Show simple item record

dc.contributor.authorAlapini Odunlade, Aude Ekundayo Paulineen_GB
dc.date.accessioned2010-06-15T08:00:33Zen_GB
dc.date.accessioned2011-01-25T17:04:39Zen_GB
dc.date.accessioned2013-03-21T11:15:40Z
dc.date.issued2010-03-22en_GB
dc.description.abstractThe combined observations of a planet’s transits and the radial velocity variations of its host star allow the determination of the planet’s orbital parameters, and most inter- estingly of its radius and mass, and hence its mean density. Observed densities provide important constraints to planet structure and evolution models. The uncertainties on the parameters of large exoplanets mainly arise from those on stellar masses and radii. For small exoplanets, the treatment of stellar variability limits the accuracy on the de- rived parameters. The goal of this PhD thesis was to reduce these sources of uncertainty by developing new techniques for stellar variability filtering and for the determination of stellar temperatures, and by robustly fitting the transits taking into account external constraints on the planet’s host star. To this end, I developed the Iterative Reconstruction Filter (IRF), a new post-detection stellar variability filter. By exploiting the prior knowledge of the planet’s orbital period, it simultaneously estimates the transit signal and the stellar variability signal, using a com- bination of moving average and median filters. The IRF was tested on simulated CoRoT light curves, where it significantly improved the estimate of the transit signal, particu- lary in the case of light curves with strong stellar variability. It was then applied to the light curves of the first seven planets discovered by CoRoT, a space mission designed to search for planetary transits, to obtain refined estimates of their parameters. As the IRF preserves all signal at the planet’s orbital period, t can also be used to search for secondary eclipses and orbital phase variations for the most promising cases. This en- abled the detection of the secondary eclipses of CoRoT-1b and CoRoT-2b in the white (300–1000 nm) CoRoT bandpass, as well as a marginal detection of CoRoT-1b’s orbital phase variations. The wide optical bandpass of CoRoT limits the distinction between thermal emission and reflected light contributions to the secondary eclipse. I developed a method to derive precise stellar relative temperatures using equiv- alent width ratios and applied it to the host stars of the first eight CoRoT planets. For stars with temperature within the calibrated range, the derived temperatures are con- sistent with the literature, but have smaller formal uncertainties. I then used a Markov Chain Monte Carlo technique to explore the correlations between planet parameters derived from transits, and the impact of external constraints (e.g. the spectroscopically derived stellar temperature, which is linked to the stellar density). Globally, this PhD thesis highlights, and in part addresses, the complexity of perform- ing detailed characterisation of transit light curves. Many low amplitude effects must be taken into account: residual stellar activity and systematics, stellar limb darkening, and the interplay of all available constraints on transit fitting. Several promising areas for further improvements and applications were identified. Current and future high precision photometry missions will discover increasing numbers of small planets around relatively active stars, and the IRF is expected to be useful in characterising them.en_GB
dc.description.sponsorshipSchool of Physics, University of Exeteren_GB
dc.identifier.urihttp://hdl.handle.net/10036/104834en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.rightsThis thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Mrs Aude E. P. Alapini Odunlade. March 2010en_GB
dc.subjectExtrasolar planeten_GB
dc.subjectStellar activityen_GB
dc.subjectPhotometric time-seriesen_GB
dc.subjectStellar spectraen_GB
dc.subjectTransit methoden_GB
dc.subjectMarkov Chain Monte Carloen_GB
dc.subjectPlanet occultationen_GB
dc.subjectPlanet orbital phase variationsen_GB
dc.subjectIterative Reconstruction Filteren_GB
dc.titleTransiting exoplanets: characterisation in the presence of stellar activityen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2010-06-15T08:00:33Zen_GB
dc.date.available2011-01-25T17:04:39Zen_GB
dc.date.available2013-03-21T11:15:40Z
dc.contributor.advisorAigrain, Suzanneen_GB
dc.contributor.advisorNaylor, Timen_GB
dc.publisher.departmentSchool of Physicsen_GB
dc.publisher.departmentCollege of Engineering, Mathematics and Physical Sciencesen_GB
dc.type.degreetitlePhD in Physicsen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record