temperature change, and the

likelihood of accelerated GMST rise, following the termination of a hiatus. The results of our study

are based on 23 multi-century preindustrial control simulations from CMIP5 (see methods). These

physically-based model simulations of climate variability are combined with statistical models

(ARMA models, see methods) to quantify both absolute and conditional probabilities of a hiatus

event continuing for a given number of years. In addition, werepeat our analysis with a subset

of climate models that have the most realistic representation of Pacific variability–an area of the

ocean that has played a key role in the observed hiatus5,9.

We assume that the time evolution of GMST can be considered a linear combination of a

‘signal’ due to external climate forcings superimposed on ‘noise’ that is consistent with variabil-

ity in preindustrial control simulations. In addition, we assume that the rate of warming due to

external forcings can be considered constant on decadal time scales. These assumptions are rea-

sonable when considering the evolution of GMST during the early 21st century (see supp. meth-

ods). In this paradigm, the probability that internal variability will offset a warming rate of, e.g.

0.2 K/decade for the current climate, is the same as the probability that internal variability will

cause a global temperature trend< -0.2 K/decade in a preindustrial control experiment. We note

that if greenhouse gas concentrations continue to increaseduring the 21st Century, then periods of

zero warming will become less likely in the future28. However, periods with anomalous rates of

cooling/warming will continue to arise from internal variability and it is on these events that we

focus our analysis. We use the following terminology: (i) ‘Hiatus’ refers to a period of suppressed
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warming (GMST change), or even zero trend or cooling, when a forced warming trend is expected.

Assuming linearity, it can be equated with an anomalous cooling in a preindustrial control simula-

tion that exceeds some threshold value, superimposed on a forced warming trend. (ii) ‘Continued

hiatus’ refers to an existing hiatus that experiences continued muted GMST response of the same

(or greater) magnitude. (iii) ‘Accelerated warming’ refers to a period of anomalous warming that

exceeds that which would be expected from the forced signal.Such a trend may be equated with

a magnitude that exceeds the magnitude of cooling during a preceding hiatus in a preindustrial

control simulation as in our definition of a hiatus.

We estimate the multi-model mean probability (see methods)of GMST cooling trends of -0.1

to -0.3 K/decade – sufficient to offset a long-term warming rate of the same magnitude – arising

from internal variability as a function of trend length (fig 2a). This range of trend magnitudes

is chosen to account for uncertainty in the transient climate response (TCR) to external forcings

(see methods). Given an expected warming rate of 0.2 K/decade, our multi-model probability for

a 10-year warming hiatus due to internal variability is 9 % with a range across models of 0 - 17

% (table 1, fig S1). For a 20-year hiatus (i.e. a 20-year periodwith a trend< -0.2 K/decade)

the multi-model probability is< 1 % (fig. 2a) and the range across models is 0 - 2 % (table 1).

The range of probabilities across models is a consequence ofdifferences in the characteristics of

simulated internal GMST variability (fig. S3). Notably, a 20-year hiatus due to internal variability

alone is very unlikely, but is not outside the range of internal variability as simulated by GCMs

(fig. S1-S2).
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However, we argue that the expected frequency of a hiatus occurring in any given period is

not the most useful quantity for communicating the chance that the current warming hiatus will

extend into the future. Instead, we propose the use of conditional probabilities to evaluate the

fraction of hiatus events of a given length that will continue for a specified period (fig. 2b). For

example, if internal variability has offset warming of 0.2 K/decade for a period of 15 years, our

multi-model mean estimate of the fraction of events that that will continue to offset warming for

another 5 years is 16 %, with a multi-model range of 0 - 29 % (table 1). In addition, for trend

lengths of 5 to 20 years, the probabilities in fig. 2b are surprisingly insensitive to the existing

trend length. This is a consequence of the year-to-year persistence of GMST anomalies associated

with internal variability (fig S3). If the real-world behaviour of internal GMST variability can be

approximated by GCMs, our analysis indicates that there is a substantial probability of the current

hiatus continuing for 5 more years. Failure to adequately communicate this possibility could lead

to allegations of overconfidence in GCM projections, especially if the existing hiatus continues

until 2020 and beyond.

To investigate the spatial changes associated with hiatus events in models, we identify 128

decades with global cooling less than -0.2 K/decade from 23 CMIP5 preindustrial control simula-

tions. The mean characteristics of these events share many of the previously identified features of

warming slow-downs in observations4,5,9 and models10,11, including a pattern of surface tempera-

ture change resembling the negative phase of the Pacific Decadal Oscillation (PDO), accelerated

Pacific trade winds and spin-up of the sub-tropical gyres, sub-surface warming in regions of ther-

mocline convergence (fig. S4), and increased ocean heat uptake beneath the ocean mixed layer
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(fig. 4).

However, we emphasize that the composite mean is an inadequate description of any single

model or event. Single-model composites and individual events show marked differences in the

magnitude and patterns of near-surface temperature change(fig. S5), the locations and magnitude

of heat convergence in the thermocline and regions of deep water formation (figs S6-S7), the

relative importance of ocean heat redistribution and top-of-atmosphere radiation (TOA) imbalance

(fig S8), and the patterns and magnitudes of near-surface wind anomalies (fig S5). For example, as

previously reported by ref (10), hiatus decades in CCSM4 are characterised by a PDO-like pattern

of near surface temperature change, increased deep ocean heat uptake (and associated heat export

from the near-surface), and no significant changes in TOA. Incontrast, hiatus decades in GFDL-

CM3 are characterised by strong surface cooling and accelerated westerly winds over the Southern

Ocean, a large contribution to cooling from TOA imbalance, and no significant changes in deep

ocean heat uptake. These differences are a powerful motivator for the application of observational

constraints that allow us to identify models that have the best representation of internal climate

variability.

The evaluation of internal GMST variability by comparison with historical observations

is complicated by the confounding influence of uncertain climate forcings and variable model

responses2. However, many studies have emphasized the importance of the tropical Pacific for the

evolution of GMST5,9,29,30. To examine the sensitivity of our results to model deficiencies in sim-

ulated internal climate variability, we use a simple metricto identify a subset of models that most
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accurately simulate the magnitude of tropical Pacific sea surface temperature (SST) variability (fig

3; see methods for details of the applied constraint). Following the application of our constraint,

the absolute and conditional probabilities of a hiatus event continuing for a given number of years

are very similar (fig. 2c and 2d, table 1), although the probability of events lasting longer than 20

years is reduced due to the exclusion of some models that havelarge amplitude GMST variability

on multi-decadal to centennial time scales.

Finally, we use our constrained ensemble to evaluate the climatic impacts in the periods

that follow hiatus decades. Although we have emphasized thepossibility of an existing hiatus

continuing into the future, there is also an increased risk of ‘accelerated warming’ following a

hiatus (fig 4b). We find that a 5-year period of accelerated warming> 0.2 K/decade is 1.7 (model

range of 1.3 - 2.1) times more likely to occur when starting from the last year of a hiatus decade

(< -0.2 K/decade) (fig 4b) . Alternatively, a 5-year ‘accelerated warming’ period is 2.0 (model

range of 1.6 - 2.4) times more likely to occur when we only consider trends starting the last year

of ‘terminated’ hiatus decades (i.e. those that do not continue another five years into the future).

Continued hiatus periods are associated with heat uptake by the sub-surface ocean (fig 4a)

and a composite mean pattern of surface temperature change similar to that in hiatus decades (fig

4c). In contrast, accelerated warming periods are associated with the release of∼0.2 W/m2 of

heat from the sub-surface ocean (fig 4a), a pattern of warmingthat approximates a mirror image

of surface temperature trends during hiatus periods (fig 4d), and a strong shift towards the positive

phase of the PDO (fig 4a). In addition, there is some consensus(> 2/3 events) that periods of
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accelerated warming following global cooling decades willbe associated with warming across

South America, Australia, Africa, South East Asia, and the Arctic.

One of the notable discrepancies between recently observedsurface temperature trends and

the features of ‘hiatus’ decades in model simulations9–11 (fig S4) is in the sign of temperature

change over the Arctic. Hiatus decades associated with internal variability in models generally

exhibit cooling over the Arctic whereas recent observations19 indicate a strong warming. Our re-

sults indicate that, following the termination of the current global warming hiatus, internal climate

variability may act to intensify rates of Arctic warming leading to increased climate stress on a

region that is already particularly vulnerable to climate change.

Here, we have shown that a global warming hiatus could last 10-20 years or more due to

internal variability alone. Although we found no systematic bias in the representation of tropical

Pacific SST variability (fig 3), others have highlighted thata recent acceleration of equatorial Pa-

cific trade winds is outside the range of variability simulated by CMIP5 models5. This difference

was attributed to (i) models systematically underestimating internal variability and/or (ii) a role for

external forcings in the recent hiatus. If either of these factors are important, we expect hiatus pe-

riods in the real world to last longer and/or be more extreme (i.e. offset more warming) than those

due to internal variability in CMIP5 models. In addition, regardless of whether internal variability

or external forcings have been the dominant driver of the observed warming hiatus, we emphasize

that there is a substantial probability that internal variability of the climate system could offset

warming until the end of the current decade.
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Methods

Observed temperature trends.We use the following observational data sets to estimate GMST

trends: (i) 100 realizations of HadCRUT431 available from http://www.metoffice.gov.uk/hadobs/hadcrut4/.

(ii) Two versions of HadCRUT4 in which unobserved grid boxes are filled using either opti-

mal interpolation or a hybrid method that incorporates satellite temperature data19 available from

http://www-users.york.ac.uk/ kdc3/papers/coverage2013/series.html. (iii) GISTEMP32 available

from http://data.giss.nasa.gov/gistemp/. (iv) NOAA Merged Air Land and SST Anomalies data33

available from http://www.esrl.noaa.gov/psd/. ObservedSST trends in the Niño 3.4 region are cal-

culated using the Hadley Centre Sea Ice and Sea Surface Temperature gridded data set34 available

from http://www.metoffice.gov.uk/hadobs/.

CMIP5 model data. We use data from simulations performed as part of phase 5 of the coupled

climate model intercomparison project (CMIP5). CMIP5 is the primary modelling resource used in

support of the Fifth Assessment Report of the Intergovernmental Panel on Climate change (IPCC

AR5) and the contributing models represent the state-of-the-art in coupled climate simulations.

Each model provides an estimate of the evolving ocean and atmosphere state in response to any

imposed climate forcings and includes representation of the intrinsic variability generated by the

coupled climate system.

Estimation of warming due to external forcings. To estimate background warming rates over

the historical period, we use historical (up to 2005) and RCP4.5 (post 2005) scenarios from avail-

able CMIP5 models. We estimate uncertainty in the forced component of climate change by
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calculating single-model ensemble means for CMIP5 models with 3 or more historical scenario

ensemble members, and applying a low-pass Butterworth filterwith a 10-year cut-off. From 2004-

2013, our estimates of background warming rates due to external forcings range from 0.11 to 0.28

K/decade.The thirteen models that match this constraint have a transient climate response (TCR, as

estimated by ref(35)) to a doubling of CO2 in the range 1.5-2.5 K (c.f. the IPCC AR5 likely range

of 1.0 to 2.5 K). TCR represents a measure of the sensitivity ofGMST rise to imposed greenhouse

gas concentrations in the models such that those with largerTCR have a larger projected surface

warming for a given climate change scenario; importantly, we find no significant relationship be-

tween model TCR and the characteristics of internal GMST variability (fig S9). This means that the

impact of uncertainties in TCR can be considered independently from the impact of uncertainties

in the representation of GMST variability.

Calculation of internal variability. To estimate internal variability in GMST and Niño SST in-

dices we use CMIP5 pre-industrial control simulations and calculate annual mean diagnostics us-

ing data from the 23 models listed in table S1 retrieved from the CMIP5 archive (http://cmip-

pcmdi.llnl.gov/cmip5/). All preindustrial control time series are linearly detrended to limit the

impact of model drift.

Estimation of trend probabilities. Long time series are necessary for the estimation of proba-

bilities conditional on the existence of a preceding event.For this reason, we use generic autore-

gressive moving-average (ARMA) models to generate 10,000-year long synthetic realizations of

GMST variability that have the same auto-correlation characteristics as data from CMIP5 prein-

dustrial control simulations. We fit ARMA models of the form
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p
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i

)

Xt =

(

1 +

q
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θiL
i

)

εt (1)

to each detrended CMIP5 time series (Xt), whereϕi and θi are autoregression (AR) and

moving-average (MA) coefficients at lagi, p andq are the order of AR and MA components,Li is

the lag operator (defined such thatLiXt = Xt−i), andεt is Gaussian white noise with a variance

of σ2. Values ofp and q are calculated by minimization of an Akaike information criterion as

implemented in theforecast package ofR36. Trend probabilities are estimated by calculating

linear least-squares trends for all overlapping trends of length N and then finding the fraction of

trends with a slope coefficient less than or equal to a specified value.

Additional methodological details and supporting figures are included as Supplementary In-

formation.
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Oscillation and global atmospheric surface temperatures.Journal of Geophysical Research:

Atmospheres (1984–2012)107, AAC–5 (2002).

31. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global

and regional temperature change using an ensemble of observational estimates: The Had-

CRUT4 data set.Journal of Geophysical Research: Atmospheres (1984–2012)117(2012).

32. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change.Reviews of

Geophysics48 (2010).

33. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J.Improvements to noaa’s

historical merged land-ocean surface temperature analysis (1880-2006).Journal of Climate

21, 2283–2296 (2008).

34. Rayner, N.et al. Global analyses of sea surface temperature, sea ice, and night marine air

temperature since the late nineteenth century.Journal of Geophysical Research: Atmospheres

(1984–2012)108(2003).

35. Forster, P. M.et al. Evaluating adjusted forcing and model spread for historical and future

scenarios in the CMIP5 generation of climate models.Journal of Geophysical Research:

Atmospheres118, 1139–1150 (2013).

36. Hyndman, R. & Khandakar, Y. Automatic time series forecasting: The forecast package for

R. Journal of Statistical Software26 (2008).

15



Acknowledgements We acknowledge the World Climate Research Programme’s Working Group onCou-

pled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Table

S1) for producing and making available their model output. For CMIP the US Department of Energy’s

Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led devel-

opment of software infrastructure in partnership with the Global Organization for Earth System Science

Portals. We thank Ian Edmond and Jamie Kettleborough for helping downloadand archive CMIP5 climate

model data and Ed Hawkins for useful discussions. This work was supported by the Joint DECC/Defra

Met Office Hadley Centre Climate Programme (GA01101) and represents a Met Office contribution to the

Natural Environment Research Council DEEP-C project NE/K005480/1.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence should be addressed to C.D.R. (email: chris.roberts@metoffice.gov.uk).

16



Figure 1 (a) Global mean surface temperature (GMST) anomalies in observational data

sets (red; see methods for details), CMIP5 historical + rcp4.5 scenario ensemble mem-

bers (grey) and CMIP5 historical + rcp4.5 single-model ensemble means smoothed with a

10-year low-pass filter (blue). (b) Range (observations) and 5th - 95th percentiles (CMIP5

models) of rolling 10-year trends in GMST for the data sets plotted in (a).

Figure 2 (a) Multi-model probability of GMST trends due to internal variability less than

or equal to the specified values (all models). For example, the probability of a -0.25

K/decade trend lasting 10 years is about 0.05 (5%). This probability drops to about 0.01

(1%) for trend length of 14 years. (b) Conditional probability of GMST trends continuing

5 more years, given the existence of a trend in the preceding N years. For example, if

a -0.25/decade trend has been observed for 12 years, the probability of it continuing for

another 5 years is about 0.10 (10%). (c + d) Same as (a + b), but calculated using the

observationally-constrained subset of models identified in table S1/Figure 3.

Figure 3 (a) Relationship between decadal sea surface temperature (SST) trends in the

Niño 3.4 region (120◦W-170◦W and 5◦S-5◦N) and decadal GMST trends in CMIP5 prein-

dustrial control simulations (labels correspond to models in table S1). (b) The magnitude

of Niño 3.4 SST variability on annual and decadal time scales in CMIP5 preindustrial

control simulations compared with observed values (see methods). Our constrained en-

semble corresponds to the nine models that simulate the magnitude of Niño 3.4 variability

on interannual to decadal time scales to within ± 20 % of observed values
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Figure 4 (a) Trends in upper ocean heat content (UOHC, 0-100m), deep ocean heat

content (DOHC, 100m-bottom), total Earth system energy content (defined as time-integrated

anomalies in top-of-atmosphere radiation fluxes, TOA), and the PDO index for ‘hiatus’,

‘continued hiatus’, and ‘accelerated warming’ periods as defined in the main text. Error

bars indicate ± 1 s.d. across the composite. (c + d) Composite mean patterns of near-

surface temperature change associated with 5-year ‘continued hiatus’ (<-0.2 K.decade,

N=10) and ‘accelerated warming’ (> 0.2 K/decade, N=25) periods following ‘hiatus’ decades

(< -0.2 K/decade, N=61) in our constrained ensemble. To indicate consensus across

composites, data are only plotted if more than 2/3 of trends are of the same sign. Further

details are included as supplementary material.

18



Table 1: Selected absolute and conditional probabilities extracted from figure 2 for trends

in GMST sufficient to offset a warming rate of 0.2 K/decade. Values are given as multi-

model means with the range across models in parentheses.

All CMIP5 models Constrained ensemble

5 years 0.28 (0.15-0.33) 0.30 (0.27-0.33)

10 years 0.09 (0.00-0.17) 0.10 (0.05-0.17)

20 years < 0.01 (0.00-0.02) < 0.01 (0.00-0.02)

5 years (following an existing 15-year hiatus) 0.16 (0.00-0.29) 0.15 (0.00-0.25)

19










