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ABSTRACT

The standard thermal wind equation (TWE) relating the vertical shear of a flow to the horizontal density gradient in
an atmosphere has been used to calculate the external gravitational signature produced by zonal winds in the
interiors of giant gaseous planets. We show, however, that in this application the TWE needs to be generalized to
account for an associated gravitational perturbation. We refer to the generalized equation as the thermal-
gravitational wind equation (TGWE). The generalized equation represents a two-dimensional kernel integral
equation with the Green’s function in its integrand and is hence much more difficult to solve than the standard
TWE. We develop an extended spectral method for solving the TGWE in spherical geometry. We then apply the
method to a generic gaseous Jupiter-like object with idealized zonal winds. We demonstrate that solutions of the
TGWE are substantially different from those of the standard TWE. We conclude that the TGWE must be used to
estimate the gravitational signature of zonal winds in giant gaseous planets.
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1. INTRODUCTION

Earth’s atmosphere is a thin gaseous envelope held by the
gravitational force primarily originating from its deep mantle
and core. In the dynamics of the atmosphere, the thermal wind
equation (TWE) is widely used to describe a relationship
between the vertical shear of a wind and the corresponding
horizontal gradient in density (see, e.g., Holton 2004). On the
basis of the TWE, a diagnostic relation, one can estimate, if the
vertical profile of velocity is known, the density profile by
performing a simple integration over the horizontal coordinate.

The TWE has recently been used to compute the wind-
induced density anomaly in the deep interiors of Jupiter,
Saturn, Uranus, and Neptune and the corresponding external
gravitational signatures (Kaspi et al. 2010, 2013; Kaspi 2013;
Liu et al. 2013). The computed gravitational signatures, in turn,
will be used to interpret the high-precision measurements of the
external gravitational fields of Jupiter and Saturn to be carried
out by the Juno and Cassini spacecraft.

The external gravitational potential Vg of a giant planet,
assuming that it is axially symmetric with respect to its rotation
axis, can be expanded in terms of the Legendre functions Pn,
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for r Re⩾ , where M is the mass of the planet, r( , , )q f are
spherical polar coordinates with the corresponding unit vectors
r(ˆ, ˆ, ˆ )q f , 0q = is at the axis of rotation, r = 0 is located at the
center of mass, Re is the equatorial radius, n takes positive
integer values, J J J, , ,...,2 3 4 are the zonal gravitational

coefficients, and G 6.67384 10 m kg s11 3 1 2= ´ - - - is the
universal gravitational constant. By assuming that the rotational
effect on the shape of Jupiter is small and that the observed

cloud-level zonal winds extend on cylinders parallel to the
rotation axis into the deep interior, Kaspi et al. (2010) solved
the TWE to estimate the wind-induced density anomaly and the
corresponding gravitational correction Jn

dynD with n even and
n 2⩾ (see also Liu et al. 2013). The interpretation of these
even-order gravitational coefficients is complicated by the
rotational distortion that makes a leading-order contribution to
the even gravitational coefficients Jn with n2 10⩽ ⩽
(Hubbard 2013; Kong et al. 2013a). Accordingly, Kaspi
(2013), on the basis of a model of the equatorially
antisymmetric zonal winds in the deep interiors of Jupiter
and Saturn, also solved the TWE to compute the more readily
interpretable odd zonal gravitational coefficients Jn with n 3⩾
in Equation(1). A similar analysis was extended to estimate
the penetration depth of the cloud-level zonal winds into the
interiors of Uranus and Neptune (Kaspi et al. 2013).
Adoption of the TWE for the computation of the wind-

induced gravitational signature originating from the deep
interior of a giant gaseous planet is based on the following.
Suppose first that the gaseous planet rotates uniformly about its
symmetry z-axis with an angular velocity ẑW and is in
hydrostatic equilibrium under the balance of a self-gravitational
force g r( , )static q resulting from the hydrostatic density
distribution r( , )staticr q , the internal pressure gradient

p r( , )static q , and the centrifugal force (Zharkov & Trubitsyn
1978). When the planetary shape and its internal density
distribution r( , )staticr q are known, the corresponding gravita-
tional force g r( , )static q and the even zonal gravitational
coefficients Jn

static with n 2⩾ can be computed (Hubbard 2013;
Kong et al. 2013b). Suppose now that the rotating gaseous
planet also possesses a strong steady zonal wind u r( , )q in its
deep interior. In this case, the interior hydrostatic density

r( , )staticr q is slightly perturbed by the effect of the deep flow
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with the total density given by staticr r r= + ¢, where the
standard TWE is used to link the wind-induced density r( , )r q¢
to the deep zonal winds u r( , )q without accounting for the
associated gravitational perturbation. The observed zonal
gravitational coefficients Jn in Equation(1) would compri-
sethe two parts

J J J ,n n n
static dyn= + D

where Jn
static is caused by the effect of rotational distortion while

Jn
dynD is produced by the wind-induced density anomaly
r( , )r q¢ . The gravitational coefficients Jn thus provide an

important constraint on the internal dynamics and structure of a
rotating giant gaseous planet. Upon assuming that the effect of
rotational distortion is negligibly small and that the gravita-
tional perturbation associated with the density perturbation

r( , )r q¢ is also negligibly small, one can, for a given deep zonal
wind u r( , )q , readily solve the TWE in spherical geometry for

r( , )r q¢ andthendetermine the corresponding gravitational
anomaly Jn

dynD (see, for example, Kaspi et al. 2010).
The mathematics behind use of the TWE is particularly

simple (see, e.g., Kaspi et al. 2013). Suppose that the non-
spherical effect can be neglected such that J Jn n

dyn= D in
Equation (1). It follows that the spherically symmetric
hydrostatic density r( )staticr and the associated gravitational
force g r( )static —where g r( )static can be readily computed from

r( )staticr —are related to the deep zonal winds

u r U r( , ) ( , )f̂q q= and the wind-induced density r( , )r q¢
through the differential form of the TWE

( )( )z gU2 ˆ · ˆ . (2)static staticfr r - W = ¢ ´

Kaspi et al. (2010) used the density profile r( )staticr from an
interior model given by Guillot & Morel (1995) to compute the
corresponding gravitational force g r( )static for Jupiter. By
integrating the azimuthal component of Equation (2) over θ,
an integral form of the TWE for the wind-induced density
perturbation r( , )r q¢ is obtained:
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where g rg rˆ ( )static static= , C(r) denotes an arbitrary function of
r, and the second term on the right-hand side will be referred to
as the wind-driving term. After computing the density
perturbation r( , )r q¢ using Equation(3) with a given
U r( , )q , r( )staticr , and g r( )static , the dynamic part of the

gravitational coefficients Jn
dynD can be computed by perform-

ing a simple integration:
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where Rs is the radius of a spherical planet. It is well known
that the solution of the TWE (3) is mathematically non-unique.
An intricate mathematical property, as pointed out by Kaspi
et al. (2010), is that, although the TWE cannot determine the
wind-induced density distribution r( , )r q¢ , it can uniquely

determine the gravitational coefficients Jn
dynD in spherical

geometry because

C r P r dr d( ) (cos ) sin 0,
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for n 2, 3, 4 ,...= . It is this special mathematical simplicity of
the TWE given by Equation (3) that has led to its wide
application for linking the zonal winds U r( , )f̂q to the
dynamic density perturbation r( , )r q¢ in the deep interiors of
giant gaseous planets.
The primary purpose of the present study is to show, via both

mathematical analysis and the numerical computation of simple
models, that the TWE given by Equation (3) is, in general, not
valid for determining the density perturbation r( , )r q¢ induced
by zonal winds. We point out first that zonal flow produces not
only the density perturbation r¢ but also a concomitant
gravitational perturbation g r( , )q¢ to the hydrostatic gravita-
tional force gstatic. In terms of the mathematical formulation, an
extra term representing the gravitational perturbation g¢
produced by the interior density perturbation r¢ is of the same
order of magnitude as the term gstaticr ¢ ´ in Equation (2)
and, hence, must be retained. We then show that retaining the
gravitational perturbation g¢ leads to the thermal-gravitational
wind equation (TGWE), a two-dimensional kernel integral
equation that, in contrast to the TWE (3), is much more
difficult to solve. Through an analytical model for r( )staticr in
spherical geometry, we demonstrate that solutions of the
TGWE are substantially different from those of the TWE and
that the TWE, in general, cannot provide a reasonable
approximation to the TGWE.
It should be pointed out that the approach using the TWE or

the TGWE is profoundly different from another approach that
makes the barotropic assumption—the density ρ in fully
compressible gaseous planets is a function only of the pressure
p. The barotropic model was adopted to study the effect of deep
zonal winds on Jupiter’s gravitational harmonics in spherical
geometry (Hubbard 1999) and in non-spherical geometry
(Kong et al. 2013a, 2014). There are at least four significant
differences between the two different approaches. First, the
TWE or TGWE model for computing the gravitational
coefficients Jn

dynD has to adopt spherical geometry, while the
barotropic model can be either spherical or non-spherical
geometry. Second, the TWE or the TGWE represents a
diagnostic relation and does not require any boundary
condition for a solution of the density perturbation r( , )r q¢ .
But an appropriate boundary condition for r( , )r q¢ is required
in solving the governing equations for the barotropic model.
Third, both the density perturbation r( , )r q¢ and the gravita-
tional coefficients Jn

dynD can be uniquely determined for the
barotropic model in spherical geometry or non-spherical
geometry. With the TWE or TGWE model, however, while
the gravitational coefficients Jn

dynD can be uniquely determined
in spherical geometry, the density perturbation r( , )r q¢ is
always non-unique. Finally, a direct consequence of using the
barotropic assumption is that

( )( )z U r p2 ˆ · ( , ) ˆ 1
( ) 0.fq
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This means that the azimuthal zonal winds U r( , )q must be
constant on cylinders parallel to the rotation axis, i.e.,
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U z 0¶ ¶ = , where z denotes the coordinate in the direction of
rotation axis, which is consistent with the convection-driven
zonal flow (see, e.g., Busse 1976; Zhang 1992; Zhang &
Schubert 1996) and usually leads to an upper bound of the
gravitational coefficients Jn

dynD (Hubbard 1999; Kong et al.
2012). The TWE or TGWE model is not restricted by the
constant U on cylinders and, hence, can introduce an extra
parameter H describing the radial penetration depth of the zonal
winds U(see, e.g., Kaspi et al. 2010).

We begin by deriving the TGWE in Section 2 and then
discussing a numerical method for solving the TGWE in
spherical geometry in Section 3. With an analytical hydrostatic
density r( )staticr together with a simple analytical profile of the
deep zonal flow u, we solve both the TWE and TGWE using
exactly the same model in Section 4, demonstrating that the
gravitational perturbation term neglected in the TWE (3) does
indeed make a leading-order contribution. The paper closes
with a summary and some remarks in Section 5.

2. DERIVATION OF THE TGWE

As in previous models (Kaspi et al. 2010, 2013; Kaspi
2013), ours also assumes that (i) giant gaseous planets with
mass M are isolated and rotating about the z-axis with angular
velocity ẑW , (ii) the planets are axially symmetric and consist
of fully compressible gases, (iii) the zonal winds u observed at
the cloud level represent a manifestation of the flow taking
place in the deep interiors of the planets, (iv) the Rossby
number of the zonal winds is small and both the viscous and
magnetic effects are weak, and (v) the gaseous planets are in a
statistically steady state. We are not interested in the special
case when the zonal winds are largely confined to a very top
thin layer of the stably stratified atmosphere because the
mathematical problem is trivial and the winds have no
measurable external gravitational signature.

The above assumptions lead to the following governing
equations in the rotating frame of reference (Kaspi et al. 2013):

z u g z rp2 ˆ
1

2
ˆ , (5)

2
2

r
 W ´ = - + +

W
´

u· ( ) 0, (6)r =

where u r( ) represents the velocity of the zonal winds, r denotes
the position vector with the origin at the center of figure, rp ( ) is
the pressure, and r( )r is the density. Equations (5) and(6),
togeher with a given zonal flow u, are to be solved subject to
the two boundary conditions

p 0, (7)=

V V constant (8)g c+ =

at the bounding surface  of the planet described by

r R ( ),q= 

where Vc is the centrifugal potential and Vg is the gravitational
potential.

Suppose that the speed of the zonal flow u is small compared
to the rotation speed of the planet,

U

R
1,0

eW


where U0 is the typical speed of u. Equations (5) and(6)
canthen be solved by making use of the expansions

p p r p r( , ) ( , ), (9)static q q= + ¢

r r( , ) ( , ), (10)staticr r q r q= + ¢

g g gr r( , ) ( , ), (11)static q q= + ¢

where the leading-order solution(p ,static staticr , and g )static
represents the hydrostatic state of the rotating gaseous planet,
while gp( , , )r¢ ¢ ¢ denotes the perturbations arising from the
effect of the zonal winds u. As a consequence of the rotational
distortion, gstatic and staticr have both radial and latitudinal
components, i.e.,

gˆ · 0 and ˆ · 0.static staticq q r¹ ¹

For a rapidly rotating planet, expansions (9)–(11) yield two
problems that are mathematically coupled and inseparable. The
leading-order problem determines the shape r R ( )q=  of a
rotationally distorted planet, as well as the internal distribution
p r r( , ), ( , )static staticq r q , and g r( , )static q (Hubbard 2013; Kong

et al. 2013b). With the availability of the shape r R ( )q=  and
the hydrostatic solution gp( , , )static static staticr , the next-order

problem can be solved to determine the perturbations p , r¢ ¢,
and g¢ induced by the zonal winds (Kong et al. 2013a).
Substitution of the expansions (9)–(11) into (5)–(6) yields

the leading-order problem governed by

g
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at the bounding surface  of the rotating planet, where f[ ]r R ( )q= 

denotes the evaluation of f at the bounding surface  of the
planet. With a given equation of state, Equations (12)–(13) can
be solved to determine the shape of the planet r R ( )q=  and the
density distribution r( )staticr and the gravitational force
g r( , )static q .
The next-order problem, which describes the density

anomaly r¢ induced by the deep zonal flow u and the
concomitant gravitational perturbation g¢ directly produced by
r¢, is governed by the equations

( )z u g gp2 ˆ , (16)static static staticr r rW ´ = - ¢ + ¢ + ¢
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u0 · ( ). (17)staticr=

In deriving Equations (16) and(17), we have neglected the
small high-order terms that are of gO( )r¢ ¢∣ ∣ and uO( )r¢W∣ ∣ , and
we have assumed that W is moderately small such that the term

z r( 2) ˆ2 2r ¢W ´ can be neglected. It is critically important

to notice that the terms gstaticr¢ and g staticr¢ in Equation (16) are
generally of the same order of magnitude. This is because
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Physically, it simply means that, when the internal density
anomaly r¢ is induced by the deep flow u, the hydrostatic
gravitational force gstatic must be also perturbed to yield the

concomitant gravitational perturbation g¢.

Taking the curl of Equation (16), together with making use
of Equation (17), we obtain

( )z u

g g
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static
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- W
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where z rˆ ˆ cos ˆ sinqq q= - . With the zonal winds written as
u U r( , )f̂q= , the azimuthal component of Equation (20) can
be expressed as
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where r( , )staticr q and g r( , )static q are determined by the
leading-order problem.
Solving Equation (21) to determine the density anomaly
r( , )r q¢ in non-spherical geometry is highly complicated. A

drastic simplification (Kaspi et al. 2010, 2013; Kaspi 2013)—
which is reasonable for understanding the wind-induced
gravitational anomaly Jn

dyn—can be made by assuming that
the non-spherical effect is negligibly small, leading to the
following approximations:

g r
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where Rs denotes the radius of a spherical planet. Note that the
gravitational perturbation g¢ produced by the wind-induced
density anomaly r( , )r q¢ is generally two-dimensional in
spherical geometry, i.e., r g 0ˆ ´ ¢ ¹ . It follows that Equa-
tion (21) in spherical geometry becomes
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Integrating Equation (22) over θ gives rise to
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where r r r( , )q= , r r r˜ ˜( ˜, ˜)q= , and C(r) is an arbitrary
function of r. Since we are mainly concerned with the wind-
induced gravitational anomaly Jn

dyn, we set C r( ) 0= in
Equation (23) without affecting the value of Jn

dyn. For a given
U r( , )q and r( )staticr , g r( )static can be derived, and Equation

Figure 1. Schematic of the r–θ grid constructed in a meridional plane with
N 4=x and N 6=q . The radial grid points are numbered by index i from 1 to
Nx , while the angular grid points are labeled by index j from 1 to Nq.
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(23) can be solved for determining r( , )r q¢ , which can then
beused to compute the wind-induced gravitational anomaly
Jn

dyn. Equation (23) represents a two-dimensional kernel
integral equation, which in this paper will be referred to as
TGWE. Finally, it should be noticed that

J n0, 2,n
static = ⩾

since the non-spherical effect caused by rotation has been
neglected.

Although the density anomaly r( , )r q¢ represents a solution
of the TGWE (23), we shall focus not on the actual profile of

r( , )r q¢ but, instead, on the distance zD between the center of
mass and the center of figure and the wind-induced gravita-
tional anomaly Jn

dyn, which are derived using r( , )r q¢ via the
averaging process of a double integration. This is because both

zD and Jn
dyn can be uniquely determined from the density

anomaly r( , )r q¢ in spherical geometry and have physical
significance while a solution r r[ ( ) ( , )]r q+ ¢ , where r( ) is
an arbitrary function, can be another solution of the TGWE.
This non-uniqueness makes the precise structure of r( , )r q¢
physically or mathematically less significant.

3. A METHOD FOR SOLVING THE TGWE

In contrast to the TWE (3), it is much more difficult to solve
the two-dimensional kernel integral TGWE (23) that contains
the Green’s function r r1 ˜- in its integrand. We seek a
numerical solution for the TGWE by employing an extended
spectral method for which the r–θ grids in a meridional plane
are illustrated in Figure 1. In the framework of the r–θ grid, it is
mathematically convenient to define
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where ijF denotes the function Φ evaluated at the grid point
r ri= and jq q= , and rx =  is the dimensionless radial
coordinate scaled by  whose choice depends on the
hydrostatic state. We return to the scaling  in the next section.

The Green’s function r r1 ˜- at the numerical grid point
(r , )i jq can be expanded as
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In contrast to an ordinary numerical integration, the grid point
at j = m and i = l in expansion (24), because of the nature of
the Green’s function, must be treated in a special way.
In order to solve the TGWE (23) for the density anomaly r¢

induced by a deep wind U r( , )q , we have to rewrite the kernel
integral in terms of an appropriate quadrature scheme. Based
on the ξ–θ grid system illustrated in Figure 1, the two-
dimensional integral on the right-hand side of the TGWE (23)
can be expressed as

( ) ( )

( )
( )

( )

r r

r r

r r
dr d

w w

f P P

˜ ˜, ˜

( , ) ˜ ˜, ˜
sin ˜ ˜ ˜

˜ sin ˜

, ˜ cos cos ˜ , (25)
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q x
= =
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x q

where Nx takes an even integer value, R N( )sxD = x denotes
the radial grid spacing, N( 1)q pD = -q is the angular grid
spacing, andwx and wq are the quadrature weight factors whose
values depend on the locations of the grid points, which is
discussed below.
Upon substituting Equation (25) into the TGWE (23),

truncating the infinite spectral expansion in Equation (24) by
replacing¥ with N, and making the spatial discretization with
the ξ–θ grid, we derive a system of numerical equations

( ) ( ) ( )
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r r

U d

g r
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G q r

r

w w
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for i N1, 2, 3, ,= x and j N1, 2, 3, ,= q . For a given
r( )staticr , the corresponding g r( )static derived from r( )staticr , and

U r( , )q , Equation (26) gives rise to a system of the N N´x q
linear equations that can be solved for the density anomaly

r( , )r q¢ whose numerical value is given at the N N´x q grid
points.
The numerical quadrature in Equation (26) is, however,

significantly complicated by the singular nature of the Green’s
function r r1 ˜- in the TGWE (23). Two different integra-
tion schemes must be adopted in evaluating the θ-dimension
quadrature in Equation (26). When l i¹ , an extended
trapezoidal scheme is adopted by using the quadrature weight
factors in the form

w m m N

w m N

1

2
, 1 or ,

1, 1 .

= = =

= < <

q q

q q
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When l = i, the rectangle rule is adopted in the neighborhood
of m = j, which leads to the quadrature weight factors

( )

w m m N

w m j

w m j

w m j j

w m j j N

1

2
, 1 or ;

1, 2, 3 ,...,( 2);
0, ;
3

2
, ( 1), ( 1);

1, ( 2), ( 3) ,..., 1

= = =

= = -
= =

= = - +

= = + + -

q q

q

q

q

q q

for j 3> or j N( 2)< -q . When j 3⩽ or j N( 2)-q⩾ ,
slightly differentbut similar weight factors would be adopted.
In the radial direction, the central grid point at 00x = does not

enter the problem, a consequence of the Jacobian sin2x q in the
quadrature. We can use an extended Simpson quadrature in the
radial direction with its weight factors wx given by

w l l N

w l

w l

1

3
, 0 or ;

2

3
, is even;

4

3
, is odd.

= = =

=

=

x x

x

x

The resulting non-sparse system (26) can be solved numeri-
cally, for example, using a direct lower-upper decomposition
method. The numerical convergence of the system (26) is
expected to be slow because of the inherent numerical
difficulties for the Green’s function r r1 ˜- in the integrand.

4. ILLUSTRATIVE SOLUTIONS: TWE VERSUS TGWE

When using either the TWE (3) or the TGWE (23) to
determine the wind-induced density perturbation r¢, we require
the density profile r( )staticr for which there exists a family of
planetary interior models. Since our primary purpose is to
demonstrate that solutions of the TWE given by Equation (3),
for the same r( )staticr , are generally substantially different from
that of the TGWE (23), we choose a simple model for r( )staticr
and U r( , )q such that the wind-driving term in both the TWE
(3) and the TGWE (23) can be evaluated analytically.

When the effect of rotation upon the shape of a rotating
planet is negligibly small, the hydrostatic Equations (12) and
(13) become

gp r r0
1

( ) ( ), (27)
rstatic( )

static staticr
= - +

( )
g

r r

r G

r r
dr d

( ) 2

˜ ˜

˜
sin ˜ ˜ ˜ , (28)

R

static

0 0

2
statics

ò ò

p

r
q q

=

é

ë

ê
ê
ê -

ù

û

ú
ú
ú

p

subject to the boundary condition p 0static = at the spherical
surface r Rs= . To derive an analytic solution for r( )staticr , we
assume that the planetary interior in the hydrostatic state can be
approximately described by a polytropic gas with index unity
obeying the equation of state (Hubbard 1999)

p K , (29)static static
2r=

where K is a constant; this provides a reasonably good
approximation for the interior of Jupiter (Hubbard 1999; Kong
et al. 2013b). With this hydrostatic solution, we choose the
radial scale  as

K

G

r

2
and with 0 ,

p
x x p= = ⩽ ⩽ 

and, consequently, Equation (27) becomes

d

d

d

d

1 ( )
0, (30)

2
2 static c static
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r r

x

r

r
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ê
ê

ù
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+ =

where cr represents the central density. It is well known (see,
e.g., Chandrasekhar 1933) that the solution r( )staticr for
Equation (30) is

r
r

r
( )

sin( )

( )

sin
. (31)static

c cr
r r x

x
= =




An advantage of using Equation (31) is that analytic
expressions for q(r) and g r( )static in closed form can be
derived. The radial derivative of staticr is

q r
d

dr
( )

cos sin
, (32)static c

2

r r x x x
x

= =
æ
è
çç

ö
ø
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-


and Equation(28) gives rise to

( )
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r

r r

g r

G
r r
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In this case g r Kq r( ) 2 ( )static = . With the analytic expressions
for g r( )static and q(r) we are now in a position to solve either
the TWE (3) or the TGWE (23) with a given zonal flow
U r( , )q . Two different cases, equatorially symmetric and
equatorially antisymmetric winds, will be considered.
Since the primary purpose of computing illustrative solutions

is to demonstrate that the solution of the TGWE (23) differs
substantially from that of the TWE (3) for exactly the same
model and parameter values and, hence, the TWE cannot
generally provide a reasonable approximation to the TGWE,
we must find an effective way of measuring the difference
between the TWE and TGWE solutions. We introduce three
characteristic quantities for this purpose. First, we introduce the
norm diffD defined as

r r

r

( ) ( )

( )
,diff

TGWE TWE 2

TWE 2

r r

r
D =

¢ - ¢

¢

 

 

where the solution r¢ of the TWE (3) is denoted as TWEr ¢ , the

solution r¢ of the TGWE (23) as TGWEr ¢ , and

rF F r dr d d( ) sin ,
R

2
0

2

0 0

2 2
1 2

s

ò ò ò q q f=
é

ë
ê
ê

ù

û
ú
ú

p p
  ∣ ∣

to measure the difference between TGWEr ¢ and TWEr ¢ . The
second characteristic quantity, adopted in the case of an
equatorially antisymmetric wind, is the distance zD between
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the center of mass and the center of figure caused by the wind-
induced density anomaly. Although we can, in principle,
compute J3 using the known coordinate of the center of mass,
comparing z( )TGWED based on TGWEr ¢ to z( )TWED based on

TWEr ¢ suffices to serve our primary purpose. The third
characteristic quantity, adopted in the case of an equatorially
symmetric wind, is the lowermost coefficient ( )J2 TGWE

computed from TGWEr ¢ and ( )J2 TWE
from TWEr ¢ . We believe that

O(100%)diffD = together with

[ ]z z

z

( ) ( )

( )
O(100%)

TGWE TWE

TWE

D - D

D
=

and

( ) ( )
( )

J J

J
O(100%)

2 TGWE 2 TWE

2 TWE

é
ëê

- ù
ûú =

are sufficient to reconfirm the result of the order-of-magnitude
analysis given by Equations (18) and(19): the gravitational
perturbation term in the TGWE (23) neglected in the TWE (3)
generally makes a leading-order contribution and, hence, must
be retained.

4.1. Equatorially Antisymmetric Zonal Winds

First, consider the equatorially antisymmetric wind
U r( , )asym q in the form

U U
r

R

r

R
e

sin cos
, (34)asym 0

s
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s
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s
q q

=
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è
çççç

ö

ø
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- -

where U R 100 O(100m/s)0 s= W = represents a typical speed
of the zonal winds,

U r U r( , ) ( , ),asym asymq p q= - -

and h is the depth parameter. Using this simple wind profile
(34), together with the simple interior density profile r( )staticr
given by Equation(31), an explicit analytic expression for the
wind-driving term in the TWE (3) or the TGWE (23)can be
derived:
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Using Equation(35), the numerical form of the TGWE (26)
for the anti-equatorially symmetric zonal wind becomes
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for i N1, 2, 3, ,= x and j N1, 2, 3, ,= q . Since the
parameters R , ,s W  appear as the same common factors in
both the TWE (3) and the TGWE (23) and since our primary
purpose is to show the difference between the solutions of
Equations(3) and (23), we are free to select the parameters in
Equation(36). For this reason, we consider a generic object
whose parameter values are guided by those of Jupiter:
Rs= 69,911km, 1.7585 10 s4 1W = ´ - - , 22253 km= , and
M 1.8986 1027= ´ kg.
It is important to note that solutions of Equation(36) give

the wind-induced density anomaly r( , )r q¢ obeying the
equatorial parity

r r( , ) ( , ).r q r p q¢ = - ¢ -

As a consequence of this density parity, the center of mass for
the gaseous planet would slightly shift from the center of figure
along the axis of rotation. The distance zD between the center
of mass and the center of figure can be calculated by the
following integration:

( )z
M

r dr d d

M
r dr d
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sin cos

4
sin cos .
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0 0
static
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s
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ò ò

r r

q q q f
p

r q q q

D = + ¢

´

= ¢

p p

p

It follows that the center of mass in the presence of the
equatorially antisymmetric wind (34) is located at

r z( 0, )q = = D on the rotation axis.
We consider two different values for the depth parameter h

in the equatorially antisymmetric zonal wind U r( , )asym q given
by Equation(34) using the same r( )staticr given by Equa-
tion(31) and the same g r( )static given by Equation(33). It is
found that, for a large depth parameter h= 1.1430 with the
parameters of the generic object, the difference between TGWEr ¢
and TWEr ¢ is

r r

r

( ) ( )

( )
90.26%.diff

TGWE TWE 2

TWE 2

r r

r
D =

¢ - ¢

¢
=

 

 

7

The Astrophysical Journal, 806:270 (10pp), 2015 June 20 Zhang, Kong, & Schubert



For the distance zD between the center of mass and the center
of figure, the solution TGWEr ¢ of Equation(36) yields

z( ) 6.56 km,TGWED = -

while the solution TWEr ¢ of the TWE (3) gives

z( ) 1.13 kmTWED = -

for exactly the same model and parameter values. The value of
z( )TGWED is nearly six times larger compared to z( )TWED . The

above numbers, because of the unrealistic wind profile (34), do
not have much physical significance. But it has an important
mathematical significance: the TGWE (23) is profoundly
different from the TWE (3), and the TWE (3) does not
generally provide a reasonable approximation to the TGWE
(23). The large difference between the solutions of (3) and
(23) is obviously attributed to the fact that the gravitational
perturbation, represented by the second term on the right-hand
side of Equation(23) and directly caused by the wind-induced
density perturbation, which is neglected in the TWE (3), is the
same order of magnitude as the first term on the right-hand side
of Equation(23) and, hence, must be retained. This fact is
mathematically explicit when comparing the first term to the
second term on the right-hand side of Equation(36).

For a smaller depth parameter h = 0.1430, the solution of
Equation(36) yields

z( ) 2.06 km,TGWED = -

while the solution of the TWE (3) gives

z( ) 0.56 kmTWED = -

for exactly the same model and parameter values. In this case,
since the zonal winds are not as deep, the difference between

TGWEr ¢ and TWEr ¢ is expected to be less pronounced,

r r

r

( ) ( )

( )
39.75%.diff

TGWE TWE 2

TWE 2

r r

r
D =

¢ - ¢

¢
=

 

 

Again, the solution of the TWE (3) measured by the size of zD
is substantially different from that of the TGWE (23):

z( )TGWED is more than 300% larger than z( )TWED even for
the small depth parameter h = 0.1430.

A unique feature of the TGWE (23) is that it contains the
Green’s function r r1 ˜- in its integrand and, consequently,
the numerical convergence of its solution can be slow. It is
found that, even for the large-scale wind U r( , )asym q given by
Equation(34), a high-resolution grid system is required to
represent the converged solution of Equation(36). The
behavior of the slow numerical convergence is shown in

Table 1 for N = 50. For example, we obtain z( ) 2.34 kmD = -
with N N 160 320´ = ´x q and h= 0.1430, while Equa-
tion(36) yields z( ) 2.06 kmD = - when N N´ =x q
220 440´ . The estimated converged value for sufficiently
large N N´x q is z( ) 2.00 kmh 0.1430D » -= . Moreover, it is
found that the spectral truncation parameter N in Equation(36)
is less significant: the truncation at N = 50 seems sufficiently
large for this solution because N = 100 gives rise to nearly the
same solution.

4.2. Equatorially Symmetric Zonal Winds

Second, we consider a simple equatorially symmetric wind
U r( , )sym q in the form

U r U
r

R
e( , )

sin
, (37)sym 0

s

2
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hR
s

sq
q

=
æ

è
çççç
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where U0 and h remain the same as in Equation(34) and

U r U r( , ) ( , ),sym symq p q= -

such that the wind-driving term can be evaluated analytically.
Using the hydrostatic density r( )staticr given by Equation(31)
and the zonal wind profile (37), we find that the analytic
expression for the wind-driving term in the TWE (3) or the
TGWE (23) is
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Using the analytic expression (38), the numerical form of the
TGWE (26) for the equatorially symmetric zonal wind
becomes
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for i N1, 2, 3, ,= x and j N1, 2, 3, ,= q . After obtaining

the density anomaly r¢ from Equation(39), we can compute
the gravitational coefficients Jn. Since it is anticipated that the
large-scale U r( , )sym q given by Equation(37) would primarily
induce the lowermost order gravitational coefficients, we
concentrate on the lowermost coefficient J2 (note that
J 02

static = ; thus, J J2 2
dyn= D in spherical geometry) calculated

Table 1
The Numerical Behavior of Convergence for the System (36) for Two
Different Depth Parameters h = 0.1430 and h = 1.1430 for N = 50

N N´x q z( ) (km)h 1.1430D = z( ) (km)h 0.1430D =

100 × 200 −15.94 −4.25
120 × 240 −10.36 −2.96
140 × 280 −8.58 −2.54
160 × 320 −7.73 −2.34
180 × 360 −7.24 −2.22
200 × 400 −6.92 −2.15
220 × 440 −6.71 −2.06
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by performing the integration

( )( )

J
M

P d d

2

˜ ˜ ˜, ˜ sin ˜ ˜ ˜,

2

3

2

0 0

4
2ò ò

p
p

x q r x q q q x

= -

´ ¢
p p



where 0x = (or r= 0) in this case represents the center of
mass as well as the center of figure.

As in the previous antisymmetric case, we also consider two
different depth parameters h = 1.1430 and h = 0.1430 in the
equatorially symmetric zonal wind U r( , )sym q given by
Equation(37). For a large depth parameter h = 1.1430, the
solution of Equation(39) using the parameters of the generic
object yields

( )J 1.553 10 ,2 TGWE
4= ´ -

while the solution of the TWE (3) gives

( )J 0.874 102 TWE
4= ´ -

for exactly the same model and parameter values. The
difference diffD between TGWEr ¢ and TWEr ¢ is

r r

r

( ) ( )

( )
101.43%.diff

TGWE TWE 2

TWE 2

r r

r
D =

¢ - ¢

¢
=

 

 

Evidently, this large difference between the solutions of
Equations(3) and (23) is again a direct consequence of the
gravitational perturbation term neglected in the TWE (3). It
reinforces the view that the TWE (3) cannot generally provide
a reasonable approximation to the TGWE (23).

In the case h = 0.1430 with the zonal flow concentrated
more in the outer layer of the planet, the solution of
Equation(36) yields

( )J 5.00 102 TGWE
5= ´ -

while the solution of the TWE (3) gives

( )J 3.17 102 TWE
5= ´ -

for exactly the same model and parameter values. It is expected
that, when the zonal winds become sufficiently shallow (this
point will be discussed further in Section 5), the difference
between TGWEr ¢ and TWEr ¢ would be less pronounced. The
smaller depth parameter h = 0.1430 gives

r r

r

( ) ( )

( )
53.35%.diff

TGWE TWE 2

TWE 2

r r

r
D =

¢ - ¢

¢
=

 

 

In conclusion, the solutions of the TWE (3), measured by the
size of the gravitational coefficient J2, are substantially
different from those of the TGWE (23).

The numerical convergence for the equatorially symmetric
solution (39) is much faster. For example, we obtain
J 5.0014 102

5= ´ - when N N 80 160´ = ´x q with
N = 50 and h= 0.1430, while the higher resolution
N N 160 320´ = ´x q yields J 5.0013 102

5= ´ - . Moreover,
the convergence with increasing N in Equation(39) is also
satisfactory. For example, using the higher resolution with

N N 160 320´ = ´x q and N = 100, the numerical solution of

Equation(39) leads to J 5.0014 102
5= ´ - .

5. SUMMARY AND REMARKS

The present study shows that the TWE (3)—which correctly
relates the vertical shear of a flow to the horizontal density
gradient in the thin atmosphere of the Earth—is incorrect for
the purpose of computing the gravitational signature of a giant
gaseous planet caused by the zonal winds in its deep interior.
This is because an extra term representing the concomitant
gravitational perturbation g¢ produced by the density anomaly
r¢ is of the same order of magnitude and, hence, must be
retained, leading to the TGWE (23). Since the TGWE
represents a two-dimensional kernel integral equation with
the Green’s function in its integrand, it is much more difficult
to solve even in spherical geometry. An extended spectral
method, represented by Equation(26) for a system of the
N N´x q equations, is proposed to solve the system for
determining the density anomaly r¢. Using simple analytic
profiles for both the zonal winds and the hydrostatic solution,
we then apply the method to a generic gaseous object whose
main parameter values are guided by the parameters of Jupiter.
We have demonstrated that the solutions of the TGWE (23) are
substantially different from those of the TWE (3) and that the
TWE, in general, cannot provide a reasonable approximation to
the TGWE.
There exist, however, two special circumstances in which the

kernel integral in the TGWE (23) can be neglected and,
consequently, the TWE (3) provides a good approximation to
the TGWE (23). The first circumstance is when the interior
fluid of a planet is weakly compressible everywhere, i.e.,

r

d r

dr
r R

( )

( )
1 in 0 .

static

static
s

r

r
< <

However, this case does not represent the typical interior of a
giant gaseous planet like Jupiter, which is believed to be
strongly compressible. The second circumstance is when the
zonal winds U and the corresponding wind-induced density
perturbation r¢ are primarily confined within a very thin outer
layer defined by R r R( )s s- ⩽ ⩽ with R0 ( ) 1s<  . In
this case, the TGWE (23) becomes
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which represents the standard TWE widely used in atmospheric
dynamics where the gravitational force g r( )static in the thin layer
R r R( )s s- ⩽ ⩽ —which mainly originates from the deep
mantle and core—may be regarded as being constant.
However, this case represents an uninteresting trivial case not
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only because we are concerned with how a deep wind induces
an externally measurable gravitational signature but also
because it is obvious that J 0n

dynD  when R( ) 0s  .
With the correct TGWE (23) for computing the external

gravitational signature induced by deep zonal winds, we still
face two major unresolved difficulties. First, the TGWE (23) is
only valid for spherical geometry and cannot be readily
modified for a rapidly rotating gaseous planet that departs
significantly from a spherical shape. This difficulty is marked
by the feature that the latitudinal components, gˆ · staticq and
ˆ · staticq r , become non-negligibly small in non-spherical
geometry. Second, the numerical convergence of the system
(26), a consequence of the nature of the Green’s function

r r1 ˜- in the integrand of Equation(23), is usually slow.
Even with a spatially simple, smooth profile of the zonal winds
U, we have encountered some numerical difficulties in
computing a well-converged solution for the system (36), as
shown in Table 1. This is likely to cause more computational
difficulties when calculating, via the TGWE (23), the
gravitational signature of a real giant planet using the spatially
complicated profile of the zonal winds. Interpretation of high-
precision gravitational measurements for Jupiter and Saturn—
which requires taking into account the full effect of rotational
distortion for Jn

static and computing the wind-induced Jn
dynD in

non-spherical geometry—remains a challenging task that defies
a simple solution.
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