Show simple item record

dc.contributor.authorMurua, Jeffersonen_GB
dc.date.accessioned2010-06-10T09:42:49Zen_GB
dc.date.accessioned2011-01-25T17:02:09Zen_GB
dc.date.accessioned2013-03-21T10:58:20Z
dc.date.issued2009-11-13en_GB
dc.description.abstractSalmonids naturally organise into social hierarchies both in the wild and aquaculture. This thesis investigates how social rank influences the physiology and development of salmonids with different life strategies using Atlantic salmon (Salmo salar) as a model. In broad terms two types of studies were conducted. Firstly osmoregulatory traits of freshwater parr prior to smolting, maturing or remaining immature where investigated using Na+ gill uptake kinetics. Highly distinct patterns emerged, especially for Na+ uptake affinity, between future alternative phenotypes, which could potentially be used as an identification tool in otherwise visually identical fish. Examination of Na+ uptake kinetics from a social status perspective revealed that first and intermediate ranked fish, which received less aggression and had lower cortisol, were better prepared for sea water entry. In the second batch of studies brain serotonergic activity (5-HIAA/5-HT), a key regulator of agonistic behaviour in vertebrates, was examined in a range of social conditions. First, the stability of social ranks was tested by food manipulation. The most dominant fish were able to retain their high status even after being kept in nutrient poor conditions. High status was associated with a high standard metabolic rate (SMR) and low brain 5-HIAA/5-HT. Secondly, studies on hierarchies with marked bimodal size asymmetries showed that upper modal group fish (UMG) became dominant. Despite being subordinate lower modal group (LMG) individuals showed similar growth rates, serotonin turnover and cortisol to UMG fish, possibly due to high aggression and fin injury sustained by high rank fish fighting for dominance. Thirdly, the association between social dominance and developmental pathway was examined in size-matched groups of immature parr and precocious parr, with the latter obtaining higher social positions and showing higher aggression. Brain serotonin turnover revealed higher 5-HIAA/5-HT in immature parr, a phenotypic distinction that was also identified in immature salmonids in aquaculture. Plasma samples from alternative life histories (immature parr, precocious parr and smolts) were also used for a preliminary investigation of potential metabolite signatures utilising metabolomic techniques.en_GB
dc.description.sponsorshipBBSRC, West Country Rivers Trust, University of Exeteren_GB
dc.identifier.grantnumberBBS/S/L/2005/12124en_GB
dc.identifier.urihttp://hdl.handle.net/10036/104585en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.rights.embargoreasonTo allow publicationen_GB
dc.subjectAalmoniden_GB
dc.subjectPhysiologyen_GB
dc.subjectBehaviouren_GB
dc.subjectSerotoninen_GB
dc.titleThe role of social rank in the development, physiology and reproductive strategies in salmonidsen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2011-12-10T05:00:03Zen_GB
dc.date.available2013-03-21T10:58:20Z
dc.contributor.advisorWilson, Roderic Williamen_GB
dc.publisher.departmentSchool of Biosciencesen_GB
dc.type.degreetitlePhD in Biological Sciencesen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record