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Summary 

Elastin is a major component of tissues such as lung and blood vessels and endows them with the 

long-range elasticity necessary for their physiological functions. Recent research has revealed the 

complexity of these elastin structures and drawn attention to the existence of extensive networks of 

fine elastin fibres in tissues such as articular cartilage and the intervertebral disc. Nonlinear 

microscopy, allowing the visualisation of these structures in living tissues is informing analysis of 

their mechanical properties. Elastic fibres are complex in composition and structure containing, in 

addition to elastin, an array of microfibrillar proteins, principally fibrillin. Raman microspectrometry 

and x ray scattering have provided new insights into the mechanisms of elasticity of the individual 

component proteins at the molecular and fibrillar levels, but more remains to be done in 

understanding their mechanical interactions in composite matrices. 

Elastic tissue is one of the most stable components of the extracellular matrix, but impaired 

mechanical function is associated with ageing and diseases such as atherosclerosis and diabetes. 

Efforts to understand these associations though studying the effects of processes such as calcium 

and lipid binding and glycation on the mechanical properties of elastin preparations in vitro have 

produced a confusing picture and further efforts are required to determine the molecular basis of 

such effects. 

Introduction 

Long range elasticity is a requirement of many biological tissues. In mammals a unique protein, 

elastin, is used to serve this function, although in other species a number of different proteins are 

employed.  

Elastin can constitute up to half the dry weight of tissues such as large blood vessels where, in 

association with a family of microfibrillar glycoproteins, it forms a lamellar structure whose 

biochemistry and contribution to vascular biomechanics have been exhaustively investigated. 

Similarly, the structure and biomechanics of elastic tissues in the skin and lung and the changes 

associated with ageing and disease are well understood (see e.g. Fung [1, 2]). However, fine fibres of 

elastin are difficult to detect by classical light and electron microscopic techniques and in 

consequence the existence of networks of fine fibres of elastin in other tissues such as small blood 

vessels and adipose tissue has been largely overlooked. Fibrous elastin has been reported in 

cartilage [3, 4], however its mechanical role has yet to be elucidated. 



In Section 1 we summarise recent research on the distribution and organisation of the fine fibril 

networks and the microstructure of denser elastin structures found in various tissues. The fibril 

networks are often found in close association with dense collagenous structures and in Section 2 we 

discuss the implications of the co-existence of such structures of very different mechanical 

properties for tissue micromechanics.  

The functional unit of elastin structure is the elastic fibre, generally containing elastin and a number 

of microfibrillar glycoproteins, in Section 3 we discuss the problem of relating the mechanical 

properties of these fibres to the organisation and mechanical properties of the elastin molecule. The 

molecular bases of elastin mechanics have attracted interest since the 1960’s because long range 

elasticity is generally associated with random polymers and is therefore an unusual property for a 

protein. Here, we present new insights derived from X ray scattering and Raman microspectrometry 

and discuss them in the context of molecular models of elastin and measurements of single 

molecule mechanics. 

Elastin is a single gene-copy protein, but multiple isoforms may be produced by alternative splicing 

of its pre-mRNA. In Section 4 we summarise data on variations in molecular composition both 

between tissues and between species and consider the consequences of these variations on both 

intrinsic mechanical properties and the assembly of elastin into tissue-specific fibres and networks. 

Extending this theme, we also compare the structure and mechanical properties of elastin with 

those of the lamprins, a family of elastic proteins found in the agnathans, which may be evolutionary 

predecessors of the mammalian protein. 

Very few diseases are associated with abnormalities in elastin, probably because defects in elastin 

are fatal in the perinatal period. However, elastin is the most stable of the extracellular matrix 

molecules and its rate of synthesis after puberty is almost unmeasurably small and, in consequence, 

it is susceptible to degradation or modification by chemical processes such as nonenzymatic 

glycation where the reaction rate is negligibly slow in comparison with the lifetime of most other 

matrix proteins. Loss of elasticity in structures such as blood vessels, lung and skin is a hallmark of 

the ageing process and there are conflicting views on the extent to which it arises from 

fragmentation of elastin networks or from modification of the elastic properties of the elastin fibre 

itself. In the final section we summarise research relating changes in the mechanical properties of 

the elastin molecule and fibre mechanics to chemical interactions with the environment. 

1. The Distribution and Structure of Elastin Fibres 

In light microscopy elastin is difficult to stain specifically and it is refractory to most of the stains 

used for electron microscopy. Probably for these reasons, existence of fine fibres of elastin in other 

tissues has often been overlooked. However, it is an intrinsic fluorophore and two photon excitation 

which provides enhanced spatial resolution and depth penetration compared to single photon 

stimulation, has revealed complex networks in a number of tissues. Fig.1 illustrates some 

representative structures. 



 

Figure 1. Elastin fibres in connective tissues as revealed in fresh, unstained tissue by two photon fluorescence (green). 

Collagen is visualised by second harmonic generation (blue) and cell boundaries by Coherent anti-Stokes Raman 

Scattering (CARS) from CH2 bonds in cellular lipids (red). Sources of tissue: a) Equine metacarpophalangeal joint, b) 

Equine tail. c) human omentum, d) human abdominal subcutis, e )porcine heart and f) porcine aorta. 

In articular cartilage (Fig. 1a) a network is present particularly in interteritorial matrix of the surface 

zone and in the pericellular matrix [4]. In the intervertebral disc (Fig. 1b), elastin fibres span the 

nucleus pulposus and are particularly prominent in the annulus, running both within and between 



collagen annuli [5, 6]. Even in adipose tissue, which contains only a sparse extracellular matrix there 

is a rich elastin network (Fig. 1c). Less unexpectedly, elastin is a significant component of small 

resistance arteries and veins, where it can be found in two morphologically distinct arrangements 

(Fig. 1d). Finally, chordae tendinae are generally regarded as collagenous structures [7], but they 

contain a delicate elastin structure, particularly at their periphery (Fig. 1e). 

As discussed in Section 5, the similar fluorescence of these fibres may conceal differences in 

biochemistry, but they show some structural similarities. They are generally of uniform diameter 

along their length. In disc and cartilage the fibres are fine and typically ≤1µm in diameter, however in 

adipose there is a larger range of fibre diameters (1-6µm). The fibres in cartilage, blood vessels and 

disc are predominantly long and straight, however adipose and chordae tendinae fibres are both 

straight and wavy. Fibres in disc and cartilage normally follow the predominant direction of the 

collagen fibres although in areas with a less clear collagen arrangement a wider range of elastin fibre 

angles are seen. The fibres frequently bifurcate, but there does not appear to be a preferred angle of 

branching or any obvious difference in diameter between parent and daughter fibres. The elastin in 

small resistance arteries comprises a layer one fibre thick in the media, and fibres in this layer are 

highly organised and aligned longitudinally, and appear to be connected at regular intervals. Elastin 

fibres are present in the adventitia as well, where they are more abundant and more randomly 

oriented. 

We presume that these fibres form in the same way as the more extensive structures in, for 

example, large blood vessels, by deposition of elastin on to a skeleton of microfibrillar glycoproteins. 

Though the structure of elastin in the large arteries is commonly described as lamellar, this is 

actually somewhat misleading as demonstrated in Fig. 1f. As shown in the elegant electron 

microscopic studies by Spina and colleagues on carefully prepared specimens of pure elastin, there is 

a complex hierarchical structure as shown in Fig. 2. 

 

Figure 2. Scanning electron micrograph of the elastin structure of ligamentum nuchae elastin (by kind permission of Prof 

Michel Spina).  

The predominant structure is of twisted rope-like fibres approximately 1 μm in diameter which are 

composed of fibrils 0.2 μm in diameter, which are clearly revealed in regions in which the ropes 



appear to fray. Also evident are much finer (<0.1 μm), generally straight fibrils not unlike those 

described above which appear to run between the larger fibres. 

The larger fibres have a diameter of approximately 1 µm. Early work by Partridge revealed that the 

purified fibres contain internal water-filled spaces sufficiently uniform in size to allow the fibres to 

be used as a substrate for size exclusion chromatography for solutes up to 1000D in molecular 

weight [8]. Studies using microbeam X-ray diffraction show that the fibres have limited structural 

order with d-spacings of 0.47 and 0.92 nm [9]. These values suggest that molecular conformation 

and molecular organisation within the fibres are determined by intra and inter-molecular 

hydrophobic interactions.  

In summary, it appears that elastin fibres approximately 1 μm in diameter is a common building 

block in forming the elastic structures of many tissues. However, the fibre probably has a complex 

sub-structure which complicates the analysis of its mechanical properties, as we shall discuss below. 

 

2. Tissue Micromechanics: Mechanical Functions of Elastic Fibres 

The co-existence of networks of collagen and elastin fibres in tissues such as blood vessels, which 

give rise to the nonlinear mechanical properties that are central to their biomechanical function is 

well established (reviewed in e.g. [2, 10]). More recent work has incorporated structural information 

on the aortic elastin network into anisotropic mechanical models, validated against mechanical 

testing data [11]. Nonlinear microscopy provides almost comparable visualisation of the both the 

elastin and collagen networks (see fig. 1f) in living tissue and should, in the near future provide 

direct validation of these models and allow their extension to include interactions with collagen.  

Another challenge, which may yield to such microscopic investigations is the question of pre-stress 

in the elastin network. Fung and colleagues have drawn attention to the existence of residual 

stresses in blood vessels [12], which result in the opening of a blood vessel when its wall is cut 

longitudinally. At the microscopic level there are probably differential residual stresses between the 

collagen and elastin networks components. We have observed that when collagen is digested from 

large elastic arteries the elastin network expands from the unpressurised diameter of the vessel to 

something close to the diameter of the vessel at physiological pressure. How these stresses are 

generated during vascular development is a question for the future. 

 

It was noted many years ago by Wolinsky and Glagov [13] blood vessels have a modular structure, 

which differs around the circulation. Comparing a particular vessel between species shows that the 

modular structure is conserved, but the number of modules varies with vessel dimensions 

suggesting that each module is designed to support a particular load. To the best of our knowledge 

the micromechanics of these structural units and the manner in which their properties are matched 

to local haemodynamic conditions have not been explored. 

The biomechanical properties of the small blood vessels constituting the microcirculation have 

received remarkably little attention in comparison with large arteries and veins, not least because of 

the technical challenges in handling delicate vessels only tens or hundreds of microns in diameter. In 



large blood vessels the primary biomechanical requirement is passive matching to local 

haemodynamic conditions, affected by an appropriate mix of collagen and elastin fibres, as 

discussed above. Small blood vessels determine vascular resistance and the distribution of blood 

flow through changes in vessel calibre produced by contraction or relaxation of smooth muscle. This 

requires that the supporting matrix allows significant changes in internal radius in response to a cell-

generated force, as well as to changes in lumenal pressure. A synergy between elastin and collagen, 

described theoretically as a “hook-on” model [14] (several other models also exist), governs the 

nonlinear mechanical response of vessels in which elastin recruitment occurs at low distension, 

while collagen recruitment primarily occurs at high distension. Current approaches to modelling of 

small vessels are limited by the assumption that the vessel wall is homogeneous, meaning that the 

internal mechanical environment is not well understood. Present work involves the use of nonlinear 

microscopy to image the elastin and collagen networks in small vessels mounted on a pressure 

myograph. Fig. 3 shows two-photon fluorescence (TPF) and second harmonic generation (SHG) 

images of a resistance artery at zero transmural pressure, and 30 mmHg. The distribution of collagen 

and elastin is very different from that in larger vessels, with elastin present largely in the intimal 

region and very little interpenetration of the two networks. Under pressure the collagen network 

becomes more densely packed due to radial expansion of the vessel as a whole, but it is not yet clear 

whether fibres straighten. The internal layer of elastin, initially parallel and longitudinally aligned, 

deforms to a more isotropic arrangement. Work is in progress to determine quantitatively the 

deformations and rearrangements in the fibrous networks, and establish the interactions of these 

structures with the smooth muscle of the medial zone and the mechanisms of tonic contraction. 

 

Figure 3: False colour images of a viable human subcutaneous small resistance artery at neutral luminal pressure (left) 

and 30 mmHg (right). SHG (blue) reveals collagen, and TPF (green) reveals autofluorescent proteins. Fibres seen in green 

are elastin. Increased luminal pressure causes the innermost layer of elastin to stretch radially, revealing the 

interconnectivity of the elastin fibres. The vessel is oriented at an angle to the imaging plane, so that the top of the 

images is in the adventitia, and the bottom passes through the lumen. 

Another fundamental question is why many tissues whose primary biomechanical function is 

dependent on dense arrays of collagen fibres also contain networks of elastin. In order to investigate 



potential mechanical roles of the elastin fibres in articular cartilage we have used multiphoton 

microscopy to image the displacement and change in morphology of cells, collagen and elastin 

networks in viable, unstained cartilage subjected to applied tensile loads (Bell et. al. (under review)).  

The reorientation of individual elastin fibres could be tracked between images taken at progressive 

strains as shown in Fig 4. The changes in fibre angle at each strain were compared to those predicted 

by a simple model assuming that the cartilage was a homogeneous elastic material in which the 

elastin fibres were embedded in the matrix so that they did not slip and transduced no load. As 

shown in Fig. 4, the behaviour of most fibres differed from the model predictions demonstrating that 

the fibres are not a passive component of the matrix. The fibres therefore move relative to the local 

matrix when the cartilage is loaded. We therefore hypothesise that the fibres, which are 

predominantly distributed in the superficial zone of the cartilage, have a role in determining the 

response to the shear forces to which the tissue is subjected as one articular surface slides over 

another during joint articulation, possibly by maintaining collagen fibres in register or assisting 

recovery from strain. If this is true, loss of elastin fibres may be a factor in the development of 

osteoarthritis. 

 

Figure 4: (a-c) Two photon fluorescence (TPF) images of equine articular cartilage at 0, 4 and 8% applied tensile strain. 

(d) An overlay showing elastin fibres which can be individually tracked between the images.  (e) A histogram showing 

the differences between the predicted and measured elastin fibre angles at both 4% and 8% strain. The shaded area 

shows the limited range where the values agree within the uncertainty of the measurements. 

The mechanical role of elastin fibres in the intervertebral disc is also attracting increasing attention. 

In the intervertebral disc, at least in the young, the nucleus is relatively fluid and compressive loads 

are transmitted directly to the annulus. Both the relatively sparse network of predominantly type II 

collagen fibres and the elastin are randomly arranged and although no specific connections between 



the two networks have been observed, it seems likely that the elastin acts to assist the recovery of 

the collagen network after unloading of the disc [5]. The annulus bulges under compressive load and 

under bending and torsion there is a complex pattern of collagen fibre re-orientation and shear 

between adjacent lamellae. The distribution of elastic fibres into relatively coarse interlamellar 

connections and finer intralamellar ones suggests that they play a key role in the rapid recovery of 

disc shape after isovolumetric loading [5]. Recent demonstrations of an association between 

changes in the structure of the elastin network and disc degeneration [15] indicate that further 

exploration of this hypothesis may be of more than academic interest. 

3. Fibre and Molecular Mechanics 

The contribution of elastin to tissue mechanics is clearly modulated both by the total elastin content 

and by the type of network that is formed. However, the complexity of these networks makes it 

difficult to relate their mechanical properties to the intrinsic mechanical properties of the elastin 

fibre. Many fundamental studies have therefore used the uniform fibrils of ligament elastin, 

sometimes dissected down to the level of individual fibre to circumvent possible issues arising from 

fibre heterogeneity or slippage between fibres. Most studies report an elastic modulus in the range 

0.3-1.2 MPa, generally increasing with strain, with a breaking strain of up to 200% (e.g. [16, 17]). The 

mechanism of strain-stiffening has not been discussed to our knowledge, but the modulus of 

individual fibres is substantially higher than those measured in networks. A significant recent 

development has been the application of atomic force microscopy to determine the mechanical 

properties of tropoelastin (the soluble form of elastin which is secreted by the cell) [18]. The 

molecule was found to act as a near perfect spring, showing minimal hysteresis loss. However, the 

reported elastic modulus of 3 kPa is much lower than that of the formed fibre. In many physiological 

situations the dynamic properties of elastin are important, but these have been less extensively 

investigated in purified preparations. Cyclic loading experiments show that resilience of fibres falls 

rapidly at higher frequencies [19] but, as discussed below, the mechanism may be quite complex. 

The problem of reconciling the mechanical properties of the individual molecule to those of the fibre 

is a challenging task because of the complexity of the internal structure of the elastin fibre. The 

importance of entropic mechanisms of elasticity, described below, led to analogies with natural 

rubber and fostered a belief that elastin forms random networks. However, the microscopic images 

challenge this presumption and X-ray scattering data also indicate some level of organisation. Early 

studies on dehydrated fibres [20, 21] did not show changes with strain however, a more recent 

study on hydrated fibres using microbeam diffraction showed that the 0.45 and 0.9 nm spacings 

became fainter under stain, suggesting that the hydrophobic forces had been overcome [9]. Raman 

microspectrometry provides some evidence of molecular ordering within the elastin fibres. Intensity 

polarisation measurements show that for elastin fibres in the relaxed state the peptide bonds are 

oriented between 45-50° to the fibre axis whilst the bulky side chains such as those of phenylalanine 

are orientated between 35-39°.  On the application of strain all bonds, particularly those reflecting 

the orientation of the more bulky side chains,  re-orientate to become less more closely aligned to 

the fibre axis [22]. Raman spectroscopy also shows a loss of water from the fibre. As discussed 

below, this may be relevant to the hydrophobic component of molecular elasticity. However, it is 

also possible that it represents loss of water from intrafibrillar spaces.  



The rate of redistribution of water in the intrafibrillar space may also be a determinant of the 

viscoelastic properties of the elastin fibre, i.e. the elastin fibre should be regarded as a poroelastic 

material [23]. However, it has also been suggested that the loss of elasticity at high frequencies 

reflects the relative immobility of the elastin chains themselves [24]. Molecular modelling reflecting 

the preponderance of rather small and mobile amino acid side chains, does not appear to support 

this hypothesis [25, 26].  

Although the experiments summarised above have provided fundamental insights into the 

micromechanics of elastin fibres, it is important to remember that the mechanically functional unit 

in tissue is the elastic fibre, comprising both elastin and microfibrillar glycoproteins.  

The principal glycoprotein is fibrillin and its mechanical properties have been studied, both in the 

form of the fibrillin-rich zonular fibrils of the eye [27] and in the networks forming the major 

structural component of blood vessels in crustaceans [28]. The former measurements show highly 

nonlinear stress-strain characteristics with an incremental elastic modulus of approximately 500 kPa 

at 20% strain, although the effective modulus is an order of magnitude lower in the network of 

lobster aorta. This zonular fibre modulus is close to that of a single ligament elastin fibre. 

Measurements have been made on the mechanical properties of the elastic tissue isolated from 

large blood vessels, with and without the microfibrillar component [29, 30], showing that the 

microfibrils contribute to the mechanical properties. We speculated that this arises   because the 

microfibrils influence the realignment of the elastin under applied load or through their binding to 

and altering the physicochemical properties of the elastin monomer. However, the demonstration of 

the similarity of mechanical properties of the two components indicates that a more direct 

mechanical function of the fibrillin is possible, and this is supported by recent measurements on the 

mechanics of ligament elastic fibres with and without glycoproteins [31]. Resolution of this question 

requires knowledge of the organisation of the microfibrillar network and the strains to which it is 

exposed. The Raman spectrum of fibrillin shows peak shifts under large strain [32] which might 

provide a probe of local matrix strain. However attempts to do this in our laboratory have failed 

have failed to resolve any of the microbibrillar modes from elastin, which dominate the spectrum of 

porcine aortic elastic tissue [22]. 

Moving to molecular mechanisms of elasticity, the curiosity of a protein which displays long-range 

elasticity has attracted attention for over 50 years. Until recently, however, most experiments were 

conducted on elastin fibres where attempts to infer molecular mechanisms of elasticity are 

complicated by the uncertainties, already discussed, surrounding molecular organisation within the 

fibres. Thermomechanical testing [33] and application of the Flory [34, 35] theory of entropic 

elasticity reveals a significant component of entropy elasticity at higher temperatures, although at 

room or physiological temperatures its energetic contribution is less than 50% (Fig. 5). That the 

remainder comes from solvent interactions is demonstrated both by experiments on the mechanical 

effects of changing solution composition and by calorimetry. Early experiments using the former 

approach were compromised by failure to appreciate the partitioning of mixed solutions between 

the bulk medium and the intrafibrillar space. However, experiments with panels of probes of 

increasing hydrophobicity, for example primary alcohols, show a steady transition from elastic to 

plastic behaviour. Direct measurements of enthalpy changes as elastin fibres are stretched confirm a 

large change in internal energy, attributed to interactions with water, at physiological temperatures, 

decreasing at higher temperatures, consistent with the data in Fig.5 (Gosline et al [36], confirmed by 



unpublished data from our own laboratory). Raman spectroscopy and other techniques such as 

differential scanning calorimetry and dielectric spectroscopy [37-39] have further demonstrated the 

importance of interactions of elastin with solvent water. Raman spectroscopy has also demonstrated 

that in more hydrophobic environments there is a slight increase in α-helix and a large increase in β-

sheet structure with a commensurate decrease in unordered structures [40]. Furthermore, the 

increase of entropic elasticity at higher temperature is accompanied by a slight upward shift in 

amide I band position, which is the result of an increase in β-turns and a smaller decrease in both α-

helix and unordered structures [22].Raman spectroscopy also shows that strains of up to 50% cause 

no significant change in secondary structure, other than a slight realignment of peptides bonds 

towards the fibril axis and similar shifts in the orientation of bulky side chains. These observations 

are consistent with molecular modelling simulations showing the elastin bchain to be extremely 

dynamic, due largely to the preponderance of small amino acid side chains [25, 26]. 

Fibrillin also displays long-range, non-linear elasticity and zonular fibres have breaking strains in 

excess of 300% [27], but its structural basis seems to be rather different from that of elastin. X-ray 

diffraction studies show that in fibrils up to 50% strain is accommodated without change in internal 

organisation, but at higher strains (which may be beyond the physiological range) there is an 

increase in axial periodicity and a decrease in lateral spacing [32]. Raman spectrometry reveals 

changes in amide bands, indicative of changes in secondary structure, together with shifts in side 

chain modes, indicating changes in packing, contrasting with the observations on elastin. 

 

Figure 5:  Thermoelasticity of nuchal elastin fibres from bovine nuchal ligament. Fibres were immersed in deionised 

water and held at constant 20% extension whilst force was measured as temperature was increased from room 

temperature to 60°C. Changes in stress were analysed on the basis of the theory of rubber-like elasticity [41], according 

to which the ratio of energetic components, fe, to the total force, f, is given by the relation:  

 

where the derivative is taken at constant pressure, length and fluid equilibrium, T is the absolute temperature, Vi and V 

are sample volumes before and after elongation, βeq is the thermal expansion coefficient and α is the fractional increase 

in length. See [40], for further details. 



4. Mechanical Implications of Variations in Primary Structure 

Elastin is a single gene-copy protein, but multiple isoforms can be produced by alternative splicing. 

Consistent differences in amino acid composition have been observed, both between tissues and 

between species. An interesting mechanical perspective on interspecies variation is provided by 

Gosline’s comparison of aortic elastin between warm and cold-blooded, where he argued that the 

differences in composition give rise to variations in glass transition temperature that are related to 

the normal operating temperature of the elastin [24]. 

 Sandberg and colleagues [42] drew attention to variations in the content of hydroxyproline between 

tissues. It is highest in the very fine network of elastin fibres in the lung parenchyme, 2-fold lower in 

large blood vessels and another 2-fold lower in ligamentum nuchae and Sandberg speculated that 

the more heavily hydroxylated elastin would be “stiffer” because of increased hydrogen bonding, 

though this remains to be experimentally verified.  

We described above the existence of networks of fine elastin fibres in cartilaginous tissues. Although 

these fibres show the fluorescence, histolochemical and immunohistochemical properties of elastin 

as well as stability against cyanogen bromide extraction a number of groups have reported difficulty 

in recovering the recognised amino acid composition in “elastin” extracted from cartilaginous tissues 

[5]. It is probable that this reflects the presence of contaminating protein fragments. However, it is 

striking that in some respects the amino acid sequences reported resemble lamprin. The lamprins 

are a family of proteins that can be isolated by cyanogen bromide digestion from lamprey cartilages 

[43]. Each of the lamprey matrix proteins is very similar in amino acid composition [44], but recent 

work in our laboratory has demonstrated that they differ significantly in mechanical properties (Fig. 

6). Proteins extracted from branchial and pericardial cartilages closely resemble elastin in stress-

strain behaviour, whereas those from annular and piston cartilages have non-linear, but highly 

reproducible, stress strain behaviour and notable hysteresis. The former resemble elastin in 

secondary structure, as determined by Raman spectrometry and form open-cell networks, whilst the 

secondary structure of the latter more closely resemble that of elastin at elevated temperature and 

form closed-cell networks. Research is continuing to establish how these differences are related to 

mechanical properties [40].  



 

Figure 6:  Stress-strain behaviour of lamprey cartilage (branchial, pericardial, annular and piston) proteins prepared by 

cyanogen bromide extraction. Data for bovine nuchal elastin fibres are shown for comparison. Measurements were 

made in deionised water at room temperature. See [40] for further details. 

5. Mechanical changes in Ageing and Disease 

Elastin is the most stable of the extracellular matrix molecules, with negligible synthesis after 

skeletal maturity. That lung and blood vessels maintain their function over 109 cycles of stretch and 

relaxation is therefore a significant mechanical performance. Nevertheless, loss of tissue elasticity is 

one of the hallmarks of ageing. It has long been recognised to be associated with fragmentation and 

thinning of elastin structures in skin and blood vessels and recent work in our laboratory shows that 

the fine fibres of cartilage elastin are broken in osteoarthritis.  

Because of its longevity elastin is susceptible to modification by chemical reactions that, for other 

matrix components, are negligibly slow, and a number of these appear to modify mechanical 

properties. Elastic tissue calcifies focally in atherosclerotic plaques and more extensively in rare 

conditions such as Monkenberg’s sclerosis, but there is still controversy about whether the 

interaction with calcium is electrostatic or involves binding to a neutral site [45].Although there is 

now strong evidence that much of the interaction is purely electrostatic the latter mechanism is 

interesting in the context of mechanics because it could influence the hydrophobicity of the 

molecule and thereby change its mechanical properties. However experiments in our laboratory 

using Raman spectrometry have so far failed to detect any changes in conformation or 

hydrophobicity following in vitro exposure to calcium salts at concentrations up to 2M and evidence 

of changes in mechanical properties has been obtained only at similarly high calcium concentrations 

[46]. In contrast, fibrillin contains extensive calcium binding domains, which influence its structure 



and mechanical properties [28]. The possibility that it is responsible for the pathophysiological 

observations merits consideration. 

Elastic tissue generally contains a significant amount of lipid, particularly in the vicinity of 

atherosclerotic plaques [47]. The mechanisms of lipid binding are reported to involve interaction 

with the hydrophobic domains of the elastin molecule and to result in conformational changes [48]. 

It is possible, therefore that lipid binding will modify the mechanical properties of elastin but, to our 

knowledge there has been no direct demonstration of this. 

Diabetes gives rise to widespread circulatory complications, which have stimulated investigations of 

the changes in elastin produced by reaction with high concentrations of glucose. Like collagen, 

elastin is susceptible to non-enzymatic glycation via the Amadori reaction. This results in changes 

both in the conformation of the elastin network resulting in an increase in zero-strain dimensions 

and an increase in its elastic modulus, either consequent on the conformational change or arising 

from the formation of additional cross-links. Studies in composite vascular networks containing both 

collagen and elastin showed that although both networks stiffened the collagen network contracted 

introducing differential strains in the matrix [49].   

Diabetes is but one example of a wide range of clinical conditions characterised by high levels of 

oxidative stress, which may affect the mechanical properties of elastin in similar ways. Most of these 

conditions remain unexplored, but one situation that has received some attention is the effect of 

exposure to light and ionising radiation. The specific effects of light, as distinct from age, on skin 

elastin have been extensively described [50]. The principle observation is fibre breakage associated 

with attack by free radicals, which results in skin deformation and loss of elasticity. Experiments on 

purified elastin exposed acutely to ionizing radiation have shown a decrease in elastic modulus [51]. 

This is consistent with fibre breakage in contrast to the cross-linking which occurs in collagen fibres. 

The latter leads to an increase in stiffness and so it is clear that irradiation generates a complex 

pattern of change in the micromechanics of tissue. 

 

Conclusions 

Recent research has demonstrated elastin, generally in the form of networks of fine fibres, is a more 

widely distributed component of tissue than previously appreciated. This realisation has largely 

come about because two photon fluorescence microscopy has provided a more sensitive detection 

technique than classical histological methods. Multiphoton microscopy has also proven a valuable 

tool in informing mechanical models to determine the contribution of these networks to tissue 

micromechanics. Although much remains to be done, it is clear that the networks are mechanically 

functional and are implicated in the development of various pathological conditions. 

The structure of the elastic fibre, or of the elastin component itself and the molecular mechanisms 

of elasticity are long standing questions, but important insights have been obtained from modern 

methods of microscopy and spectroscopy. We are now close to final resolution of long-standing 

controversies and obtaining a secure basis for analysis of changes in mechanical properties in 

diseases such as diabetes and atherosclerosis. Because of the complex composition of the 

extracellular matrix and the mechanical interactions between many of its components these 



questions must be addressed by means of micromechanical measurements. One specific challenge 

we alluded to was investigating the structural units of large blood vessels. In addition to 

characterising the mechanics of the formed structure there are questions relating to its formation. In 

each vessel the same cells are responsible for its formation and maintenance and presumably the 

differences in structure arise from the perception and response to site-specific chemical or 

mechanical signals. 

Elastin is unique amongst mammalian proteins in possessing long-range elasticity. Its evolution was a 

slow process and we have discussed its similarities to some of its immediate precursors, the lamprey 

proteins. Other elastic proteins from even more primitive species such as byssal fibres used by 

molluscs to attach themselves to solid surfaces and abductin which forms a compression spring in 

the hinges of bivalves have with few exceptions [52-55] received little attention from the 

biomechanics community. An outstanding exception is the silk proteins which, although operating in 

a very different environment show remarkable similarities in structure and properties and 

mechanics [56-59]. A powerful driver for research on silks has been the potential commercial 

exploitation of their remarkable mechanical properties. Similar promises have been made for 

synthetic constructs based on amino acid sequences found in elastin [60, 61], and similar claims 

could be made for its evolutionary precursors, but much remains to be done. 
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