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ABSTRACT 28 

Endocrine cells of the pituitary gland secrete a number of hormones, and the amount of hormone 29 

released by a cell is controlled in large part by the cell’s electrical activity and subsequent Ca2+ 30 

influx. Typical electrical behaviors of pituitary cells include continuous spiking and so-called 31 

pseudo-plateau bursting. It has been shown that the amplitude of Ca2+ fluctuations is greater in 32 

bursting cells, leading to the hypothesis that bursting cells release more hormone than spiking 33 

cells. In this work, we apply computer simulations to test this hypothesis. We use experimental 34 

recordings of electrical activity as input to mathematical models of Ca2+ channel activity, 35 

buffered Ca2+ diffusion, and Ca2+-driven exocytosis. To compare the efficacy of spiking and 36 

bursting on the same cell, we pharmacologically block the large conductance potassium (BK) 37 

current from a bursting cell, or add a BK current to a spiking cell via dynamic clamp. We find 38 

that bursting is generally at least as effective as spiking at evoking hormone release, and is often 39 

considerably more effective, even when normalizing to Ca2+ influx. Our hybrid 40 

experimental/modeling approach confirms that adding a BK-type K+ current, which is typically 41 

associated with decreased cell activity and reduced secretion, can actually produce an increase in 42 

hormone secretion, as suggested earlier.   43 

 44 

 45 

  46 
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INTRODUCTION 47 

 Endocrine cells of the pituitary gland (i.e., melanotrophs, lactotrophs, somatotrophs, 48 

thyrotrophs, corticotrophs, and gonadotrophs) secrete a number of hormones and are regulated 49 

by the hypothalamus (30). These hormones act on other endocrine glands and other tissues 50 

including the brain to regulate physiological and behavioral aspects of growth, metabolism, 51 

water balance, and reproduction (7). The endocrine pituitary cells contain a wide variety of ion 52 

channels and are electrically excitable, and hormone secretion occurs due to an elevation in the 53 

intracellular Ca2+ concentration that often accompanies electrical activity (29). Common 54 

behaviors of the cells include continuous spiking – typically observed in luteinizing hormone-55 

secreting gonadotrophs under basal conditions – and a form of bursting known as pseudo-plateau 56 

bursting often observed in prolactin-secreting lactotrophs, growth hormone-releasing 57 

somatotrophs, and ACTH-secreting corticotrophs, where the burst duration is at most a few 58 

seconds and the spikes that ride on the elevated voltage plateau are very small (9, 10). Each 59 

electrical event brings Ca2+ into the cell, and this Ca2+ is responsible for exocytosis of hormone-60 

filled granules. Simultaneous measurements of both electrical activity and Ca2+ concentration 61 

have established that the amplitude of Ca2+ fluctuations is greater in a bursting cell than in a 62 

spiking cell (30) leading to the hypothesis that bursting cells release more hormone than spiking 63 

cells (8, 9). Experimentally exploring this hypothesis will require simultaneous measurements of 64 

electrical activity and release from single cells. The aim of this report is to use computer 65 

simulations to explore the hypothesis that pseudo-plateau bursting evokes more secretion than 66 

continuous spiking. 67 

 The approach that we use is to directly measure electrical spiking and bursting patterns 68 

from pituitary cells and use these data as input to mathematical models of Ca2+ channel activity, 69 

Ca2+ diffusion and binding to buffer, and finally Ca2+-driven exocytosis. The model parameters 70 

are set according to prior data and models, but one major unknown factor is the geometrical 71 

arrangement of Ca2+ channels and docked granules at the plasma membrane. We consider the 72 

secretion response to stochastic single channels as well as small clusters of stochastic channels, 73 

and vary the distance of the channels from the release sites. Our objective is to determine how 74 

these factors affect the differential secretion evoked by spiking electrical activity vs. bursting 75 

electrical activity.  76 
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We find that bursting is typically more effective at evoking secretion than is continuous 77 

spiking. When bursting is induced in a spiking gonadotroph by injecting a BK-type K+ current 78 

with dynamic clamp, our model simulations suggest that the burst pattern is generally at least as 79 

effective as continuous spiking at evoking hormone release, and is often considerably more 80 

effective. We demonstrate that the degree of superiority of bursting over spiking depends on the 81 

channel configuration, which would likely vary from cell-to-cell. We also demonstrate that the 82 

bursting reappearing in an endogenously bursting pituitary cell, after previously 83 

pharmacologically blocking the native BK current and subsequently adding a BK current using 84 

dynamic clamp, is superior at evoking secretion than the pharmacologically induced spiking 85 

behavior. Thus, we demonstrate with this hybrid experimental/modeling approach that adding a 86 

K+ current, which is typically associated with decreased cell activity and reduced secretion, can 87 

actually produce an increase in hormone secretion, as suggested earlier (9).    88 

 89 

METHODS 90 

The inputs to our mathematical models are voltage time courses recorded from a rat 91 

gonadotroph or from a GH4C1 lacto-somatotroph cell. We use traces consisting of continuous 92 

spiking patterns, and traces of fast pseudo-plateau bursting caused by adding a BK-type current 93 

to a spiking cell with the dynamic clamp technique. Each of these traces is fed into a 94 

mathematical model consisting of stochastic Ca2+ channels coupled to reaction-diffusion 95 

equations that describe Ca2+ transport through the cell.  Finally, the computed Ca2+ concentration 96 

is used to drive an exocytosis model based on Ca2+ binding to granules, granule fusion with the 97 

membrane, and resulting hormone release. 98 

 99 

EXPERIMENTAL  100 

GH4C1 cells were maintained in culture conditions in supplemented F10 medium 101 

(Sigma-Aldrich, St-Louis, MO) according to established procedures (35). Primary pituitary cells 102 

were obtained from diestrous female rats (Sprague Dawley, aged 3-6 months) using enzymatic 103 

dispersion of pituitary fragments (33). Animal procedures were approved by the Florida State 104 
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University Animal Care and Use Committee. Cells were cultured in supplemented M199 105 

medium (Invitrogen, Carlsbad, CA) for one day before being used for patch clamp experiments. 106 

Gonadotrophs were identified by their larger size and by their typical rhythmic 107 

hyperpolarizations in response to 1 nM gonadotropin-releasing hormone (Bachem, Torrance, 108 

CA) applied at the end of the experiment (38). 109 

During the patch-clamp experiments, cells were superfused with Hepes-buffered saline 110 

(138 mM NaCl, 5mM KCl, 10 mM D-glucose, 25 mM HEPES, 0.7 mM Na2HPO4, 1 mM 111 

MgCl2, 2 mM CaCl2) at room temperature. Patch pipettes (resistance 6-9 MOhm) were filled 112 

with solution containing 90 mM KAsp, 60 mM KCl, 10 mM HEPES, 1 mM MgCl2 with the 113 

addition of 120 g/ml amphotericin B. Usually, access resistance decreased below 50 MOhm 114 

within 10 minutes following seal (> 5 GOhm) formation. BK channels were blocked by bath 115 

application of 100 nM iberiotoxin (Tocris). 116 

 117 

DYNAMIC CLAMP 118 

Membrane potential was recorded in current clamp (bridge mode) and output from the 119 

patch amplifier (Multiclamp 700B, Molecular Devices, Sunnyvale, CA) was read through an 120 

analog to digital acquisition card (DAQ) on a PC running the software QuB with a dynamic 121 

clamp module (22). Membrane potential (V) was used to compute the current going through the 122 

BK channels, IBK = gBK f (VK-V), with f obtained by integrating  123 

( )  BK
df f V f
dt

τ ∞= −   124 

in real time using the forward Euler method (22), with dt average = 54 µs, maximum = 100 µs, 125 

and the steady state BK channel activation given by 126 

( ) ( ) 1
 1 exp ( ) /f ff V v V s

−

∞
 = + −   . 127 

The calculated BK current was injected back into the cell through the same DAQ. The parameter 128 

values were: gBK = 0.5 – 1 nS; τBK = 5 – 10 ms; vf = -15 mV; sf = 1 mV. 129 
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 130 

MODELLING 131 

GEOMETRY 132 

To model data from pituitary cells we represented a single cell by a sphere with a 133 

diameter of 13 μm (5). Based on whole-cell calcium conductance of ~1.5-2 nS (10), and single 134 

channel conductance ~20 pS (13), we assumed that a cell possesses 75 functional L-type Ca2+ 135 

channels. In our simulations we considered two different configurations for the channel 136 

distribution over the sphere surface: channels were either uniformly distributed and each release 137 

site affected by a single channel, or there were clusters composed of 5 channels, and each release 138 

site affected by a single cluster. In the single channel case, Ca2+ diffusion was computed in a 139 

conical region with base radius of 1.5 μm (Fig. 1a), a radius obtained by dividing the sphere 140 

surface into 75 circular areas, one for each channel. This radius corresponds to an inter-channel 141 

distance of ~3 μm, in agreement with (11). The single channel conductance was set to 20 pS 142 

(13). In the case of channel clusters, Ca2+ diffusion was simulated in a conical region with a base 143 

radius of 3.3 μm, corresponding to dividing the sphere surface into 15 circular areas. In both 144 

cases, the Ca2+ current source was located at the base center of the conical region. We 145 

implemented no-flux boundary conditions for Ca2+ and buffers on the sides of the cone. This 146 

assumption means that Ca2+ flowing out of the conical region equals the flux into the cone from 147 

adjacent regions, or in other words, that the Ca2+ channels in adjacent cones contribute to Ca2+ 148 

levels in the cone of study exactly as the Ca2+ channel or cluster under study influences the 149 

adjacent regions. Because of the conical geometry, the full 3-dimensional problem was reduced 150 

to a 2-dimensional problem, using rotationally symmetric spherical (r,θ) coordinates, thus 151 

reducing the computational requirements. Since the granules participating in hormone secretion 152 

are located just below the membrane (14), we focused our attention on the submembrane Ca2+ 153 

profiles along the plasma membrane.   154 

[Figure 1] 155 

 156 

 157 
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SINGLE CHANNEL CURRENT 158 

For the single Ca2+ channel, we assumed three states with kinetic mechanism described 159 

by (28) 160 

 
   ,

k

k
C O B

α

β

+

−

 
(1) 

where the states are closed (C), open (O), and blocked or inactivated (B).  161 

The rate constants α(V) and β(V) were determined by α=m∞/τm , β=1/τm – α (12)  using a steady-162 

state activation function m∞ and time constant τm obtained from experiments. Based on data from 163 

GH3 cells (5, 11), which have Ca2+ channel characteristics similar to GH4 cells (5), and in 164 

agreement with Sherman et al. (28), we set τm=1.25 ms. The steady-state activation function was 165 

 
1 ,

1 exp[( ) / ]m m

m
V V s∞ =

+ −
 (2) 

with Vm = –4 mV and sm = 7 mV (11). With regards to channel inactivation, some types of Ca2+ 166 

channels are inactivated by Ca2+, while others exhibit voltage-dependent inactivation. We found 167 

that fixed rate constants k–=0.018 ms-1 and k+=0.0324 ms-1 were sufficient to match inactivation 168 

experimentally observed in (11). The stochastic channel dynamics (1) was simulated as 169 

realizations of the discrete-state continuous-time Markov chain with transition probabilities for a 170 

small time step Δt described by  171 

 
( ) 1 ( ) ( )
( ) 1 0 ( ) .
( ) 0 1 ( )

O t t k t t k t O t
C t t t t C t
B t t k t k t B t

β α
β α

−

+

+

−

 + Δ − + Δ Δ Δ   
    + Δ = Δ − Δ    
    + Δ Δ − Δ    

 (3) 
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Monte Carlo simulations were performed and the single-channel open-state O(t) was used to 172 

compute the single-channel current as 173 

 ( ) ( )( ( ) )sc sc CaI t g O t V t V= −  (4) 

where gsc is the single channel conductance. In the cluster case, the total current is simulated by 174 

summing 5 independent realizations of a single channel current (Isc).  Both the current driving 175 

force and open probability are coupled to the time-varying membrane potential V(t). Specifically, 176 

the driving force decreases as V(t) increases towards the Ca2+ reversal potential VCa whereas the 177 

open probability increases with V(t). 178 

ENDOGENOUS BUFFERS 179 

In all simulations we assumed the presence of a single immobile endogenous Ca2+ buffer, 180 

in agreement with Kits et al. (15), and no mobile buffers were considered. Binding of Ca2+ to the 181 

buffers is described by simple mass action kinetics with one-to-one stoichiometry, 182 

 2  ,
on

off

k

k
B Ca CaB++  (5) 

where kon and koff are association and disassociation rates, respectively. The reaction-diffusion 183 

equations for the Ca2+ concentration and for the free unbound buffers are taken from (20):  184 

 
[ ] [ ]( )

( )

2
2 2 2

2 2
0

[ ] 1 ( ) ( , )
2

                ,

Ca on off total sc

uptake

Ca D Ca k Ca B k B B I t r R
t F

k Ca Ca

δ θ
+

+ +

+ +

∂    = ∇ − + − + −   ∂
   − −   

 (6) 

 [ ] [ ] [ ]( )2 ,on off total

B
k Ca B k B B

t
+∂

 = − + − ∂
 (7) 
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where DCa is the diffusion coefficient for unbound Ca2+. We chose DCa=0.2 µm2 ms-1 (1) and 185 

assumed that the distribution of the immobile buffer is spatially uniform. The second-to-last term 186 

in Eq. 6 represents Ca2+ influx, where F is Faraday’s constant, Isc(t) is the (inward) single-187 

channel (or 5-channel-cluster) calcium current, and δ(r-R,θ) is the Dirac delta function centered 188 

at r=R and θ=0 (i.e., at the center of the base of the cone). The last term defines net Ca2+ uptake 189 

into internal stores such as the endoplasmic reticulum with constant rate kuptake =0.3 µM/ms-1. 190 

[Ca2+]0 is the Ca2+ concentration in case of no Ca2+ influx and spatiotemporal equilibrium. In 191 

accordance with simulation studies performed by Kits et al. (16) in melanotroph cells, we set the 192 

endogenous buffer parameters kon=0.1 µM-1 ms-1, KD= koff/kon =10 µM, and Btotal=900 µM. No-193 

flux boundary conditions hold for Ca2+ at all boundaries. The reaction-diffusion equations were 194 

solved using the Calcium Calculator (CalC) software developed by Victor Matveev (21). CalC 195 

uses an alternating-direction implicit finite difference method, with second order accuracy in 196 

space and time, and with adaptive time steps. 197 

EXOCYTOSIS MODEL 198 

We initially used a 6-pool exocytosis model (4), which describes the fraction of granules 199 

in various pools of granules described as docked, primed, domain bound, or in one of three pre-200 

fusion states distinguished by the number of bound Ca2+ ions.  However, for the relatively short 201 

time courses used here (5 sec), our preliminary simulations showed no significant differences 202 

between this 6-pool model and a simpler 4-pool model in which the docked, primed, and domain 203 

bound pools were combined into a single pool that we call the “primed” pool. We use this 204 

simplified model (Fig. 2), which is similar to a model of exocytosis in melanotroph cells (16) in 205 

all simulations. Here, the granule can be in one of four different states: a primed state where the 206 

granule is adjacent to the plasma membrane (N0), or states in which one (N1), two (N2), or three 207 

(N3) Ca2+ ions are bound to the Ca2+ sensor, likely synaptotagmin (31). Once in state N3 the 208 

granule fuses with the membrane and releases its hormone content at rate u1. Granule release is 209 

triggered by local Ca2+ levels (Cloc), as indicated in Fig. 2, while resupply is dependent on the 210 

bulk calcium concentration Ci, which is computed as the submembrane Ca2+ concentration 1.5 211 

µm from the channel. The rate of resupply per cell r1 is  212 

 213 



10 
 

 0
1

1
( ) ,

( )
i

i p

C t rr
C t K

=
+

 
(8) 

with Kp =2.3 µM (4, 40), and r1
0 is the maximal resupply rate per cell.  214 

All secretion model steps are assumed to be reversible, except for fusion. The local Ca2+ 215 

concentration was determined by solving the Ca2+ reaction-diffusion equations and using the 216 

Ca2+ value at the release site (Eqs. 6,7). The exocytosis model describing release per cell is given 217 

by the following differential equations: 218 

 

( )

( )

( )

( )

0
1 1 0 1 1 1

1
1 1 1 1 0 1 2

2
1 1 2 1 1 1 3

3
1 1 3 1 2

3 ( ) ( ( )) ,

2 ( ) 3 ( ) 2 ,

( ) 2 2 ( ) 3 ,

3 ( ) ,

loc i

loc loc

loc loc

loc

dN k C t r N r C t k N
dt

dN k C t k N k C t N k N
dt

dN k C t k N k C t N k N
dt

dN u k N k C t N
dt

− −

− −

− −

−

= − + + +

= − + + +

= − + + +

= − + +

 (9) 

where Ni is the number of granules in pool i. Experimental data (37) indicate a relatively low 219 

Ca2+ binding affinity; as a consequence, we use the Ca2+  affinity value kd=k-1/k1=27 µM in 220 

Eqs. 9.  221 

We used two sets of initial conditions for the granule/exocytosis model. In the model of Chen et 222 

al. (4) the number of primed granules (pool N0) is equal to 40 per cell. Hence, we set as initial 223 

condition N0=40 primed granules, each a fixed distance from a single channel (so 35 channels are 224 

not associated with granules). Assuming that – in any one simulation – all Ca2+ channels in the 225 

cell behave identically according to the Markov simulation, the granules will be exposed to the 226 

same Ca2+ profile. To calculate average cellular exocytosis, we performed 10 (single channel) or 227 

5 (cluster) simulations and computed average values of Ni at each time point.  228 

This initial condition (N0=40) reflects experiments such as single-cell capacitance measurements 229 

of triggered exocytosis, where no exocytosis is occurring before the experiment (36, 37). For 230 
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interpreting hormone secretion experiments, where secretion is ongoing, the steady state of the 231 

model is more relevant. We found that the pools empty within seconds (see Results), and 232 

therefore considered initial conditions where all pools are empty to reflect secretion experiments. 233 

The exocytosis rate per cell, with N3 the average of 10 or 5 trials as explained above, is 234 

 1 3( ) ( ),FJ t u N t=   (10) 

and the cumulative number of fused granules per cell is 235 

 
1 30

( ) ( ') '.
t

FM t u N t dt=   (11) 

To show how much of the simulated secretion is due to increased Ca2+ influx during 236 

bursting compared to spiking electrical activity, that is, to investigate whether bursting increases 237 

the Ca2+-current sensitivity of exocytosis (26), we related exocytosis to the total charge entering 238 

via the Ca2+ channel or channel cluster (26): 239 

 

0

( ) .
t

scQ t I ds=   
(12) 

The exocytosis model was solved using the MATLAB (R2012b, The MathWorks®) 240 

function ode15s. 241 

[Figure 2] 242 

  243 
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RESULTS 244 

Secretion evoked by Ca2+ influx through single channels is increased when converting spiking to 245 

bursting electrical activity through dynamic clamp 246 

 Gonadotrophs release little LH under basal conditions, which has been suggested to be 247 

associated to their typical spiking electrical behavior (10). We have previously shown that 248 

adding a BK-type K+ current to a spiking gonadotroph can change its behavior into bursting (35). 249 

Figure 3 shows an example of such a cell where the injected BK-type current induces bursting in 250 

an otherwise spiking gonadotroph. We also show the average of 10 independent simulations, 251 

each with a stochastic Ca2+ channel providing Ca2+ to the interior of the cell and subsequent Ca2+ 252 

diffusion. The Ca2+ model is driven by either the spiking voltage pattern (left) or the bursting 253 

pattern (right) obtained by injecting a BK-type K+ current via dynamic clamp. Average Ca2+ 254 

profiles are reported at distances of 30, 200, and 1500 nm from the Ca2+ channel. As expected, 255 

close to the channel, i.e., 30 nm, Ca2+ reaches high concentrations of some tens of micromolar on 256 

average with peaks up to ~70 µM during spiking activity and ~110 μM during bursting. The 257 

traces are very noisy due to the stochastic openings of the Ca2+ channel. The average Ca2+ 258 

concentration decreases with distance from the channel, reaching less than 1 µM at a distance of 259 

1500 nm. In addition, the noise is attenuated due to the effects of diffusion, which acts as a low-260 

pass filter. Ca2+ measurements using a fluorescent dye such as fura-2 report on the Ca2+ 261 

concentration averaged over the cell, and have time courses similar to those shown in the bottom 262 

row of Fig. 3 (30, 32).  263 

[Figure 3] 264 

 265 

We now locate the exocytosis machinery at different distances from the Ca2+ channel and 266 

use the Ca2+ concentration at that location to drive the exocytosis model (Fig. 2 and Eqs. 9). 267 

Figure 4 shows the average number of fused granules over time at different distances. If the 268 

release site is 30 nm from the channel, it is exposed to very high Ca2+ concentrations, whether 269 

the cell is spiking or bursting, and exocytosis occurs at its maximum rate that releases all the 270 

granules in the primed pool N0 (40 granules) very soon after the start of the input train. A similar 271 
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result occurs if the release site is located 100 nm from the channel. Thus, if the release site and 272 

channel are within 100 nm of each other it does not matter whether the cell is spiking or bursting, 273 

the secretion level will be the same, since the Ca2+ concentrations at the exocytotic machinery 274 

are in both cases saturating. At a distance of 200 nm there is a difference between exocytosis 275 

evoked by spiking and that evoked by bursting; the bursting pattern (solid) evokes release at a 276 

higher rate than the spiking pattern (dashed), though both release almost all available granules by 277 

the end of the 5 second input train. The advantage of bursting over spiking is amplified when the 278 

release site is situated further from the channel, at 300 nm or 500 nm. Even though the absolute 279 

number of fused granules is lower when the channel and the release site are more distant, the 280 

bursting voltage trace releases more granules than the spiking trace at all time points. Thus, our 281 

simulations support the notion that adding an outward K+ current can, by changing spiking to 282 

bursting activity, increase secretion (6, 29).  283 

These observations imply that the primed pool of granules can be emptied very quickly, 284 

and this fusion process is likely monitored with capacitance measurements of exocytosis that 285 

take place over a short period of time (14). In our data, the spiking voltage trace shows 5 spikes 286 

in 5 seconds, each spike lasting ~40 ms (Fig. 3Ai). On average, each 40 ms depolarization of a 287 

pulse train was found to evoke ~10 fF of exocytosis (19). Thus, based on these experiments we 288 

expect ~50 fF exocytosis during the 5 seconds in Fig. 3. In our simulations, exocytosis at a 289 

distance of 200 nm from the channel is ~30 granules. If we assume that a single granule 290 

corresponds to ~2fF (39, 42), we get a capacitance measurement of ~60 fF, close to the ~50 fF 291 

calculated from (19).        292 

[Figure 4] 293 

However, most secretion measurements are made from a cell population over a period of 294 

minutes or tens of minutes. In such measurements the resupply of the primed pool by the reserve 295 

granule pool is rate limiting. We next look at the effects of resupply by emptying the primed pool 296 

N0 at the beginning of the simulation and from this initial condition evaluate the differential 297 

exocytosis evoked by spiking and bursting.  298 

The cumulative number of fused granules as a function of time is shown in Fig. 5 (top 299 

panel). Bursting evokes more release regardless of the distance between the channel and the 300 
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granule. This is in spite of the fact that at short distances the local Ca2+ concentration saturates 301 

the release site, and highlights the importance of the dependence of resupply on the global, rather 302 

than local, Ca2+ concentration.  That is, the simulated global Ca2+ concentration is higher during 303 

bursting than during spiking, as measured by fluorescent dyes (22), and this results in a greater 304 

rate of resupply in response to bursting. When the channel is close to the release site all granules 305 

becoming available due to the resupply are fused almost immediately, so resupply is rate 306 

limiting. Farther than 200 nm from the channel, local Ca2+ concentrations start to play a 307 

predominant role since the exocytosis machinery is no longer saturated, and therefore differences 308 

in local Ca2+ levels as well as global levels are responsible for differences in the exocytosis rates. 309 

[Figure 5] 310 

There are two factors that could contribute to the greater effectiveness of bursting at 311 

evoking secretion in the model. One is that bursting brings in more Ca2+ over the 5 seconds of 312 

simulation time, increasing resupply rate relative to spiking, as mentioned above. The other is 313 

that the dynamics of Ca2+ diffusion and the exocytotic machinery favor the bursting signal over 314 

the spiking signal. That is, bursting is more efficient than spiking at evoking release. To test the 315 

latter, we plot the number of fused granules versus the total Ca2+ entry Q (Fig. 5, bottom panels).  316 

For release sites closer than 200 nm from the channel the efficiencies of the spiking and bursting 317 

patterns are virtually the same. It is only at distances of 200 nm or greater that bursting becomes 318 

more efficient than spiking, since at these distances the number of fused granules per total Ca2+ 319 

entry is larger when the cell is bursting. This is due to the longer duration of the bursting events, 320 

which produce longer-duration Ca2+ signals that are advantageous for the exocytosis machinery 321 

that requires the binding of three Ca2+ ions to evoke granule fusion. In fact, in simulations in 322 

which only two Ca2+ ions are needed to evoke fusion the efficiencies of spiking and bursting are 323 

the same at a 200 nm distance, and bursting is only slightly more efficient at 300 and 500 nm 324 

distances (not shown). 325 

As a final quantification of the effectiveness of bursting vs. spiking at evoking secretion 326 

we show the ratio between bursting-evoked secretion and spiking-evoked secretion in Fig. 6 327 

(solid line). This ratio is calculated from the total number of fused granules at the end of the 5-328 

sec input voltage train as a function of distance between the channel and the release site. Up until 329 
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a distance of 100 nm the ratio is ~1.5; the burst pattern evokes a slightly higher amount of 330 

secretion than spiking. Past this distance the ratio increases continuously, reaching a value of 331 

~8.5 at a distance of 700 nm. Thus, there is between 1.5 and 8.5 times more secretion by the end 332 

of the 5-sec stimulation with bursting versus spiking. Plotting the ratio of exocytosis during 333 

spiking and bursting but normalized to the charge Q (Fig. 6, dashed line) shows that spiking and 334 

bursting have almost the same Ca2+ current sensitivity close to the channel (i.e., they are equally 335 

efficient at evoking release), but farther away bursting becomes more efficient than spiking, 336 

reaching a 5.5-fold higher Ca2+ current sensitivity at a distance of 700 nm from the channel.  337 

In summary, our simulations suggest that LH secretion from a gonadotroph could 338 

increase substantially if the electrical pattern switched from spiking to bursting, for example 339 

because of the addition of a BK-type current. 340 

[Figure 6] 341 

Secretion evoked by Ca2+ influx through a cluster of channels 342 

 The previous simulations assumed that each release site is acted upon by Ca2+ from single 343 

channels, and indeed there is evidence supporting this, in both endocrine cells and in neuronal 344 

synapses (11, 17). However, it is likely that hormone release sites receive Ca2+ from several 345 

channels, and there is also evidence for this (2, 3). In the next set of simulations we consider 346 

such a situation, where a release site is affected by Ca2+ from a cluster of 5 stochastic Ca2+ 347 

channels. For simplicity we assume that these are equidistant from the release site. 348 

Figure 7 shows the Ca2+ concentration at different distances from the channel cluster in response 349 

to the spiking or bursting voltage trace. Close to the cluster (30 nm), Ca2+ rises to a level of 350 

several hundreds of micromolar, about five times larger than in the single-channel case. At 351 

greater distances, the increase over the single-channel level is less, since now the different 352 

clusters are 6600 nm apart so that a release site located 1500 nm from a cluster is >5000 nm from 353 

the next nearest cluster. In contrast, with uniform distribution of the same number of channels 354 

(the single channel case), a release site located 1500 nm from one channel was located the same 355 

distance from a second channel, so it received an equal amount of Ca2+ from both.  Hence, 356 

whereas a cluster of 5 channels provides ~5 times higher Ca2+ levels to granules located close to 357 
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the channels, a granule located 1500 nm from channels will be exposed to just ~5/2=2.5 times 358 

higher Ca2+ concentrations in the case of channel clusters compared to the single-channel 359 

configuration.  360 

[Figure 7] 361 

Figure 8 (upper panels) shows that bursting is always superior to spiking in evoking exocytosis 362 

when channels are in clusters and the primed pool is initially empty. In contrast, the difference in 363 

Ca2+ current sensitivity is hardly observable when the release site is less than 300 nm from the 364 

channel cluster (Fig. 8, lower panels). It is therefore mostly the larger amount of Ca2+ entering 365 

during bursting that determines the difference in secretion. Figure 9 summarizes the results for 366 

channel clusters. Even at the closest release site/cluster distances the bursting-to-spiking ratio of 367 

the total number of fused granules is ~1.5, and increases to ~4.5 at 700 nm (solid line). The 368 

relative efficiency, i.e., the bursting-to-spiking ratio of the total number of granules normalized 369 

to Ca2+ entry, is ~1 up to 300 nm, and increases then to ~2.5 at 700 nm. Thus, just as with single-370 

channel-evoked release, bursting provides more secretion than does spiking when exocytosis is 371 

triggered by channel clusters. However, the advantage of bursting over spiking becomes manifest 372 

at greater distances for clusters than for single channels, 100 nm in Fig. 6 vs. 300 nm in Fig. 9.. 373 

Because the trends are qualitatively similar with single-channel and cluster-evoked secretion, we 374 

focus on only one type (single-channel secretion) in the remaining simulations.   375 

[Figure 8] 376 

[Figure 9] 377 

Bursting superiority depends on the frequency of spiking  378 

 As a second example, we now use recordings from a GH4 cell line. It has previously been 379 

shown that pseudo-plateau bursting in some pituitary cells converts to spiking when BK-type K+ 380 

channels are pharmacologically blocked, reducing the bulk Ca2+ concentration (8). Does this 381 

manipulation also result in a decrease of the domain Ca2+ and therefore in decreased secretion? 382 

We have shown that bursting can be rescued by adding BK current back to the cell using the 383 

dynamic clamp technique (here and in (34)). In Fig. 10 we use both procedures. We begin with a 384 

bursting lacto-somatroph GH4C1 cell (left column), then convert it to a spiking cell by the 385 
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addition of the BK channel blocker iberiotoxin (middle column), and finally convert the spiking 386 

cell back to a bursting cell using dynamic clamp to inject a model BK current (right column). For 387 

each case we calculate the Ca2+ concentration at varying distances from the single stochastic 388 

channel, as in prior simulations. Close to the channel, the Ca2+ concentration is about the same 389 

for all three voltage traces. However, at the greater distances, 1500 nm, the Ca2+ levels 390 

corresponding to the bursting voltage traces are higher than those corresponding to the spiking 391 

voltage trace, as has been observed in experiments (18).   392 

 We next use these Ca2+ time courses to simulate exocytosis for release sites located at 393 

different distances from the Ca2+ channel (Fig. 11). The results are summarized in Fig. 12, where 394 

we show the number of fused granules evoked by the dynamic clamp-induced bursting vs. that 395 

evoked by the spiking trace (solid black curve). In both cases, the ratio is near 1 up until a 396 

separation distance of ~150-200 nm. At greater separations the ratio increases, indicating that at 397 

these greater distances the bursting trace is more effective at evoking exocytosis than the spiking 398 

trace. Normalizing to Ca2+ influx reveals that the ratio of Ca2+ current sensitivity is higher for 399 

spiking close to the channel (ratio < 1) whereas bursting is more efficient farther from the 400 

channel (Fig. 12). The fact that bursting is less superior to spiking after normalizing to Ca2+ 401 

influx compared to the previous simulations of exocytosis using the traces from a gonadotroph 402 

(Figs. 5 and 6) can be explained by noticing that, for this example, iberiotoxin-induced spiking 403 

(Fig. 10B) occurs at a much higher rate (~1.8 Hz) than bursting (~0.8 Hz) (Fig 10A, C). Thus, 404 

the dynamics of Ca2+ entry is important for the control of exocytosis in addition to the number of 405 

Ca2+ ions entering the cell. 406 

[Figure 10] 407 

[Figure 11] 408 

[Figure 12] 409 

  410 
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DISCUSSION 411 

   In the absence of hypothalamic stimulation or inhibition, pituitary lactotrophs and 412 

somatotrophs release prolactin and growth hormone, while gonadotrophs comparatively secrete a 413 

negligible amount of luteinizing hormone. This difference in basal hormone release was matched 414 

by differences in spontaneous electrical activity between these cell types: lactotrophs and 415 

somatotrophs often exhibit “pseudo-plateau” bursts of activity, causing periodic Ca2+ influx, 416 

while gonadotrophs usually produce spikes that are too brief to perturb the bulk Ca2+ level 417 

substantially (9). Such differences in the bulk Ca2+ profiles lead to the hypothesis that different 418 

patterns of spontaneous electrical activity result in different rates of hormone release. Bursting 419 

causes hormone release from lactotrophs and somatotrophs, while spiking causes no hormone 420 

release from gonadotrophs. 421 

We tested this hypothesis in this paper. While Ca2+ triggers hormone release and bursting 422 

creates larger amplitude oscillations of average intracellular Ca2+ than spiking, this does not 423 

necessarily mean that bursting is more effective at triggering hormone release. The Ca2+ 424 

concentration that matters is that seen by the hormone-containing granules at their release sites, 425 

and if the release sites are close to Ca2+ channels, the high Ca2+ concentration in the 426 

microdomains around the channels created by a single spike may be just as effective as that due 427 

to a burst in triggering fusion of granules. Indeed, we found that spiking is as effective as 428 

bursting in releasing a full pool of primed granules, as long as the release site is within 100 nm 429 

from the channel (Fig. 4). However, if the primed pool of granules is initially empty, or if the 430 

release site is located more than 100 nm from the channel, we found that bursting was always 431 

more effective than spiking in triggering granule fusion.  432 

There are two mechanisms for this difference between bursting and spiking. The first 433 

results from the larger entry of Ca2+ caused by bursting over spiking. Because the fraction of 434 

open Ca2+ channels is increased for a longer period of time during a burst than during a spike, a 435 

burst causes a larger increase in bulk Ca2+. Since the replenishment of the primed pool of 436 

granules depends on bulk Ca2+, bursting causes a higher rate of granules priming, which in turn 437 

results in a higher rate of granule fusion. This effect is independent of the microdomain Ca2+ 438 

concentration, so bursting causes a higher rate of granule fusions even if the release site is 100 439 

nm or less from the channel (Fig. 5 top panels). However, this mechanism relies on the fact that, 440 
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at similar event frequency, bursting means that the electric potential across the cell membrane 441 

stays high (i.e., at levels where the cell Ca2+ current is high) for a larger fraction of time than 442 

spiking. If spiking frequency is increased relative to bursting frequency so that the total amount 443 

of active time is the same, then bulk Ca2+ will be similar and so will the priming rate. In that 444 

sense, the bursting pattern is not more effective than the spiking pattern if the amount of activity 445 

(and therefore Ca2+ entry) is normalized.  446 

Nevertheless, there is a second mechanism that makes bursting more effective than 447 

spiking at triggering granule fusion, even if we normalize by the total amount of Ca2+ entry. 448 

Because three free Ca2+ ions must bind to the release machinery to trigger fusion, fusion is 449 

facilitated by a stable high local Ca2+ level. This is more likely to happen during bursting than 450 

spiking, since Ca2+ influx can be maintained longer during a burst than during a spike. This 451 

advantage of bursting can be observed when the release site is more than 100 nm away from the 452 

channel (Fig. 5 bottom panels). Cells must quickly restore intracellular Ca2+ to low levels using 453 

ATP-driven pumps, so there is an energetic cost associated with the entry of each Ca2+ ion. For 454 

release sites far from the Ca2+ channels, the bursting pattern of activity results in a more efficient 455 

use of Ca2+ ions than the spiking pattern.  456 

This may not be true at higher spike frequencies. If we increase spike frequency the 457 

interval between each increase in local Ca2+ goes down, so the higher effectiveness of bursting 458 

might only be observed for release sites further away from the channels. We see that for the BK 459 

(endogenous or injected by dynamic clamp) vs. no BK (i.e., in the presense of iberiotoxin) case, 460 

where the maximum Ca2+ concentration reached at 200 nm (Fig. 10) is similar to what we saw in 461 

Fig. 3, but the interspike interval is lower so Ca2+ does not go back down for long – in that case 462 

spiking is at least as efficient as bursting in evoking release, for release sites up to 500 nm away 463 

from the channels (Fig. 11). Nevertheless, the bursting pattern caused by the presence of a BK 464 

current evoked more granule fusion because of the high average bulk Ca2+ during bursting, 465 

which results in higher rate of replenishment of the primed granules. 466 

There are many examples in endocrinology where the pattern of a signal plays an 467 

important role. A well-known example is that the frequency of hypothalamic gonadotropin-468 

releasing hormone pulses determines the differential release of luteinizing and follicle-469 
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stimulating hormone by gonadotrophs (41). Here we used a hybrid experimental/modeling 470 

approach to show that the actual pattern of electrical activity can trigger different rates of 471 

hormone release. Since the discovery that pituitary cells are electrically active 40 years ago, 472 

researchers have wondered how pituitary cells tune electrical activity to regulate hormone release 473 

(24). It has been argued that since hypothalamic factors act on a number of ion channels on 474 

pituitary cell membranes, electrical activity provides numerous ways for the hypothalamus to 475 

modulate pituitary hormone release. Some of these factors may even modulate the time constant 476 

of BK channels to switch the electrical activity pattern from spiking to bursting (6). The present 477 

work shows that this switch to bursting may improve the effect of hypothalamic stimulating 478 

neurohormones in increasing pituitary hormone secretion. 479 

In summary, our modeling results show that bursting is superior to spiking in evoking 480 

pituitary hormone release, since it brings more Ca2+ into the cell, thus augmenting both local and 481 

global Ca2+ levels, which in turn increases resupply of secretory granules and exocytosis. We 482 

found further that channel clustering is advantageous to isolated channels in controlling 483 

secretion. Our results have implications beyond pituitary secretion. For example, human 484 

pancreatic beta-cells show rapid bursting resembling pituitary plateau bursting (23, 27), which 485 

has been suggested to be advantageous for insulin secretion (25). Further, Ca2+ channel 486 

clustering in beta-cells has been suggested to be important for insulin exocytosis (2). 487 
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FIGURE CAPTIONS 603 

Figure 1. Calcium diffusion characteristics in the model. a) Spherical cell model used in 604 

simulations. The cell diameter is 13 μm. Ca2+ diffusion and buffering are simulated in a conical 605 

region of the sphere. The channel or channel cluster is located at the center of the cone base on 606 

the surface of the sphere. The base radius in the single channel case is 1.5 μm and in the cluster 607 

case 3.3 μm. b) Upper panel: submembrane Ca2+ concentrations (color coded, in μM) as a 608 

function of time and the distance to the channel (d, measured along the cone base as indicated in 609 

panel a) during spiking electrical activity. Lower panel: Ca2+ concentration at 500 nm from the 610 

channel as function of time. 611 

Figure 2. Kinetic scheme of the exocytosis model. The pool N0 consists of granules primed for 612 

fusion and its resupply depends on the bulk cytosolic Ca2+ concentration Ci. Fusion occurs upon 613 

Ca2+ binding controlled by the local concentration of Ca2+, Cloc. The pools N1, N2, N3 correspond 614 

to the three Ca2+ bound states, and u1 is the fusion rate.    615 

Figure 3. Ca2+ concentration at different distances from a single stochastic Ca2+ channel on the 616 

surface of a conical region (average of 10 independent trials). The Ca2+ channel is placed at the 617 

center of the cone base with radius 1.5 µm. The Ca2+ concentration is determined using a 618 

mathematical model, in response to actual spiking (A) and bursting (B) voltage traces from a 619 

gonadotroph. The switch to bursting was obtained by injecting a model BK-current into a spiking 620 

cell using the dynamic clamp technique. 621 

Figure 4. Single channel exocytosis simulation results with N0=40 primed granules as initial 622 

condition. Number of fused granules (average of 10 simulations) during spiking (dashed curve) 623 

and bursting (solid curve) electrical activity for different distances between the single Ca2+ 624 

channel and a release site as a function of time.  625 

Figure 5. Single channel exocytosis simulation results with all the pools initially empty. Top 626 

panels (i) show the number of fused granules as a function of time, as in Fig. 4. Bottom panels  627 

(ii) show the cumulative number of fused granules during 5 seconds of simulation as function of 628 

the cumulative calcium entry Q. (A) granules located at 30 nm, (B) 100 nm, (C) 200 nm, (D) 300 629 

nm, or (E) 500 nm  from the channel.   630 
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Figure 6.  Summary of single channel exocytosis results with all the pools initially empty. The 631 

bursting-to-spiking ratio of the total number of fused granules during 5 seconds of electrical 632 

activity (solid line) shows that bursting evokes more secretion at all distances. In contrast, the 633 

bursting-to-spiking ratio of the total number of granules normalized to change entry Q (dashed 634 

line) shows that the efficiency of spiking and bursting are comparable for release sites located 635 

close to the channel, but that bursting has superior efficiency farther from the channel.  636 

Figure 7. Ca2+ concentrations for a cluster of 5 channels (average of 5 independent trials). The 637 

Ca2+ channel is placed at the center of the cone base with radius 3.3 µm. The Ca2+ concentration 638 

is determined using the mathematical model, in response to actual spiking (A) and dynamic-639 

clamp induced bursting (B) voltage traces from a gonadotroph (same traces as in Fig. 3). 640 

Figure 8. Channel cluster exocytosis simulation results with all the pools initially empty. Top 641 

panels (i) show the number of fused granules as a function of time, evoked by spiking (dashed 642 

curve) or bursting (solid curve). Bottom panels (ii) show the cumulative number of fused 643 

granules during 5 seconds of simulation as a function of the cumulative Ca2+ entry Q. (A) 644 

granules located at 30 nm, (B) 100 nm, (C) 200 nm, (D) 300 nm, or (E) 500 nm  from the 645 

channel.   646 

Figure 9.  Summary of channel cluster exocytosis results with all the pools initially empty. The 647 

bursting-to-spiking ratio of the total number of fused granules during 5 seconds of electrical 648 

activity (solid line) shows that bursting evokes more secretion at all distances. In contrast, the 649 

bursting-to-spiking ratio of the total number of granules normalized to change entry Q (dashed 650 

line) shows that the efficiency of spiking and bursting are comparable for release sites located 651 

close to the channel cluster, but that bursting has superior efficiency farther away.  652 

Figure 10. Ca2+ concentration at different distances from a stochastic Ca2+ channel on the surface 653 

of a conical region (average of 10 independent trials). The Ca2+ channel is placed at the center of 654 

the cone base with radius 1.5 µm. (A) Bursting profile in control condition. (B) Spiking profile in 655 

the presence of the BK channel blocker iberiotoxin. (C) Bursting profile in the presence of 656 

iberiotoxin and when BK current is injected back using the dynamic clamp. Sub panels show the 657 

experimentally recorded voltage profile (i), and simulated Ca2+ concentrations at 30 nm (ii), 200 658 

nm (iii), or 1500 nm (iv) from the channel. 659 
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Figure 11. Single channel exocytosis simulation results with all the pools initially empty for 660 

dynamic clamp-induced bursting. Top panels (i) show the number of fused granules as a function 661 

of time, evoked by a spiking voltage trace (gray dashed curves) and bursting induced by dynamic 662 

clamp in the presence of iberiotoxin (black solid curves). Bottom panels  (ii) show the 663 

cumulative number of fused granules during 5 seconds of simulation as a function of the 664 

cumulative Ca2+ entry Q. (A) granules located at 30 nm, (B) 100 nm, (C) 200 nm, (D) 300 nm, or 665 

(E) 500 nm  from the channel.    666 

Figure 12. Summary of exocytosis simulation results with all the pools initially empty during 667 

BK-current block and dynamic clamp. The ratios of the total number of fused granules between 668 

bursting that results from dynamic clamp application with iberiotoxin vs. spiking that results 669 

from iberiotoxin alone (solid black curve). The ratios of the total number of fused granules 670 

normalized to the charge entry Q are given by the dashed curves.  671 

  672 
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Table 1. Default parameters of the Ca2+ channel model, Ca2+ diffusion simulations and 673 
exocytosis model.  674 

 675 

Parameter Value Unit 

Current Simulation 

sm 7 mV 

vm -4 mV 

k+
 0.0234 ms-1 

k-
 0.018 ms-1 

gCa 20 pS 

Diffusion Simulation 

DCa 0.22 µm2s-1 

Btotal 900 µM 

KD 10 µM 

kon 0.1 µM-1ms-1 

koff 1 ms-1 

[Ca2+]0 0.22 µM 

Secretion Model 

k1 3.7 µM -1s-1 

k-1 100 s-1 

r1
0  3.6 s-1 

Kp 2.3 µM 

r-1 0.001 s-1 

u1 1000 s-1 
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