Show simple item record

dc.contributor.authorTagliavini, A
dc.contributor.authorTabak, J
dc.contributor.authorBertam, R
dc.contributor.authorPedersen, MG
dc.date.accessioned2016-03-03T15:07:25Z
dc.date.issued2016-01-19
dc.description.abstractEndocrine cells of the pituitary gland secrete a number of hormones, and the amount of hormone released by a cell is controlled in large part by the cell's electrical activity and subsequent Ca2+ influx. Typical electrical behaviors of pituitary cells include continuous spiking and so-called pseudo-plateau bursting. It has been shown that the amplitude of Ca2+ fluctuations is greater in bursting cells, leading to the hypothesis that bursting cells release more hormone than spiking cells. In this work, we apply computer simulations to test this hypothesis. We use experimental recordings of electrical activity as input to mathematical models of Ca2+ channel activity, buffered Ca2+ diffusion, and Ca2+-driven exocytosis. To compare the efficacy of spiking and bursting on the same cell, we pharmacologically block the large conductance potassium (BK) current from a bursting cell, or add a BK current to a spiking cell via dynamic clamp. We find that bursting is generally at least as effective as spiking at evoking hormone release, and is often considerably more effective, even when normalizing to Ca2+ influx. Our hybrid experimental/modeling approach confirms that adding a BK-type K+ current, which is typically associated with decreased cell activity and reduced secretion, can actually produce an increase in hormone secretion, as suggested earlier.en_GB
dc.description.sponsorshipJT and RB were partially supported by grant DMS1220063 from the National Science Foundation.en_GB
dc.identifier.citationVol. 310 (7), pp. E515-E525en_GB
dc.identifier.doi10.1152/ajpendo.00500.2015
dc.identifier.urihttp://hdl.handle.net/10871/20429
dc.language.isoenen_GB
dc.publisherAmerican Physiological Societyen_GB
dc.rights.embargoreasonPublisher's policyen_GB
dc.titleIs Bursting More Effective than Spiking in Evoking Pituitary Hormone Secretion? A Spatiotemporal Simulation Study of Calcium and Granule Dynamicsen_GB
dc.typeArticleen_GB
dc.identifier.issn0193-1849
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.en_GB
dc.identifier.journalAmerican Journal of Physiology - Endocrinology And Metabolismen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record